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Abstract. Multifraction reduction is a new approach to the word problem for Artin–Tits groups

and, more generally, for the enveloping group of a monoid in which any two elements admit a

greatest common divisor. This approach is based on a rewrite system (“reduction”) that extends

free group reduction. In this paper, we show that assuming that reduction satisfies a weak

form of convergence called semi-convergence is sufficient for solving the word problem for the

enveloping group, and we connect semi-convergence with other conditions involving reduction.

We conjecture that these properties are valid for all Artin–Tits monoids, and provide partial

results and numerical evidence supporting such conjectures.
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1. Introduction

Artin–Tits groups are those groups that admit a positive presentation with at most one

relation s : : : D t : : : for each pair of generators s; t and, in this case, the relation has

the form stst : : : D t sts : : :, both sides of the same length [4,23]. It is still unknown

whether the word problem is decidable for all Artin–Tits groups as, at the moment,

decidability was established for particular families only: braid groups (E. Artin [3]

in 1947), spherical type (P. Deligne [20] and E. Brieskorn–K. Saito [5] in 1972), large

type (K.I. Appel–P.E. Schupp [2] in 1983), triangle-free (S. Pride [29] in 1986), FC

type (J. Altobelli [1] and A. Chermak [7] in 1998). Later on, some of these groups

were proved to be biautomatic or automatic [6,22].

This paper, which follows [13] but is self-contained, continues the investigation

of multifraction reduction, a new approach to the word problem for Artin–Tits

groups and, more generally, for the enveloping group U.M/ of a cancellative

monoid M in which any two elements admit a left and a right greatest common divisor

(“gcd-monoid”). This approach is based on a certain algebraic rewrite system, called

reduction, which unifies and (properly) extends all previous rewrite systems based on
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exploiting the Garside structure of Artin–Tits monoids [9,27,30]. It is proved in [13]

that, if the monoid M satisfies various properties involving the divisibility relations,

all true in every Artin–Tits monoid, together with an additional assumption called the

3-Ore condition, then reduction is convergent and every element of the enveloping

group of M admits a unique representation by an irreducible multifraction, directly

extending the classical result by Ø. Ore about representation by irreducible fractions.

In the current paper, we address the case of a general gcd-monoid, when the

3-Ore condition is not assumed. In this case, reduction is not convergent, and

there is no unique representation of the elements of the group U.M/ by irreducible

multifractions. However, we introduce a new, weaker condition called semi-
convergence, and prove that most of the applications of the convergence of reduction

can be derived from its semi-convergence, in particular a solution of the word problem

for U.M/ whenever convenient finiteness conditions are satisfied. This makes the

following conjecture crucial:

Conjecture A. Reduction is semi-convergent for every Artin–Tits monoid.

A proof of Conjecture A would imply the decidability of the word problem for

every Artin–Tits group. The reasons for believing in Conjecture A are multiple. One

abstract reason is that reduction is really specific and uses both the whole Garside

structure of Artin–Tits monoids and, for the finiteness of the set of basic elements,

some highly nontrivial properties of the associated Coxeter groups [15,21]: this may

be seen as more promising than a generic approach based on, say, a “blind” Knuth–

Bendix completion. Next, we state several related conjectures (“B”, “C”, “Cunif”), of

which some partial cases are proven and which suggest the existence of a rich rigid

structure. Another reason is the existence of massive computer tests supporting all

the conjectures and, at the same time, efficiently discarding wrong variations and

dead-ends. Finally, the existence of a proof in the special case of FC type is a positive

point. In the same direction, a weak version of Conjecture A (sufficient for solving

the word problem) was recently established for all Artin–Tits groups of sufficiently

large type [18]: although saying nothing about A itself, this shows that reduction is

relevant for a new family of Artin–Tits groups.

We present below a state-of-the-art description of the known results involving

multifraction reduction, and report about computer experiments supporting Conjec-

ture A and its variants. The paper is organized as follows. We gather in Section 2

the needed prerequisites about multifractions, gcd-monoids, and reduction. Semi-

convergence and Conjecture A are introduced in Section 3, and their consequences are

established. In Section 4, we analyze specific cases of reduction, namely divisions and

their extensions, tame reductions. This leads to a new property, stated as Conjecture B,

which is stronger than Conjecture A but easier to experimentally check and maybe

to establish. Then, we introduce in Section 5 cross-confluence, a new property of

reduction that involves both reduction and a symmetric counterpart of it. This leads

to Conjecture C and its uniform version Cunif, again stronger than Conjecture A
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but possibly more accessible. In Section 6, we analyze the case of small depth

multifractions. We prove in particular that semi-convergence for multifractions

of depth 2 is equivalent to M embedding into its enveloping group, and semi-

convergence for multifractions of depth 4 is equivalent to a unique decomposition

property for fractions in U.M/. Finally, we gather in Section 7 reports about

computer experiments and a few comments about further possible developments.

Acknowledgements. The author thanks Friedrich Wehrung for many discussions

about the content of this paper. In particular, the notion of a lcm-expansion mentioned

in Sec. 7.1 appeared during our joint work of interval monoids [19]. The author also

thanks both the editor and the referee, whose many suggestions certainly improved

the exposition significantly.

2. Multifraction reduction

In this introductory section, we recall the notions of a multifraction and of a gcd-

monoid, as well as the definition of multifraction reduction [13].

2.1. Multifractions. If M is a monoid, we denote by U.M/ and � the enveloping

group of M and the canonical morphism from M to U.M/, characterized by the

universal property that every morphism from M to a group factors through �. By

definition, every element � of U.M/ can be expressed as

�.a1/�.a2/�1�.a3/�.a4/�1 � � � or �.a1/�1�.a2/�.a3/�1�.a4/ � � � ; (2.1)

with a1; : : : ; an in M . We shall investigate U.M/ using such expressions. In [13],

without loss of generality, we only considered, expressions (2.1) where the first

term �.a1/ is positive (possibly trivial, that is, equal to 1). Here, in particular in view

of Section 5, we skip that condition, and allow for both signs in the first entry.

Definition 2.1. Let M be a monoid. Let M be a disjoint copy of M ; call the elements

of M (resp., M ) positive (resp., negative). For n � 1, a positive (resp., negative)

n-multifraction on M is a finite sequence .a1; : : : ; an/ with entries in M [ M ,

alternating signs, and a1 in M (resp., M ). The set of all multifractions (resp., all

positive multifractions) completed with the empty sequence ¿ is denoted by F
˙

M

(resp., FM ). A multiplication is defined by

.a1; : : : ; an/ � .b1; : : : ; bp/

D

˚
.a1; : : : ; an�1; anb1; b2; : : : ; bp/ for an and b1 in M ,

.a1; : : : ; an�1; b1an; b2; : : : ; bp/ for an and b1 in M ,

.a1; : : : ; an; b1; : : : ; bp/ otherwise,

extended with a � ¿ D ¿ � a D a for every a.
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We use a; b; : : : as generic symbols for multifractions, and ai for the i th entry

of a counted from 1. For a in F
˙

M , the length of a (number of entries) is called

its depth, written kak. We identify an element a of M with the depth one positive

multifraction .a/. Multfractions will play the role of iterated fractions, and the

following convention is then convenient:

Notation 2.2. For a1; : : : ; an in M , we put

a1= � � � =an WD .a1; a2; a3; a4; : : :/ and =a1= � � � =an WD .a1; a2; a3; a4; : : :/:

(2.2)

We say that i is positive (resp., negative) in a if ai (resp., ai ) occurs in the expansion

of a.

With this convention, we recover the notation of [13], where only positive

multifractions are considered and M remains hidden. Multifractions are adequately

illustrated by associating with every element a of M an arrow labeled a, concatenating

arrows to represent the product in M , and associating with every multifraction the

path made of (the arrows of) the successive entries with alternating orientations. The

rules for the multiplication of a and b can be read in the following diagrams:

– n positive in a, 1 positive in b:

an b1 anb1
� D

– n positive in a, 1 negative in b:

an b1 an b1
� D

– n negative in a, 1 positive in b:

an b1 an b1
� D

– n negative in a, 1 negative in b:

an b1 b1an
� D

Proposition 2.3. (i) The set F
˙

M equipped with � and ¿ is a monoid generated by
M [ M , and FM is the submonoid of F

˙

M generated by M [ f1=a j a 2 M g.
The family of depth one multifractions is a submonoid isomorphic to M .

(ii) Let '˙ be the congruence on F
˙

M generated by .1; ¿/ and the pairs .a=a; ¿/

and .=a=a; ¿/ with a in M . For a in F
˙

M , let �.a/ be the '˙-class of a. Then
the group U.M/ is (isomorphic to) F

˙

M ='˙ and, for all a1; : : : ; an in M , we
have

�.a1= � � � =an/ D �.a1/�.a2/�1�.a3/ � � � ;

�.=a1= � � � =an/ D �.a1/�1�.a2/�.a3/�1 � � � :
(2.3)
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(iii) The restriction of '˙ to FM is the congruence ' generated by .1; ¿/ and
the pairs .a=a; ¿/ and .1=a=a; ¿/ with a in M . The group U.M/ is also
isomorphic to FM ='. The translation a 7! 1 � a maps F

˙
M onto FM and, for

all a; b in F
˙

M , the relation a '˙ b is equivalent to 1 � a ' 1 � b.

Proof. The argument is similar to the proof of [13, Proposition 2.4], and we only point

the differences due to using signed multifractions. For (i), associativity is checked

directly, and the generating subsets for F
˙

M and FM follow from the equalities

a1= � � � =an D a1 � a2 � a3 � a4 � � � � D a1 � 1=a2 � a3 � 1=a4 � � � � W (2.4)

both hold in F
˙

M , and the second only involves positive multifractions.

For (ii) and (iii), for every a in F
˙

M , the definition of '˙ implies �.a/ D �.a/�1

and, writing �C.a/ for the '-class of a, that of ' implies �C.1=a/ D �C.a/�1.

Hence both F
˙

M ='˙ and FM =' are groups generated by M . One easily checks

that the latter groups satisfy the universal property defining U.M/, and are therefore

isomorphic to U.M/. Then (2.3) directly follows from (2.4).

Next, for every a in F
˙

M , the product 1 � a belongs to FM . Then, for a; b in F
˙

M ,

write a � b for 1 �a ' 1 �b. By considering all sign combinations and using relations

like 1=ab ' 1=b � 1=a, one checks that � is a congruence on F
˙

M , and it contains

the pairs .1; ¿/, .a=a; ¿/, and .=a=a; ¿/ that generate '˙, as one finds for instance

1 � =a=a D 1=a=a ' ¿ D 1 � ¿. Hence � includes '˙. In the other direction,

'˙ contains pairs that generate ' and, being compatible with multiplication in F
˙

M ,

it is in particular compatible with multiplication in FM . So ' is included in '˙, and

a '˙ b implies 1 � a ' 1 � b since 1 is invertible mod '˙. Hence, '˙ is included

in � and, finally, '˙ and � coincide, which means that, for all a; b in F
˙

M , we have

a '˙ b ” 1 � a ' 1 � b: (2.5)

For a positive, we have 1 �a D a, so (2.5) implies in particular that ' is the restriction

of '˙ to FM , and the rest follows easily.

Hereafter, we identify U.M/ with F
˙

M ='˙ and FM ='. This representation is

redundant in that, for every a in M , the inverse �.a/�1 of �.a/ is represented both by

the depth 1 negative multifraction =a and the depth 2 positive multifraction 1=a.

We conclude this introduction with some terminology that will be used frequently:

Definition 2.4. A multifraction a is called unital if a '˙ 1 holds, i.e. if a represents 1

in the group U.M/. It is called trivial if all entries are equal to 1 or 1. For n > 0,

we write 1n for 1= � � � =1, n terms; for n < 0, we write 1n for =1=1= � � � =1, jnj terms;

in practice, we shall often omit the index and write 1 for a trivial multifraction.
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2.2. Gcd-monoids. The reduction process we investigate requires that the ground

monoid is a gcd-monoid. We recall the basic definitions, referring to [13] (and [16])

for more details.

Let M be a monoid. For a; b in M , we say that a left divides b or, equivalently,

that b is a right multiple of a, written a � b, if ax D b holds for some x in M . If M

is a cancellative monoid and 1 is the only invertible element in M , the left divisibility

relation is a partial order on M . In this case, when they exist, the greatest common

�-lower bound of two elements a; b is called their left gcd, denoted by a ^ b, and

their least common �-upper bound is called their right lcm, denoted by a _ b.

Symmetrically, we say that a right divides b or, equivalently, that b is a left multiple
of a, written a e� b, if xa D b holds for some x. Under the same hypotheses, e� is a

partial order on M , with the derived right gcd and left lcm written �̂ and e_.

Definition 2.5. We say that M is a gcd-monoid if M is a cancellative monoid, 1 is

the only invertible element in M , and any two elements of M admit a left gcd and a

right gcd.

Typical examples of gcd-monoids are Artin–Tits monoids. Many more examples

are known. In particular, every Garside or preGarside monoid [11,16,25] is a gcd-

monoid.

Standard arguments [13, Lemma 2.15] show that a gcd-monoid admits conditional
right and left lcms: it need not be true that any two elements admit a right lcm, but

any two elements that admit a common right multiple admit a right lcm, and similarly

on the left.

The gcd and lcm operations of a gcd-monoid are connected in several ways with

the product. We refer to [16, section II.2] for the (easy) proof of the rule for an

iterated lcm:

Lemma 2.6. If M is a gcd-monoid and a; b; c belong to M , then a _ bc exists if and
only if a _ b and a0 _ c do, where a0 is defined by a _ b D ba0, and then we have

a _ bc D a � b0c0 D bc � a00: (2.6)

with a _ b D ba0 D ab0 and a0 _ c D a0c0 D ca00.

This implies in particular that a � bc holds if and only if a _ b exists and a0 � c

holds, with a0 defined by a _ b D ba0.

Lemma 2.7. If M is a gcd-monoid and a; b; a0; b0; c belong to M and satisfy ab0 D

ba0, then a ^ b D a0 ^ c D 1 implies a ^ bc D 1.

Proof. Assume x � a and x � bc. By Lemma 2.6, b _ x must exist and, writing

b _x D bx0, we must have x0 � c. On the other hand, x � a implies x � ab0 D ba0.

So ba0 is a common right multiple of b and x, hence it is a right multiple of their

right lcm bx0. As M is left cancellative, bx0 � ba0 implies x0 � a0. Hence x0 left

divides both a0 and c, and a0 ^ c D 1 implies x0 D 1, whence x � b. Then x left

divides both a and b, and a ^ b D 1 implies x D 1, hence a ^ bc D 1.
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We shall also need the notion of a noetherian monoid. If M is a gcd-monoid, we

use < for the proper version of left divisibility: a < b holds if we have b D ax for

some non-invertible x, i.e. for x 6D 1, and similarly for e< vs. e�.

Definition 2.8. A monoid M is called noetherian if the relations < and e< are well-

founded, i.e. every nonempty subset of M has a <-minimal element and a e<-minimal

element.

Note that a monoid hS j RiC is noetherian whenever each relation in R is

homogeneous, i.e. it has the form u D v with u; v of the same length: indeed, a < b

implies that any word in S representing a is shorter than any word representing b,

and an infinite <-descending sequence cannot exist. Artin–Tits monoids are typical

examples.

2.3. Reduction of multifractions. Introduced in [13], our tool for investigating

the congruence '˙ on F
˙

M is reduction, a family of partial depth-preserving

transformations that, when defined, map a multifraction to a '˙-equivalent

multifraction. These transformations are written as an action on the right: when

defined, a � R is the result of applying R to a.

Definition 2.9. If M is a gcd-monoid and a; b lie in F
˙

M , then, for i � 1 and x

in M , we declare that b D a � Ri;x holds if we have kbk D kak, bk D ak

for k 6D i � 1; i; i C 1, and there exists x0 (necessarily unique) satisfying

for i D 1 positive in a: bix D ai ; biC1x D aiC1;

for i D 1 negative in a: xbi D ai ; xbiC1 D aiC1;

for i � 2 positive in a: bi�1 D x0ai�1; bix D x0ai D x e_ ai ; biC1x D aiC1;

for i � 2 negative in a: bi�1 D ai�1x0; xbi D aix
0 D x _ ai ; xbiC1 D aiC1:

We write a ) b if a � Ri;x holds for some i and some x 6D 1, and use )� for

the reflexive–transitive closure of ). The rewrite system R
˙
M so obtained on F

˙
M

is called reduction, and its restriction to FM (positive multifractions) is denoted

by RM . A multifraction a is called R-reducible if a ) b holds for at least one b,

and R-irreducible otherwise.

The system RM is the one investigated in [13], where only positive multifractions

are considered: the only difference between [13, Def. 3.4] and Def. 2.9 is the

adjunction in R
˙

M of a rule for the reduction at level 1 of a negative multifraction.

As Ri;x preserves the sign of multifractions, no specific notation is needed for the

restriction of Ri;x to positive multifractions.

The reduction systems RM and R
˙

M extend free reduction (deletion of

factors x�1x or xx�1): applying Ri;x to a consists in removing x from aiC1 and

pushing it through ai using an lcm operation, see Figure 1. A multifraction a is

eligible for R1;x if and only if x divides both a1 and a2, on the side coherent with
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their signs, and, eligible for Ri;x with i � 2 if and only if x divides aiC1 and admits

a common multiple with ai , on the due side again.

: : :

ai�1
ai aiC1

bi�1 bi
biC1

xx0 ( : : :

ai�1
ai aiC1

bi�1 bi
biC1

xx0 ( : : :

Figure 1. The reduction rule Ri;x : starting from a (light grey), we extract x from aiC1, push it

through ai by taking the lcm of x and ai (indicated by the small round arc), and incorporate the

remainder x0 in ai�1 to obtain b D a � Ri;x (colored). The left hand side diagram corresponds

to the case when i is negative in a, i.e. ai is crossed negatively, the right hand one to the case

when i is positive in a, i.e. ai is crossed positively, with opposite orientations of the arrows.

Example 2.10. Let M be the Artin–Tits monoid of type eA2, here written

ha; b; c j aba D bab; bcb D cbc; cac D acaiC;

and let a WD 1=c=aba. Then a is eligible for R2;a and R2;b, since a and b left

divide aba and admit a common right multiple with c. We find a � R2;a D ac=ca=ba

and a � R2;b D bc=cb=ab. The latter are eligible for no reduction R1;x , since ac

and ca (resp., bc and cb) admit no nontrivial common right divisor, and for no

reduction R2;x , since the only nontrivial left divisors of ba (resp., ab) are b and ba

(resp., a and ab), which admit no common right multiple with ca (resp., ac). Hence

these multifractions are R-irreducible.

We now state the basic properties of reduction needed below. They directly extend

those established for positive multifractions in [13]. Verifying them in the general

case is easy.

Lemma 2.11. Assume that M be a gcd-monoid.

(i) The relation )� is included in '˙, i.e. a )� b implies a '˙ b.

