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The partial Temperley–Lieb algebra and its representations

Stephen Doty and Anthony Giaquinto

Abstract. In this paper, we give a combinatorial description of a new diagram algebra, the
partial Temperley–Lieb algebra, arising as the generic centralizer algebra EndUq.gl2/.V

˝k/,
where V D V.0/˚ V.1/ is the direct sum of the trivial and natural module for the quantized
enveloping algebra Uq.gl2/. It is a proper subalgebra of the Motzkin algebra (the Uq.sl2/-
centralizer) of Benkart and Halverson. We prove a version of Schur–Weyl duality for the new
algebras, and describe their generic representation theory.

Dedicated to the memory of Georgia Benkart

1. Introduction

The Temperley–Lieb algebra TLk.ı/ arose in [33] in connection with the Potts model
in mathematical physics. It was rediscovered by Vaughan Jones in his seminal work
[15–19] on subfactors, in the guise of a von Neumann algebra, enabling spectacular
applications to knot theory and many subsequent developments (see, e.g., [9, 22, 27,
32, 34]). An important feature of these algebras is that when the ground ring is a field
and ı D ˙.q C q�1/,

TLk.ı/ Š EndUq.sl2/.V .1/
˝k/

for almost all values of the parameter q, where V.1/ is the 2-dimensional type-1 sim-
ple Uq.sl2/-module (the “natural” module). Kauffman [21] (see also [4]) found the
now standard realization of TLk.ı/ in terms of planar Brauer diagrams in the Brauer
algebra.

The partial Brauer algebra PBk.ı; ı0/, the span of all partition k-diagrams with
blocksize at most two, was studied in [12, 28]. It comes naturally equipped with
two independent parameters ı, ı0 of disparate topological significance. In [1] (see
also [5]) Benkart and Halverson introduced the Motzkin algebra Mk.ı; ı0/, the sub-
algebra of PBk.ı; ı0/ spanned by planar partial Brauer diagrams. It is known [7] that
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PBk.ı; ı0/ Š PBk.ı; 1/ for any ı0 ¤ 0, so it is natural to restrict one’s attention to
PBk.ı; 1/ and Mk.ı; 1/. For simplicity, set Mk.ı/ WD Mk.ı; 1/; this is the context of [1].
When the ground ring is a field and ı D 1˙ .q C q�1/, they obtain an isomorphism

Mk.ı/ Š EndUq.sl2/.V
˝k/ (1)

for almost all values of q, where V D V.1/˚ V.0/ is the direct sum of the natural
module V.1/ (as above) and the trivial module V.0/. Actually, (1) is proved in [1]
only for the case ı D 1 � .q C q�1/, but it is easily extended to the above statement.
Notice that the right hand side of (1) is independent of the choice of sign, so

Mk.1C .q C q�1// Š Mk.1 � .q C q�1//:

The isomorphism (1) was unfortunately misstated in [1], where Uq.gl2/ incor-
rectly appeared in place of Uq.sl2/ on the right hand side. The two centralizers differ;
indeed, their dimensions do not agree (see Section 10).

The purpose of this paper is to identify a subalgebra PTLk.ı/ of Mk.ı/, the partial
Temperley–Lieb algebra of the title, such that when ı D 1˙ .q C q�1/,

PTLk.ı/ Š EndUq.gl2/.V
˝k/ (2)

for almost all values of q. The algebra PTLk.ı/ has a basis indexed by the set of
balanced Motzkin k-diagrams (diagrams with the same number of cups as caps). It
is notable that the basis elements are not diagrams; instead, each basis element is an
alternating sum of diagrams with a unique maximal balanced diagram as leading term.
As the right hand side of (2) is again independent of the choice of sign, we have

PTLk.1C .q C q�1// Š PTLk.1 � .q C q�1//:

The use of the adjective “partial” in describing the algebras PTLk.ı/ fits into a
more general scheme of “partialization” that goes back at least to [29].

When the ground ring is a field, all irreducible representations of a semisimple
cellular algebra are absolutely irreducible. In other words, cellular algebras over a
field are semisimple if and only if they are split semisimple, so the adjective “split” is
often omitted in describing these algebras in the semisimple case. This applies to the
algebras TLk.ı/, Mk.ı/, and PTLk.ı/ appearing in this paper.

Our main results are as follows:

(i) In Theorem 4.1, we find two natural bases ¹ xdº, ¹ zdº of PTLk.ı/, each indexed
by the set of balanced Motzkin k-diagrams. Theorem 3.5 works out a multiplication
rule for each basis.

(ii) We show that PTLk.ı/ is an iterated inflation of Temperley–Lieb algebras,
in the sense of [11, 24, 25], hence is cellular in the sense of [10]; see Remark 5.3.
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More precisely, in Theorem 5.2 we prove the stronger result that PTLk.ı/ is Morita
equivalent to a direct sum of Temperley–Lieb algebras with parameter ı � 1.

(iii) We construct the cell modules for PTLk.ı/, see Theorem 8.2, and prove that
when the ground ring is a field and TLn.ı � 1/ is semisimple for all n � k then the
same is true of PTLk.ı/, see Theorem 5.4.

(iv) In Theorem 11.2, we slightly extend the aforementioned Schur–Weyl duality
result of [1], showing that there are many choices in how to make Mk.ı/ act on V ˝k ,
all of which imply that Mk.ı/ is isomorphic to the Uq.sl2/-centralizer of V ˝k under
suitable hypotheses.

(v) For ı D 1˙ .q C q�1/, under suitable hypotheses, we define a faithful action
of PTLk.ı/ on V ˝k commuting with the action of Uq.gl2/, and prove the isomor-
phism (2) in Theorem 12.4. Thus we obtain a version of Schur–Weyl duality for V ˝k

regarded as a bimodule for PTLk.ı/, Uq.gl2/.

Finally, in Appendix A, we reinterpret results of [9] to obtain a precise semisim-
plicity criterion for TLk.ı/, when ı D ˙.q C q�1/ and the ground ring is a field.

2. Some diagram algebras

In this section, we define the standard diagram algebras needed for this paper. Unless
stated otherwise, we work over an arbitrary unital commutative ring k.

2.1. Terminology

Let Œk� WD ¹1; : : : ; kº and Œk�0 WD ¹10; : : : ; k0º. The set Pk is the collection of all set
partitions (equivalence relations) on Œk� [ Œk�0. If d D ¹B1; : : : ; Blº belongs to Pk
where B1; : : : ; Bl are pairwise disjoint, we call the Bi the blocks of d . Typically, d is
depicted by a graph on 2k vertices arranged in two parallel rows in a rectangle, with
vertices in the top (resp., bottom) row indexed by Œk� (resp., Œk�0) in order from left to
right. Edges are drawn in the interior of the rectangle in any way such that the resulting
connected components coincide with the blocks. Although this graphical depiction of
elements of Pk is not in general unique, the lack of uniqueness causes no difficulty.
To be precise, we define a k-diagram d to be the equivalence class of all graphs
depicting its underlying set partition d , where two such depictions are equivalent if
and only if they have the same blocks. Henceforth, we identify elements of Pk with
their corresponding k-diagrams.

If d1, d2 are k-diagrams, their composite configuration �.d1; d2/ is the graph
obtained by placing d1 above d2 and identifying the corresponding vertices in the mid-
dle row. Let d1 ı d2 be the diagram obtained by retaining the edges with endpoints in
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the union of the top and bottom rows of vertices in the composite configuration, along
with those vertices, and discarding the rest of the configuration. The multiplication ı
is associative, so .Pk; ı/ is a monoid, the partition monoid.

One often identifies diagrams with morphisms in a suitable category. In this paper,
the reader should think of a diagram as depicting a morphism going from its bottom
to top row, so that products depict compositions in which morphisms act on the left
of arguments.

2.2. The partition algebra

We refer the reader to [13] for basic properties of partition algebras. For any ı 2 k,
the partition algebra Pk.ı/ is a twisted semigroup algebra on Pk . As a k-module,
Pk.ı/ D kŒPk�, the collection of k-linear combinations of elements of Pk . Given k-
diagrams d1; d2,

d1d2 D ı
N.d1;d2/d3 D ı

N.d1;d2/.d1 ı d2/

where N.d1; d2/ is the number of interior blocks (connecting vertices in the middle
row) in �.d1; d2/ that get discarded in forming d3 D d1 ı d2. Extending this mul-
tiplication rule to linear combinations bilinearly as usual, the set Pk.ı/ becomes an
associative algebra with unit.

Given diagrams d1 2 Pk , d2 2 Pl , let d1 ˝ d2 2 PkCl be the diagram obtained by
placing d1 to the left of d2. (The notation ˝ in this context is not a tensor product.)
The following basic diagrams

1 WD ; p WD ; s WD ; b WD

are fundamental building blocks for all partition diagrams. Notice that 1kD1˝� � �˝1
(with k factors) is the identity element of Pk.ı/; in the sequel we will often abuse
notation by writing 1 in place of 1k . In the set Pk , define

pj WD 1j�1 ˝ p ˝ 1k�j D � � � � � �

with the isolated vertices in the j th column, for j D 1; : : : ; k, and define

si WD 1i�1 ˝ s ˝ 1k�1�i D � � � � � �

bi WD 1i�1 ˝ b ˝ 1k�1�i D � � � � � �

for i D 1; : : : ; k � 1. The elements pj ; si ; bi form a set of generators of Pk.ı/; its
defining relations are given in [13, Theorem 1.11]. (Note that bi is denoted by piC 1

2
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in that reference.) We also need the diagrams

e WD and ei WD 1i�1 ˝ e ˝ 1k�1�i D � � � � � �

for any i D 1; : : : ; k � 1. The reader may easily check that the elements ei satisfy the
identity

ei D bipipiC1bi

in Pk.ı/; this identity provides an alternative definition of ei .

