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Dimension of slices of Sierpinski-like carpets

Baldzs Bardny' and Michal Rams?

Abstract. We investigate the dimension of intersections of the Sierpifiski-like carpets with
lines. We show a sufficient condition that for a fixed rational slope the dimension of almost
every intersection with respect to the natural measure is strictly greater than s — 1, and almost
every intersection with respect to the Lebesgue measure is strictly less than s — 1, where s is
the Hausdorff dimension of the carpet. Moreover, we give partial multifractal spectra for the
Hausdorff and packing dimension of slices.
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1. Introduction and Statements

Let N > 2 be an integer and let 2 be a subset of {0, ..., N — 1} x{0,..., N — 1}.
Suppose that N + 1 < #{Q2. Let

1 1
Fri(x,y) = N(x,y) + N(k’l)’ (k,]) e Q. (1.1)
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The attractor A C R? of the iterated function system ¥ = {F,},cq is called a
Sierpinski-like carpet. It is well known that W satisfies the open set condition and
dimg A = dimp A = dimp A = 1]0(;2_11]572 > 1, where dimg A denotes the Hausdorff
dimension, dimp A denotes the packing dimension and dimp A denotes the box
(or Minkowski) dimension of the set A. For the definition and basic properties of the

box, packing and Hausdorff dimensions we refer the reader to [2].

The main purpose of this paper is to investigate the dimension theory of the slices
with fixed slope. For an angle 6 denote proj, the §-angle projection onto the y-axis.
That is, projy(x, ¥) = y — x tan 8. For a point a € projy A let

Loy :={(x,y)eR*a=y—xtanf} and Egy,=Lg,NA

be the corresponding slice of the attractor. Without loss of generality, by applying
rotation and mirroring transformations on A, we may assume that 6 € [0, 7/2).

The dimension theory of some special cases was examined before for example
in [1], [9], [10], and [15]. Liu, Xi, and Zhao [9] proved for the usual Sierpriski
carpet (i.e. N = 3and Q = {0, 1,2} x {0, 1,2}\{(1, 1)}) that the box and Hausdorff
dimension of a slice Eg , for Lebesgue almost every point a are equal to a constant
depending only on 6 when the slope tan 6 is rational. Manning and Simon [10]
showed that this constant is strictly less than s — 1, where s is the dimension of the
usual Sierpifiski carpet. Later Bdrdny, Ferguson, and Simon [1] proved analogous
result for the usual Sierpiniski gasket (i.e. N = 2 and Q = {0, 1} x {0, [}\{(1, 1)}).
Moreover, they showed that the box and Hausdorff dimension of a slice Eg, for
almost every point a with respect to the projection of the natural measure are equal
to a constant depending only on 6 strictly greater than s — 1, when the slope tan 6 is
rational , where s is the dimension of the gasket. Furthermore, Barany, Ferguson, and
Simon [1] gave a non-complete multifractal spectra for the dimension of the slices.
Our goal is to generalize the previous results.

Let v be the unique self-similar measure satisfying

We call the measure v the natural measure supported on A. One may show that
this measure is nothing else than the normalized s-dimensional Hausdorff measure

. . _ HA _ log Q2
restricted to A, i.e. v = Ay where s = ToeN - We denote by

Vg = Vo proj(,_1

the projection of the natural measure.
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First, we mention a weak dimension conservation phenomena for the Sierpiriski-
like carpets.

Proposition 1.1. Let N > 2 be integer and Q2 < {0,...,N — 1} x{0,...,N — 1}
then for every fixed 0 € [0, w/2)

log §€2
log N

dimg Eg, = dimp Eg, = —dimg vg forvg-a.e a.

In particular,

log #1Q2
log N

dimg Ep, = dimp Eg 4, > —1 forvg-aea < dimgvy < 1.

(1.2)
This inequality makes sense when N + 1 < €. In the case of rational slopes we
prove that the strict inequality is satisfied in (1.2) whenever N } <.

Theorem 1.2. Let N > 2 be an integer and 2 < {0,...,N — 1} x{0,...,N — 1}
such that N + 1 < #§Q and N } 2. Then for every fixed 6 € [0, w/2) such that
tan 6 € Q there exists a constant «(6) depending only on 0 such that

log 12

Ol(e) = dimgy Ega = dimp Ega > —
’ ’ log N

—1 forvg-a.ea.