(ii) The relation )� is compatible with the multiplication of F
˙

M .

(iii) For all a; b and p; q, the relation a )� b is equivalent to 1p �a�1q )� 1p �b �1q .

Proof. (i) It directly follows from the definition (and from Fig. 1) that b D a � Ri;x

implies

�.ai�1/�.ai /
�1�.aiC1/ D �.bi�1/�.bi /

�1�.biC1/

(resp., �.ai�1/�1�.ai /�.aiC1/�1 D �.bi�1/�1�.bi /�.biC1/�1) for i negative (resp., pos-

itive) in a.

(ii) Assume b D a � Ri;x , and let c be an r-multifraction. If the signs of r in c

and 1 in a are different, then c � a is the concatenation of c and a, similarly c � b is

the concatenation of c and b, and c � b D .c � a/ � RiCr;x trivially holds.
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If r is positive in c and 1 is positive in a, we have c�a D c1= � � � =cr�1=cr a1=a2= � � �

and c � b D c1= � � � =cr�1=crb1=b2= � � � , and we obtain c � b D .c � a/ � RiCr�1;x: the

point is that, if x both right divides a1 and a2, it a fortiori right divides cra1 and a2.

Finally, assume that r negative in c and 1 is negative in a. Then we find c � a D

c1= � � � =a1cr=a2= � � � and c � b D c1= � � � =b1cr=b2= � � � : the argument is the same

as above, mutatis mutandis: the assumption that a � R1;x is defined means that x

both left divides a1 and a2, which implies that it a fortiori left divides a1cr and a2.

Hence .c � a/ � RiCr�1;x is defined and we find c � b D .c � a/ � RiCr�1;x again. This

completes compatibility with left multiplication.

The compatibility on the right is similar: adding extra entries cannot destroy the

eligibility for reduction. Let n D kak. Everything is trivial for i < n � 1, so we

assume i D n � 1. If the signs of n in a and of 1 in c are different, the multiplication

is a concatenation, and we obtain b � c D .a � c/ � Rn�1;x trivially. If n is positive in a

and 1 is positive in c, the argument is the same as for Rn�1;x . Finally, assume that n is

negative in a and 1 is negative in c. Then we find a � c D a1= � � � =an�1=c1an=c2= � � �

and b � c D b1= � � � =bn�1=c1bn=c2= � � � . The assumption that a � Rn�1;x is defined

means that x e_ an�1 exists and x right divides an, which implies that it a fortiori

right divides c1an. Hence .a � c/ � Rn�1;x is defined, yielding b � c D .a � c/ � Rn�1;x

again. Thus reduction is compatible with multiplication on the right.

(iii) That a ) b implies 1p � a � 1q ) 1p � b � 1q follows from (ii) directly.

Conversely, assume 1p � b � 1q D .1p � a � 1q/ � Ri;x with x 6D 1. Let n D kak D kbk,

and assume that the entries of a occur in 1p �b �1q from r C1 to r Cn (with r D p or

r D p � 1 according to the sign of p in 1p and that of 1 in a). Then we necessarily

have r C 1 � i < r C n. Indeed, i < r and i � r C n are impossible, since the

.i C 1/st entry of 1p � a � 1q is trivial. Moreover, in the case i D r C 1, the element x

necessarily divides a1, since, otherwise, the r th entry of 1p �b �1q could not be trivial.

Hence, a � Ri;x is defined, and it must be equal to b.

Finally, we have a simple sufficient condition for termination.

Lemma 2.12 ([13, Proposition 3.13]). If M is a noetherian gcd-monoid, then R
˙

M

is terminating: every sequence of reductions leads in finitely many steps to
an R-irreducible multifraction.

We skip the proof, which is exactly the same in the signed case as in the positive

case, and consists in observing that a ) b forces b to be strictly smaller than a for

some antilexicographical ordering on F
˙

M (comparing multifractions starting from

the highest entry).

2.4. The convergent case. The rewrite system R
˙

M (as any rewrite system) is called

convergent if every element, here every multifraction a, admits a unique R-irreduc-

ible reduct, usually denoted by red.a/. The main technical result of [13] is
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Proposition 2.13. If M is a noetherian gcd-monoid satisfying the 3-Ore condition:

If three elements of M pairwise admit a common right .resp. left/ multiple,
then they admit a common right .resp. left/ multiple,

(2.7)

then R
˙
M is convergent.

When a monoid M is eligible for Proposition 2.13, one easily deduces that

two multifractions a; b represent the same element of U.M/ if and only if

red.a/ � 1p D red.b/ � 1q holds for some p; q and, from there, that the monoid M

embeds in its enveloping group U.M/ and every element of U.M/ is represented

by a unique bR-irreducible multifraction, where bR˙

M is obtained from R
˙

M by adding

a rule that removes trivial final entries. It is also proved in [13] that, under mild

additional finiteness assumptions on M (see Section 3 below), the relation )� on M

is decidable and, from there, so is the word problem for U.M/ when the 3-Ore

condition is satisfied.

The above results are relevant for a number of gcd-monoids. We recall that an

Artin–Tits monoid M D hS j RiC is said to be of spherical type if the Coxeter

group obtained by adding to .S; R/ the relation s2 D 1 for each s in S is finite [5].

And M is said to be of type FC if, for every subfamily S 0 of S such that, for all s; t

in S 0, there is a relation s : : : D t : : : in R, the submonoid of M generated by S 0 is

spherical [1,24].

Proposition 2.14 ([13, Proposition 6.5]). An Artin–Tits monoid satisfies the 3-Ore
condition if and only if it is of type FC.

However, a number of Artin–Tits monoids fail to be of type FC and therefore

are not eligible for Proposition 2.13, typically the monoid of type eA2 considered in

Example 2.10. So we are left with the question of either weakening the assumptions

for Proposition 2.13, or using a conclusion weaker than convergence.

3. Semi-convergence

After showing in Subsection 3.1 that the 3-Ore assumption cannot be weakened when

proving the convergence of R
˙
M , we introduce in Subsection 3.2 a new property of R

˙
M

called semi-convergence, which, as the name suggests, is weaker than convergence.

We conjecture that, for every Artin–Tits monoid, the system R
˙

M is semi-convergent

(“Conjecture A”). We prove in Subsection 3.3 that most of the consequences known to

follow from the convergence of R
˙

M follow from its semi-convergence, in particular in

terms of controlling the group U.M/ from inside the monoid M and solving its word

problem. Finally, we describe in Subsection 3.4 several variants of semi-convergence.

3.1. The strength of the 3-Ore condition. A first attempt for improving Prop-

osition 2.13 could be to establish the convergence of R
˙
M from an assumption weaker
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than the 3-Ore condition. This approach fails, as the latter turns out to be not only

sufficient, but also necessary. Hereafter we say that a monoid M satifies the right

(resp., left) 3-Ore condition when (2.7) is valid for right (resp., left) multiples. First,

we recall

Lemma 3.1 ([13, Lemma 2.12]). If M is a gcd-monoid, and a; b; c; d are elements
of M satisfying ad D bc, then ad is the right lcm of a and b if and only if c and d

satisfy c �̂ d D 1.

Proposition 3.2. Let M be a gcd-monoid.

(i) If RM is convergent, then M satisfies the right 3-Ore condition.

(ii) If R
˙

M is convergent, then M satisfies the 3-Ore condition.

Proof. (i) Assume that x; y; z belong to M and pairwise admit common right

multiples, hence right lcms. Write

x _ y D xy0 D yx0; y _ z D yz0 D zy00; x _ z D xz00 D zx00:

Let a WD 1=x=y _ z. As in Example 2.10, we find

b D a � R2;y D y0=x0=z0 and c D a � R2;z D z00=x00=y00:

The assumption that RM is convergent implies that b and c both reduce to d WD

red.a/. By construction, d is of depth 3, and d3 must be a common right divisor

of b3 and c3, which are z0 and y00. Now, Lemma 3.1 implies z0 �̂ y00 D 1, whence

d3 D 1. Therefore, there exist d1 and d2 in M satisfying 1=x=y _ z )� d1=d2=1.

By Lemma 2.11, we deduce 1=x=y _ z '˙ d1=d2=1, hence, by (2.3), x�1.y _ z/ D

d1d �1
2 in U.M/. This implies xd1 D .y _ z/d2 in U.M/, hence in M , since the

assumption that RM is convergent implies that M embeds in U.M/. It follows that x

and y _ z admit a common right multiple, hence that x; y, and z admit a common

right multiple. Hence M satisfies the right 3-Ore condition.

(ii) The argument is symmetric, with negative multifractions. Assume that x; y; z

belong to M and pairwise admit common left multiples, hence left lcms. Write

x e_ y D y0x D x0y; y e_ z D z0y D y00z; x e_ z D z00x D x00z:

Let a WD =1=x=y _ z, in F
˙

M n FM . Then we have

b D a � R2;y D =y0=x0=z0 and c D a � R2;z D =z00=x00=y00:

The assumption that R
˙

M is convergent implies that b and c admit a common R-

reduct, say d . By construction, d is of depth 3, and d3 must be a common left divisor

of b3 and c3, which are z0 and y00. By the symmetric counterpart of Lemma 3.1,

we have z0 _ y00 D 1, whence d3 D 1. Therefore, there exist d1 and d2 in M

satisfying a �)�
=d1=d2=1. By Lemma 2.11, we deduce =1=x=y e_ z '˙ =d1=d2=1,
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hence, by (2.3), x.y e_z/�1 D d �1
1 d2 in U.M/, whence d1x D d2.y e_z/ in U.M/,

hence in M . This shows that x and y e_ z admit a common left multiple, hence that

x; y, and z admit a common left multiple. Hence M satisfies the left 3-Ore condition.

Note that the argument for (i) cannot be used for (ii), because one should start

with a WD 1=1=x=y e_z and then we know nothing about the first entry(ies) of red.a/.

In principle, the right 3-Ore condition is slightly weaker than the full 3-Ore

condition, and the convergence of RM might be weaker than that of R
˙

M . However,

when M is an Artin–Tits monoid, all the above conditions are equivalent to M

being of type FC and, therefore, none is weaker. So it seems hopeless to improve

Proposition 2.13.

3.2. Semi-convergence. We are thus led to explore the other way, namely obtaining

useful information about U.M/ from a property weaker than the convergence of RM

or R
˙
M . This is the approach we develop in the rest of this paper.

When the system RM is not convergent, a '-class may contain several

R-irreducible multifractions, and there is no distinguished one: in Example 2.10, the

automorphism that exchanges a and b exchanges the two R-irreducible reducts of a,

making them indiscernible.

However, a direct consequence of convergence is

Lemma 3.3. If M is a gcd-monoid and R
˙
M is convergent, then, for every a in F

˙
M ,

If a is unital, then a )� 1 holds. (3.1)

Indeed, if R
˙
M is convergent, a '˙ 1 implies (and, in fact, is equivalent to)

red.a/ D red.1/, hence red.a/ D 1, since 1 is R-irreducible. Note that, by Lem-

ma 2.11(i), the converse implication of (3.1) is always true: a )� 1 implies that a

and 1 represent the same element of U.M/, hence that a represents 1.

When R
˙

M is not convergent, (3.1) still makes sense, and it is a priori a (much)

weaker condition than convergence. This is the condition we shall investigate below:

Definition 3.4. If M is a gcd-monoid, we say that R
˙
M (resp., RM ) is semi-convergent

if (3.1) holds for every a in F
˙

M (resp., in FM ).

Thus Lemma 3.3 states that R
˙

M is semi-convergent whenever it is convergent. By

Proposition 2.14, R
˙

M and RM are semi-convergent for every Artin–Tits monoid M

of type FC. But, as can be expected, semi-convergence is strictly weaker than

convergence. We refer to [19] for the construction of monoids for which R
˙

M is

semi-convergent but not convergent.

The main conjecture we propose is:

Conjecture A. For every Artin–Tits monoid M , the system RM is semi-convergent.

We shall report in Section 7 about experimental data supporting Conjecture A.

For the moment, we just mention one example illustrating its predictions.
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Example 3.5. Let M be the Artin–Tits monoid of type eA2. We saw in Example 2.10

that R
˙
M is not convergent: a D 1=c=aba admits the two distinct irreducible reducts

ac=ca=ba and bc=cb=ab. When we multiply the former by the inverse of the latter

(see Subsection 3.3 below), we obtain the 6-multifraction b D ac=ca=ba=ab=cb=bc

which, by construction, is unital. Then Conjecture A predicts that b must reduce to 1.

This is indeed the case: we find

b � R3;abR4;cbR5;bcR1;acR2;cbcR3;bcR1;bc D 1

(as well as b � R5;bcR3;acR1;acR3;bR4;cR2;c D 1: the reduction sequence is not

unique).

More generally, we can observe that, for every gcd-monoid M , if a0 and a00

are two reducts of an n-multifraction a, then the 2n-multifraction b obtained

by concatenating a0 and the inverse of a00 is always reducible whenever a00 is

nontrivial: by construction, we have bn D a0
n and bnC1 D a00

n. An obvious induction

shows that a )� a0 implies that a0
n divides an (on the left or on the right, according

to the sign of n in a) and, similarly, a00
n divides an. Hence bn and bnC1 admit a

common multiple and, therefore, b is eligible for some reduction Rn;x with x 6D 1

whenever bnC1, i.e. a00
n, is not 1. Finally, if a00

n D 1 holds, then b is eligible

for R2n�m;a00
m

, where m is the largest index such that a00
m is nontrivial.

3.3. Applications of semi-convergence. Most of the consequences of convergence

already follow from semi-convergence; whence the interest of Conjecture A.

We successively consider the possibility of controlling the congruence '˙, the

decidability of the word problem, and what is called Property H.

Controlling '
˙. In order to investigate '˙ without convergence, we introduce a

new operation on multifractions to represent inverses.

Notation 3.6. We put e¿ D ¿, and, for every n-multifraction a,

ea WD

(
=an= � � � =a1 if n is positive in a;

an= � � � =a1 if n is negative in a:
(3.2)

Lemma 3.7.

(i) For all multifractions a; b, we have ea � b D eb �ea.

(ii) For every multifraction a, we have �.ea/ D �.1 �ea/ D �.a/�1.

Proof. (i) If a written as a sequence in M [ M is .x1; : : : ; xn/, then ea
is .xn; : : : ; x1/ (where we put a D a for a in M ), and then ea � b D eb � ea directly

follows from the definition of the product.

(ii) comes from (2.3).
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Lemma 3.7(ii) says that, if a represents an element � of U.M/, then bothea and

1 � ea represent ��1. By definition, keak D kak always holds, and the operation e
on F

˙
M is involutive. However, this operation does not restrict to FM : if a is a

positive multifraction, then ea is positive if and only if kak is even. In order to

represent inverses inside FM , one can compose e with a left translation by 1, thus

representing the inverse of a by 1 � ea. The inconvenience is that involutivity is lost:

for kak odd and b D 1 �ea, we find 1 �eb D 1 � a 6D a.

Lemma 3.8. If M is a gcd-monoid and RM is semi-convergent, then a '˙ b is
equivalent to 1 � a �eb )� 1 for all a; b in F

˙
M .

Proof. As we have 1 '˙
¿ and b � eb '˙

¿ by Lemma 3.7, a '˙ b is equivalent

to 1 � a �eb '˙
¿, hence, by (2.3), to 1 � a �eb being unital, i.e. to �.1 � a �eb/ D 1. By

construction, 1 � a � eb lies in FM . So, if RM is semi-convergent, �.1 � a � eb/ D 1 is

equivalent to 1 � a �eb )� 1.

As a direct application, we obtain

Proposition 3.9. If M is a gcd-monoid and RM is semi-convergent, then M embeds
in its enveloping group U.M/.

Proof. Assume a; b 2 M and �.a/ D �.b/, i.e. a '˙ b. By Lemma 3.8, we must

have a � eb )� 1, which is a=b )� 1=1. By definition of reduction, this means that

there exists x in M satisfying a=b � R1;x D 1=1. This implies a D b . D x /.

The word problem for U.M/. If S is any set, we denote by S� the free monoid

of all words in S , using " for the empty word. For representing group elements, we

consider words in S [ S , where S is a disjoint copy of S consisting of one letter s

for each letter s of S , due to represent s�1. If w is a word in S [ S , we denote by w

the signed word obtained from w by exchanging s and s and reversing the order of

letters. If M is a monoid, S is included in M , and w is a word in S , we denote

by Œw�C the evaluation of w in M . We extend this notation to words in S [ S by

defining Œw�C to be the multifraction Œw1�C= � � � =Œwn�C, where .w1; : : : ; wn/ is the

unique sequence of words in S such that w can be decomposed as w1 w2 w3 w4 � � �

with wi 6D " for 1 < i � n.

Lemma 3.10 ([13, Lemma 2.5]). For every monoid M , every generating family S

of M , and every word w in S [ S , the following are equivalent:

(i) The word w represents 1 in U.M/;

(ii) The multifraction Œw�C satisfies Œw�C '˙ 1 in F
˙

M .

Thus solving the word problem for the group U.M/ with respect to the generating

set S amounts to deciding the relation Œw�C '˙ 1, which takes place in F
˙

M , hence

essentially inside M , as opposed to U.M/.
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A few more definitions are needed. First, a gcd-monoid M is called strongly
noetherian if there exists a map � W M ! N satisfying, for all a; b in M ,

�.ab/ � �.a/ C �.b/; and �.a/ > 0 for a 6D 1: (3.3)

This condition is stronger than noetherianity, but it still follows from the existence of

a presentation by homogeneous relations (same length on both sides): in this case,

the word length induces a map � as in (3.3). So every Artin–Tits monoid is strongly

noetherian.

Next, we need the notion of a basic element. Noetherianity implies the existence of

atoms, namely elements that cannot be expressed as the product of two non-invertible

elements. One shows [16, Corollary II.2.59] that, if M is a noetherian gcd-monoid,

then a subfamily S of M generates M if and only if it contains all atoms of M .

Definition 3.11 ([11]). If M is a noetherian gcd-monoid, an element a of M is called

right basic if it belongs to the smallest family X that contains the atoms of M and

is such that, if a; b belong to X and a _ b exists, then the element a0 defined by

a _ b D ba0 still belongs to X . Left-basic elements are defined symmetrically. We

say that a is basic if it is right or left basic.

Note that, in the above definition, nothing is required when a _ b does not exist.

The key technical result is as follows:

Lemma 3.12 ([13, Prop 3.27]). If M is a strongly noetherian gcd-monoid with finitely
many basic elements and atom set S , then the relation Œw�C )� 1 on .S [ S/� is
decidable.

This result is not trivial, because deciding whether a multifraction is eligible for

some reduction requires to decide whether two elements of the ground monoid admit

a common multiple, and this is the point, where the finiteness of the number of basic

elements occurs crucially, as it provides an a priori upper bound on the size of this

possible common multiple. Then, we immediately deduce:

Proposition 3.13. If M is a strongly noetherian gcd-monoid with finitely many basic
elements and RM is semi-convergent, then the word problem for U.M/ is decidable.