2.3. The partial Brauer algebra

The subalgebra of Pk.ı/ spanned by the k-diagrams in which each block has cardinal-
ity at most 2 is the (one-parameter) partial Brauer algebra PBk.ı; ı/ of [12, 28], who
studied its more general two-parameter variant PBk.ı; ı0/, with multiplication defined
by

d1d2 D ı
N1.d1;d2/ı0N2.d1;d2/d3 D ı

N1.d1;d2/ı0N2.d1;d2/.d1 ı d2/; (3)

where N1.d1; d2/ (resp., N2.d1; d2/) is the number of interior loops (resp., interior
paths, including paths consisting of a single vertex) in the middle row of �.d1; d2/,
and d3 D d1 ı d2 is the product in the partition monoid Pk .

Note that ei , si (i 2 Œk � 1�) and pj (j 2 Œk�) belong to PBk.ı; ı0/; in fact, this is
a set of generators of that algebra. Both ei and pi are pseudo-idempotents, satisfying

e2i D ıei ; p2i D ı
0pi :

For any ı0 ¤ 0, we have PBk.ı; ı0/ Š PBk.ı; 1/; see (8) in Section 3. Thus it makes
sense to focus on PBk.ı; 1/.

2.4. The Motzkin algebra

A k-diagram that can be drawn without any intersections is said to planar. The
Motzkin algebra Mk.ı; ı0/ studied in [1] is the subalgebra of PBk.ı; ı0/ spanned by
the planar partial Brauer k-diagrams; that is, planar diagrams with blocks of cardinal-
ity at most 2.

The algebra PBk.ı; ı0/ contains elements ri WD pisi and li WD sipi , depicted by

ri D 1i�1 ˝ r ˝ 1k�1�i D � � � � � �

li D 1i�1 ˝ l ˝ 1k�1�i D � � � � � �
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for i 2 Œk � 1�, where r; l in P2 are given by

r D ; l D :

As the ri , li are planar, they belong to the Motzkin algebra Mk.ı; ı0/. The diagrams pi
are also planar, hence belong to Mk.ı; ı0/. They satisfy

pi D ri li D li�1ri�1

for all values of the indices for which the equalities are sensible. It is shown in [1] that

Mk.ı; ı0/ is generated by the ei , ri , li .i 2 Œk � 1�/:

(The element ei is denoted by ti in [1].) A set of defining relations for these generators
can be found in [31].

2.5. The Temperley–Lieb algebra

The Brauer algebra Bk.ı/ is the subalgebra of Pk.ı/ spanned by the k-diagrams in
which all blocks have exactly two elements. The Temperley–Lieb algebra TLk.ı/ is
the subalgebra of Bk.ı/ spanned by the planar k-diagrams which are also in the Brauer
algebra. It is the subalgebra generated by e1; : : : ; ek�1. As such, it is isomorphic to
the algebra defined by those generators and satisfying the relations

e2i D ıei ; eiei˙1ei D ei ; eiej D ej ei if ji � j j > 1: (4)

The rank of TLk.ı/ over k is equal to the kth Catalan number Ck D
1
kC1

�
2k
k

�
.

It is noteworthy that the algebra morphism defined on generators by ei 7! �ei for
all i defines an isomorphism of algebras

TLk.ı/ Š TLk.�ı/:

So the choice of sign of the parameter is purely a matter of convenience.
If k is a field and 0 ¤ q is an element of k such that q2 ¤ 1, it is well known that

TLk.˙.q C q�1// Š EndU.V .1/
˝k/ (5)

where V.1/ is the 2-dimensional “natural” representation of the quantized enveloping
algebra UDUq.sl2/. There is a (unique) copy of the trivial U-module in V.1/˝ V.1/.
In the isomorphism (5), we identify

ei D ˙.q C q
�1/1˝.i�1/ ˝ � ˝ 1˝.k�i�1/;
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where � is an orthogonal projection onto that trivial module and 1 denotes the identity
map. See Section 10 for details.

Finally, in Appendix A we show that if k is a field and q a nonzero element of k

satisfying the condition J1KqJ2Kq � � � JkKq ¤ 0 (where JkKq is the balanced form of
a quantum integer) then TLk.˙.q C q�1// is semisimple over k. In particular, this
semisimplicity statement holds whenever q is not a root of unity.

3. Alternating bases

Vaughan Jones [20] (see also [2, 3, 13]) introduced the orbit basis ¹od j d 2 Pkº
of Pk.ı/, defined as follows. Given k-diagrams d1, d2, write

d1 � d2 ” each block of d1 is contained in some block of d2. (6)

The relation � is a partial order on the set Pk of k-diagrams. The orbit basis

¹od j d 2 Pkº

is defined by demanding that the unitriangular relation d D
P
d�d 0 od 0 hold for every

k-diagram d .
A different basis ¹ xd j d 2 Pkº, also in a unitriangular relation with the diagram

basis, is defined by setting

xd D
X
d 0�d

.�1/ˇ.d/�ˇ.d
0/d 0 (7)

for any k-diagram d , where ˇ.d/ is the number of blocks of d . This basis is the
alternating basis; it plays a crucial role in this paper.

The blocks of a partial Brauer diagram all have cardinality at most 2, so blocks are
either singletons (isolated vertices) or edges (having two vertices as endpoints). For
partial Brauer diagrams d , d 0 the relation d � d 0 defined in (6) holds if and only if all
the edges of d are also edges of d 0. Equivalently, d � d 0 if and only if d is obtainable
from d 0 by excising zero or more of its edges.

If d is a partial Brauer diagram then any term in the right hand side of the expan-
sion (7) is (up to sign) also a partial Brauer diagram. The same holds for planar partial
Brauer diagrams (that is, Motzkin diagrams). Hence, xd 2 PBk.ı; ı0/ for any partial
Brauer diagram d , and similarly xd 2Mk.ı; ı0/ for any planar partial Brauer diagram d .

Lemma 3.1. For any unital commutative ring k and any ı, ı0 2 k, the sets

¹ xd j d a partial Brauer diagramº; ¹ xd j d a Motzkin diagramº

are bases of PBk.ı; ı0/, Mk.ı; ı0/ respectively.
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Proof. By the remarks preceding the lemma, the transition matrix expressing the xd in
terms of the diagram basis in each algebra is unitriangular with respect to any linear
order extending �.

For any invertible ı0 2 k, by [7, 28] there is an algebra isomorphism

PBk.ı; ı0/ Š PBk.ı; 1/ (8)

defined by replacing the generator pi by pi=ı0. Thus, there is no loss of generality in
setting ı0 D 1, so from now on we work in PBk.ı; 1/ and in its subalgebra Mk.ı; 1/.
This is convenient because pi , 1 � pi become a pair of commuting orthogonal idem-
potents.

For a given partial Brauer diagram d , consider the subsets bdc, dde of Œk� (the
bottom, top frame, respectively, of d ) defined by

bdc D ¹i 2 Œk� j vertex i 0 is nonisolated in dº;

dde D ¹i 2 Œk� j vertex i is nonisolated in dº:

Elements of the set bdc0 [ dde form the frame of d and label the endpoints of the
edges in d ; its complement in Œk�0 [ Œk� labels the isolated vertices in d .

Proposition 3.2. Let d be a partial Brauer diagram. The identities:

(a) xd D
Q
i2dde.1 � pi /d

Q
i 02bdc.1 � pi /,

(b) xd D �0.d/ � �1.d/C �2.d/ � �3.d/C � � �

hold in PBk.ı;1/, where �i .d/ is the sum of all diagrams obtained from d by removing
exactly i of its edges. If d is planar (i.e., a Motzkin diagram) then all terms on the
right hand side of the identities are also planar, hence belong to Mk.ı; 1/.

Proof. (a) It follows from the definition (3) of diagram multiplication that left (resp.,
right) multiplication by pi removes the edge with endpoint i (resp., i 0), for any
i 2 dde, i 0 2 bdc. Expanding the products on the left and right of identity (a) thus
gives

xd D
X
d 0�d

.�1/edges.d/�edges.d 0/d 0

where edges.d/ is the number of edges in d . Horizontal edges are seemingly removed
twice, once for each endpoint, but in fact the second multiplication by the appropri-
ate pi acts as the identity, thus does not matter. For partial Brauer diagrams, the above
expansion coincides with the expression in (7).

(b) This follows from the displayed equation in the proof of (a).
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Remark 3.3. The formula in part (b) of the proposition says that, for partial Brauer
diagrams d , the element xd is obtained from d by inclusion-exclusion edge removal.
As �0.d/ D d , the leading term in the expansion is d itself.

An edge of a partial Brauer diagram d is a cup (resp., cap) if both of its endpoints
are in Œk� (resp., in Œk�0). Such edges are also called horizontal. For a partial Brauer
diagram d , we define

zd WD
Y

i2ddeH

.1 � pi /d
Y

i 02bdcH

.1 � pi /;

yd WD
Y

i2ddeV

.1 � pi /d
Y

i 02bdcV

.1 � pi /;
(9)

where ddeH , bdcH respectively index the endpoints of horizontal edges in the top,
bottom rows of d , and similarly ddeV , bdcV respectively index the endpoints of ver-
tical edges in the top, bottom rows of d . Notice that either product in the definition
of yd may be omitted without changing the result. The element zd (resp., yd ) is obtained
from d by inclusion-exclusion horizontal (resp., vertical) edge removal. We linearly
extend the notations xd , zd , yd to linear combinations of diagrams.

Proposition 3.4. Let d be a partial Brauer diagram. Then

(a) xd D yzd D zyd ,

(b) zd D �H0 .d/ � �
H
1 .d/C �

H
2 .d/ � � � � ,

(c) yd D �V0 .d/ � �
V
1 .d/C �

V
2 .d/ � � � � ,

where �Hi .d/ (resp., �Vi .d/) is the sum of all diagrams obtained from d by removing i
of its horizontal (resp., vertical) edges. Hence the sets

¹ zd j d 2 PBkº; ¹ zd j d 2 Mkº

are k-bases of PBk.ı; 1/, Mk.ı; 1/, respectively.

Proof. (a) follows from the product formula in Proposition 3.2 (a) and the fact that
the pi pairwise commute.