A similar theorem can be formalized for Lebesgue-typical points of the projection.

Theorem 1.3. Let N > 2 be integer and Q2 € {0,...,N —1} x{0,..., N — 1} such
that N + 1 < #1Q and N } #§Q. For every fixed 0 € [0, 7/2) such that tan 0 € Q
and projg A = [—tan 6, 1] there exists a constant 8 depending only on 0 such that

log 12
log N

B(0) = dimpy Eg, = dimp Eg, < —1 Leb.-a.e. a € projgA.

The proof of Theorem 1.2 and Theorem 1.3 uses a method different to one used in
Manning, Simon [10] and B4rdny, Ferguson, and Simon [1]. In both of the papers the
authors construct a finite set of matrices. They prove that this set of matrices satisfies
a very strong irreducibility property (i.e. there exists a finite sequence of matrices
such that the product has strictly positive elements) and using this fact they prove
that the Lebesgue typical slice for a fixed rational slope has dimension strictly less
than s — 1. The proof of this special irreducibility property is ad hoc, depends very
much on the structure of the usual Sierpinski gasket and carpet and does not hold in
general. We are going to modify this method as follows. We will construct the same
type of matrices as in [1] and [9]. Using the general properties of those matrices we
will show that a vy typical slice has dimension strictly greater than s — 1 whenever
tan § € Q. Applying this fact and the results of Feng and Lau about nonnegative
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matrices [6] we will be able to prove the theorem about Lebesgue typical slices. For
further details see Section 4.

Because of Theorem 1.2 and Theorem 1.3 one can claim that the dimension of the
slices has a non-trivial multifractal spectra for rational slopes. Bardny, Ferguson, and
Simon [1] gave the incomplete spectrum of the dimension of the slices of the usual
Sierpinski gasket. Precisely, they calculated the function

8 — dimg{a € projyA:dimy Eg, = §}

for any 6 such that tan 8 € Q and the values § > S(6), where B(0) is the Lebesgue-
typical dimension. Our aim is to generalize the previous result for the Hausdorff and
packing dimension of the slices of the general Sierpiriski-like carpets. Moreover, we
will give the full spectra for the packing dimension of the slices of the usual Sierpifiski
gasket.

Consider the projected IFS ¢ = { f,,} of ¥ = {F,}neq, i-e.

X —ktan 6 + [
+7

Jei(x) = N N , (k1) eq. (1.3)

By straightforward calculations and Theorem 2.7 in [11] we see that v satisfies the
finite type condition for tan 6 € Q and therefore, the weak separation property.

Let us divide the interval / = [—tan 6, 1] = proj,A into p + g equal intervals,
ie I = [k_l_p k_p] fork =1,..., p+ ¢. Moreover, let us divide I} for every k
into N equal parts. That is, I,f = [k =Py g = p+§+1]f0ré =0,....,N—1.
Forevery &£ =0,...,N — 1 letus deﬁne a (p + q) x(p+ q) real matrix Ag in the
following way:

(Ag)i,; = o € Q: fu(I)) = IF). (1.4)

By some simple calculations the matrices A,, n = 0,..., N — 1 can be written in
the form

(An)ij =k, ) e QiN+n=kp+(N—-1-Dg+j+N-1}.

Denote by P(¢) the pressure function which is defined as

N—1
= T DY l
P(t) = Jim - o8 D (M Ag - Age) (1.5)
El,.En=0
where e = (1,...,1)T € R?*9 and let us define
P(t
boin = lim () and byay = lim L0} (1.6)

t——00 t—oo
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Theorem 1.4. Let N > 2 be integer and Q < {0,...,N — 1} x{0,..., N — 1}.
Then for every fixed 0 € [0, w/2) such that tan 0 € Q and [—tan 0, 1] = projy A we
have

dimg{a € projgA:dimyg Ep, = 8} = dimy{a € projgA:dimp Eg, = 5§}
= P*(8) foreveryd € [B(6), bmax,

where

P*(8) := il}f{—& + P(1)}.