Proof. Let S be the atom set of M . By Lemma 3.12, the relation Œw�C )� 1 on

words in S [ S is decidable. By (3.1) (and by Lemma 2.11(i)), Œw�C )� 1 is

equivalent to Œw�C '˙ 1. Finally, by Lemma 3.10, Œw�C '˙ 1 is equivalent to w

representing 1 in U.M/. Hence the latter relation is decidable.

Note that, because the multifraction Œw�C is always defined to be positive, we only

need semi-convergence for RM in the above argument.

In the particular case of Artin–Tits monoids, we deduce

Corollary 3.14. If Conjecture A is true, then the word problem for every Artin–Tits
group is decidable.
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Proof. Let M be an Artin–Tits monoid. We noted that M is a gcd-monoid [5], and

that it is strongly noetherian. Next, M has finitely many basic elements: this follows

from (and, actually, is equivalent to) the result that every Artin–Tits monoid has a

finite Garside family [15,21]. Hence M is eligible for Proposition 3.13.

Let us conclude with algorithmic complexity. Lemma 3.12 says nothing about

the complexity of reduction. We show now the existence of an upper bound for the

number of reductions.

Lemma 3.15. If M is a strongly noetherian gcd-monoid with finitely many basic
elements, then the number of reduction steps from an n-multifraction a is at most
Fn.�.a1/; : : : ; �.an//, where � satisfies (3.3), C is the maximum of �.a/ C 1 for a

basic in M , and Fn is inductively defined by F1.x/ D x C 2 and Fn.x1; : : : ; xn/ D

.x1 C 1/C Fn�1.x2;:::;xn/.

Proof. An easy induction shows that the function Fn is increasing with respect to

each variable and, for every 1 � i < n, it satisfies the inequality

Fn.Cx1; : : : ; Cxi ; xiC1 � 1; xiC2; : : : ; xn/ < Fn.x1; : : : ; xn/: (3.4)

For a an n-multifraction, write T .a/ for the maximal number of reduction steps

from a and �.a/ for .�.a1/; : : : ; �.an//. We prove using induction on ) the

inequality T .a/ � Fn.�.a// for every n-multifraction a. Assume a � Ri;x D b

with x an atom of M (what can assumed without loss of generality). We compare

the sequences �.a/ and �.b/. By definition, biC1 is a proper divisor of aiC1, which

implies �.biC1/ < �.aiC1/. Next, ai is the product of at most �.ai / basic elements

of M , hence so is bi , implying �.bi / � C �.ai/. Finally, ai�1 is the product of at most

�.ai�1/ basic elements of M , hence bi�1 is the product of at most �.ai�1/ C 1 basic

elements, implying �.bi�1/ � C �.ai�1/. Then the induction hypothesis implies

T .b/ � Fn.b/, so, plugging the upper bounds for bi , and using that Fn is increasing

and (3.4), we find

T .b/ � Fn

�
C �.a1/; : : : ; C �.ai/; �.aiC1/ � 1; �.aiC2/; : : : ; �.an/

�

< Fn

�
�.a1/; : : : ; �.an/

�
D Fn

�
�.a/

�
;

and T .a/ � T .b/ C 1 implies T .b/ � Fn.b/.

The upper bound of Lemma 3.15 is not polynomial (very far from statistical data,

which suggest a quadratic bound), but it is not very high either in the hierarchy

of fast growing functions (it is “primitive recursive”). From there, one can easily

deduce a similar upper bound (tower of exponentials) for the word problem for U.M/

when RM is semi-convergent.
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Property H. One says [12,17,26] that Property H is true for a presentation .S; R/

of a monoid M if a word w in S [ S represents 1 in U.M/ if and only if the

empty word can be obtained from w using special transformations, namely positive

and negative equivalence and left and right reversing. Positive equivalence means

replacing a positive factor of w (no letter s) with an R-equivalent word, negative

equivalence means replacing the inverse of a positive factor with the inverse of an

R-equivalent word, whereas right reversing consists in deleting some length two

factor ss or replacing some length two factor st with vu such that sv D tu is a

relation of R, and left reversing consists in deleting some length two factor ss or

replacing some length two factor st with uv such that vs D ut is a relation of R.

Roughly speaking, Property H says that a word representing 1 can be transformed into

the empty word without introducing new trivial factors ss or ss, a situation directly

reminiscent of Dehn’s algorithm for hyperbolic groups, see [17, Section 1.2].

Say that a presentation .S; R/ of a monoid M is a right lcm presentation if R

consists of one relation su D tv for each pair of generators s; t that admit a common

right multiple, with su and tv representing s _ t . The standard presentation of

an Artin–Tits monoid is a right lcm presentation, and, symmetrically, a left lcm

presentation.

Proposition 3.16. If M is a gcd-monoid and RM is semi-convergent, Property H is
true for every presentation of M that is an lcm presentation on both sides.

The point is that applying a rule Ri;x to a multifraction Œw�C can be decomposed

into a sequence of special transformations as defined above. The argument is the

same as in the case when R
˙
M is convergent [13, Proposition 5.19], and we do not

repeat it.

Thus Conjecture A would imply the statement conjectured in [12]:

Corollary 3.17. If Conjecture A is true, Property H is true for every Artin–Tits
presentation.

3.4. Alternative forms. Here we mention several variants of semi-convergence.

Proposition 3.18. If M is a noetherian gcd-monoid, then R
˙
M .resp., RM / is semi-

convergent if and only if for every a in F
˙

M .resp., FM /,

If a is unital, then a is either trivial or reducible. (3.5)

Proof. Assume that R
˙

M is semi-convergent, and let a be a nontrivial unital

multifraction in F
˙

M . By definition, a )� 1 holds. As a is nontrivial, the reduction

requires at least one step, so a cannot be R-irreducible. Hence, (3.5) is satisfied.

Conversely, assume (3.5). As M is noetherian, the rewrite system R
˙

M is

terminating, i.e. the relation ) admits no infinite descending sequence. Hence

we can use induction on ) to establish (3.1). So let a be a unital multifraction

in F
˙

M . If a is )-minimal, i.e. if a is R-irreducible, then, by (3.5), a must be trivial,
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i.e. we have a D 1, whence a )� 1. Otherwise, a is R-reducible, so there exist i; x

such that b D a � Ri;x is defined. By construction, b is '˙-equivalent to a, hence it

is unital. By the induction hypothesis, we have b )� 1. By transitivity of )�, we

deduce a )� 1. Hence R
˙

M is semi-convergent.

The proof is similar for RM .

Condition (3.5) can be restricted to more special unital multifractions.

Definition 3.19. Call a multifraction a prime if, for every i that is positive

(resp., negative) in a, the entries ai and aiC1 admit no nontrivial common right

(resp., left) divisor.

Since dividing adjacent entries by a common factor is a particular case of

reduction, an R-irreducible multifraction must be prime. The converse need not be

true: for instance, the 6-multifraction b of Example 3.5 is prime, and it is R-reducible.

Proposition 3.20. If M is a noetherian gcd-monoid, then R
˙
M .resp., RM / is semi-

convergent if and only if for every a in F
˙

M .resp., FM /,

If a is unital and prime, then a is either trivial or reducible. (3.6)

Proof. By Proposition 3.18, the condition is necessary, since (3.6) is subsumed

by (3.5). For the converse implication, assume (3.6). As for Proposition 3.18, we

establish (3.1) using induction on ). Let a be a unital multifraction in F
˙

M . If a

is R-irreducible, then it must be prime, for, otherwise, it is eligible for at least

one division, which is a special case of reduction. Hence, a must be 1 by (3.6).

Otherwise, a is R-reducible, there exist i; x such that b D a � Ri;x is defined, the

induction hypothesis implies b )� 1, hence a )� 1. Hence R
˙

M is semi-convergent.

The proof for RM is similar.

Corollary 3.21. Conjecture A is true if and only if (3.6) holds for every Artin–Tits
monoid M and every a in FM .

We turn to another approach. Whenever the ground monoid M is noetherian, the

rewrite systems R
˙
M and RM are terminating, hence they are convergent if and only

if they are confluent, meaning that

If we have a )� b and a )� c, there exists d satisfying b )� d

and c )� d
(3.7)

(“diamond property”). We now observe that semi-convergence is equivalent to a

weak form of confluence involving the unit multifractions 1.

Proposition 3.22. If M is a gcd-monoid, then R
˙

M .resp., RM / is semi-convergent
if and only if for every a in F

˙

M .resp., FM /,

The conjunction of a )� b and a )� 1 implies b )� 1: (3.8)
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Relation (3.8) can be called 1-confluence for a, since it corresponds to the special

case c D 1 of (3.7): indeed, (3.7) with c D 1 claims the existence of d satisfying

b )� d and 1 )� d , and, as 1 is R-irreducible, we must have d D 1, whence

b )� 1, as asserted in (3.8). In order to establish Proposition 3.22, we need an

auxiliary result, which connects '˙ with the symmetric closure of )� and is a sort

of converse for Lemma 2.11.

Lemma 3.23. If M is a gcd-monoid and a; b belong to F
˙

M , then a '˙ b holds if
and only if there exist a finite sequence c0; : : : ; c2r in F

˙

M and p; q in Z satisfying

a � 1p D c0 )� c1 �( c2 )� � � � �( c2r D b � 1q : (3.9)

Proof. For a; b in F
˙

M , write a )b � b if a� )� b � 1p holds for some p. By

Lemma 2.11, a )� b implies a � 1r )� b � 1r and, therefore, the relation )b � is

transitive. It is also compatible with multiplication: on the left, this follows from

Lemma 2.11 directly. On the right, a )� b � 1p implies a � c )� b � 1p � c for

every c, and we observe that 1p � c )� c � 1p always holds. Hence, the symmetric

closure � of )b � is a congruence on F
˙

M . As we have 1 )�
¿ � 1, a=a )�

¿ � 12

and =a=a )�
¿ � 1�2 for every a in M , the congruence � contains pairs that

generate '˙. Hence a '˙ b implies the existence of a zigzag in )b � and its inverse

connecting a to b. Taking the maximum of jr j for 1r occurring in the zigzag, one

obtains (3.9).

Proof of Proposition 3.22. Assume that R
˙
M is semi-convergent, and we have

a )� b and a )� 1. By Lemma 2.11, we have a '˙ b and a '˙ 1, hence

b '˙ 1. As R
˙

M is semi-convergent, this implies b )� 1. So (3.8) is satisfied,

and R
˙

M is 1-confluent.

Conversely, assume that R
˙

M is 1-confluent. We first show using induction on k

that, when we have a zigzag c0 )� c1 �( c2 )� c3 �( c4 )� � � � , then c0 D 1

implies ck )� 1 for every k. For k D 0, this is the assumption. For k even non-zero,

we obtain ck )� ck�1 )� 1 using the induction hypothesis, whence ck )� 1 by

transitivity of )�. For k odd, we have ck�1 )� 1 by the induction hypothesis and

ck�1 )� ck , whence ck )� 1 by 1-confluence.

Now assume that a is unital. Lemma 3.23 provides p; q; r and c0; : : : ; c2r

satisfying

1p D c0 )� c1 �( c2 )� � � � �( c2r D a � 1q :

As shown above, we deduce a �1q )� 1, whence a )� 1 by Lemma 2.11. Hence R
˙

M

is semi-convergent.

Once again, the proof for FM is the same.

Corollary 3.24. Conjecture A is true if and only if (3.8) holds for every Artin–Tits
monoid M and every a in FM .
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Proposition 3.22 is important for testing Conjecture A, because it shows that,

if a )� 1 holds, then every sequence of reductions from a inevitably leads to 1. In

other words, any reduction strategy may be applied without loss of generality.

4. Divisions and tame reductions

When reduction is not convergent, it is not confluent either, and a multifraction

may admit several reducts with no subsequent common reduct. However, by

restricting to particular reductions, we can retrieve a (weak) form of confluence

and let distinguished reducts appear. This is the approach we explore in this section.

We start in Subsection 4.1 with divisions, which are particular reductions with good,

but too weak properties. Then, in Subsection 4.2, we extend divisions into what

we call tame reductions, which are those reductions that, in a sense, exclude no

subsequent opportunities. Extending the example of divisions to tame reductions

leads us in Subsection 4.3 to the natural notion of a maximal tame reduction and to

Conjecture B about tame reductions from unital multifractions, which is stronger but

more precise than Conjecture A.

We feel that the many technical details, examples, and counter-examples appearing

in this section and the next one are important, because they illustrate how subtle the

mechanism of reduction is. Skipping such details would induce a superficial view

and misleadingly suggest that things are more simple than they really are, possibly

leading to naive attempts with no chance of success.

4.1. Divisions. Divisions are the most direct counterparts of free reductions in free

monoids. They are the special cases of reduction when no remainder appears. No

confluence result can be expected for divisions in a non-free monoid, but we shall see

in Proposition 4.4, the main result of this subsection, that, for every multifraction a,

there exists a unique, well-defined maximal reduct @a accessible from a by divisions.

Following the model of reductions, we first fix notation for divisions.

Definition 4.1. If M is a gcd-monoid and a; b belong to F
˙

M , we declare that

b D a � Di;x holds if we have b D a � Ri;x and, in addition, x right (resp., left)

divides ai if i is positive (resp., negative) in a. We use D
˙
M for the family of all Di;x

with x 6D 1, write a )div b if some rule of D
˙
M maps a to b, and )�

div for the

reflexive–transitive closure of )div.

So a � Di;x is defined if and only if x divides ai and aiC1 on the due side, and

applying Di;x means dividing ai and aiC1 by x. By definition, a is D-irreducible

if and only if it is prime (Definition 3.19), i.e. the gcds of adjacent entries (on the

relevant side) are trivial.

Except in degenerated cases, e.g. free monoids, the system D
˙

M is not convergent:

typically, for M D ha; b j aba D babiC (Artin’s 3-strand braid monoid) and
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a D a=aba=b, we find a � D2;b D a=ab=1 and a � D1;a D 1=ab=b, with no

further division, and confluence can be restored only at the expense of applying some

reduction Ri;x, here a � D2;b D a � D1;aR2;b. However, we shall see now that, for

every multifraction a, there exists a unique, well-defined maximal R-reduct of a that

can be obtained using divisions.

The first step is to observe that, for each level i , there is always a maximal division

at level i , namely dividing by the gcd of the i th and .i C1/st entries (on the due side).

Indeed, assuming for instance i positive in a, the multifraction a � Di;x is defined if

and only if x right divides both ai and aiC1, hence if and only if x right divides the

right gcd ai �̂ aiC1.

Notation 4.2. If M is a gcd-monoid and a is a multifraction on M , then, for i < kak,

we write a � Dmax
i for a � Di;x with x the gcd of ai and aiC1 on the due side.

Next, we observe that, contrary to general irreducibility, (local) primeness is

robust, in that, once obtained, it cannot be destroyed by subsequent divisions:

Lemma 4.3. Say that a multifraction a is j -prime if a � Dj;y is defined for no y 6D 1.
If a is j -prime, then so is a � Di;x for all i; x.

Proof. Assume for instance j positive in a, and let b D a � Di;x. We have either

bj D aj (for i < j � 1 and i > j ) or bj � aj (for i D j � 1); similarly, we have

either bj C1 D aj C1 (for i < j and i > j C 1) or bj C1 � aj C1 (for i D j C 1).

Hence, in all cases, the assumption ai �̂ aiC1 D 1 implies bi �̂ biC1 D 1.

Hence, if we start with a multifraction a and apply, in any order, maximal

divisions Dmax
i in such a way that every level between 1 and kak � 1 is visited

at least one, we always finish with a prime multifraction. The latter may depend on

the order of the divisions, but we shall now see that there exists a preferred choice.

Proposition 4.4. Let M be a gcd-monoid. For every n-multifraction a on M , put

@a WD a � Dmax
n�1Dmax

n�2 � � � Dmax
1 : (4.1)

Then, @a is prime, and, for every multifraction b on M ,

a )�
div

b implies b )�
div

@b )� @a. (4.2)

Thus @a is a reduct of every multifraction obtained from a using division. The

proof of Proposition 4.4 is nontrivial and requires to precisely control the way

divisions and reductions can be commuted. We begin with a confluence result.

By [13, Lemma 4.6], there always exists a confluence solution for any two reductions

at level i and i C 1. This applies of course when one of the reductions is a division,

but, in that case, we can say more.

Lemma 4.5. Assume that both a � RiC1;x and a � Di;y are defined. Then we have
a � RiC1;xDi;z D a � Di;yRiC1;x , where z is determined by the equalities ai D ay,
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x _ a D av, and vz D v _ y (resp., ai D ya, x e_ a D va, and zv D v e_ y) for i

positive (resp., negative) in a. Moreover, if y is maximal for a (i.e. y is the gcd of ai

and aiC1), then z is maximal for a � RiC1;x .

Proof. Figure 2 Assume that i is positive in a, so aiC1 is negative in a. Put

b WD a � RiC1;x and c WD a � Di;y. By definition, there exists x0 satisfying

bi�1 D ai�1; bi D aix
0; xbiC1 D aiC1x0 D x _ aiC1; xbiC2 D aiC2;

ci�1 D ai�1; ciy D ai ; ci y D ai ; ciC2 D aiC2:

As aiC1 is ciC1y, Lemma 2.6 implies the existence of u, v, and z satisfying

biC1 D uz with ciC1v D xu D x _ ciC1 and yx0 D vz D y _ v: (4.3)

By construction, we have bi D aix
0 D ciyx0 D civz, which shows that z right

divides both bi and biC1. Hence d WD b � Di;z is defined, and we have

di�1 D ai�1; di D cv; diC1 D u; diC2 D biC2: (4.4)

On the other hand, by assumption, x left divides ciC2, which is aiC2, and x and ciC1

admit a common right multiple, namely their right lcm xu. Hence, c �Ri;x is defined,

and comparing with (4.4) directly yields the expected equality c � Ri;x D b � Di;z.

It remains to prove that, if y is maximal for a, then z is maximal for b. So assume

y D ai �̂ aiC1. We deduce ci �̂ ciC1 D 1. On the other hand, by Lemma 3.1, the

assumption ciC1v D ciC1_x implies u�̂v D 1. Then (the symmetric counterpart of)

Lemma 2.7 implies ci v �̂ u D 1, whence bi �̂ biC1 D z.

A symmetric argument applies when i is negative in a.

x biC2

aiC2

ciC1 a u
ci v

y z

ai x0

bi

ai�1

biC1

Figure 2. Proof of Lemma 4.5: if a is eligible both for RiC1;x and Di;y , we can start with

either and converge to the colored path.

Next, we observe that reduction and division commute when performed at distant

levels: the result is easy for very distant levels, slightly more delicate when the levels

are closer.
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Lemma 4.6. Assume b D a � Ri;x, and j 6D i; i C 1; i � 2 .resp., j D i � 2/.
Put a0 WD a � Dmax

j and b0 WD b � Dmax
j . Then we have b0 D a0

� Ri;x .resp., b0 D

a0
� Ri;xDmax

i�2/.