(b), (c) follow by expanding the right hand side in (9).
Applying the operator d 7! zd to both sides of the identity in part (c) shows that

if d is a partial Brauer diagram then xd is expressible as an alternating sum of the form

xd D zd � zd1 C zd2 � � � � ;

where each di < d . So the transition between the sets ¹ xd j d 2 PBkº and ¹ zd j d 2 PBkº
is unitriangular. The same holds if we restrict to Motzkin diagrams. The final claim
now follows from Lemma 3.1.
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We will need to consider various subalgebras of the Motzkin algebraMk.ı/. Let Rk
be the subalgebra generated by r1; : : : ; rk�1 and Lk the subalgebra generated by
l1; : : : ; lk�1. Write RLk for the subalgebra generated by Rk and Lk . Notice that zd D d
for any d in RLk , since such d have no horizontal edges.

Theorem 3.5. Suppose that d1, d2 are partial Brauer k-diagrams. Let N1.d1; d2/
be the number of closed loops in the middle of �.d1; d2/, as in equation (3), and set
d3 D d1 ı d2, the product in the partition monoid Pk . Let

�.d1; d2/ D
�
.Œk� n bd1c/ \ dd2eH

�
[
�
.Œk� n dd2e/ \ bd1cH

�
;

the set indexing the vertices in the middle row of �.d1; d2/ for which an isolated
vertex in one diagram is identified with a horizontal edge endpoint in the other. Then:

(a) xd1 xd2 D

´
.ı � 1/N1.d1;d2/ xd3 if bd1c D dd2e;

0 otherwise;

(b) zd1 zd2 D

´
.ı � 1/N1.d1;d2/

Q
i2S .1 � pi /

zd3 if �.d1; d2/ is empty;

0 otherwise:

The set S in formula (b) is the set of indices on the top vertex of any through edge that
snakes through some cups and caps in the middle row of �.d1; d2/ before emerging
to connect to a vertex in the bottom row.

Proof. (a) The proof is based on the formula in Proposition 3.2 (a). First suppose
that bd1c does not match dd2e. Then there must be at least one isolated vertex that
matches up with the endpoint of some edge. We can always insert a copy of pi corre-
sponding to that vertex, as multiplication by pi is identity on an isolated vertex in the
i th position. This shows that the product xd1 xd2 D 0.

From now on, suppose that bd1c matches dd2e. There are four cases to consider.
First, suppose that two propagating edges meet in the middle row of �.d1; d2/ at
the i th identified vertex. Then the idempotent 1 � pi can be commuted to both sides
of d1d2, as 1 � pj on the left and 1 � pm on the right, where the corresponding edge
in d3 D d1d2 connects the j th vertex on the top row to the mth on the bottom.

Now suppose that there is an added cup in d3 that is not present in d1. This means
two propagating edges in d1 join up with a connected path in the middle of �.d1; d2/
to form that additional cup. In this situation, we can commute all the interior idempo-
tents on the path up to the top (to the left of d3).

The case of an added cap in d3 that is not present in d2 is analogous to the previous
case.

It remains only to consider loops in the middle row of �.d1; d2/. For each such
loop, the product of the middle idempotents is equivalent to multiplication by the
scalar ı � 1. This completes the proof of (a).
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(b) The proof of part (b) is similar to that for part (a), based on the formula in
Proposition 3.4 (b).

For example, if k D 3 one may verify that ze1ze2 is equal to the 8-term linear com-
bination

ze1ze2 D � � C

� C C �

illustrating the equality ze1ze2 D .1 � p3/ee1e2 in Theorem 3.5 (b).

Corollary 3.6. If x is a diagram in RLk and d is a partial Brauer diagram, then

(a) x zd D

´ fxd if ddeH � bxc;

0 otherwise;

(b) zdx D

´fdx if bdcH � dxe;

0 otherwise:

Proof. These formulas follow easily from part (b) of Theorem 3.5. We prove for-
mula (a). Since x belongs to RLk , it has no horizontal edges, so bxcH is empty. This
means that�.x;d/ is empty if and only if ddeH � bxc, and furthermore, there are no
interior closed loops in �.x; d/. Formula (a) thus follows. The proof of formula (b) is
symmetric.

4. The partial Temperley–Lieb algebra

We are now ready to define the main object of study for this paper. Henceforth, we set
Mk.ı/ WD Mk.ı; 1/.

We say that a Motzkin diagram is balanced if it has the same number of cups as
caps. Equivalently, a Motzkin diagram is balanced if the number of isolated vertices
in each of its rows is the same. Let

D.k/ WD ¹d j d is a balanced Motzkin k-diagramº:

We define the partial Temperley–Lieb algebra PTLk.ı/ to be the linear span of

¹ zd j d 2 D.k/º:

That PTLk.ı/ is a subalgebra of Mk.ı/ follows from Theorem 3.5.
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Theorem 4.1. Let k be a commutative ring and fix ı 2 k. Then either of the sets
¹ zd j d 2 D.k/º, ¹ xd j d 2 D.k/º is a k-basis of PTLk.ı/.

Proof. The set ¹ xd j d 2 D.k/º is linearly independent by Lemma 3.1. Since it spans
the algebra, it is a basis. Furthermore, as in the final paragraph of the proof of Propo-
sition 3.4, the transition matrices between the sets ¹ zd j d 2 D.k/º, ¹ xd j d 2 D.k/º

are unitriangular, so ¹ zd j d 2 D.k/º is also a basis.

Let Dn.k/ be the subset of D.k/ consisting of those balanced Motzkin k-diagrams
having exactly n edges. Notice that Dk.k/ is the set of Temperley–Lieb diagrams on
2k vertices. To any d 2 Dn.k/, we associate a triple .A; t; B/, where t 2 Dn.n/ is
the unique Temperley–Lieb diagram on 2n vertices obtained by deleting the isolated
vertices in d , and A, B are the subsets of Œk� respectively indexing the nonisolated
vertices in the top, bottom row of d . For example,

d D

corresponds to the triple .A; t; B/, where A D ¹1; 4; 5º, B D ¹2; 4; 6º, and

t D e1e2 D

in D3.3/. Since any diagram d is reconstructible from its triple, the following result
is clear.

Lemma 4.2. The map d 7! .A; t; B/ defines a bijection between Dn.k/ and the set
of triples of the above form.

From now on, write d.A; t; B/ for the k-diagram in Dn.k/ corresponding in the
above lemma to a given triple .A; t;B/ such that A, B are subsets of Œk� of cardinality
n and t 2Dn.n/. In other words, the map .A; t; B/ 7! d.A; t;B/ is the inverse of the
bijection in Lemma 4.2.

The cardinality of the set TLn of Temperley–Lieb n-diagrams is equal to the nth
Catalan number Cn D

1
nC1

�
2n
n

�
. As D.k/ D

Fk
nD0Dn.k/ (disjoint union), by com-

bining Lemma 4.2 with Theorem 4.1, we have

rankk PTLk.ı/ D jD.k/j D

kX
nD0

�
k

n

�2
Cn: (10)

If t 2 Dn.n/ is a Temperley–Lieb n-diagram, there are two equally natural ways
to extend t to a diagram in Dn.k/, for any k � n. Either of the maps

t 7! t ˝ !k�n; t 7! t ˝ 1k�n (11)
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will do the job, where !j is the j -diagram in which all 2j vertices are isolated. The
following observation is an immediate consequence of Theorem 3.5 (a).

Lemma 4.3. Write t0 D t ˝ !k�n, t1 D t ˝ 1k�n for the image of t in Dn.n/ under
the map (11). For any n� k, either of the linear maps such that t 7! xt0, t 7! xt1 defines
an algebra isomorphism of TLn.ı � 1/ with a subalgebra of Mk.ı/.

Let RPk (resp., LPk) be the subalgebra of Mk.ı/ generated by all ri , pi (resp.,
all li , pi ). The following result is a variant of [1, equation (2.12)].

Lemma 4.4. Let d D d.A; t; B/ be a diagram in Dn.k/, where t is in Dn.n/. In the
Motzkin algebra Mk.ı/, we have the factorizations

d D rA.t ˝ !k�n/lB ; d D rA.t ˝ 1k�n/lB

where rA 2 RPk (resp., lB 2 LPk) is the unique k-diagram with edges from the first n
bottom-row (resp., top-row) vertices connecting to the top-row (resp., top-row) ver-
tices indexed by A (resp., B), in order.

Proof. The second factorization is the RTL factorization in [1, Section 2]. It does
not matter in that argument if we replace the identity edges in 1k�n by the isolated
vertices in !k�n, which yields the first factorization.

We illustrate the proof of Lemma 4.4. As an example of the RTL factorization
in [1], we have

d D D

in which the middle diagram is the diagram t ˝ 11, where t 2 D7.7/ is the diagram

t D :

It is clear that replacing t ˝ 11 in the middle of the above stacked product by t ˝ !1
makes no difference in the product.

The next task is to identify a set of generators for PTLk.ı/. To that end, we set

"i WD zei D .1 � pi /ei .1 � pi /:

We note that the equality "i D .1 � pi /ei .1 � pi / remains valid if we replace either
or both factors of .1 � pi / by .1 � piC1/. Since the diagrams li , ri , and pi have no
horizontal edges, it is clear that zli D li , zri D ri , and zpi D pi .
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Theorem 4.5. PTLk.ı/ is generated by the set ¹li ; ri ; "i j i 2 Œk � 1�º.

Proof. Let P be the subalgebra generated by the given set. By Theorem 4.1, it suffices
to show that zd belongs to P , for any d in D.k/. Let d D d.A; t; B/ as discussed in
the paragraph after Lemma 4.2. By Lemma 4.4, we have d D rA.t ˝ !k�n/˝ lB .

We will need to distinguish generators with differing number of vertices, so we
temporarily (in this proof only) write ei .n/ for the diagram ei in D.n/, for each n� k.
For any 1 � n � k � 1, let

ei;n.k/ D ei .n/˝ !k�n D ei .k/pnC1 � � �pk :

Then by Corollary 3.6, zei;n.k/ D zei .k/pnC1 � � � pk D "ipnC1 � � � pk , hence belongs
to P . Now let

t D ei1.n/ei2.n/ � � � eim.n/

be any word that expresses t in terms of the standard Temperley–Lieb generators
of TLn.ı/. Then the multiplication rule in Theorem 3.5 (b) together with Corollary 3.6
implies that the equation

rAzei1;n.k/zei2;n.k/ � � � zeim;n.k/lB D
zd C lower order terms

holds in PTLk.ı/. The left hand side of the above equation belongs to P . The lower
order terms are a linear combination of zu such that u belongs to Dj .k/ for some
j < n. By induction, we may assume that each such zu belongs to P . Hence, the same
conclusion holds for zd , completing the proof.