Moreover, the function P*(8) is continuous, concave and monotone decreasing on

[B(6). bmax].

Because of the special structure of the usual Sierpinski gasket (see Lemma 4.10),
it is possible to give complete spectrum for the packing dimension of the slices.

Proposition 1.5. Let A be the usual Sierpiriski gasket, i.e. N = 2 and Q =
{0, 1}2\{(1, 1)}. Then for every fixed 6 € [0, w/2) such that tan § € Q

dimg{a € projgA:dimp Eg, = §} = P*(8) for every § € [bmin, bmax)-

The organization of the paper is as follows, in Section 2 we prove Proposition 1.1.
In Section 3 we will construct our matrices according to the rational projection and
using their general properties we prove Theorem 1.2. In Section 4 we define the so-
called pressure function corresponding to our nonnegative matrices and using previous
results of Feng and Lau [3], [4], and [6] we prove Theorem 1.3 and Theorem 1.4.

2. Proof of Proposition 1.1

Before we prove Proposition 1.1, we state a general dimension conservation phenom-
ena for self-similar measures of Sierpinski-like carpets. Let N > 2 be integer and
QcC{0,...,N —1}x{0,..., N —1}. Then it is well known that for every positive
probability vector (pg)weq there exists a unique probability measure p satisfying

= popoF,"

we

where the IFS W = {F,},eq are defined in (1.1). Denote by A the attractor of
{Fb}weﬂ~
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Proposition 2.1. For any 6 € [0, /2)
dimg pg + dimg MZ = dimg u for pg-a.e. a,

where jLg = Lo projg and {pca }aeprojy A denote the canonical system of conditional

measures with respect to the partition {proj, Ya):a € projgA}. In particular, for the

Al _ logfQ
natural measure v = = A where s = Tog N (the measure corresponding to the

probabilistic vector py, = (1/82, ..., 1/4R)), we have

log 12
log N

—dimyg vg < dimg Eg, forvg-a.e. x.

Proof. To prove the proposition we apply the results of Furstenberg [7] about ergodic
CP-chains.
We define a measurable map

P[0, 11%) x [0, 1]* —> 2([0, 1]?) x [0, 1],

where #(A) denotes the probability measures of [0, 1]2,

Pl Koty i © Fes
T (¥, x) =( RS FRNES) ,Nx modl),
([Na N )X[Nv N

where x € [+ ]If, k +1) X [ L +1) Moreover, let us define a probability measure ® on
P ([0, 1]?) x [0, 1] that d@(z? x) = d(x)d s, (¥), where p is a given self-similar
measure of A. Then it is easy to see that the measure ® is T -invariant and ergodic.

The statement of proposition follows from Theorem 3.1 in [7]. O

For an alternative proof we refer the reader to Proposition 4.14 and Remark 4.15
in [5].

For a finite length word w € Q" let F,, = F,, o---o F,, , and denote by
G, (0, a) the set of nth level cylinders intersecting the line Ly ,. That is,

Gn(0,a) :={w e Q" Fy(A)N Ly, # 9}. 2.1
Standard calculation gives us

Lemma 2.2. Forany 0 € [0, 7/2),

log #G (6,
dimp Eg , = liminf M
n—00 nlog N

and

- log #1G, (6,
dimp Eg , = lim sup M.
’ n—00 nlog N
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Lemma 2.3. Forany 60 € [0, 7/2)

d,,(a) +dimpEg, < loggN ., a € projgA.
Proof. First, let us observe that
1Gn(0.0a)
vo(By-n(a)) > ET
Hence,
1 By—n
d, (a) = lim inf 2828 (BN (@)
¢ n—>00 —nlog N
lo EGn (%a)
< lim inf —2_F2"__
n—>oo  —nlog N
logft2 . log G, (6, a)
= — lim sup —————
log N n—00 nlog N
log 2
= ogl —dimpEg 4,
log N ’
where the last inequality follows form the previous lemma. O

Proof of Proposition 1.1. Since d,,(a) = dimg vg for vg-almost every a € projyA,
the combination of Proposition 2.1 and Lemma 2.3 proves the statement. O

3. Proof of Theorem 1.2

Through this section we always assume that N } {2 and N 4+ 1 < Q. Moreover,
let @ € [0,7/2) and tan 6 = g be arbitrary but fixed. Let us recall the definition of
projected IFS (1.3) and the definition of matrices (1.4). The projected IFS ¥ = { f,»}
of ¥ = {Fy}weq according to proj, is

x —kp+lg

fk,l(X)=N+ N (k1) e Q.