Proof. For j � i � 3 or j � i C 2, the reduction Ri;x does not change the j th

and .j C 1/st entries, so the greatest division at level j remains the same, and

commutation is straightforward. For j D i � 1, Lemma 4.5 gives b0 D a0
� Ri;x.

Assume j D i � 2. Then the reduction Ri;x does not change the j th entry, but it

possibly increases the .j C 1/st entry. So, if Dj;y is the maximal j -division for a,

then Dj;y applies to b, but it need not be the maximal j -division for b. Expanding the

definitions, we obtain the commutation relation a�Ri;xDj;y D a�Dj;yRi;x , meaning

b � Dj;y D a0
� Ri;x , together with b0 D .b � Dj;y/Dmax

j , whence b0 D a0
� Ri;xDmax

i�2,

as expected.

The last preliminary result, needed for the end of the proof of Proposition 4.4,

connects @a and @b in the (very special) case when b is an elementary reduct of a

and a is prime at every sufficiently large level.

Lemma 4.7. If a and b are j -prime for j � i , then b D a�RiC1;x implies @a )� @b.

Proof. By assumption, we have @a D a � Dmax
i�1 � � � Dmax

1 and @b D b � Dmax
i�1 � � � Dmax

1 .

Put ai WD a, bi WD b and, inductively, aj D aj C1
� Dmax

j , bj D bj C1
� Dmax

j

for j decreasing from i � 1 to 1, yielding @a D a1 and @b D b1. We prove

using induction on j decreasing from i to 1 that, for every y, there exist x0,

x1; : : : ; xk with i � 2k > j satisfying bj D aj
� RiC1;x0

Ri�1;x1
� � � Rx�2kC1;xk

.

By assumption, the property is true for j D i , with k D 0 and x0 D x.

Assume i > j � 1. By induction hypothesis, we have bj C1 D aj C1
�

RiC1;x0
Ri�1;x1

� � � Ri�2kC1;xk
for some x0; : : : ; xk with i � 2k > j C 1. By

repeated applications of Lemma 4.6, we deduce that each reduction Ri�2`C1;x`

commutes with Dmax
j , except the last one in the case i � 2k D j C 2, in which

case Lemma 4.6 prescribes to add one more reduction (a division) Ri�2k�1;xkC1
.

In this way, we obtain either bj D aj
� RiC1;x0

Ri�1;x1
� � � Ri�2kC1;xk

, or bj D

aj
� RiC1;x0

Ri�1;x1
� � � Ri�2kC1;xk

Ri�2k�1;xkC1
, and the induction continues.

We can now complete the argument for Proposition 4.4. The proof that @a is

prime is easy, but that of the relation (4.4) is more delicate.

Proof of Proposition 4.4. It follows from the definition that a�Dmax
n�1 is .n�1/-prime,

then that a � Dmax
n�1Dmax

n�2 is .n � 1/- and .n � 2/-prime, etc., hence that @a is i -prime

for 1 � i < n, hence it is prime.

We now establish (4.2), i.e. prove that a )�
div

b implies @b )� @a. For an

induction, it is sufficient to prove that a )div b implies @b )� @a. So, we assume

b D a � Di;z, and aim at proving @b )�
div

@a. Put kak D n. By definition, @a

and @b are obtained by performing n � 1 successive divisions, and we shall establish
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a step-by-step connection summarized in Figure 3. Put an WD a, bn WD b, and let ai

(resp., bi ) be obtained from aiC1 (resp., biC1) by applying Dmax
i , so that we finally

have @a D a1 and @b D b1. We assume that i is positive in a.

Consider first j � i C 2. Applying Lemma 4.6, we inductively obtain bj D

aj
� Di;z, implying the commutativity of the n � i � 2 left hand squares in the

diagram of Figure 3.

Now let x D aiC1 ^ aiC2. By definition, we have aiC1 D aiC2
� DiC1;x .

By Lemma 4.5, there exists c and z0 satisfying c D aiC2
� DiC1;xDi;z0 D aiC2

�

Di;zRiC1;x , which reads c D aiC1Di;z0 D biC2
� RiC1;x .

Next, c is obtained from aiC1 by some i -division, whereas ai is obtained

from aiC1 by the maximal i -division, hence ai must be obtained from c by some

further i -division, namely the maximal i -division for c. So, ai D c � Dmax
i holds.

On the other hand, biC1 is obtained from biC2 by the maximal .i C 1/-division,

namely DiC1;y with y D biC1^biC2. As we have x D aiC2^aiC2 and biC2 D aiC2,

the relation biC1 � aiC1 implies y � x, say x D yx0. If follows that reducing x at

level i C 1 in biC2 amounts to first dividing by y and then reducing x0, i.e. we have

b � RiC1;x D b � DiC1;yRiC1;x0 D biC1
� RiC1;x0 .

Now, two reductions apply to biC1, namely RiC1;x0 , which leads to c, and Dmax
i ,

which is, say, DiC1;y and leads to bi . Applying Lemma 4.5 again, we obtain the

existence of y0 satisfying biC1
� RiC1;x0Di;y0 D biC1

� Di;yRiC1;x0 , which boils

down to c � Di;y0 D bi
� RiC1;x0 . Moreover, as Di;y is the maximal i -division

applying to biC1, Lemma 4.5 implies that Di;y0 is the maximal i -division applying

to c. We obtained above ai D c � Dmax
i , so we deduce ai D bi

� RiC1;x0 .

From there, we are in position for applying Lemma 4.7 (with a and b

interchanged): we have ai D bi
�RiC1;x0 , and, by construction, ai and bi are j -prime

for every j � i . Then Lemma 4.7 ensures b1 )� a1, which is @b )� @a.

an an�1 aiC2 aiC1 ai

bn bn�1 biC2 c ai ai�1 a2 @a

biC2 biC1 bi bi�1 b2 @b

Dmax
n�1

Dmax
iC1 Dmax

i

Di;z Di;z Di;z Di;z0

Dmax
i�1 Dmax

1

Dmax
n�1 RiC1;x Dmax

i
RiC1;x0 RiC1;x0 Lemma 4.7 �

Dmax
i�1 Dmax

1Dmax
iC1 Dmax

i

Figure 3. Comparing the computations of @a and @.a � Di;x/.

Let us denote by Irr.a/ the family of all R-irreducible reducts of a. The

failure of confluence means that Irr.a/ may content more than one element, and

controlling Irr.a/ is one of the main challenges in the current approach. As, for

every multifraction a, we have now a distinguished reduct @a, a natural task is to
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compare Irr.@a/ with Irr.a/. By definition, a )�
div

@a implies Irr.@a/ � Irr.a/, and,

by Proposition 4.4, a )div b implies b )� @a, whence Irr.@a/ � Irr.@b/. The next

examples show these easy inclusions are the best we can expect in general.

Example 4.8. In the Artin–Tits monoid of type eA2, let a D ab=aba=aca. Then one

finds Irr.a/ D fa1; a2g, with a1 D a � D2;a D ab=ba=ca and a2 D a � D1;abR2;c D

cb=bc=ac. Now, we obtain @a D a1, whence Irr.@a/ D fa1g: so, by performing

divisions, we lost one of the irreducible reducts of a. On the other hand, for b D

a � D1;ab D 1=b=aca, we find @b D b and Irr.@b/ D Irr.b/ D fa1; a2g D Irr.a/: so

a )div b does not imply Irr.@b/ � Irr.@a/.

Remark 4.9. The order of divisions is important in the definition of @a and, even at

the expense of using reductions instead of divisions, we cannot start from low levels

in general. Indeed, for kak D 3, Lemma 4.5 implies @a D a �R1;x1
R2;x2

, with xi the

(relevant) gcd of ai and aiC1, but this expression of @a as a �

QiDkak�1

iD1 Ri;xi
with xi

gcd of ai and aiC1 does not work for kak � 4: for instance, for a WD a=a=a=a, one

finds a � R1;x1
R2;x2

R3;x3
D a=a=1=1 6D @a D 1.

4.2. Tame reductions. What motivates studying divisions specifically is that the

latter satisfy a form of confluence: by Lemma 4.5 and the results of [13], if a

multifraction a is eligible for a division Di;x and for another reduction Rj;y , a

common reduct for a � Di;x and a � Rj;y always exists. Moreover, we saw in

Proposition 4.4 that there always exists a maximal div-reduct with good compatibility

properties of the associated operator @. However, because many prime multifractions

are not irreducible, and, in particular, many prime unital multifractions are not trivial,

it is hopeless to analyze reduction in terms of divisions exclusively, making it natural

to try to extend the family of divisions so as to preserve its main property, namely

“guaranteed confluence”. This leads to tame reductions, and the main result here is

that, exactly as in the case of divisions, there exists for each multifraction a and each

level i a maximal tame i -reduction applying to a.

Definition 4.10. If a is a multifraction, we say that x is an i -reducer for a if a �Ri;x is

defined; we then say that an i -reducer x is tame for a if, for all j; y such that a � Rj;y

is defined, a � Ri;x and a � Rj;y admit a common reduct; otherwise, x is called wild
for a.

Thus x is a tame i -reducer for a if reducing x in a leaves all possibilities for

further reductions open, whereas reducing a wild i -reducer excludes at least one

subsequent confluence.

Example 4.11. If M is a gcd-monoid satisfying the 3-Ore condition, the system R
˙

M

is confluent and, therefore, every reducer is tame for every multifraction it applies

to. By contrast, in the Artin–Tits of type eA2, for a D 1=c=aba, both a and b are

2-reducers for a, but a � R2;a and a � R2;b admit no common reduct, hence a and b

are wild 2-reducers for a.
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To prove the existence of the maximal tame i -reducer in Proposition 4.14

below, we shall use convenient characterizations of tame reducers established in

Lemmas 4.12 and 4.13.

Lemma 4.12. If M is a gcd-monoid, a is a multifraction on M , and a � Ri;x is
defined, then x is a tame i -reducer for a if and only if for i positive .resp., negative/

in a, the elements x; y, and ai admit a common right .resp., left/ multiple whenever
a � Ri;y is defined.

Proof. Assume that x is a tame i -reducer for a, and let y be an i -reducer for a. By

definition, a � Ri;x and a � Ri;y admit a common reduct, which is necessarily of the

form a � Ri;z for some z. Then there exist u; v satisfying

a � Ri;z D .a � Ri;x/ � Ri;u D .a � Ri;y/ � Ri;v:

Assuming i negative in a, we deduce z D xu D yv. Hence z is a right multiple

of x _ y and, therefore, a � Ri;x_y is defined as well, implying that ai , x, and y admit

a common right multiple. The argument is symmetric when i is positive in a.

Conversely, assume that x is an i -reducer for a and, for every i -reducer y, the

elements ai , x, and y admit a common multiple, say a common right multiple,

assuming that i is negative in a. Then x _ y left divides aiC1 since x and y do,

and ai and x _ y admit a common right multiple. Hence a � Ri;x_y is defined. Then,

writing x _ y D xy0 D yx0, we have

a � Ri;x_y D .a � Ri;x/ � Ri;y0 D .a � Rj;y/ � Ri;x0 ;

which shows that a � Ri;x and a � Ri;y admit a common reduct. On the other hand,

for j 6D i , Lemmas 4.18 and 4.19 from [13] imply that a � Ri;x and a � Rj;y always

admit a common reduct. Therefore, x is a tame i -reducer for a.

If M is a noetherian gcd-monoid, every nonempty family X of left divisors of an

element a necessarily admits <-maximal elements, i.e. elements z such that there is

no x with z < x in the family: take z so that z�1a is e<-minimal in fx�1a j x 2 Xg.

Hence, in particular, for every multifraction a and every level i , there exist maximal

i -reducers for a.

Lemma 4.13. If M is a noetherian gcd-monoid and a is a multifraction on M , an
i -reducer x for a is tame if and only if x divides every maximal i -reducer for a.

Proof. Assume that x is a tame i -reducer for a, and y is a maximal i -reducer for a.

By Lemma 4.12, ai , x, and y admit a common multiple, hence an lcm, and, therefore,

the lcm of x and y is again an i -reducer for a. The assumption that y is maximal

implies that this lcm is y, i.e. that x divides y (on the due side).

Conversely, assume that x is an i -reducer for a that divides every maximal

i -reducer. Let y be an arbitrary i -reducer for a. As M is noetherian, y divides at
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least one maximal i -reducer, say z. By assumption, x divides z, hence so does the

lcm of x and y. Since z is an i -reducer for a, so is its divisor the lcm of x and y and,

therefore, a � Ri;x and a � Ri;y admit a common reduct. Hence x is tame for a.

Proposition 4.14. If M is a noetherian gcd-monoid and a is a multifraction on M ,
then, for every i < kak, there exists a unique greatest tame i -reducer for a, namely
the gcd of all maximal i -reducers for a. The latter is a multiple of the gcd of ai

and aiC1.

Proof. Let z be the gcd (on the relevant side) of all maximal i -reducers for a.

Then z, and every divisor x of z, divides every maximal i -reducer for a, hence, by

Lemma 4.13, it is a tame i -reducer for a.

Conversely, if x is a tame i -reducer for a, then, by Lemma 4.13, x divides every

maximal i -reducer for a, hence it divides their gcd z. Hence z is the greatest tame

i -reducer for a.

Finally, assume that x divides ai and aiC1. Then a � Di;x, hence a fortiori a � Ri;x

is defined, so x is an i -reducer for a. Let y be any i -reducer for a. Then the lcm of ai

and y is a common multiple of ai , x, and y. Hence, by Lemma 4.12, x is a tame

i -reducer for a. This applies in particular when x is the gcd of ai and aiC1.

On the shape of what we did with divisions, we introduce

Definition 4.15. If M is a noetherian gcd-monoid and a is a multifraction on M ,

then, for i < kak, the unique element x whose existence is stated in Proposition 4.14

is called the greatest tame i -reducer for a; we then write a � Rmax
i for a � Ri;x.

Example 4.16. When M satisfies the 3-Ore condition, every reducer is tame, and

a � Rmax
i coincides with the maximal i -reduct of a, as used in [13, Section 6].

Otherwise, wild reducers may exist and a � Rmax
i need not be a maximal i -reduct of a:

in the Artin–Tits monoid of type eA2, for a D 1=c=aba, we have a � Rmax
2 D a, since

there is no nontrivial tame 2-reducer.

By definition, the greatest tame i -reducer for a only depends on the entries ai

and aiC1, and on the sign of i in a. By Lemma 4.13, it can be computed easily as a

gcd of maximal reducers. Note that the greatest tame i -reducer for a may be strictly

larger than the gcd of ai and aiC1: for instance, in the Artin–Tits monoid of type eA2,

there exist two maximal 2-reducers for a WD 1=a=cabab, namely caa and cab, both

wild, and the greatest tame 2-reducer is their left gcd ca, a proper multiple of the left

gcd of a and cabab, which is 1.

If M is a noetherian gcd-monoid, starting from an arbitrary multifraction a and

repeatedly performing (maximal) tame reductions leads in finitely many steps to a

'˙-equivalent multifraction that is tame-irreducible, meaning eligible for no tame

reduction. By Proposition 4.14, a division is always tame, so a tame-irreducible

multifraction is prime. Adapting the proof of Proposition 3.20 yields:
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Proposition 4.17. If M is a noetherian gcd-monoid, then R
˙
M .resp., RM / is semi-

convergent if and only if, for every a in F
˙

M .resp., FM /,

If a is unital and tame-irreducible, then a is either trivial or reducible. (4.5)

Corollary 4.18. Conjecture A is true if and only if (4.5) holds for every Artin–Tits
monoid M and every a in FM .

The above results suggest to investigate tame-irreducible multifractions more

closely. By definition, only wild reductions may apply to a tame-irreducible

multifraction. A possible approach for establishing (4.5) could be to study the

irreducible reducts of tame-irreducible multifractions. It happens frequently that, if a

is tame-irreducible and admits several (wild) reducts a1; : : : ; am, then the reducts

of the various aks are pairwise disjoint, as if every such reduct kept a trace of ak .

If true, such a property might lead to a proof of Conjecture A using Corollary 4.18

and arguments similar to those alluded to in the proof of Proposition 7.3. But the

assumption is not readily correct. Indeed, always in the Artin–Tits monoid of type eA2,

the 6-multifraction a WD 1=c=aba=bc=a=bcb is tame-irreducible, it admits four wild

reducers, namely a and b at level 2, and b and c at level 5, and the associated 2-reducts

of a admit a common reduct

.a � R2;a/ � R5;cR3;bR1;acR2;bR3;c D bc=accb=ca=ab=ca=cb

D .a � R2;b/ � R5;cR3;cb:

However, in this example, there is no confluence for the 5-reducts, and, more generally,

we have no example where the highest level wild reducts of a tame-irreducible

multifraction admit a common reduct.

4.3. The operator redt and Conjecture B. Our main claim in this section is that, for

every multifraction a, there exists a distinguished tame reduct of a, denoted redt.a/,

that can be computed easily, and that should be 1 whenever a is unital: this is what

we call Conjecture B.

Just mimicking the approach of Section 4.1 and trying to identify a unique

maximal tame reduct on the shape of @a cannot work, because the tame reducts

of a multifraction need not admit a common reduct: in the context of type eA2 again,

a and b are tame 4-reducers for a WD 1=c=1=1=aba, but a � R4;a and a � R4;b admit

no common reduct (by the way, in this case, the two irreducible reducts of a can be

reached using tame reductions only, respectively R4;aR2;aR4;ba and R4;bR2;bR4;ab.

However, it is shown in [13, Section 6] that, if M is a noetherian gcd-monoid

satisfying the 3-Ore condition, hence in a case when all reductions are tame, there

exists, for each n, a universal sequence of levels U.n/ such that, starting with any

n-multifraction a and applying the maximal (tame) reduction at the successive levels

prescribed by U.n/ inevitably leads to the unique R-irreducible reduct red.a/ of a.

It is then natural to copy the recipe in the general case, and to introduce:
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Definition 4.19. If M is a noetherian gcd-monoid, then, for every depth n

multifraction a on M , we put redt.a/ WD a � Rmax
U.n/

, where U.n/ is empty for n D 0; 1

and is .1; 2; : : : ; n � 1/ followed by U.n � 2/ for n � 2, and, for i D .i1; : : : ; i`/, we

write a � Rmax
i for a � Rmax

i1
� � � Rmax

i`
.

Thus, by [13, Proposition 6.7], if M is a noetherian gcd-monoid satisfying the

3-Ore condition, red.a/ D redt.a/ holds for every a in FM . In this case, b )� redt.a/

holds for every reduct b of a, and redt.a/ is always R-irreducible. It is easy to see

that, in the general case, these properties do not extend to arbitrary (namely, not

necessarily unital) multifractions.