5. Semisimplicity of PTLk.ı/

In this section, we fix the ground ring k, ı 2 k, and k.

Theorem 5.1. Let k be an arbitrary unital commutative ring. Let X.n/ be the k-
linear span of ¹ xd j d 2 Dn.k/º. Then the algebra PTLk.ı/ has the direct sum decom-
position

PTLk.ı/ D
kM
nD0

X.n/

into pairwise orthogonal two-sided ideals, in the sense that xy D 0 if x 2 X.n/ and
y 2 X.n0/, where n ¤ n0.

Proof. This is an immediate consequence of Theorem 3.5, along with the fact that we
are dealing only with balanced diagrams.
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Let Qn be the free k-module on the set of all cardinality n subsets of Œk�. Identify
Endk.Qn/ with the matrix algebra Mat.k

n/
.k/ by means of its basis. All tensor pro-

ducts in this paper are taken over the ground ring k, so we write˝ instead of˝k.

Theorem 5.2. For any ı 2 k, where k is a commutative unital ring, the ideal X.n/ is
isomorphic to the matrix algebra

Mat.k
n/

�
TLn.ı � 1/

�
Š Mat.k

n/
.k/˝ TLn.ı � 1/:

Furthermore, every X.n/-module is isomorphic to one of the formQn˝N , where N
is a TLn.ı � 1/-module.

Proof. Let .Ai ; d 0i ; Bi / be the triples in Lemma 4.2 corresponding to diagrams di 2
Dn.k/, for i D 1; 2. Theorem 3.5 implies that

xd1 xd2 D

´
.ı � 1/N xd3 if B1 D A2;

0 otherwise;

where, in the nonzero case, d 03 D d 01 ı d
0
2 in the partition monoid Pn and the triple

corresponding to d3 2 Dn.k/ is .A1; d 03; B2/. Notice that d 01d
0
2 D .ı � 1/

Nd 03 in the
Temperley–Lieb algebra TLn.ı � 1/. This proves the first claim. The second claim
follows from the well-known isomorphism

Matm.A/ Š Matm.k/˝A

as k-algebras, for any k-algebra A and any m. The isomorphism is given for any
aij 2 A by

P
aij eij 7!

P
eij ˝ aij , where eij is the .i; j /th matrix unit. The final

claim is a standard feature of Morita theory. The action of

Mat.k
n/
.k/˝ TLn.ı � 1/ Š Endk.Qn/˝ TLn.ı � 1/

on Qn ˝ N is the obvious one, in which .f ˝ t /.A ˝ v/ D f .A/ ˝ tv, for any
f 2 Endk.Qn/, t 2 TLn.ı � 1/, A 2 Qn, v 2 N .

Remark 5.3. (i) Theorem 5.2 implies that X.n/ is Morita equivalent to TLn.ı/; that
is, there is a category equivalence between their (left, or, equivalently, right) mod-
ules. In particular, this implies (rather trivially) that PTLk.ı/ is an iterated inflation of
Temperley–Lieb algebras, in the sense of [11, 24, 25].

(ii) The bijection in Lemma 4.2 between Dn.k/ and triples induces an isomor-
phism

X.n/ Š Qn ˝ TLn.ı � 1/˝Q�n;

where Q�n WD Homk.Qn;k/ is the linear dual of Qn. This is an isomorphism of k-
modules, and also an isomorphism of k-algebras, where Q�n ˝Qn is identified with
Endk.Qn/ by the usual isomorphism.
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Theorem 5.4. Suppose that k is a field. Then:

(a) X.n/ is semisimple if and only if the same is true of TLn.ı � 1/.

(b) If X.n/ is semisimple, its simple modules are of the form Qn ˝ TL�, where
TL� is a simple TLn.ı � 1/-module.

(c) PTLk.ı/ is semisimple for any ı 2 k such that TLn.ı � 1/ is semisimple for
all n D 0; 1; : : : ; k.

Proof. (a) follows from Theorem 5.2; see, e.g., [30, Lemma 4.5]. Part (b) is clear from
the isomorphism in Theorem 5.2, and part (c) follows from part (a).

Remark 5.5. By Theorem A.1, if q is a nonzero element of the field k such that
JnKŠq ¤ 0, then PTLn.1˙ .q C q�1// is semisimple over k. In particular, this holds
whenever q is not a root of unity.

6. Representations of TLk.ı/

The purpose of this section is to recall [10, Example 1.4] the standard combinatorial
construction of the cell modules for a Temperley–Lieb algebra TLk.ı/. A planar invo-
lution with � fixed points is a sequence of k points arranged in a line with k � � of
them joined in pairs and � of them with an “end” attached. The pairs correspond to
interchanges and ends to fixed points. The planar condition requires that the involution
can be drawn in a half-plane if the ends are extended to infinity, without intersections.
For example, the two diagrams

depict planar involutions on k D 7 points with 3 fixed points. One can think of planar
involutions as products of disjoint cycles of length � 2, or as “half” Temperley–Lieb
diagrams. Given two planar involutions with the same number of fixed points, there is
a unique way to join the ends to create a Temperley–Lieb diagram. For instance, the
above involutions join to make the Temperley–Lieb diagram

with the leftmost involution at the top and rightmost involution (inverted) at the bot-
tom.

By labeling the fixed points and left endpoint of interchanges by 1 and labeling
right endpoints of interchanges by �1, a planar involution of length k produces a
sequence a D .a1; : : : ; ak/ such that:



The partial Temperley–Lieb algebra and its representations 417

(i) ai D ˙1 for all 1 � i � k,

(ii) each partial sum a1 C � � � C an � 0 for all 1 � n � k.

We call any sequence satisfying these conditions a Temperley–Lieb path. Given any
Temperley–Lieb path, we can construct a unique planar involution that produces the
sequence. To see this, pair each i such that some j > i exists with ai C aiC1 C � � � C
aj D 0 with the unique minimal such j . Such pairings define the interchanges in
the involution, and all unpaired vertices are fixed points. Thus, we have a bijection
between the sets of planar involutions and Temperley–Lieb paths of the same length,
so we may as well identify these sets.

A Temperley–Lieb diagram t acts on a planar involution a by the usual diagram
multiplication, producing a multiple of another planar involution b having at most as
many fixed points as a. So the free k-module W0 on the set of planar involutions of
length k is a TLk.ı/-module. Let W ��0 (resp., W <�

0 ) denote the span of the planar
involutions with at most (resp., fewer than) � fixed points. Then

TL� WD W ��0 =W <�
0

is a TLk.ı/-module, for any � such that k � � is an even number.

Theorem 6.1 ([10]). Let k be a commutative unital ring. The collection

¹TL� j � � k.mod 2/º

is a complete set of cell modules for TLk.ı/. If k is a field and ı 2 k is chosen such
that TLk.ı/ is semisimple, then the same set is a complete set of isomorphism classes
of simple TLk.ı/-modules.

Remark 6.2. There is another way to index the cell modules for TLk.ı/, by the setƒk
of partitions of k with at most two parts. The map .�1; �2/ 7! �1 � �2 defines a bijec-
tion of ƒk with the set of integers in ¹0; 1; : : : ; kº which are congruent to k mod 2,
where the value �2 D 0 is allowed. In this indexing scheme, for � D .�1; �2/ in ƒk ,
the notation TL� D W E�

0 =W C�
0 replaces the previous notation TLm D W �m0 =W <m

0 ,
where m D �1 � �2. Here D is the usual dominance order on partitions. We will
switch to the partition notation starting in Section 8.

7. Motzkin paths and representations

We now recall the combinatorial construction of the cell modules for the Motzkin
algebra, which generalizes the previous section. This will be applied in the next sec-
tion to construct the cell modules for PTLk.ı/. The remainder of this section closely
follows [1, Section 4], to which the reader should refer for additional details.
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A Motzkin path (in the sense of [1]) of length k is a sequence a D .a1; : : : ; ak/
such that ai 2 ¹�1; 0; 1º and each partial sum a1 C � � � C an � 0 for all 1 � n � k.
The rank of a Motzkin path a D .ai / is defined to be

rank.a/ WD a1 C � � � C ak :

For each index i with ai D 1, let j be the smallest index (if any) such that i < j � k
and ai C aiC1 C � � � C aj D 0. Whenever this happens, .ai ; aj / D .1;�1/ are said to
be paired; otherwise, ai D 1 is unpaired. By omitting the zeros in a Motzkin path we
obtain a Temperley–Lieb path in the sense of the previous section. Connecting paired
indices by an edge and extending unpaired indices by a line to infinity, we recover the
planar involution of that path. By including the discarded zeros as isolated vertices,
we obtain a graph on Œk� called a 1-factor. Since paired indices cancel one another in
the sum,

rank.a/ D the number of fixed points (lines to infinity)

in the corresponding 1-factor. For example, the graph

˛ D

is the 1-factor produced by the Motzkin path .1; 1; 1;�1; 0;�1; 1; 1; 0;�1/.
In general, a 1-factor on k vertices is a graph that gives a planar involution once

its isolated points are removed. This means that fixed points of the involution may
not appear between paired vertices. Labeling paired vertices in a 1-factor ˛ by 1;�1
respectively, labeling fixed points by 1, and labeling all other vertices by 0 produces
a Motzkin path a given by the sequence of labels whose corresponding 1-factor is ˛.
So there is a bijection between Motzkin paths and 1-factors of the same length. From
now on, we identify Motzkin paths with 1-factors by means of this bijection.

Remark 7.1. In [1], the fixed points of a 1-factor are depicted by white-colored ver-
tices instead of lines to infinity.

For any given pair .˛; ˇ/, where ˛; ˇ are 1-factors on k vertices of the same
rank �, there is a unique Motzkin k-diagram C �

˛;ˇ
such that the fixed points in ˛ are

connected to those in ˇ. For example, if ˛ is the 1-factor displayed above and ˇ the
1-factor (of rank 2) below

ˇ D ;

then C �
˛;ˇ

is obtained by reflecting ˇ across its horizontal axis and then drawing edges
connecting the fixed points in ˛, ˇ in order, which gives

C 2˛;ˇ D :
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Notice that the zeros in the Motzkin paths corresponding to ˛; ˇ label the isolated
vertices in the diagram C �

˛;ˇ
. For any k, the disjoint union

kG
�D0

¹C �˛;ˇ j rank.˛/ D rank.ˇ/ D �º

is a cellular basis of Mk.ı/. This is the basis of Motzkin k-diagrams.
Now we describe the cell modules for the Motzkin algebra. For a Motzkin dia-

gram d and a Motzkin path a (viewed as a 1-factor) of the same length, the Motzkin
path da is given by

da D ıN.d;a/b;

where the multiplication is carried out by the usual graphical stacking procedure. The
integer N.d; a/ is the number of loops in the bottom row of �.d; a/, and b is the
resulting 1-factor in the top row of �.d; a/, after erasing the second row of vertices.

For example, if d is the Motzkin diagram and a the 1-factor given by the pictures

d D ;

a D ;

then the resulting �.d; a/ is the configuration

�.d; a/ D ;

and thus da D ıb, where b is the 1-factor

b D :

There is a factor of ı in this example because there is a single loop in �.d; a/.
Let W be the free k-module on the Motzkin paths of length k. The above action

extends linearly to make W into an Mk.ı/-module. Since

rank.da/ � min.rank.d/; rank.a//;

the k-submodule W �� of W spanned by the Motzkin paths of rank at most � is an
Mk.ı/-submodule, for any � D 0; 1; : : : ; k. Thus we have a filtration

.0/ � W �0 � W �1 � � � � � W �k D W
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of Mk.ı/-submodules. For each �, the quotient module

M� WD W ��=W <�

is an Mk.ı/-module, where we set W <� WD W ���1 (and W <0 D .0/).

Theorem 7.2 ([1, Theorems 4.7, 4.16]). Let k be a commutative unital ring. The cell
modules for Mk.ı/ are given by

¹M� j 0 � � � kº:

If k is a field then M� is indecomposable, and if ı 2 k is chosen so that Mk.ı/ is
semisimple then the above set is a complete set of pairwise nonisomorphic simple
Mk.ı/-modules.

By restricting our attention to the Motzkin paths with no zeros, we obtain copies
of the cell modules for TLk.ı/. The following was observed in [1, Remark 4.9].

Theorem 7.3. Let T � be the k-span of the Motzkin paths a in M� with no zeros. The
span of the Motzkin diagrams in Mk.ı/ having no isolated vertices is a subalgebra
isomorphic to TLk.ı/. When restricted to that subalgebra, the action of Mk.ı/ on M�

makes T � into a TLk.ı/-module which is isomorphic to the cell module TL�, for any �
such that k � � is even.

8. Representations of PTLk.ı/

We continue to fix k and ı 2 k, where k is a given unital commutative ring. Recall
from Theorem 5.1 that PTLk.ı/ D

Lk
nD0 X.n/. From now on, we will index repre-

sentations by partitions of not more than two parts, instead of by integers as in the
previous two sections; see Remark 6.2.

The type of a Motzkin path a D .a1; : : : ; ak/ is the pair �D .�1; �2/ such that �1
(resp., �2) be the number of i such that ai D 1 (resp., ai D �1). Then �1 � �2 � 0
and rank.a/ D �1 � �2. We set

j�j WD �1 C �2:

The 1-factor corresponding to a has �2 cups and a has k � j�j zeros. Write

ƒ WD ¹.�1; �2/ j �i 2 Z; �1 � �2 � 0; �1 C �2 � kº

for the set of types that occur as the type of some Motzkin path. We identify elements
of ƒ with partitions of at most two parts. Thus ƒ is the disjoint union of the ƒn (see
Remark 6.2) as n runs from 0 to k.
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For Motzkin paths a D .a1; : : : ; ak/, a0 D .a01; : : : ; a
0
k
/ we write a0 � a if the

following two conditions are satisfied:

(i) ai D 0 implies that a0i D 0,

(ii) a0i D 0 if and only if a0j D 0 whenever ai ; aj are paired in a.

In other words, a0 � a if and only if the 1-factor corresponding to a0 is obtainable from
the 1-factor corresponding to a by erasing zero or more edges or lines to infinity. Let
�.a; a0/ be the number of such changes. Define xa to be the linear combination

xa WD
X
a0�a

.�1/�.a;a
0/a0:

For example, if a D .1;�1; 1/ then

xa D .1;�1; 1/ � .0; 0; 1/ � .1;�1; 0/C .0; 0; 0/:

If i is any index such that ai D ˙1 then pia is the unique Motzkin path obtained
from a by changing ai to 0 (and also changing aj to 0 if ai , aj are paired).

We define dae to be the set of all i such that ai D ˙1. In the corresponding 1-
factor, this set indexes the vertices that are endpoints of edges or lines to infinity.
Notice that we have

xa D
Y
i2dae

.1 � pi /a (12)

in the Motzkin algebra. Notice that ¹xa j a is a Motzkin path of length kº is a k-basis
for the free k-module W on the set of Motzkin paths of length k. The next result
explains how PTLk.ı/ acts on W .

Theorem 8.1. Let k be a commutative unital ring. Suppose that a is a Motzkin path
in W of type � in ƒ. Let b be the unique Motzkin path such that da D ıN b, for
some N , where d 2 D.k/ is balanced.

xdxa D

´
.ı � 1/N.d;a/xb if bdc D dae;

0 otherwise.

If bdc D dae then the type of b is some � in ƒ such that j�j D j�j, and rank.a/ �
rank.b/ is an even number.

Proof. Thanks to the identity (12), the action of xd by xa is given by precisely the same
rule as the multiplication rule in Theorem 3.5 (a), giving the first claim. Suppose that
bdc D dae. Then the zeros in a appear at the same places at the isolated vertices in the
bottom row of d . Since d is balanced, it has the same number of isolated vertices in its
top row, so j�j D j�j. The rank of b cannot be larger but may be strictly less than that
of a. (For instance, if k D 3 and a D .1; 1; 1/, then e1a D b D .1;�1; 1/, so xe1xa D xb
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where rank.a/ D 3, rank.b/ D 1.) The rank decreases only if one or more pairs of
unpaired indices of 1 in a are replaced by pairings in b, so the rank can decrease only
in steps of 2.

Recall that the usual dominance order on partitions is defined by declaring that
� D � if and only if � � � can be written as a sum of positive roots (in the root
system of gln). In our situation, if j�j D j�j and �;� 2 ƒ, this is equivalent to

� D � ” � � � D m.1;�1/ for some integer m � 0:

This is equivalent to .�1 � �2/ � .�1 � �2/ being a nonnegative even integer. Write
� B � whenever � D � but � ¤ �.

For any � in ƒ, let xW E� and xW C� be the k-span of the sets

¹xa j a has type � and � D �º and ¹xa j a has type � and � B �º;

respectively. By Theorem 8.1, both xW E�, xW C� are PTLk.ı/-submodules of W . We
define

PTL� WD xW E�= xW C�

to be the corresponding quotient module. So the collection of xa C xW C� such that a
has type � is a basis of PTL�.

Theorem 8.1 above and Theorems 5.2, 5.4 imply the following result.

Theorem 8.2. Let k be a commutative unital ring. The PTL� for � in ƒ are the cell
modules for PTLk.ı/. For any � 2 ƒ, with n D j�j, we have an isomorphism

PTL� Š Qn ˝ TL�

as X.n/-modules, where TL� is the cell module for TLn.ı � 1/ indexed by � in accor-
dance with Remark 6.2. Hence, if k is a field and ı 2 k is chosen so that PTLk.ı/ is
semisimple, then

¹PTL� j � 2 ƒº

is a complete set of pairwise nonisomorphic simple PTLk.ı/-modules.

Proof. Suppose that a is a Motzkin path of type �, for � inƒ. LetAD dae. If nD jAj
then A is an element of Qn. Let b be the Motzkin path obtained from a by removing
all its zero entries; that is, b is the part of a supported by A. Then b may be regarded
as a Temperley–Lieb half diagram (a planar involution in the terminology of Graham
and Lehrer; see Section 6). Suppose that jAj D n. The linear map sending

xa 7! A˝ b
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defines an isomorphism
xW E�

! Qn ˝W
E�
0

that restricts to an isomorphism xW C� ! Qn ˝W
C�
0 . Passing to quotients induces

the desired isomorphism PTL� ŠQn˝ TL�. This shows that the PTL� are inflations of
the various cell modules for TLn.ı � 1/, which proves the first claim. The last claim
follows from the first two.

As a consequence of the last result, if � is inƒ and satisfies �1 � �2 D n, we have

rankk PTL� D
�
k

n

�
rankk TL�:

Remark 8.3. The subalgebra of PTLk.ı/ spanned by ¹ xd j d 2 Dk.k/º is isomorphic
to TLk.ı � 1/. For � 2ƒ with j�j D k, the action of PTLk.ı/ on PTL�, when restricted
to that subalgebra, is isomorphic to TL� as a TLk.ı � 1/-module.

9. Uq.gl2/ and Uq.sl2/

We assume henceforth that k is a field and that 0¤ q 2k is not a root of unity. Let UD
Uq.gl2/ be the quantized enveloping algebra of the general linear Lie algebra gl2. By
definition, U is the associative algebra with 1 generated by E, F , K˙1i (for i D 1; 2)
subject to the defining relations

K1K2 D K2K1; KiK
�1
i D K

�1
i Ki D 1 .i D 1; 2/;

K1EK
�1
1 D qE; K2EK

�1
2 D q

�1E;

K1FK
�1
1 D q

�1F; K2FK
�1
2 D qF;

EF � FE D
K �K�1

q � q�1
; where K WD K1K�12 :

Furthermore, U is a Hopf algebra with coproduct�WU! U˝U and counit �WU! k

given on generators by

�.E/ D E ˝K C 1˝E;

�.F / D F ˝ 1CK�1 ˝ F;

�.Ki / D Ki ˝Ki .i D 1; 2/;

�.E/ D �.F / D 0; �.Ki / D 1 .i D 1; 2/:

(13)

The subalgebra of U D Uq.gl2/ generated by E;F;K˙1 is the quantized enveloping
algebra Uq.sl2/.
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Remark 9.1. The coproduct � defined in (13) is the one used in [1]. It differs from
the usual one in [14, 26]. One could use either convention in this paper, but for the
sake of consistency, we stick with the choice made in [1].