Example 4.20. In the Artin–Tits monoid of type eA2, let a WD 1=c=aba. Then

U.3/ D .1; 2/ leads to redt.a/ D a � Rmax
1 Rmax

2 D a, since 1 and c have no nontrivial

common divisor, and there is no tame 2-reducer for a. On the other hand, both a

and b are 2-reducers for a, and neither a � R2;a )� redt.a/ nor a � R2;b )� redt.a/

holds.

Next, let b WD ac=aca=aba. We find redt.b/ D b � D1;ac D 1=c=aba, to be

compared with @b D b � D2;a D ac=ca=ba. Then @b )� redt.b/ fails, so b )�
div

b0

does not imply b0 )� redt.b/.

Finally, let c WD 1=c=aba=cb. We find redt.c/ D c � D3;b D 1=c=ba=c, which is

not irreducible, nor even tame-irreducible: we have red2
t .c/ D redt.c/ � R2;bR3;c D

bc=cb=a=c.

However, these negative facts say nothing about tame reductions starting from a

unital multifraction, and, in spite of many tries, no counter-example was ever found

so far to:

Conjecture B. If M is an Artin–Tits monoid, then redt.a/ D 1 holds for every unital
multifraction a in FM .

By definition, a )� redt.a/ holds, so redt.a/ D 1 is a strengthening of a )� 1

in which we assert not only that a reduces to 1 but also that it goes to 1 in some

prescribed way. Thus:

Fact 4.21. Conjecture B implies Conjecture A.

Although Conjecture B is more demanding than Conjecture A, it might be easier

to establish (or to contradict), as it predicts a definite equality rather than an existential

statement. As recalled above, [13, Proposition 6.7] implies that Conjecture B is true

for every Artin–Tits monoid of FC type. On the other hand, an example of a gcd-

monoid (but not an Artin–Tits one) for which (the counterpart of) Conjecture A is

true but (that of) Conjecture B is false is given in [19].

5. Cross-confluence

Besides tame reductions and Conjecture B of Section 4, we now develop another

approach to Conjecture A, involving both the reduction system R and a symmetric
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counterpart eR of R. The properties of reduction and its counterpart are just

symmetric, but interesting features appear when both are used simultaneously, in

particular what we call cross-confluence, a completely novel property to the best of

our knowledge. We are then led to a new statement, Conjecture C, which would

imply Conjecture A and, from there, the decidability of the word problem.

The section comprises four subsections. First, right reduction, the symmetric

counterpart of (left) reduction, is introduced in Subsection 5.1, and its basic properties

are established. Next, cross-conflence, which combines reduction and its counterpart,

is introduced in Subsection 5.2, and partial results are established. Then Conjecture C

and its uniform version Cunif are stated and discussed in Subsection 5.3. Finally, we

briefly study in an Appendix the termination of the joint system obtained by merging

left and right reduction, a natural topic with nontrivial results, but not directly

connected so far to our main conjectures.

5.1. Right reduction. By definition, the reduction rule Ri;x of Definition 2.9

consists in pushing a factor x to the left (small index entries) in the multifraction

it is applied to: for this reason, we shall call it a left reduction. From now on, we

shall also consider symmetric counterparts, naturally called right reductions, where

elements are pushed to the right.

Definition 5.1. If M is a gcd-monoid and a; b lie in F
˙

M , then, for i � 1 and x

in M , we declare that b D a � eRi;x holds if we have kbk D kak, bk D ak for

k 6D i � 1; i; i C 1, and there exists x0 (necessarily unique) satisfying

for i < kak positive in a: xbi�1 D ai�1; xbi D aix
0 D x _ ai ; biC1 D aiC1x0;

for i < kak negative in a: bi�1x D ai�1; bi x D x0ai D x e_ ai ; biC1 D x0aiC1;

for i D kak positive in a: xbi�1 D ai�1; xbi D ai ;

for i D kak negative in a: bi�1x D ai�1; bi x D ai :

We write a �) b if a � eRi;x holds for some i and some x 6D 1, and use �)�
for

the reflexive–transitive closure of �). The rewrite system eR˙

M so obtained on F
˙

M is

called right reduction, and its restriction to FM (positive multifractions) is denoted

by eRM .

The action of eRi;x is symmetric of that of Ri;x: one extracts x from ai�1, lets

it cross ai using an lcm, and incorporates the resulting remainder in aiC1, thus

carrying x from level i � 1 to level i C 1, see Figure 4. As in the case of R1;x , the

action of eRn;x for n D kak is adapted to avoid creating a .n C 1/st entry.

Remark 5.2. Right reduction is not an inverse of left reduction: when the reduced

factor x crosses (in one direction or the other) the entry ai , using the lcm operation

cancels common factors. Typically, if x divides ai , then both Ri;x and eRi;x amount

to dividing by x and, therefore, their actions coincide. See Remark 5.15 for more

on this.
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: : :

Ri;x W ai�1
ai aiC1

bi�1 bi
biC1

xx0 ( : : :

ai�1
ai aiC1

bi�1 bi
biC1

xx0 ( : : :

: : :

eRi;x W ai�1
ai aiC1

bi�1 bi
biC1

x x0) : : :

ai�1
ai aiC1

bi�1 bi
biC1

x x0) : : :

Figure 4. Comparing the left reduction Ri;x and the right reduction zRi;x : in the first case

(top), one pushes the factor x from aiC1 to ai�1 through ai , in the second case (bottom), one

pushes x from ai�1 to aiC1 through ai .

The rest of this subsection is devoted to the basic properties of right reduction and

their connection with those of left reduction, in particular with respect to convergence

and semi-convergence. As can be expected, the convenient tool is an operation

exchanging left and right reduction, in this case the duality map e of Notation 3.6.

Lemma 5.3. If M is a gcd-monoid, then, for all a; b in F
˙

M ,

a ) b is equivalent to ea �) eb: (5.1)

Proof. Comparing the definitions shows that, if a and b have depth n, then b D a�Ri;x

is equivalent to eb D ea � eRnC1�i;x , whence (5.1).

The following properties of right reduction follow almost directly from their

counterpart involving left reduction. The only point requiring some care is the lack

of involutivity of e, itself resulting from the lack of surjectivity of the map a 7! 1 �a.

Lemma 5.4. Assume that M is a gcd-monoid.

(i) The relation �)�
is included in '˙, i.e. a �)�

b implies a '˙ b.

(ii) The relation �)�
is compatible with the multiplication of F

˙
M .

(iii) For all a; b and p; q, the relation a �)�
b is equivalent to 1p �a�1q

�)�
1p �b �1q .

(iv) If a; b belong to FM , then a ) b is equivalent to 1 � ea �) 1 �eb, and a �) b is
equivalent to 1 �ea ) 1 �eb.

Proof. (i) By (5.1), a �)�
b implies ea )� eb, whence �.ea/ D �.eb/ by

Lemma 2.11(i), hence �.a/ D �.b/ by Lemma 3.7, i.e. a '˙ b.

(ii) For all c; d , the relation a �)�
b impliesea )� eb, whence ed �ea �ec )� ed �eb �ec

by Lemma 2.11(ii), which is .c � a � d/e)� .c � b � d/eby Lemma 3.7, and finally

c � a � d )� c � b � d by (5.1) again.

(iii) Using duality as above, the result follows now from Lemma 2.11(iii).
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(iv) By (5.1), a ) b is equivalent to ea �) eb, hence, by (iii), it is also equivalent

to 1 � a ) 1 � b. Similarly, by (5.1) again, a �) b is equivalent to ea ) eb, hence, by

Lemma 2.11, it is also equivalent to 1 �ea ) 1 �eb.

By (5.1), an infinite sequence of right reductions would provide an infinite

sequence of left reductions, and vice versa, so eR˙
M is terminating if and only if R

˙
M

is. Comparing irreducible elements is straightforward:

Lemma 5.5. If M is a gcd-monoid, a multifraction a is R-irreducible if and only
if ea is eR-irreducible. For a positive with kak even, a is eR-irreducible if and only
if ea is R-irreducible.

Proof. Assume ea �) b. By (5.1), we deduce a D eea ) eb, hence a is not

R-irreducible. So a being R-irreducible implies thatea is eR-irreducible. Conversely,

assumeea ) b. By (5.1), we deduce a D eea �) eb, hence a is not eR-irreducible. So a

being eR-irreducible implies thatea is R-irreducible. For the second equivalence, use

the involutivity of eon positive multifractions of even depth (but we claim nothing

for positive multifractions of odd length).

Using the above technical results, we can compare convergence and semi-

convergence for left and right reduction. Below, observe the difference between (i)

and (ii), which involve only one direction but multifractions of both signs, and (iii),

which only involves positive multifractions and requires using both left and right

reductions. This distinction is one of the reasons for considering both positive and

negative multifractions in this paper (contrary to [13]).

Proposition 5.6. For every gcd-monoid M , the following are equivalent:

(i) The system R
˙

M is convergent (resp., semi-convergent);

(ii) The system eR˙

M is convergent (resp., semi-convergent);

(iii) The systems RM and eRM are convergent (resp., semi-convergent).

Proof. We begin with convergence. Assume that R
˙
M is convergent. Let a belong

to F
˙

M . Let b D red.ea/. By definition, we have ea )� b. Then, by Lemmas 5.4

and 5.5, we have a �)� eb and eb is eR-irreducible. Assume that c is eR-irreducible

and a �)�
c holds. By Lemmas 5.4 and 5.5 again, we deduce ea )� ec and ec is R-

irreducible. The assumption that R
˙

M is convergent implies ec D b, whence c D eb.

Henceeb is the only eR-irreducible eR-reduct of a. Therefore, eR˙

M is convergent, and (i)

implies (ii). The converse implication is proved in the same way, so (i) is equivalent

to (ii).

Since all R-reducts and eR-reducts of a positive multifraction are positive, it is

clear that (i) implies that RM is convergent, and (ii) implies that eRM is convergent.

Conversely, assume that both RM and eRM are convergent. Let a be an arbitrary

multifraction on M . Assume first that a is positive. Let b be the unique R-irreducible
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reduct of a. Assume now that a is negative. Then ea is positive. Let b be the

unique eR-irreducible eR-reduct of ea. By Lemmas 5.4 and 5.5, eb is R-irreducible,

and a )� b holds. Now assume that c is R-irreducible and a )� c holds. Thenec is

R-irreducible and ea �)� ec holds. As ea is positive and eRM is convergent, we deduce

ec D b, whence c D eb. Hence R
˙

M is convergent, and (iii) implies (i). This completes

the argument for convergence.

Assume now that R
˙

M is semi-convergent. Let a be a unital multifraction. By

Lemma 2.11, ea is unital as well, hence we must have ea )� 1, which, by (5.1),

implies a �)� e1 D 1. Hence eR˙

M is semi-convergent. The converse implication

is similar, so (i) and (ii) are equivalent in this case as well. On the other hand,

(i) and (ii) clearly imply (iii). Finally, assume that both RM and eRM are semi-

convergent. Let a be a unital multifraction. If a is positive, the assumption that

RM is semi-convergent implies a )� 1. If a is negative, then ea is positive, and

the assumption that eRM is semi-convergent implies ea �)�
1, whence a )� e1 D 1

by (5.1). Hence R
˙
M is semi-convergent. So (iii) implies (i), which completes the

argument for semi-convergence.

In the convergent case, the above proof implies, with obvious notation, fred.a/ D

.red.ea//e.

Remark 5.7. It is shown in [13, Sec. 3] that, when left reduction is considered,

trimming final trivial entries essentially does not change reduction. This is not true

for right reduction: deleting trivial final entries can change the reducts, as deleting

trivial initial entries does in the case of left reduction.

5.2. The cross-confluence property. We now introduce our main new notion, a var-

iant of confluence that combines left and right reduction.

Definition 5.8. If M is a gcd-monoid, we say that RM is cross-confluent if, for

all a; b; c in FM ,

If we have a �)�
b and a �)�

c, there exists d satisfying b )� d

and c )� d .
(5.2)

So cross-confluence for RM means that left reduction provides a solution for

the confluence pairs of right reduction. We shall naturally say that R
˙

M is cross-

confluent if (5.2) holds for all a; b; c in F
˙

M . On the other hand, we say that eRM is

cross-confluent if right reduction provides a solution for the confluence pairs of left

reduction, that is, if

If we have a )� b and a )� c, there exists d satisfying b �)�
d

and c �)�
d .

(5.3)

holds for all a; b; c in FM . Finally, eR˙

M is cross-confluent if (5.3) holds for all a; b; c

in F
˙

M .
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Remark 5.9. The definition of cross-confluence involves both left and right reduction.

But, owing to the equivalence (5.1), it can alternatively be stated as a property

involving left reduction exclusively. Indeed, in the case of R
˙
M , cross-confluence is

equivalent to

If we have ea )� eb and ea )� ec, there exists d satisfying b )� d

and c )� d ,
(5.4)

and similarly for eR˙

M . In the case of RM , when we restrict to positive multifractions,

we also have an alternative statement involving )� exclusively, but it takes the less

symmetric form

If we have 1 �ea )� 1 �eb and 1 �ea )� 1 �ec, there exists d satisfying b )� d

and c )� d ,
(5.5)

because the e operation is not involutive in this case.

Using duality, we obtain for the cross-confluences of R
˙ and eR˙ and that of

their positive versions the same connection as in the case of convergence and semi-

convergence:

Proposition 5.10. For every gcd-monoid M , the following are equivalent:

(i) The system R
˙
M is cross-confluent;

(ii) The system eR˙

M is cross-confluent;

(iii) The systems RM and eRM are cross-confluent.

Proof. Assume that R
˙

M is cross-confluent. Applying (5.2) to ea, eb, and ec and

using (5.1), we deduce (5.3), so eR˙
M is also cross-confluent. Doing the same from (5.3)

returns to (5.2). So (i) and (ii) are equivalent.

Next, all R- and eR-reducts of a positive multifraction are positive, so, if R
˙

M is

cross-confluent, its retriction to FM is also cross-confluent. Similarly, if eR˙

M is cross-

confluent, its retriction to FM is cross-confluent. Hence (i) implies (iii). Finally,

assume that RM and eRM are cross-confluent, and a, b, c belong to F
˙

M and satisfy

a �)�
b and a �)�

c. If a, hence b and c as well, are positive, the assumption

that RM is cross-confluent implies the existence of d satisfying (5.2). Assume now

that a, hence b and c, are negative. Then ea, eb, ec are positive, and we have ea )� eb
and ea )� ec. The assumption that eRM is cross-confluent implies the existence of d

satisfying eb �)�
d andec �)�

d . By (5.1), we deduce b )� ed and c )� ed . So (5.2)

holds, R
˙

M is cross-confluent, and (iii) implies (i).

In view of our main purpose, namely establishing the semi-convergence of (left)

reduction, the main result is the following connection, which locates cross-confluence

as an intermediate between convergence and semi-convergence:
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Proposition 5.11. Assume that M is a noetherian gcd-monoid.

(i) If R
˙

M is convergent, then R
˙

M is cross-confluent.

(ii) If R
˙

M is cross-confluent, then R
˙

M is semi-convergent.

(iii) Mutatis mutandis, the same implications hold for RM .

We begin with an auxiliary result:

Lemma 5.12. Assume that M is a gcd-monoid.

(i) If R
˙

M is cross-confluent, then, for every a in F
˙

M , the relations a )� 1

and a �)�
1 are equivalent.

(ii) If RM is cross-confluent, then, for every a in FM , the relation a �)�
1

implies a )� 1.

Proof. (i) Assume a 2 F
˙

M and a )� 1. By Proposition 5.10, the cross-

confluence of R
˙

M implies that of eR˙

M . By definition, we also have a )� a.

Then (5.3) implies the existence of d satisfying 1 �)�
d and a �)�

d . By definition,

1 is eR-irreducible, so 1 �)�
d implies d D 1, whence a �)�

1. Conversely, assume

a �)�
1. We have a �)�

a, and (5.2) implies the existence of d satisfying a )� d

and 1 )� d , whence d D 1, and a )� 1.

(ii) When a lies in FM , the latter argument remains valid, and it shows again that

a �)�
1 implies a )� 1. (By contrast, the former argument need not extend, as there

is a priori no reason why the cross-confluence of RM should imply that of eRM .)

Proof of Proposition 5.11. (i) Let a belong to F
˙

M , and assume a �)�
b and

a �)�
c. By Lemma 5.4, we have a '˙ b '˙ c, whence b )� d and c )� d ,

where d is the (unique) R-irreducible reduct of a. Hence (5.2) is satisfied.

(ii) Assume that R
˙
M is cross-confluent, and we have a )� 1 and a )� b

for some a in F
˙

M . By (5.3), which is valid since, by Proposition 5.10, the cross-

confluence of R
˙

M implies that of eR˙

M , there exists d satisfying b �)�
d and 1 �)�

d .

Since 1 is eR-irreducible, we must have d D 1, whence b �)�
1. By Lemma 5.12, we

deduce b )� 1. Hence R
˙

M is 1-confluent and, therefore, by Proposition 3.22, it is

semi-convergent.

(iii) For (i), the argument is the same in the case a 2 FM . For (ii), assume

that RM is cross-confluent, and we have a )� 1 and a )� b for some a in FM .

By Lemma 5.4(iv), we have 1 � ea �)�
1 � 1 D 1 and 1 � a �)�

1 � b, and 1 � ea is

positive. As RM is cross-confluent, we deduce the existence of d satisfying 1 )� d

and 1 �eb )� d . As 1 is R-irreducible, we have d D 1, whence 1 �eb )� 1, and, by

Lemma 5.4(iv) again, b �)�
1. By Lemma 5.12(ii), we deduce b )� 1. Hence RM

is 1-confluent and, by Proposition 3.22, it is semi-convergent.



264 P. Dehornoy

5.3. Conjectures C and Cunif . We thus arrive at what we think is the main conjecture

in this paper:

Conjecture C. For every Artin–Tits monoid M , the system RM is cross-confluent.

By Proposition 5.11, Conjecture C implies Conjecture A, whence the decidability

of the word problem of the group, and it is true for every Artin–Tits monoid of

type FC. Note that Conjecture C is different from Conjectures A and B in that it

predicts something for all multifractions, not only for unital ones. So, in a sense,

it is a more structural property, which we think is interesting independently of any

application.

No proof of Conjecture C is in view so far in the general case, but we now observe

that local cross-confluence, namely cross-confluence with single reduction steps on

the left, is always true.