We refer to [14, Chapter 2] for basic facts on the representation theory of Uq.sl2/.
For each integer n � 0, by [14, Theorem 2.6] there exist simple Uq.sl2/-modules
L.n;C/, L.n; �/ of dimension n C 1. (In characteristic 2, L.n;C/ Š L.n; �/.)
Any simple Uq.sl2/-module of dimension n C 1 is isomorphic to either L.n;C/
or L.n;�/, and L.n;C/ is of type 1.

Lemma 9.2. Suppose that k is a field and that 0 ¤ q 2 k is not a root of unity. For
any �D .�1; �2/ in Z�Z with �1 � �2 � 0, there is a unique Uq.gl2/-module V.�/
such that V.�/ Š L.�1 � �2;C/ as Uq.sl2/-modules, and

KivC D q
�ivC for i D 1; 2;

where vC is a highest weight vector of weight �1 � �2 for the Uq.sl2/-module struc-
ture.

Proof. This follows from the results in [14, Chapter 2], using the fact that any Uq.gl2/-
module is also (by restriction) a Uq.sl2/-module. (See also [23, Section 7.3].)

Under the same hypotheses, every finite-dimensional Uq.gl2/-moduleM is semi-
simple. Furthermore, if M is of type 1, it is isomorphic to a direct sum of modules of
the form V.�/ as in the above lemma.

The “polynomial” Uq.gl2/-modules are direct sums of V.�/ such that �D.�1;�2/
belongs to Z�0 � Z�0 and �1 � �2. If M is a simple polynomial Uq.gl2/-module,
we may (and do) identify its highest weight � with a partition of at most two parts.
In particular, if � D .n/ is a partition of one part, then we write V.n/ for V.�/. Thus,
V.n/ Š L.n;C/ as Uq.sl2/-modules.

Consider the simple Uq.gl2/-modules V.0/, V.1/. Then V.0/ Š k is the trivial
module, with Uq.gl2/ acting via the counit �. This means that if v0 is a chosen basis
of V.0/; then on v0 the operators E, F act as zero and eachKi acts as 1. Fix a choice
of v0. Fix also a basis ¹v1; v�1º of weight vectors of V.1/, where v1 has weight .1; 0/
and v�1 has weight .0; 1/ as Uq.gl2/-modules, such that the action of E, F is given
by

Ev1 D 0; Ev�1 D v1; F v1 D v�1; F v�1 D 0:

In other words, with respect to the basis ¹v1; v�1º, the matrices representing the action
of E, F , Ki are

E !

"
0 1

0 0

#
; F !

"
0 0

1 0

#
; K1 !

"
q 0

0 1

#
; K2 !

"
1 0

0 q

#
:

Following [1], we set V WD V.0/˚ V.1/, with basis ¹v1; v0; v�1º.
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We will need the following general fact about tensor powers of bialgebra repre-
sentations, for which we were unable to find a suitable reference. If U is a bialgebra
and V a U-module, then V ˝k is a U-module for any k > 1, with u 2 U acting on V ˝k

by
�.k/WU! U˝k;

where � is the coproduct on U, lifted to �.k/ inductively by (for example) defining
�.2/ D � and �.kC1/ D .�˝ 1˝.k�1//�.k/ for k � 2.

Lemma 9.3. Let V be a U-module, where U is a bialgebra with coproduct�. Suppose
that  is in EndU.V ˝ V /; that is,

 �.u/ D �.u/ for any u 2 U.

Then 1˝.i�1/ ˝  ˝ 1k�1�i commutes with the action of �.k/.u/, for any u 2 U.

Proof. This is of course well known; we sketch a proof for completeness. It follows
by induction from the coassociativity axiom

.�˝ 1/� D .1˝�/�

that
�.k/ D .1˝a ˝�˝ 1˝b/�.k�1/

for any a; b such that a C b D k � 2. Taking a D i � 1, b D k � 1 � i proves the
result.

10. Structure of V ˝ V for V D V.0/˚ V.1/

We continue to assume in this section that k is a field and 0 ¤ q 2 k is not a root of
unity. We wish to analyze the structure of V ˝ V , as module for both Uq.gl2/ and
Uq.sl2/. We have

V ˝ V D .V .0/˝ V.0//˚ .V .0/˝ V.1//˚ .V .1/˝ V.0//˚ .V .1/˝ V.1//

and since the first three direct summands on the right hand side are respectively iso-
morphic to V.0/, V.1/, and V.1/, understanding the structure of V ˝ V reduces to
understanding the structure of V.1/˝ V.1/.

To simplify notation, set vi;j WD vi ˝ vj . Then ¹vi;j j i; j 2 ¹1; 0;�1ºº is a basis
of V ˝ V , and ¹vi;j j i; j 2 ¹1; �1ºº is a basis of V.1/ ˝ V.1/. A simple direct
computation shows that

¹v1;1; q
�1v1;�1 C v�1;1; v�1;�1º
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;

;

;

;

;

Figure 1. Bratteli diagram for EndUq.gl2/.V
˝k/, k � 4.

is a basis of weight vectors for a submodule of V.1/˝ V.1/ isomorphic to V.2/. In
order to pick a complement to this submodule, we observe that the vector

Z0 WD �qv1;�1 C v�1;1 (14)

is orthogonal to the submodule, with respect to the standard bilinear form on V.1/
extended to V.1/ ˝ V.1/, and this property uniquely determines Z0 up to a scalar
multiple. The line kZ0 in V.1/˝ V.1/ is isomorphic to the trivial module V.0/ as
Uq.sl2/-modules. Since Ki for i D 1; 2 both act as q on Z0, it follows that kZ0 Š

V.1; 1/ as Uq.gl2/-modules. Hence,

V.1/˝ V.1/ Š

´
V.2/˚ V.1; 1/ as Uq.gl2/-modules;

V .2/˚ V.0/ as Uq.sl2/-modules:
(15)

It follows from (15) that

V ˝ V Š

´
V.0/˚ 2V.1/˚ V.2/˚ V.1; 1/ as Uq.gl2/-modules;

2V .0/˚ 2V.1/˚ V.2/ as Uq.sl2/-modules:

From this, it is immediate that

dim EndUq.gl2/.V ˝ V / D 1
2
C 22 C 12 C 12 D 7;

dim EndUq.sl2/.V ˝ V / D 2
2
C 22 C 12 D 9:
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k ; .1/ .2/ .12/ .3/ .2; 1/ .4/ .3; 1/ .2; 2/ dim Zk.q/

0 1 1
1 1 1 2
2 1 2 1 1 7
3 1 3 3 3 1 2 33
4 1 4 6 6 4 8 1 3 2 183

Table 1. Dimension of Zk.q/ for k � 4.

This dichotomy illustrates the error in [1], where it is implicitly assumed that the
centralizers are the same in both cases.

The first decomposition given in equation (15) is a special case of the decomposi-
tion:

V.1/˝ V.�/ Š
M
�

V.�/; (16)

where �, � are partitions of at most two parts and � varies over the set of such par-
titions obtainable from � by adding one box. The rule (16) is itself a special case of
the standard Pieri rule. By repeated application of (16), we now construct the Bratteli
diagram (see Figure 1) for the centralizer algebra

Zk.q/ WD EndUq.gl2/.V
˝k/:

Since q is not a root of unity, the dimension of the simple Zk.q/-module indexed
by a partition � of at most two parts is the number of paths from the top vertex to
its label in the Bratteli diagram. The sum of the squares of those dimensions is the
dimension of Zk.q/, as shown in Table 1; and they differ from the dimensions of
EndUq.sl2/.V

˝k/ given in [1, Figure 1]. Notice that the dimension of Zk.q/ agrees
with the dimension in (10) of the algebra PTLk.ı/, at least up to degree 4. We will
prove in Theorem 12.4 that they agree in general, when ı D 1˙ .q C q�1/.

11. Schur–Weyl duality for the Motzkin algebras

We continue to assume that k is a field, and 0 ¤ q 2 k is not a root of unity. We
endow V D V.0/ ˚ V.1/ with the standard nondegenerate bilinear form such that
hvi ; vj i D ıi;j for all i; j D 1; 0;�1 and extend the form to V ˝ V in the natural way.
Let � be the orthogonal projection of V.1/˝ V.1/ onto the line kZ0 Š V.0/, where
Z0 D �qv1;�1 C v�1;1 is the invariant in equation (14). With respect to the ordered
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basis v1;1; v1;�1; v�1;1; v�1;�1 the matrix of � is

A.�/ D
1

q C q�1

26664
0

q �1

�1 q�1

0

37775
in which omitted entries should be interpreted as zero, as usual. Recall from Sec-
tion 2.5 that the action of the generator ei in TLk.˙.q C q�1// on V.1/˝k is given by
the operator

˙.q C q�1/1˝.i�1/ ˝ � ˝ 1˝.k�i�1/:

This defines a faithful action of TLk.˙.q C q�1//, and it is well known that

TLk.˙.q C q�1// Š EndUq.sl2/.V .1/
˝k/ Š EndUq.gl2/.V .1/

˝k/: (17)

In order to extend the above action to a faithful action of Mk.1˙ .qC q�1// on V ˝k ,
we first consider how to do this for the case k D 2.