Proposition 5.13. If M is a gcd-monoid, then, for all a; b; c in F
˙

M ,

If we have a �) b and a �) c, there exists d satisfying b )� d and c )� d . (5.6)

If we have a ) b and a ) c, there exists d satisfying b �)�
d and c �)�

d . (5.7)

The proof relies on the following preparatory result:

Lemma 5.14. Assume that M is a gcd-monoid and a is a multifraction on M such
that a � Ri;x is defined. If i is negative .resp., positive/ in a, let x0 and bx be defined
by aix

0 D ai _ x and bx D ai ^ x .resp., x0ai D ai e_ x and bx D ai �̂ x/. Then, we
have

a � Ri;x
eRi;x0 D a � D

i;bx: (5.8)

Proof. (Figure 5) Let a0 D a � Ri;x . Assuming i negative in a, we have

a0
i�1 D ai�1x0; xa0

i D aix
0 D ai _ x; xa0

iC1 D aiC1: (5.9)

By construction, x0 right divides a0
i�1, and x0 and a0

i admit a common left multiple,

namely aix
0. Hence a00 D a0

� eRi;x0 is defined, and it is determined by

a00
i�1x0 D a0

i�1; a00
i x0 D x00a0

i D a0
i
e_ x0; a00

iC1 D x00a0
iC1: (5.10)

By definition, the left lcm x00a0
i of x0 and a0

i left divides their common left

multiple xa0
i , which implies the existence of bx satisfying x D bxx00, and, from

there, aix
0 D xa0

i D bxx00a0
i D bxa00

i x0, whence ai D bxa00
i . Merging (5.9) and (5.10),

we deduce a00
i�1 D ai�1, bxa00

i D ai , and bxa00
iC1 D aiC1, which shows that a00 is

obtained from a by left dividing the i th and .i C 1/st entries by bx, i.e. by applying

the division D
i;bx .

The argument is symmetric when i is positive in a.
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ai�1
ai aiC1

a0
i�1 a0

i

a0
iC1

xx0

x00

a00
i

bx

Figure 5. Composing the left reduction Ri;x and the inverse right reduction zRi;x0 amounts to

performing the division Di;yx where yx is the gcd of ai and x.

When a � eRi;x is defined, a symmetric argument gives

a � eRi;xRi;x0 D a � D
i�1;bx; (5.11)

where x0 andbx are now defined by x0ai D ai e_x andbx D ai �̂x (resp., aix
0 D ai _x

and bx D ai ^ x) if i is negative (resp., positive) in a. The index of the division

is shifted (i � 1 instead of i ) relatively to (5.8), because, as a set of pairs, Di;x is

included in eRiC1;x .

We can now complete the argument for Proposition 5.13.

Proof of Proposition 5.13. Assume b D a � eRi;x and c D a � eRj;y . By Lemma 5.14,

we have

b � Ri;x0 D a � D
i;bx and c0

� Rj;y0 D a � D
j;by

for some x0;bx and y0;by. By Proposition 4.4, @a is a common reduct of all

multifractions obtained from a by a division, hence in particular of a � Di;x00

and a�Dj;y00 . Thus b )� @a and c )� @b hold, hence (5.6) is satisfied with d D @a.

The proof of (5.7) is symmetric, using (5.11) instead of (5.8), and d D @a

again.

In the case of a single rewrite system, local confluence implies confluence

whenever the system is terminating (by Berman’s well known diamond lemma).

There is no hope of a similar result here, both because the union of R and eR is not

terminating in general (see (5.12) below) and because, in the definition of cross-

confluence, the arrows ) and �) are not in a position for a natural induction.

Remark 5.15. Right reduction is close to being an inverse of left reduction. Indeed,

provided the ground monoid is noetherian, every reduction is a product of atomic

reductions, namely reductions of the form Ri;x or eRi;x with x an atom. Now, if x

is an atom, the gcd of x and ai is either ai , meaning that x divides ai , or 1. In

the former case, a � Ri;x is a � Di;x , whereas, in the latter, Lemma 5.14 implies

a D .a � Ri;x/ � eRi;x0 , i.e. left reducing x in a is the inverse of right reducing x0.

Thus, writing D for the family of divisions and Rat for that of atomic left reductions,

R is generated by D[Rat, whereas eR is generated by ř D[R
�1
at . By Lemma 4.5 and

the results of [13], confluence between D and Rat is always true, whereas confluence

between Rat and R
�1
at is trivial. Therefore, one might hope that cross-confluence

diagrams can always be constructed by assembling the various types of elementary



266 P. Dehornoy

confluence diamonds. This is not true: using a tedious case-by-case argument, one

can indeed establish cross-confluence in the case when, in (5.2), b and c are obtained

from a by two atomic reduction steps, but there is no hope to go very far in this

direction, both because of the counter-examples of Example 5.16, and because, in

any case, cross-confluence cannot be true for an arbitrary noetherian gcd-monoid,

since there exist such monoids for which the counterparts of Conjectures A and C

fail [19]: if true, cross-confluence has to be a specific property of Artin–Tits monoids,

or at least of a restricted family of gcd-monoids.

The following examples are given to show that naive attempts to extend the local

cross-confluence result of Proposition 5.13 are due to fail.

Example 5.16. Proposition 5.13 shows that, if b is obtained by applying one

right reductions to a, then applying one well chosen left reduction to b provides

a multifraction c obtained by one division from a. The result fails when 1 is replaced

by k � 2. Indeed, in the Artin–Tits monoid of type eA2, consider a D 1=a=ca=cb=b

and b D a � eR3;a
eR5;b D 1=1=ca=cb=1, (which is eR-irreducible). The only way to

left reduce b is to start with R1;ca, leading to c D ca=1=cb=1, not reachable from a

by two, or any number, of divisions.

In the above case, we have c D a � R4;bR2;cac, and therefore there is no

contradiction with the weaker conclusion that c is obtained both from a by applying

k left reductions. The following example (with k D 3) shows that this is not

true either. Indeed, consider a D ca=cb=bc=ba and b D a � eR3;bc
eR2;ca

eR4;a D

1=1=ac=ab. As predicted by Conjecture C, a and b admit common left reducts, but

the latter are c and c�D2;c, with c D ac=cab=c=1 D a�R2;bR3;aD2;aR3;bD1;aaD2;b,

not reachable from a using less than six left reductions. What is surprising here is

that, if we put b0 WD a � eR3;bc
eR2;ca D 1=1=aca=aba, then b0 left reduces to a,

whereas b D b0
� D3;a only left reduces to c, very far from a: one single division

may change left reducts completely.

We conclude with one more conjecture. The conjunction of Propositions 4.4

and 5.13 shows not only that any two right reducts b; c of a multifraction a admit a

common left reduct d , but even that there exists d only depending on a, namely @a,

that witnesses for all elementary right reducts of a simultaneously. This suggests to

consider a strong version of cross-confluence:

Definition 5.17. If M is a gcd-monoid, we say that RM is uniformly cross-confluent
if there exists a map r from FM to itself such that, for every a in FM , the relation

b )� ra holds for every right reduct b of a.

In the case when reduction is convergent, defining ra D red.a/ provides

a convenient witness, and therefore the conclusion of Proposition 5.11 can be

strengthened to uniform cross-confluence. We propose:

Conjecture Cunif. For every Artin–Tits monoid M , the system RM is uniformly
cross-confluent.
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By the above observation, Conjecture Cunif is true for every Artin–Tits monoid of

type FC, and no counter-example could be found so far in any other type. It implies

Conjecture C and, therefore, Conjecture A, but it is more demanding. However, if

an explicit definition of ra could be found, one can reasonably hope that the proof

of Conjecture Cunif would then reduce to a series of verifications. But, here again,

naive attempts fail: two natural candidates for ra could be either redt.a/ (which

works in the convergent case), or (if it always exists) a maximal common ancestor of

all irreducible reducts in the tree of all left reducts of a, but the example of Figure 6

shows that neither of these choices works in every case.

a1: a=bac=bb=aca

a2: a=ac=b=aca

a3: a=bcbac=ccb=ca

a4: a=babac=aab=ac

a5: =cbac=ccb=ca

a6: a=bcac=cb=ca

a7: =bac=cb=ca a8: a=baac=ab=ac

a9: =cbac=bcbb=aca

a10: =bac=bcb=aca

a11: a=c=ba=acaab

a12: =ac=caba=acaab

a13: =ac=cba=acaa

a14: =ac=cb=aca

D1;a

D2;c

D2;b

R3;c

R3;a

R3;c

R3;a

D2;aD2;c

D1;a

eR2;a

R2;bc

D3;c

D2;c

D3;c

eR3;a
R3;ab

eR2;a

R2;ca

D3;b

D2;b

D3;a

eR2;a

eR3;b

R3;c

R2;c

Figure 6. Left and right reducts of a1 WD a=bac=bb=aca in the Artin–Tits monoid of type zA2:

there are 7 proper left reducts (in grey), among which a7 and a8 are R-irreducible, and

10 right reducts (surrounded by dashed lines), among which a14 is zR-irreducible. Plain

(resp., dashed) arrows correspond to left (resp., right) reductions that are not divisions, double

arrows correspond to divisions (which are both left and right reductions); all left reductions

decrease the distance to the bottom. As Conjecture Cunif predicts, there exists a common left

reduct for all right reducts: in this case, there is only one, namely a7, and it is neither redt.a1/

nor the maximal common ancestor of a7 and a8, both equal to a2.

Appendix: Mixed termination. Although it is not directly connected with cross-

confluence, we mention here one further result involving both left and right reduction.

First, we know that, in a noetherian context, (left) reduction is terminating, meaning

that there is no infinite sequence of reductions. It turns out that a stronger finiteness

result holds:

Proposition 5.18. If M is a finitely generated noetherian gcd-monoid, then every
multifraction a on M admits only finitely many left reducts, and finitely many right
reducts.
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Proof. As M is noetherian and contains no nontrivial invertible element, a subfamily

of M is generating if and only if it contains all atoms. Hence, the assumption that M

is finitely generated implies that the atom set A of M is finite. Let a belong to F
˙

M .

We construct a tree Ta, whose nodes are pairs .b; s/, where b is a left reduct of a and s

is a finite sequence in A � N: the root of Ta is .a; "/, and, using _ for concatenation,

the sons of .b; s/ are all pairs .b � Ri;x; s_.i; x// such that b � Ri;x is defined. As A

is finite, for every multifraction b, the number of pairs .i; x/ with x in A and b � Ri;x

defined is finite. Hence each node in Ta has finitely many immediate successors. On

the other hand, the assumption that M is noetherian implies that R
˙

M is terminating

and, therefore, the tree Ta has no infinite branch. Hence, by König’s lemma, Ta is

finite. As every left reduct of a appears (maybe more than once) in Ta, the number

of such reducts is finite.

The argument for right reducts is symmetric.

Thus, it makes sense to wonder whether, starting from a multifraction a, the

family of all multifractions that can be obtained from a using left and right reduction

is finite. The argument for Proposition 5.18 does not extend, because the well-orders

witnessing for the termination of left and right reductions are not the same, and it is

easy to see that the result itself fails in general: starting from a WD 1=a=bc=1 in the

Artin–Tits of type eA2, we find a � R2;b
eR3;a D ba=b=ca=ac, whence, repeating three

times,

a � R2;b
eR3;aR2;c

eR3;bR2;a
eR3;c D bacbac=a=bc=acbacb D bacbac � a � acbacb:

(5.12)

Hence the multifractions a�.R2;b
eR3;aR2;c

eR3;bR2;a
eR3;c/

p make for p � 0 an infinite

non-terminating (and non-periodic) sequence with respect to R [ eR.

By contrast, let us mention without detailed proof a finiteness result valid

whenever the ground monoid M is a Garside monoid [11,16], i.e. a strongly

noetherian gcd-monoid possessing in addition an element � (“Garside element”)

whose left and right divisors coincide, generate M , and are finite in number.

Proposition 5.19. If M is a Garside monoid, then, for every multifraction a on M ,
the family of all .R [ eR/-reducts of a is finite.

Proof (sketch). Let � be a Garside element in M and let a be a multifraction on M .

Then there exists a positive integer d such that the path associated with a can be

drawn in the finite fragment of the Cayley graph of M made of the divisors of �d :

this is the notion of a path “drawn in Div.�d /” as considered in [10]. Then the family

of all paths drawn in Div.�d / is closed under the special transformations alluded

to in Subsection 3.3, and, therefore, all multifractions that can be derived from a

using ) and �) are drawn in the same finite fragment Div.�d / of the Cayley graph.

As we consider multifractions with a fixed depth, only finitely many of them can be

drawn in a finite fragment of a Cayley graph.



Multifraction reduction II 269

The argument extends to every Artin–Tits monoid M of type FC, replacing the

finite family of divisors of the Garside element � with the union of the finitely many

finite families of divisors of the Garside elements �I , where I is a family of atoms

of M that generates a spherical type submonoid of M .

6. Finite approximations

The semi-convergence of R
˙
M and Conjectures A, B, and C, involve multifractions

of arbitrary depth. Further results appear in the particular case of small depth

multifractions. The cases of depth 2 and, more interestingly, of depth 4 are

addressed in Subsections 6.1 and 6.2, where connections with the embeddability

in the group and the uniqueness of fractional decompositions, respectively, are

established. An application of the latter to partial orderings of the group is established

in Subsection 6.3. Finally, we describe in Subsection 6.4 a connection between

Conjecture B and van Kampen diagrams for unital n-multifractions.

6.1. The n-semi-convergence property. The rewrite system R
˙
M has been called

semi-convergent if (3.1) holds for every multifraction on M , i.e. if a being unital

implies a )� 1.

Definition 6.1. If M is a gcd-monoid, we say that R
˙

M .resp., RM / is n-semi-
convergent if (3.1) holds for every n-multifraction a in F

˙
M (resp., FM ).

Accordingly, we shall use Conjecture An for the restriction of Conjecture A to

depth n multifractions, and similarly for B and C. Some easy connections exist. Of

course, if R
˙

M is n-semi-convergent, then so is its subsystem RM .

Lemma 6.2. If M is a gcd-monoid and R
˙

M .resp., RM / is n-semi-convergent, it is
p-semi-convergent for p < n.

Proof. Let a be a nontrivial unital p-multifraction, with p < n. There exists r (equal

to n � p or n � p C 1) such that a � 1r has width n, and it is also nontrivial and

unital. As R
˙

M is n-semi-convergent, we have a � 1r )� 1, which implies a )� 1 by

Lemma 2.11(iii). So R
˙

M is p-semi-convergent.

On the other hand, by repeating the proof of Proposition 3.18, we obtain

Lemma 6.3. If M is a noetherian gcd-monoid, then R
˙
M .resp., RM / is n-semi-

convergent if and only if (3.5) holds for every n-multifraction a in F
˙

M .resp., FM /,
i.e. if a is unital, then it is either trivial or reducible.

We now address the cases of small depth. The case of depth one is essentially

trivial, in that it follows from a sufficiently strong form of noetherinity and does not

really involve the algebraic properties of the monoid:
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Proposition 6.4. Assume that M is a gcd-monoid that admits a length function,
namely a map � W M ! N satisfying, for all a; b in M ,

�.ab/ D �.a/ C �.b/ and �.a/ > 0 for a 6D 1: (6.1)

Then the system R
˙
M is 1-semi-convergent.

Condition (6.1) is strong noetherianity (3.3) with � replaced by D. It holds in

every Artin–Tits monoid and, more generally, in every monoid with a homogeneous

presentation.

Proof. Extend the map � to F
˙

M by �.a/ WD
P

i positive in a �.ai /�
P

i negative in a �.ai /.

Then � is a homomorphism from the monoid F
˙

M to .N; C/, and, for every a in M ,

we have �.a=a/ D �.=a=a/ D �.1/ D �.¿/ D 0. By Proposition 2.3, the latter

pairs generate '˙ as a congruence, hence � is invariant under '˙. Then a 6D 1

implies �.a/ 6D �.1/, whence a 6'˙ 1. Hence the only unital 1-multifraction is 1,

and R
˙

M is 1-semi-convergent.

The cases of depths 2 and 3 turn out to be directly connected with the

embeddability of the considered monoid in its enveloping group.

Proposition 6.5. If M is a gcd-monoid, the following are equivalent:

(i) The system RM is 2-semi-convergent.

(ii) The system R
˙

M is 2-semi-convergent.

(iii) The system R
˙
M is 3-semi-convergent.

(iv) The monoid M embeds in U.M/.

Proof. Assume that RM is 2-semi-convergent. Let a; b two elements of M satisfying

�.a/ D �.b/. By (2.3), we have a=b '˙ 1. The assumption that RM is 2-semi-

convergent implies a=b )� 1. By definition, this means that there exists x in M

satisfying a D x D b, whence a D b. So M embeds in U.M/. Hence (i)

implies (iv).

Clearly (ii) implies (i), and (iii) implies (ii) by Lemma 6.2.

Finally, assume that M embeds in U.M/, and let a be a positive nontrivial unital

3-multifraction. By assumption, we have a '˙ 1, whence �.a1/�.a2/�1�.a3/ D 1

in U.M/ by (2.3), and, therefore, �.a2/ D �.a3/�.a1/ D �.a3a1/ in U.M/. As M

embeds in U.M/, this implies a2 D a3a1 in M . Then a has the form a1=a3a1=a3,

implying a � D1;a1
D2;a3

D 1=1=1. Thus RM is 3-semi-convergent. The argument

is the same for a negative 3-multifraction a, finding now �.a1/�1�.a2/�.a3/�1 D 1,

whence a2 D a1a3, and a � D1;a1
D2;a3

D =1=1=1. Hence R
˙

M is 3-semi-convergent.

So (iv) implies (iii).

Corollary 6.6. For every Artin–Tits monoid M , the system R
˙

M is n-semi-convergent
for n � 3.
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Proof. By Lemma 6.2, R
˙
M is 1-semi-convergent. Next, it is known [28] that M

embeds into U.M/. Hence, by Proposition 6.5, R
˙
M is 2- and 3-semi-convergent.

In other words, Conjecture An is true for n � 3.

6.2. Multifractions of depth 4. We now address 4-semi-convergence, which turns

out to give rise to interesting phenomena. We begin with preliminary results about

unital multifractions that are in some sense the simplest ones.

Definition 6.7. If M is a monoid and a is an n-multifraction on M , with n even, we

say that .x1; : : : ; xn/ is a central cross for a if we have

ai D

(
xixiC1 for i positive in a;

xiC1xi for i negative in a;

with the convention xnC1 D x1.

a1

a2 a3

a4

x3
x2

x1

x4

The diagram of Definition 6.7 shows that a multifraction that admits a central

cross is unital: if .x1; : : : ; xn/ is a central cross for a positive multifraction a, we find

�.a/ D �.x1x2/ �.x3x2/�1 �.x3x4/ � � � .x1xn/�1 D 1;

and similarly when a is negative. It follows from the definition that a sequence

.x1; : : : ; xn/ is a central cross for a positive multifraction a if and only if

.x2; : : : ; xn; x1/ is a central cross for =a2= � � � =an=a1. So, we immediately obtain

Lemma 6.8. For every monoid M and every even n, a positive n-multifraction a

admits a central cross if and only if the negative multifraction =a2= � � � =an=a1 does.

Multifractions with a central cross always behave nicely in terms of reduction:

Lemma 6.9. If M is a gcd-monoid and a is a multifraction on M that admits a
central cross, then redt.a/ D 1 holds.

Proof. We prove the result using induction on n � 2 even, and assuming a positive.

Assume that .x1; : : : ; xn/ is a central cross for a. For n D 2, the assumption boils

down to a1 D a2 D x1x2, directly implying a � Rmax
1 D 1=1. Assume n � 4 and,

say, a positive. Let x WD x1 �̂ x3, with x1 D x0
1x and x3 D x0

3x. Then we have

a1 �̂ a2 D xx2, whence a � Rmax
1 D x0

1=x0
3=a3= � � � =an. As a3 D x3x4 expands into

a3 D x0
3xx4, this can be rewritten as a � Rmax

1 D x0
1=x0

3=x0
3xx4= � � � =an. We deduce

a � Rmax
1 Rmax

2 D x0
1xx4=1=1=a4= � � � =an D x1x4=1=1=a4= � � � =an (6.2)
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with a4 D x1x4 for n D 4, and a4 D x5x4 for n � 6. In every case, the subsequent

action of Rmax
3 � � � Rmax

n�1 is to push a4, then a5, etc. until an, through 1=1, leading to

a � Rmax
1 � � � Rmax

n�1 D x1x4=a4= � � � =an=1=1: (6.3)

For n D 4, (6.3) reads a � Rmax
1 Rmax

2 Rmax
3 D x1x4=x1x4=1=1, and a further

application of Rmax
1 yields 1. For n � 6, the assumption that .x1; : : : ; xn/

is a central cross for a implies that .x1; x4; : : : ; xn/ is a central cross for the

.n � 2/-multifraction x1x4=a4= � � � =an. The induction hypothesis for the latter gives

redt.x1x4=a4= � � � =an/ D 1, which expands into

x1x4=a4= � � � =an � Rmax
U.n�2/ D 1n�2: (6.4)

By Lemma 2.11(iii), (6.4) implies x1x4=a4= � � � =an=1=1 � Rmax
U.n�2/

D 1n. Merging

with (6.3), we deduce a � Rmax
1���n�1Rmax

U.n�2/
D 1n, which is a � Rmax

U.n/
D 1n,

i.e. redt.a/ D 1.

The argument is similar when a is negative.

We now concentrate on 4-multifractions. A sort of transitivity of central crosses

holds.

Lemma 6.10. Assume that M is a gcd-monoid, a; b are 4-multifractions admitting a
central cross, and c1a4 D c4b1 and c2a3 D c3b2 holds. Then c1a1=c2a2=c3b3=c4b4

admits a central cross. In particular, a1=a2=b3=b4 admits a central cross for a4 D b1

and a3 D b2.

Proof. (Figure 7) Let .x1; : : : ; x4/ and .y1; : : : ; y4/ be central crosses for a and b,

respectively. By assumption, we have c2x3x4 D c2a3 D c3b2 D c3y3y2, so x4

and y2 admit a common left multiple, say x4 e_ y2 D xx4 D yy2, and there exists z3

satisfying c2a3 D z3xx4 D z3yy2 D c3b2. Then a3 D x3x4 and b2 D y3y2

respectively imply

c2x3 D z3x and c3y3 D z3y: (6.5)

Arguing similarly from c1x1x4 D c1a4 D c4b1 D c4y1y2, we deduce the existence

of z1 satisfying c1a4 D z1xx4 D z1yy2 D c4b1, leading to

c1x1 D z1x and c4y1 D z1y: (6.6)

Then .z1; xx2; z3; yy4/ is a central cross for c1a1=c2a2=c3b3=c4b4.

We deduce that reduction preserves the existence of a central cross in both

directions.

Lemma 6.11. Assume that M is a gcd-monoid and a; b are 4-multifractions on M

satisfying a )� b. Then a admits a central cross if and only if b does.
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a1

a2

c1 c4

b4

b3

c2 c3

x1

x2

x3

x4

a3

a4

b2

b1

y1

y2

y3

y4

z3

x y

z1

x y

Figure 7. Transitivity of the existence of a central cross.

Proof. It is enough to prove the result for a ) b, say b D a � Ri;x. Assume that a

is positive and .x1; : : : ; x4/ is a central cross for a. Our aim is to construct a central

cross for b from that for a. Consider the case i D 2, see Figure 8. Let a2x0 D x _a2.

By definition, we have

b1 D a1x0; xb2 D a2x0; xb3 D a3; b4 D a4: (6.7)

By assumption, x and x3 admit a common right multiple, namely a3, hence they

admit a right lcm, say x _ x3 D xy3 D x3y. We have xb2 D a2x0 D x3.x2x0/,

hence the right lcm of x and x3 left divides xb2, i.e. we have xy3 � xb2, whence

y3 � b2, say b2 D y3y2.

Next, we have x3x2x0 D a2x0 D xb2 D xy3y2 D x3yy2, whence x2x0 D yy2

by left cancelling x3 . Put y1 D x1y. We find b1 D a1x0 D x1x2x0 D x1yy2 D y1y2.

On the other hand, by assumption, as both x and x3 left divide a3, their right

lcm x3y left divide a3, which is x3x4. So we have x3y � x3x4, whence y � y4, say

x4 D yy4. Then we find xb3 D a3 D x3x4 D x3yy4 D xy3y4, whence b3 D y3y4.

Finally, we have b4 D a4 D x1x4 D x1yy4 D y1y4. So .y1; : : : ; y4/ is a central

cross for b. The argument for i D 3 is similar, mutatis mutandis, and so is the

one for i D 1: in this case, the counterpart of x0 is trivial, which changes nothing.

Finally, the case when a is negative is treated symmetrically. So b admits a central

cross whenever a does.

For the other direction, assume again that a and b are positive, and that

.y1; : : : ; y4/ is a central cross for b. Assume again i D 2, and (6.7). The equality

xb2 D a2x implies that .a1; 1; a2; x0/ is a central cross for a1=a2=xb2=b1. On

the other hand, .y1; y2; xy3; y4/ is a central cross for b1=xb2=a3=a4. So both

a1=a2=xb2=b1 and b1=xb2=a3=a4 admit a central cross. By Lemma 6.10, this

implies that a1=a2=a3=a4 admits a central cross. So a admits a central cross

whenever b does.
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The above proof does not use the assumption that xb2 is the lcm of x and a2,

but only the fact that the equalities of (6.7) hold for some x; x0, which is the case,

in particular, for b D a � eRi;x0 . So it also shows that every right reduct of a

4-multifraction with a central cross admits a central cross, and conversely.

a1

a2 a3

a4 D b4

x1

x2

x3

x4

x

x0

y1

y2

y3

y4

b1

b2 b3

y

Figure 8. Construction of a central cross for a � Ri;x starting from one for a.

We deduce a complete description of the 4-multifractions that reduce to 1:

Proposition 6.12. If M is a gcd-monoid, then, for every 4-multifraction a on M , the
following are equivalent:

(i) The relation a )� 1 holds.

(ii) The relation redt.a/ D 1 holds.

(iii) The multifraction a admits a central cross.

Proof. The 4-multifractions 1=1=1=1 and =1=1=1=1 both admit the central cross

.1; 1; 1; 1/. Hence, by Lemma 6.11, every 4-multifraction satisfying a )� 1=1=1=1

or a )� =1=1=1=1 admits a central cross as well. Hence (i) implies (iii).

Next, Lemma 6.9 says that redt.a/ D 1 holds for every multifraction a that admits

a central cross, so (iii) implies (ii).

Finally, (ii) implies (i) by definition.

We return to the study of n-semi-convergence for R
˙
M , here for n D 4; 5.

Proposition 6.13. If M is a gcd-monoid, the following are equivalent:

(i) The system RM is 4-semi-convergent.

(ii) The system R
˙

M is 4-semi-convergent.

(iii) The system R
˙

M is 5-semi-convergent.

(iv) Every unital 4-multifraction in FM admits a central cross.
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Proof. Assume that RM is 4-semi-convergent. Let a be a unital positive

4-multifraction. As RM is 4-semi-convergent, we have a )� 1. By Proposition 6.12,

we deduce that a admits a central cross. Hence (i) implies (iv).

By definition, (ii) implies (i), and, by Lemma 6.2, (iii) implies (ii).

Finally, assume (iv), and let a be a unital 5-multifraction on M . Assume first

that a is positive. Then the positive 4-multifraction a5a1=a2=a3=a4 is unital as well,

hence, by assumption, it admits a central cross .x1; : : : ; x4/, which expands into

a D a1=x3x2=x3x4=x1x4=a5 with a5a1 D x1x2. Then we obtain

a )� a1=x2=1=x1=a5 via D2;x3
D3;x4

)� a1=x1x2=a5=1=1 D a1=a5a1=a5=1=1 via R3;x1
R4;a5

)� 1=1=1=1=1 via D1;a1
D2;a5

:

If a is negative, then a2=a3=a4=a1a5 is unital and positive, hence admits a central

cross by assumption, leading to a D =a1=x1x2=x3x2=x3x4=a5 with a1a5 D x1x4,

and to a )� 1, this time via D2;x2
D3;x3

R3;x4
R4;a5

D1;a1
D2;a5

. Thus, every unital

5-multifraction on M reduces to 1, and R
˙

M is 5-semi-convergent. So (iv) implies (iii).

We now establish alternative forms for the point (iv) in Proposition 6.13, connected

with the uniqueness of the expression by irreducible fractions.

Proposition 6.14. For every gcd-monoid M , the following are equivalent:

(i) Every unital 4-multifraction in FM admits a central cross.

(ii) For all a; b; c; d in M satisfying �.a=b/ D �.c=d/, there exist x; y in M

satisfying

a D x.a �̂ b/; b D y.a �̂ b/; c D x.c �̂ d/; d D y.c �̂ d/: (6.8)

(iii) All a; b; c; d in M satisfying �.a=b/ D �.c=d/ and a �̂ b D 1 satisfy a � c

and b � d .

(iv) All a; b; c; d in M satisfying �.a=b/ D �.c=d/ and a �̂ b D c �̂ d D 1 satisfy
a D c and b D d .

(v) All a; b; c in M satisfying a �̂ b D b ^ c D 1 and �.a=b=c/ 2 �.M/ satisfy
b D 1.

Before establishing Proposition 6.14, we begin with two characterizations of

4-multifractions with a central cross:

Lemma 6.15. If M is a gcd-monoid, a positive 4-multifraction a on M admits a
central cross if and only if there exist x; y in M satisfying

a1 D x.a1�̂a2/; a2 D y.a1�̂a2/; a3 D y.a3�̂a4/; a4 D x.a3�̂a4/; (6.9)
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if and only if there exist x0; y0 in M satisfying

a1 D .a1 �̂ a4/x0; a2 D .a2 �̂ a3/x0; a3 D .a2 �̂ a3/y0; a4 D .a1 �̂ a4/y0:

(6.10)

Proof. Assume that a is positive and .x1; : : : ; x4/ is a central cross for a. Write x1 D

x.x1 �̂x3/ and x3 D y.x1 �̂x3/. Then we have x �̂y D 1, and a1 D x.x1 �̂x3/x2,

a2 D y.x1 �̂ x3/x2, whence a1 �̂ a2 D .x1 �̂ x3/x2, and a1 D x.a1 �̂ a2/,

a2 D y.a1 �̂ a2/. On the other hand, we also find a3 D x3x4 D y.x1 �̂ x3/x4,

a4 D x1x4 D x.x1 �̂ x3/x4, whence a3 �̂ a4 D .x1 �̂ x3/x4, and a3 D y.a3 �̂ a4/,

d D x.a3 �̂ a4/. So we found x; y satisfying (6.9).

The proof for (6.10) is similar, writing x2 D .x2 ^ x4/x0 and x4 D .x2 ^ x4/y0

and deducing a1 ^ a4 D x1.x2 ^ x4/ and a2 ^ a3 D x3.x2 ^ x4/.

In the other direction, if (6.9) is satisfied, .x; a1 �̂a2; y; a3 �̂a4/ is a central cross

for a, whereas, if (6.10) is satisfied, so is .a1 ^ a4; x0; a2 ^ a3; y/.

Proof of Proposition 6.14. If �.a=b/ D �.c=d/ holds, the 4-multifraction a=b=d=c

is unital, hence it admits a central cross if (i) is true. In this case, Lemma 6.15

gives (6.8). So (i) implies (ii).

Next, applying (ii) in the case a �̂ b D 1 gives a D x and b D y, whence a � c

and b � d . If, in addition, we have c �̂ d D 1, we similarly obtain c � a and d � b,

whence a D c and b D d . So (ii) implies (iii) and (iv). On the other hand, (iv)

implies (iii). Indeed, assume �.a=b/ D �.c=d/ with a �̂ b D 1. Let e D c �̂ d , with

c D c0e and c D d 0e. Then we have c0 �̂ d 0 D 1 and �.a=b/ D �.c0=d 0/. Then (iv)

implies a D c0 � c and b D d 0 � d .

Now, let a; b; c in M satisfy a �̂ b D b ^ c D 1 and �.a=b=c/ D �.d/ for some d

in M . Then �.a=b/ D �.d=c/ holds so, if (ii) holds, we have a � d and b � c. Then

the assumption b ^ c D 1 implies b D 1. So (iii) implies (v).

Finally, assume that a is a unital 4-multifraction in FM . Write a2 D xa0
2 and

a3 D xa0
3 with x D a2 ^ a3, so that a0

2 ^ a0
3 D 1 holds. Next, write a1 D a0

1y

and a0
2 D a00

2 with y D a1 �̂ a0
2, so that a0

1
�̂ a00

2 D 1 holds. Then we have

�.a0
1=a00

2=a0
3/ D �.a1=a0

2=a0
3/ D �.a1=a2=a3/, and the assumption �.a/ D 1 implies

�.a1=a2=a3/ D �.a4/ 2 �.M/. Hence �.a0
1=a00

2=a0
3/ lies in �.M/ with a0

1
�̂ a00

2 D 1

and a0
2 ^ a0

3 D 1, whence a fortiori a00
2 ^ a0

3 D 1. If (v) is true, we deduce a00
2 D 1.

This means that .a0
1; y; x; a0

3/ is a central cross for a. So (v) implies (i).

Putting things together, we obtain:

Corollary 6.16. Conjectures A4 and B4 are equivalent, and they are equivalent to
the property that, for every Artin–Tits monoid M , every element of U.M/ of the
form ab�1 with a; b in M admits only one such expression with a �̂ b D 1.

Proof. Let M be an Artin–Tits monoid and a be a unital 4-multifraction on M .

By Proposition 6.12, a )� 1 implies redt.a/ D 1, so Conjecture A4 implies
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Conjecture B4. On the other hand, by Proposition 6.12 again, the property “a unital

implies a )� 1” is equivalent to “a unital implies a admits a central cross”

and, by Proposition 6.14, the latter is equivalent to the uniqueness of fractional

decompositions.

6.3. An application to partial orderings on U.M/. If M is a Garside monoid,

it is known [16, Sec. II.3.2] that the left and right divisibility relations of M can

be extended into well-defined partial orders on the enveloping group U.M/ by

declaring �� h (resp., �e� h) for ��1 h 2 M (resp., � h�1 2 M ). The

construction extends to every gcd-monoid, and we show that lattice properties are

preserved whenever R
˙

M is 4-semi-convergent.

Proposition 6.17. (i) If M is a gcd-monoid that embeds into U.M/, then
declaring �� h for ��1 h 2 �.M/ provides a partial order on U.M/

that extends left divisibility on M .

(ii) If R
˙
M is 4-semi-convergent, any two elements of U.M/ that admit a common

�-lower bound (resp., a common �-upper bound) admit a greatest one (resp., a
lowest one).

Proof. (i) We identify M with its image under �. As M is a semigroup in U.M/,

the relation � is transitive on U.M/, and it is antisymmetric, as 1 is the only invertible

element of M . Hence � is a partial order on U.M/. By definition, it extends left

divisibility on M .

(ii) Assume that � and h admit a common �-lower bound f (see Figure 9 left).

This means that we have �D f x and h D fy for some x; y in M . Let f0 WD

f .x ^ y/. Write x D .x ^ y/x0, y D .x ^ y/y0. Then we have �D f0x0 and

h D f0y0, whence f0 �� and f0 � h. Now assume that f1 is any common

�-lower bound of � and h, say �D f1x1 and h D f1y1. In the group U.M/,

we have x0x�1
1 D y0y�1

1 . Hence, the 4-multifraction x0=x1=y1=y0 is unital, so, by

assumption, it admits a central cross. Then Lemma 6.15 provides x0; y0 satisfying

x0 D .x0 ^ y0/x0; x1 D .x1 ^ y1/x0; y1 D .x1 ^ y1/y0; y0 D .x0 ^ y0/y0:

By definition of f0, we have x0 ^ y0 D 1, whence x0 D x0 and y0 D y0, and, from

there, f1.x1 ^ y1/ D f0, hence f1 � f0, in U.M/. So f0 is a greatest �-lower

bound for � and h.

The argument for lowest �-upper bound is symmetric. Assume that � and h

admit a common �-upper bound f (see Figure 9 right). Write f D� x D hy, then

x D x0.x�̂y/ and y D y0.x�̂y/. Put f0 WD� x0. We have f0.x�̂y/ D f D hy D

hy0.x �̂y/, whence hy0 D f0. So f0 is a common �-upper bound of � and h. Now

assume that f1 is any common �-upper bound of � and h, say f1 D�1 x1 D hy1.

In U.M/, we have x0y�1
0 D x1y�1

1 , i.e. the 4-multifraction x0=y0=y1=x1 is unital,
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hence it admits a central cross. Then Lemma 6.15 provides x; y satisfying

x0 D x.x0 �̂ y0/; y0 D y.x0 �̂ y0/; x1 D x.x1 �̂ y1/; y1 D y.x1 �̂ y1/:

The definition of f0 gives x0 �̂ y0 D 1, whence x D x0 and y D y0, leading

in U.M/ to f0.x1 �̂ y1/ D f1, hence f0 � f1. So f0 is a lowest �-upper bound

for � and h.

y

x

f
x ^ y f0 y0

x0

h

�

y1

x1 f1

x
1 ^ y

1

x
0 ^ y

0

x0

y0

y

x f

x �̂
y

f0

y0

x0

h

�

y1

x1

f1 x
1 �̂

y
1 x

0 �̂
y

0
x

y

Figure 9. Conditional lattice property for the poset .U.M /; �/: greatest lower bound on the

left, lowest upper bound on the right.

Of course, we have a symmetric extension for the right divisibility relation.

Question 6.18. Is the assumption that M embeds in U.M/ sufficient to ensure that

conditional greatest lower bounds and lowest upper bounds for � exist in U.M/?

6.4. Depth 6 and beyond. The results established in the case of 4-multifractions

do not extend to depth 6 and beyond. In particular, unital 6-multifractions

need not admit a central cross: in the Artin–Tits monoid of type eA2, let a WD

aba=aca=cac=cbc=bcb=bab and b WD ab=ac=ca=cb=bc=ba. We have a ) b )�

1, and a admits a central cross, but b does not, as it is prime. So the counterparts of

Lemma 6.11 and Proposition 6.12 fail. However, we shall see now that, for every n,

Conjecture Bn implies a geometrical property of van Kampen diagrams that directly

extends Prop 6.12.