The algebra M2.1˙ .q C q�1// is generated by the elements r , l , and e defined
in Section 2. It has basis consisting of the nine Motzkin diagrams:

; ; ; ; ; ; ; ; :

In order from left to right, the above elements are expressible in terms of the genera-
tors r , l , e as follows:

1; r; l; lr; rl; e; re D le; er D el; r2 D l2 D rer D lel:

Since (in the partition algebra) the elements r , l satisfy the identities

r D p1s D sp2; l D sp1 D p2s

where s is the swap operator defined in Section 2 and p1, p2 are projections onto
V.0/˝ V , V ˝ V.0/, respectively, it is natural to define the action of r , l on basis
elements by

rvi;j D ıj;0v0;i ; lvi;j D ıi;0vj;0

for all i; j 2 ¹1; 0;�1º, as in [1, Section 3.4].
The lines kv0;0, kZ0 are isomorphic copies of the trivial Uq.sl2/-module in

V ˝ V , so it is natural to let e act as a projection onto some linear combination of
the form

Y0 WD v0;0 C ˛Z0 D v0;0 C ˛.�qv1;�1 C v�1;1/ .˛ ¤ 0/:
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We demand that on restriction to V.1/˝ V.1/ (resp., V.0/˝ V.0/) the action restricts
to the Temperley–Lieb action defined above (resp., the trivial action). This forces
˛¤ 0 and implies that each vi;j is sent to a multiple ˇi;jY0 of Y0. The multipliers ˇi;j
are forced by our demands to be

ˇ1;�1 D �˛
�1; ˇ0;0 D 1; ˇ�1;1 D ˙˛

�1q�1

with all other ˇi;j D 0. In other words, the matrix of the action of e on the 0-weight
space .V ˝ V /0 with respect to the ordered basis v1;�1, v0;0; v�1;1 is given by

B.˛;˙/ WD

264 ˙q �˛q �1

�˛�1 1 ˙˛�1q�1

�1 ˛ ˙q�1

375 :
The matrix B.˛;˙/ satisfies the relation

B.˛;˙/2 D .1˙ .q C q�1//B.˛;˙/

so it is a scalar multiple of a projection in the above sense.
We now define two nondegenerate bilinear forms h�;�it , h�;�ib on V by the

rules:

hv1; v�1it D �˛q; hv0; v�0it D 1; hv�1; v1it D ˛;

hv1; v�1ib D �˛
�1; hv0; v�0ib D 1; hv�1; v1ib D ˙˛

�1q�1;
(18)

with all other hvi ; vj it D 0, hvi ; vj ib D 0. It is worth noticing that the nonzero values
of hvi ; vj it (resp., hvi ; vj ib) are encoded in the middle column (resp., middle row) of
the matrix B.˛;˙/.

Just as in [1, Section 3.4], the forms may be applied to give explicit formulas for
the action of Mk.1˙ .q C q�1// on V ˝k , as follows. Given a Motzkin k-diagram d

and i˛ , j˛ in ¹�1; 0; 1º for ˛ D 1; : : : ; k, label the top row vertices of d from left to
right with basis elements vj1

; : : : ; vjk
and similarly label the bottom row vertices with

vi1 ; : : : ; vik . The blocks of d are either isolated vertices or edges. Then

d.vi1 ˝ � � � ˝ vik / D
X

j1;:::;jk

.d/
j1;:::;jk

i1;:::;ik
vj1
˝ � � � ˝ vjk

defines the action of d , where the scalar .d/j1;:::;jk

i1;:::;ik
is the product of the weights taken

over the various blocks of d . Table 2 shows the weight .ˇ/j1;:::;jk

i1;:::;ik
of a labeled block ˇ

of d . Here ıi;j is the usual Kronecker delta function.

Proposition 11.1. For any ˛¤0, the above rules define a left action ofMk.ı/ on V ˝k ,
where ı D 1˙ .q C q�1/.
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ıi;0 if ˇ is an isolated vertex labeled by vi
ıi;j if ˇ is a vertical edge with endpoints labeled by vi , vj .

hvi ; vj it if ˇ is a horizontal top edge with left and right endpoints labeled
by vi and vj , resp.

hvi ; vj ib if ˇ is a horizontal bottom edge with left and right endpoints
labeled by vi and vj , resp.

Table 2. Weight of a labeled block ˇ.

Proof. This is proved by the same argument as the proof of [1, Proposition 3.29]. In
that argument, the notations v�1 D v�1, v�0 D v0, v�1 D v1 were defined. The argument
depends on the following properties of the forms:

hv�a ; vaibhva; v
�
ait D 1; hva; v

�
aibhv

�
a ; vait D 1;

hva; v
�
ait hva; v

�
aib D

8̂̂<̂
:̂
�q if a D 1;

1 if a D 0;

�q�1 if a D �1;

and only on those properties. One checks that for any ˛ ¤ 0, all of these properties
still hold when we use equation (18) to define the forms.

The following is a slight generalization of results proved in [1, Section 3.4].

Theorem 11.2. Suppose that k is a field, 0 ¤ q 2 k is not a root of unity, and
0 ¤ ˛ 2 k. For any i D 1; : : : ; k � 1, let ei , ri , li act on V ˝k in tensor positions i ,
i C 1 as the operator 1˝.i�1/ ˝ g ˝ 1˝.k�i�1/, where g D e, r , l (as operators),
respectively. This extends to an action of Mk.1˙ .q C q�1// that commutes with the
action of Uq.sl2/. The corresponding representation

�WMk.1˙ .q C q�1//! Endk.V
˝k/

is faithful, thus induces an algebra isomorphism

Mk.1˙ .q C q�1// Š EndUq.sl2/.V
˝k/:

Proof. The defining relations forMk.ı/ are given in [31]. It is a tedious yet elementary
calculation to verify that our operators ei , ri , li satisfy precisely the same relations (for
any ˛ ¤ 0). It suffices to do the calculation in M3.ı/. We used a computer algebra
system to create explicit matrices for the generating operators and verified the defining



The partial Temperley–Lieb algebra and its representations 431

relations accordingly. It follows that when ı D 1˙ .q C q�1/, the action determines
a representation

�WMk.1˙ .q C q�1//! Endk.V
˝k/:

Another way to see this is to repeat the proof of [1, Proposition 3.29] with the appro-
priate substitutions. One can check by an elementary direct computation that e, r ,
and l (as operators on V ˝ V ) commute with the action of Uq.sl2/; here again a
computer algebra system is useful. It then follows from Lemma 9.3 that the action of
any of the generators ei , ri , li commutes with the action of Uq.sl2/. Finally, the proof
of [1, Theorem 3.31] also applies to our situation to show that � is faithful, and the
result follows.

Remark 11.3. (i) Working with Mk.1� q � q�1/, Benkart and Halverson [1] choose
to define the action of e (which they denote by t) on .V ˝ V /0 in terms of the matrix

B.q�1=2;�/ D

264 �q �q1=2 1

q1=2 1 �q�1=2

1 q�1=2 �q�1

375 ;
and define their bilinear forms h�;�it , h�;�ib accordingly. In other words, they are
setting ˛D q�1=2 and making a particular choice of sign. Thus they implicitly assume
that q1=2 exists in k. Our analysis shows that this assumption is avoidable by simply
taking ˛ D 1 (or any other convenient nonzero value).

(ii) If we work instead in Mk.1C qC q�1/, where e2 D .1C qC q�1/e, it is also
possible to define the action of e as a multiple of the orthogonal projection onto Y0
(with respect to the standard bilinear form). The matrix giving the action of e on
.V ˝ V /0 with respect to the same ordered basis as above is

B.˙q�1=2;C/ D

264 q �q1=2 �1

�q1=2 1 ˙q�1=2

�1 ˙q�1=2 q�1

375 :
With this choice, the corresponding bilinear forms h�;�it , h�;�ib become identical.

12. Schur–Weyl duality for PTLk.ı/

We now turn to PTLk.ı/, with ıD 1˙ .qC q�1/, continuing to assume that 0¤ q 2 k

is not a root of unity and k is a field. This algebra acts faithfully on V ˝k by restriction
of the action of Mk.ı/. Recall from (9) that

"i D zei D .1 � pi /ei .1 � pi /:
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We have shown in Theorem 4.5 that PTLk.ı/ is generated by the "i , ri , li (i 2 Œk � 1�).
By Lemma 9.3, it suffices to understand the action in the case k D 2. Let " be the
operator on V ˝ V given by the action of "1 in PTL2.ı/. In terms of Motzkin diagrams
we have the identity

" D � � C :

An explicit calculation with the formulas in the preceding section reveals that " acts
as

v1;�1 7! ˙.qv1;�1 � v�1;1/; v�1;1 7! ˙.�v1;�1 C q
�1v�1;1/

with all other vi;j 7! 0. This is independent of the choice of ˛ ¤ 0. We note that
"2 D ˙.q C q�1/". In other words, the restriction of " to V.1/ ˝ V.1/ coincides
with the standard action of the generator e in TL2.˙.q C q�1//, as described at the
beginning of Section 11.

Thus "i acts on V ˝k as the operator 1˝.i�1/ ˝ "˝ 1.k�i�1/, for any i in Œk � 1�.

Proposition 12.1. The action of PTLk.1 ˙ .q C q�1// on V ˝k commutes with the
action of Uq.gl2/.

Proof. By Lemma 9.3 it suffices to check that the action of " on V ˝ V commutes
with that of Uq.gl2/. We already know that it commutes with the action of E, F , so
we only need to check commutation with the action of K1, K2. When restricted to
kv1;�1˚ kv�1;1, eachKi acts as q, soKi acts as q times the identity operator on that
subspace. The result follows.

With ı D 1˙ .q C q�1/, let ' be the restriction of the representation

�WMk.ı/! Endk.V
˝k/

to PTLk.ı/. Thus
'W PTLk.ı/! Endk.V

˝k/

is an injective algebra morphism.

Proposition 12.2. Suppose that d D d.A; t;B/ belongs to D.k/, so that d D rAt0lB
as in Lemma 4.4, where t0 D t ˝ !k�n. Then xd D rAxt0lB .

Proof. Observe that by the definition of the bar elements,

xt0 D

nY
iD1

.1 � pi /t0

nY
iD1

.1 � pi /:
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Then considerations similar to those in the proof of Theorem 3.5 show that

rA

nY
iD1

.1 � pi /t0

nY
iD1

.1 � pi /lB D
Y
i2A

.1 � pi /rAt0lB
Y
i2B

.1 � pi /

and the result follows.