What the latter says is that, if we define .�4; �/ to be the pointed graph below,

then, for every 4-multifraction a that reduces to 1, there exists an M -labeling of the

edges of �4 such that the outer labels from � are a1; : : : ; a4 and the labels in each

triangle induce equalities in M .

�
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If .�; �/ is a finite, simply connected pointed graph, let us say that a multifraction a

on a monoid M admits a van Kampen diagram of shape � if there is an M -labeling

of � such that the outer labels from � are a1; : : : ; an and the labels in each triangle

induce equalities in M . This notion is a mild extension of the usual one: if S

is any generating set for M , then replacing the elements of M with words in S

and equalities with word equivalence provides a van Kampen diagram in the usual

sense for the word in S [ S then associated with a. Then, Proposition 6.12 says

that every 4-multifraction reducing to 1 admits a van Kampen diagram of shape �4.

Conjecture B predicts similar results for every depth.

Definition 6.19. For n � 6 even, let .�n; �/ be the graph obtained by appending n�2

adjacent copies of �4 around .�n�2; �/ starting from �, with alternating orientations,

and connecting the last copy of .�4; �/ with the first one, see Figure 10.

�

a
c
a

ab
a cbc

ab

ba

ca ac

bc

cb

ab cb
ab

ba

1
1

ba

1 a c

ca

ba

cb

1

ac

bc bc

bc

1
1

1

b

ab cb

�

Figure 10. The graph �6: on the left, the naked graph, with four juxtaposed copies of �4 around

one (colored) copy of �4; it has fourteen vertices, namely four springs (one inner), five wells (two

inner), and five 4-prongs; on the right, for M the Artin–Tits monoid of type zA2, the M -labeling

of �6 that results from the first reduction in Example 3.5; it provides a van Kampen diagram

for the 6-multifraction ab=ba=ca=ac=bc=ab. Conjecture B predicts that every 6-multifraction

representing 1 in an Artin–Tits monoid admits a van Kampen diagram of shape �6.

Proposition 6.20. Let M be an Artin–Tits monoid. If Conjecture B is true, then
every unital n-multifraction on M .with n even/ admits a van Kampen diagram of
shape �n, see Figure 10.

Proof. Let a be a unital n-multifraction on M . Conjecture B predicts the equality

a � Rmax
U.n/

D 1. We shall see that the latter (and, more generally, any equality of the

form a � RU.n/;x D 1, with x maximal or not) implies that a admits a van Kampen

diagram of shape �n. In view on an induction, assume a�R1;x1
� � � Rn�1;xn�1

D b �12,

for some (necessarily unital) .n � 2/-multifraction b. Let a0 WD a and, inductively,

ai WD ai�1
� Ri;xi

. We start from a loop of edges with alternating orientations
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labeled a0. Then we inductively complete the graph using n � 1 steps of the type

ai
i�1

ai
i ai

iC1

aiC1
i�1 aiC1

i
aiC1

iC1

xi or

ai
i�1

ai
i ai

iC1

aiC1
i�1 aiC1

i
aiC1

iC1

xi

according to the sign of i in a. Because the final two entries of an�1 are trivial, the

last two steps take a simpler form: an�1
n D 1 is equivalent to an D xn�1, whereas

an�1
n�1 D 1 is equivalent to x�1

n�2an�1 e� an.

We thus obtain an M -labeling of an annular graph made of n � 2 copies of �4,

whose outer boundary is labeled a, and whose inner boundary is labeled b, see

the diagram on the right, here in the case going from 8 to 6. Then we repeat

the process with b, etc., until a 4-multifraction is reached, and we conclude using

Proposition 6.12. This construction exactly corresponds to the inductive definition

of �n.

a1

a2

a3

a4 a5

a6

a7

a8 D x7

b1

b2

b3 b4

b5

b6x1

x6

x2
x5

x3
x4

It is well known that, if a multifraction represents 1 in a group, then it admits

a van Kampen diagram in the sense defined above. What is remarkable here is the

existence of one single universal shape, with prescribed springs, wells, and 4-prongs,

that works for every unital n-multifraction at the same time.

Finally, one may wonder whether some counterparts of Lemma 6.9 and 6.11 might

hold with �n replacing �4: maybe they do, but the natural argument for proving them

requires that the ground monoid satisfies the 3-Ore condition, in which case it is

known that every unital n-multifraction admits a van Kampen diagram of shape �n,

thus making the results trivial.

7. Miscellanea

The main three properties addressed in this paper are Conjectures A, B, and C

(together with the uniform version Cunif of the latter), which involve arbitrary Artin–

Tits monoids, and are known to be true for those of FC type. Testing these statements

with a computer is easy, and we report about experiments that, alltogether, support
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the conjectures and provide some experimental evidence. The involved program is

available at [14], and the experiments are easy to repeat and confirm.

We begin with a few remarks about implementation options (Subsection 7.1),

then report about the obtained data (Subsection 7.2). Finally, we conclude with a

few hints about further properties of reduction, including several counter-examples

(Subsection 7.3).

7.1. Implementation options.

Choice of the monoid. We are interested in Artin–Tits monoids M such that R
˙

M

is not convergent, hence not of FC type. It is natural to look for monoids with

a maximal convergence defect, meaning that the proportion of multifractions with

more than one irreducible reduct is maximal. As can be expected, the ratio is maximal

for the Artin–Tits monoid of type eA2, and, more generally, those with all relations

of length 3 exactly: as divergent reducts may arise only with counter-examples to the

3-Ore property, it is natural that this happens more frequently when all atoms give

rise to such counter-examples. Another advantage of eA2 and, more generally, Kn;3,

the Artin–Tits monoid whose Dynkin diagram is the complete graph with n vertices

and all edges labeled 3, is the existence of an explicit description of basic elements

(namely 1, atoms, and products of two distinct atoms) providing a better efficiency

(and 100% correctness with no termination problem) for the implementation of the

monoid operations (equality, lcms, gcds, etc). Therefore, we mostly concentrated

on eA2, considered as the critical type (but any other choice is possible with [14]).

Generation of random multifractions. Exhaustively enumerating multifractions

up to a given length (sum of the lengths of the entries) is difficult, as, even in the

case of 3 atoms, there are more than 2:6 � 109 multifractions of length up to 12.

Therefore it is more realistic to use samples of random multifractions. Generating

random elements of the monoid and, from there, random multifractions, is easy via

random words in the atom alphabet (with a bias due to the relations).

Generating random unital multifractions is more delicate. As the density of unital

multifractions is negligible, generating random multifractions and selecting those that

are unital is not a good option (in addition, it requires a prior solution to the word

problem, which exists for eA2 but not in general). Two methods have been used. The

first one (“brownian motion”) is to follow the definition of ', thus starting with an

empty word and randomly adding or deleting pairs s=s and applying the Artin–Tits

relations. Inserting right and left reversing steps (the special transformations of

Property H, see Subsection 3.3) improves the efficiency.

The second method (“lcm-expansions”) consists in starting from a multifraction

that admits a random central cross, hence is unital of a very special type, and deriving

new, more generic, unital multifractions as follows:



282 P. Dehornoy

Definition 7.1. (Figure 11) If M is a gcd-monoid and a is a unital n-multifraction

on M , with n even, we say that b is an lcm-expansion of a if kbk D kak holds and,

for each i , there exist decompositions ai D a0
ia

00
i , bi D b0

ib
00
i satisfying a0

i b
00
i�1 D

a0
iC1b00

i D a0
i _ a0

iC1 for i negative in a, and b0
i�1a00

i D b0
ia

00
iC1 D a00

i
e_ a00

iC1 for i

positive in a, with indices modulo n, i.e. n C 1 means 1.

. . .

. . .

. . .

. . .

ai�1 ai ai�1 ai

a00
i�1 a0

i�1 a0
i a00

i a00
iC1 a0

iC1 a0
iC2 a00

iC2

b0
i�2 b00

i�2 b00
i�1 b0

i�1 b0
i b00

i
b00

iC1 b0
iC1

bi�2 bi�1 bi biC1

Figure 11. Lcm-expansion, here for i positive in a; the shift of the indices for b ensures that b

has the same sign as a. Note the symmetry: starting with right divisors leads to the same notion.

For b an lcm-expansion of a, one reads on Figure 11 the equality �.b/ D

�.a0
1b00

n/�1�.a/�.a0
1b00

n/, hence lcm-expansion preserves unitality. Constructing

lcm-expansions of a is easy: with the notation of Definition 7.1, once a left divisor a0
i

of ai is chosen for each i , all the remaining elements a00
i ; b0

i ; b00
i are determined,

and then so is b (but the choice leads to an lcm-expansion only if the lcms exist).

The advantage is that the depth is controlled (which is more difficult with brownian

motion), the inconvenience is that there is no guarantee that generic multifractions

are obtained (but the expansion procedure can be iterated).

Maximal vs. atomic reduction steps. Implementing reduction is straightforward,

once the lattice operations of the monoid are available. As a composition of

i -reductions is again an i -reduction, one might think of restricting to maximal

reduction steps, i.e. considering reducts a � Ri;x where x is a maximal i -reducer

for a. This is not a good option, as some reducts may be missed:

Example 7.2. In the Artin–Tits monoid of type eA2, let a D ab=ba=ca=bcbc.

The only maximal reductions from a are R3;cc followed by D1;ab, leading to the

unique irreducible 1=ab=ca=cb. However, one also finds a � R3;cD1;abR2;cR3;b D

cb=abbc=ba=bc, a second irreducible reduct of a not reachable by maximal steps.

This however does not contradict the following (surprising?) result:

Proposition 7.3. If M is a strongly noetherian gcd-monoid, and b; c are irreducible
reducts of some multifraction, then there exists a finite sequence of maximal reductions
and inverses of maximal reductions connecting b to c.

Proof (sketch). Write b ‰ c when there exists a sequence as in the statement. Using

induction on the ordinal �.a/, where � satisfies (3.3), one proves the following general

criterion: If ‰ is an equivalence relation on F
˙

M such that, for every multifraction a

that is i -prime and j -irreducible for j 6D i and every 1-reduct a0 of a, there exists
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a irreducible reduct b of a0 satisfying a ‰ b, then, for every a in F
˙

M , any two

irreducible reducts of a are ‰-equivalent.

7.2. Experimental data.

Conjectures A and B. Testing the two of them is essentially the same thing: one

generates a random unital multifraction a, and one checks a )� 1 in the former case,

redt.a/ D 1 is the latter. Because semi-convergence implies 1-confluence, one can

fix any reduction strategy for checking a )� 1, for instance looking at each step for

the smallest level i and the first atom x such that Ri;x applies. Although computing

redt is slightly slower, as, at each step, all i -reducers have to be determined in order to

take their gcds, both computations are fast. Precise numbers are not really significant

here; in type eA2 or K4;3, the typical order of magnitude is 5 � 104 (resp., 1:5 � 104)

random unital multifractions of length 20 and depth 4 (resp., length 40 and depth 6)

per hour of computation. In other types (e.g., eA3, or eC2), efficiency is diminished by

a factor 10 approximately.

No counter-example to Conjecture A or B was ever found. As the density of visited

(unital) multifractions becomes negligible when the length grows, the significance of

such data is questionable. However, it may be noticed that, for the many properties

considered in this paper and discarded by counter-examples, the length of the latter

(all found by random search) is never more than 12 or so: this does not say anything

about a possible counter-example to Conjecture A or B but, at the least, this shows

that the considered lengths are not ridiculous.

Conjecture A4. For the special case of Conjecture A4 (and of Conjecture B4, which,

by Corollary 6.16, is equivalent), an exhaustive search makes sense, by systematically

considering all possibilities for the central cross (up to a certain length).

Fact 7.4. For the Artin–Tits monoid of type eA2, Conjecture A4 is true for all lcm-
expansions of all multifractions that admits a central cross with entries of length at
most 2.

By contrast, the procedure applied to the monoid MC;4 of [19, Proposition 6.9]

duly finds a counter-example, namely an irreducible lcm-expansion of a 4-

multifraction with a central cross (with rays of length 1). What seems to discard a

similar counter-example in an Artin–Tits monoid is the fact that Artin–Tits relations

preserve the atoms occurring in an element (the “support”), but, even for this weak

form of Conjecture A4, we have no proof so far.

Conjectures C and Cunif . Testing these conjectures is easier in that it involves

arbitrary, not necessarily unital multifractions, but it is more difficult in that it requires

to determine all right reducts of a multifraction a and then, for each pair of them, to

determine all their left reducts. The complexity of constructing the tree Ta (as used
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in the proof of Proposition 5.18) and its right counterpart eT a increases quickly with

the depth. Beyond depth 4, the total number of reducts often becomes large (usually

a few ones, but possibly several thousands), resulting in a huge computation time.

Typically, in the current version of the program, one can test Conjecture Cunif for

about 5 � 103 (resp., 4 � 103) random multifractions of length 20 (resp., length 30)

and depth 3 per hour of computation. Going to depth 4 diminishes the speed by a

factor 50.

To overcome these bounds, we also tested (without size limitation) the following

instance of Conjecture C: starting with a multifraction a, the determine the (not

necessarily distinct) right reducts b1; : : : ; b4 and left reducts c1; : : : ; c4 of a obtained

using the four natural strategies (levels from bottom or top, atoms in lexicographical

or antilexicographical order), and check the property 9k 8j .bj )� ck/, thus

checking Conjecture C for fb1; : : : ; b4g. The cost is then comparable as the one

for Conjecture B, with about 5 � 104 (resp., 5 � 103) random tries for length 20

(resp., 30/ per hour of computation. The stronger conclusion 8k 8j .bj )� ck/ is

almost always valid but, as in the case of Figure 6, exceptions occur.

7.3. Further questions. We point to a few natural questions involving reduction.

Most of them remain open, or gave rise to counter-examples.

Normal forms for reductions. Distinguished expressions for sequences of

reductions could be obtained by identifying skew commutation relations, typically

of the form Ri;xRj;y V Rj;y0Ri;x0 , meaning that, if a � Ri;xRj;y is defined, then so

is a � Rj;y0Ri;x0 and the results are equal. Typically, one could try to push divisions

to one side, so that all remaining steps are invertible. This approach does not work

well, as exceptions always appear. In the same vein, in view of a possible induction

and building on the universal scheme U.n/ that works in the 3-Ore case, one could

conjecture that every reduction sequence is equivalent to one where the highest level

occurs only once, or that, if an n-multifraction a is i -irreducible for i < n � 1, then

reducing a can be done by a sequence of the form Rn�1;x1
Rn�3;x3

Rn�5;x5
� � � . This

need not be the case.

Example 7.5. In the Artin–Tits of type eA2, let a D 1=ba=cb=ca=ab. Then a

is i -irreducible for i � 3, but the only sequence from a to an irreducible reduct

is R4;aR2;bcR3;aR4;b, discarding the above two conjectures. Of course, Conjecture B

is not contradicted, because a is not unital.

In the same direction, one can study local confluence between left reductions Ri;x

and right reductions eRj;y , with the hope of obtaining normal forms useful for

cross-conflence. In almost all cases, there exists indeed local confluence solutions.

However, the case j D i C 2 remains problematic in general. Moreover, using

local confluence for an induction is unclear, because there is no common well-

founded relation underlying both left and right reduction and, except in type FC, a

multifraction may admit infinitely many left-right reducts.
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Homomorphisms. As reduction is constructed using multiplication and lcm opera-

tions, it is preserved by morphisms preserving these operations, namely lcm-morph-

isms [8]: if � is an lcm-morphism from a gcd-monoid M to a gcd-monoid M 0, then

a )� b implies �.a/ )� �.b/ for all a; b in F
˙

M . This however is not easy to use

for, say, Conjecture A, because the implications go in the wrong direction. If if we

study the semi-convergence of R
˙

M , mapping M to a gcd-monoid M 0 that satisfies

the 3-Ore condition does not help: if a is unital in F
˙

M , then �.a/ is unital in F
˙

M 0 , so

�.a/ )� 1 holds, but deducing a )� 1 is problematic. In the other direction, if M 0

satisfies the 3-Ore condition and �0 is an lcm-morphism from M 0 to M , then Im�0

is included in some part of M where the 3-Ore condition is satisfied, and knowing

that R
˙

M 0 is (semi)-convergent will not help for multifractions on M outside Im�0.

Morphisms (lcm-morphisms or not) might be useful for establishing particular

properties, like Conjecture A4, i.e. the fact that every unital 4-multifraction admits

a central cross. If M is the Artin–Tits monoid of type eA2, one may think of

using the classical embedding from M to the Artin–Tits group of type B3, namely

ha; b; c j abab D baba; bcb D cbc; ac D cai, that maps a to a�1b�1cba, and b

and c to themselves, but the image is not included in the monoid. A probably better

choice is to map M to the Artin–Tits monoid M 0 of type D4, namely ha; b; c; d j

ada D dad; bdb D dbd; cdc D dcdiC, by �.s/ D ds for s D a; b; c. If a is a unital

4-multifraction on M , then �.a/ admits a central cross in M 0: to deduce that a

admits a central cross in M , it suffices to show that at least one of the central crosses

for �.a/ lies in Im�. The problem is that Im� is not closed under right divisor in M 0:

for instance, �.a/ � �.bac/ holds in M 0, but a � bac fails in M .

By the way, the following natural question seems to be open:

Question 7.6 (F. Wehrung). Does the above morphism � induce an embedding from

the Artin–Tits group of type eA2 into the Artin–Tits group of type D4?

Reduction graphs. Almost nothing is known about the structural properties of the

graph formed by the reducts of a multifraction, for instance their possible lattice

properties: if we have a )� b and a )� c and if b and c admit a common reduct,

does there exist a common reduct d of b and c such that every common reduct of b

and c is a reduct of d? This is frequently true, but not always:

Example 7.7. In the Artin–Tits monoid of type eA2, consider a D 1=a=bcb=bcb=a

(which is unital). One finds b D a � R2;b D ba=ab=cb=bcb=a and c D a � R2;c D

ca=ac=bc=bcb=a. Then b and c admit the two symmetric maximal common reducts,

namely

d 0 D b � D3;b D c � R3;bD1;caR2;b D ba=ab=c=bc=a;

d 00 D b � R3;cD1;baR2;c D c � D3;c D ca=ac=b=cb=a;

and there is no common reduct d of b and c of which d 0 and d 00 are reducts.
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A possible conclusion in view of the long list of counter-examples described

in this paper could be that there is no hope for many further general properties of

reduction, implying that a possible proof of semi-convergence has to involve the

specific properties of the ground monoid in a deep way. In particular, a proof of

Conjecture A, B, or C should require developing new specific tools for Artin–Tits

groups. The results of [19] may suggest approaches.
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