To proceed, write 1D PpC .1� Pp/, where 1D 1V is the identity map on V and Pp is
the projection map V ! V.0/. This decomposition (a sum of orthogonal idempotents)
induces the defining decomposition

V D PpV ˚ .1 � Pp/V D V.0/˚ V.1/:

As V.0/, V.1/ are Uq.gl2/-submodules of V , the operators Pp, 1 � Pp commute with
the action of Uq.gl2/. Since pi acts as Pp on the i th tensor factor and as identity in the
remaining factors, we can apply the same reasoning to the i th tensor position in V ˝k

to obtain the decomposition

V ˝k D piV
˝k
˚ .1 � pi /V

˝k
D V ˝i�1 ˝

�
V.0/˚ V.1/

�
˝ V ˝k�i :

Expanding the operator 1˝k D . Pp C .1 � Pp//˝k binomially produces an identity

1˝k D
X
A�Œk�

Y
i2A

.1 � pi /
Y

j2Œk�nA

pj :

Applying the above expansion to the space V ˝k produces the decomposition

V ˝k D
M
A�Œk�

V ŒA� (19)

where, for a given subset A of Œk�, V ŒA� WD V1 ˝ V2 ˝ � � � ˝ Vk , where Vi D V.1/ if
i 2 A and Vi D V.0/ otherwise.

Proposition 12.3. Let d 2D.k/ and let .A;d 0;B/ be the corresponding triple under
the bijection in Lemma 4.2. If nD jAj D jBj then the representation xd 7! '. xd/ maps
V ŒB� into V ŒA� and maps all other V ŒB 0� with B 0 ¤ B to zero.

Proof. Let d D rt l be the factorization in Proposition 12.2, so that xd D rxt l . Then

'. xd/ D '.r/'.xt /'.l/:

Furthermore, '.r/ induces an isomorphism V Œ¹1; : : : ;nº�! V ŒA� and '.r/D 0 on all
V ŒY � such that Y ¤ ¹1; : : : ;nº. (The inverse map is obtained by flipping the diagram r

upside down.) Similarly, '.l/ induces an isomorphism V ŒB� ! V Œ¹1; : : : ; nº� and
'.l/ D 0 on all V ŒY � such that Y ¤ B . As '.xt / induces a map from V Œ¹1; : : : ; nº� Š

V.1/˝n into itself, and is zero on all other components, the result follows.
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We are now ready to prove the following.

Theorem 12.4. Suppose that k is a field and 0 ¤ q 2 k is not a root of unity. Set
ı D 1˙ .q C q�1/. Then

EndUq.gl2/.V
˝k/ Š PTLk.ı/:

Hence, V ˝k satisfies Schur–Weyl duality with respect to the commuting actions of
Uq.gl2/, PTLk.ı/.

Proof. Since the actions commute, '.PTLk.ı// is contained in the commuting algebra
EndUq.gl2/.V

˝k/. The action of PTLk.ı/ is faithful, so the desired isomorphism will
follow once we show the inclusion is an equality. We do this by comparing dimen-
sions. By the Uq.gl2/-module decomposition in equation (19), we have

dimk EndUq.gl2/.V
˝k/ D

X
A;B

dimk HomUq.gl2/.V ŒA�; V ŒB�/;

where the sum is over all pairs .A; B/ of subsets of Œk�. By classical Schur–Weyl
duality, the simple Uq.gl2/-modules appearing as constituents of V ŒA� Š V.1/˝n,
where jAj D n, are all indexed by partitions of n with not more than two parts. Thus,

HomUq.gl2/.V ŒB�; V ŒA�/ D .0/

unless jAj D jBj. Furthermore, if jAj D jBj D n for subsets A;B of Œk�, we have

HomUq.gl2/.V ŒB�; V ŒA�/ Š EndUq.gl2/.V .1/
˝n/ Š TLn.ı � 1/

by Schur–Weyl duality for Temperley–Lieb algebras (17), so

dimk HomUq.gl2/.V ŒB�; V ŒA�/ D dimk TLn.ı � 1/ D Cn

where Cn is the nth Catalan number. Putting these facts together yields the equality

dimk EndUq.gl2/.V
˝k/ D

kX
nD0

�
k

n

�2
Cn;

which by equation (10) agrees with the dimension of PTLk.ı/. This proves the first
statement in the theorem. The remaining claims then follow by standard facts in the
theory of semisimple algebras.

Corollary 12.5. Under the same hypotheses, we have the decomposition

V ˝k Š
M
�2ƒ

V.�/˝ PTL�

as .Uq.gl2/;PTLk.ı//-bimodules, where the indexing setƒ is the set of partitions of n
of not more than two parts, for 0 � n � k, as in Section 8.
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Proof. This is a standard fact in semisimple representation theory.

Remark 12.6. (i) It makes sense to set q D 1 in PTLk.1˙ .qC q�1//, thus obtaining
PTLk.1 ˙ 2/. If the field k has characteristic zero, the analogue of Theorem 12.4
holds. In particular,

EndU.gl2/.V
˝k/ Š PTLk.1˙ 2/;

where U.gl2/ is the ordinary universal enveloping algebra of gl2. There is of course
also a version of Corollary 12.5 for this situation.

(ii) If q is a root of unity then Theorem 12.4 (but not Corollary 12.5) still holds,
provided that Uq.gl2/ is replaced by an appropriate k-form, but the proof is very dif-
ferent. One needs to work with the Lusztig “integral” form of the quantized envelop-
ing algebra and to appeal to the paper [8], which established a version of Jimbo’s
Schur–Weyl duality at roots of unity.

(iii) The image of Uq.gl2/ in Endk.V
˝k/ is isomorphic to a generalized q-Schur

algebra in type A, in the sense of [6], defined by the set ƒ.

We now derive explicit formulas for the action of xd , zd , where d 2 D.k/. Recall
from Section 3 that

xd D
Y
i2dde

.1 � pi /d
Y
i 02bdc

.1 � pi /; zd D
Y

i2ddeH

.1 � pi /d
Y

i 02bdcH

.1 � pi /:

In the representation on tensor space, the element 1 � pi is the operator

1˝.i�1/ ˝ .1 � Pp/˝ 1˝.k�i/;

where Pp is projection onto V.0/ and hence 1� Pp projects onto V.1/. This observation
gives the following result.

Proposition 12.7. Suppose that d is in D.k/. Given i˛ , j˛ in the set ¹�1; 0; 1º for
˛ D 1; : : : ; k, label the top row vertices of d from left to right with vj1

; : : : ; vjk
and

similarly label the bottom row vertices with vi1 ; : : : ; vik . Then the action xd on V ˝k

is given by

xd.vi1 ˝ � � � ˝ vik / D
X

j1;:::;jk

. xd/
j1;:::;jk

i1;:::;ik
vj1
˝ � � � ˝ vjk

;

and similarly the action zd on V ˝k is given by

zd.vi1 ˝ � � � ˝ vik / D
X

j1;:::;jk

. zd/
j1;:::;jk

i1;:::;ik
vj1
˝ � � � ˝ vjk

;

where the scalars . xd/j1;:::;jk

i1;:::;ik
and . xd/j1;:::;jk

i1;:::;ik
are the product over the modified weights

of the labeled blocks of d . The modified weight of a block ˇ in d is the same is its
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weight minus a correction term of ıi;0 ıj;0 applied to all (resp., all horizontal) edges
of d in computing the action of xd (resp., zd ).

Proof. This follows from the observation preceding the proposition and the table of
weights preceding Proposition 11.1, by considering the cases separately.

A. Semisimplicity criterion for TLk.˙.q C q
�1//

The purpose of this appendix is to highlight a precise semisimplicity criterion for
Temperley–Lieb algebras that arose in the work of Vaughan Jones, following the
exposition of [9]. Assume that k is a field. For q 2 k, let

Œn�q WD 1C q C q
2
C � � � C qn�1

in ZŒq� be the usual quantum integer (regarded as an element of k) and define Œk�Šq D
Œ1�qŒ2�q � � � Œk�q . If q ¤ 0, then the balanced form JnKq of the quantum integer is

JnKq WD q�.n�1/Œn�q2 2 ZŒq; q�1�:

We also define JkKŠq D J1KqJ2Kq � � � JkKq . Here is the criterion.

Theorem A.1 ([9]). If k is a field and 0 ¤ q 2 k satisfies JkKŠq ¤ 0, then

TLk.˙.q C q�1//

is semisimple over k.

Proof. For 0 ¤ ˇ 2 k, the Jones algebra Ak.ˇ/ is the algebra with 1 on generators
u1; : : : ; uk�1 subject to the defining relations

u2i D ui ; ˇuiui˙1ui D ui ; uiuj D ujui if ji � j j > 1:

By [9, Proposition 2.8.5 (a)], Ak.ˇ/ is (split) semisimple over k if

P1.ˇ
�1/P2.ˇ

�1/ � � �Pk�1.ˇ
�1/ ¤ 0;

where Pn.x/ are polynomials in ZŒx� satisfying the recursion P0.x/D 1, P1.x/ D 1,
and PnC1.x/ D Pn.x/ � xPn�1.x/ for all n � 1. Choose q in k such that q ¤ 0,
q ¤ �1, and ˇ D q C q�1 C 2. (Replace k by a suitable quadratic extension if nec-
essary.) By [9, Proposition 2.8.3 (iv)],

Pn.ˇ
�1/ D

1C q C q2 C � � � C qn

.1C q/n
D
ŒnC 1�q

.1C q/n
:
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Hence, Ak.ˇ/ D Ak.q C q
�1 C 2/ is semisimple over k if Œk�Šq ¤ 0. Now, by set-

ting ei D ıui for all i we recover the defining relations (4) if and only if ˇ D ı2,
so Ak.ı2/ Š TLk.ı/. We conclude that if Œk�Šq ¤ 0, then TLk.˙.q1=2 C q�1=2// is
semisimple over k. To obtain the final conclusion, we replace q1=2 by q. This has the
effect of replacing Œk�Šq by JkKŠq , up to a power of q.

Remark A.2. It makes sense to specialize q to 1 in Theorem A.1. Then JkKŠ1 D kŠ
is the ordinary factorial of k, and the semisimplicity criterion coincides with the one
appearing in Maschke’s theorem for finite symmetric groups. This is no accident, as
TLk.˙.q C q�1// is a quotient of an appropriate Iwahori–Hecke algebra of type A.
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