Divide the interval I = [—g, 1]into p +¢ equal intervals, i.e. [ = [k_;%p, %]
fork = 1,..., p + q. Furthermore, divide /I forevery k = 1,..., p + g into N
. & _ 1k—1-p & k=1-p E+1 _ _
equal parts. Thatis, I; = [—q + Ng g + Ng Jforé§ =0,...,N — 1. For
every £ = 0,...,N — 1 let us define a (p + q) x (p + q) real matrix Ag in the
following way

(Ag)ij = o € Q fu(lj) = I]).
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From the definition of the matrices (1.4) it is easy to see that

p+q N—1
DY Uiy =t2. j=1....p+q. (3.1)

i=1 £=0

In general, for &1,...,&, €{0,...,N — 1} let Ijg‘""’g” be the interval

—l-p I & j-l-p
[t 2[1 _q 5; kel Z an]

By the definition, for the products of the matrices hold

(Ag, -+ Ag,)ij = Hw € Q" fu(I;) = IF75, (3.2)

Because of (3.1) the matrix

| Nl
_ T
P 10 > Al
n=0
defines a Markov-chain on & := {1, ..., p + ¢}. Let us divide the set of states into

two parts. Let

[1]

r={i €B:vg(l;) >0} and E; ={i € E:vy(l;) =0}.

Lemma 3.1. The set &, is a recurrent class and E; is a transient class of the Markov-
chain defined by P. Moreover, E; is aperiodic.

Proof. First, we show thatif i € &, and P; ; > Othen j € E,. Since P;; > 0
there exist w € Q and n € {0,...,N — 1} such that f,(/;) = I}. Therefore
0 < vo(fulli)) = vo () < v(I)).

On the other hand, for every K > 0 sufficiently large and for every j € E, there
exists aw € QX such that Jo(I) € I;. This implies that for every j € E, and every
i € B, (PK) ,j > 0, which proves the statement. O

We note that if projgA = [—tan @, 1] then E, = E and E; = 0. Itis well known
from the theory of Markov-chains that there exists a unique probability vector p such

that p is the stationary distribution of P, i.e. BTP = ET' In particular,

N-1

(X Ae)p=12-p.

£=0
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Lemma 3.2. Foreveryi €{l,...,p+q}and (&1,...,&,) €{0,....N —1}"

giASl o 'Afnﬁ

VG(Ii&’“.’S”) = 1Qn

’

where e; denotes the ith element of the natural basis of RP14.

Proof. First, let us observe that P, =Vve (I;). That is,

N-1
vo(l;) = Y vo(I})
£E=0
_ N—-1 p+q Z Ve([j)
; 1Q
I=1 weQ: fo, (I1))=If

MZ} i

Ve(l) Z( £

j=1

At the second equality we have used that vy is a self-similar measure. Therefore the
vector (vg (I; ))1—1 is a probability right-eigenvector of Zévz_ol Ag. Thus, in general,

+
T vo(l;)
U SRS SR
j=1 n. N &1 &n
wWER .f&(lj)—li

pta

. vg (1)

- ]; nQn (Agl ”'Afn)i,j' 0

Denote A the submatrix of A¢ by deleting the rows and columns of E,. If j € &,
andi € E, then (Ag); ; = Oforevery§ =0,..., N — 1. Hence,

N-1
Do (ADi; =12 je&n (3.3)
i€, £=0

Lemma 3.3. Foranyi,j € E, and &1,...,&,€{0,...,N —1}

(Ag, - Ag))ij = (,4;El "'Agn)i,j-
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Proof. Let us prove by induction. Forn = 2

ptq

D (Ag)ik(Ag)k

k=1

D (Ae)ik(Agyk.j

ke&,

- (Agl Agz)i’f'

(Aé”l AEz)i,j

We used in the second equation that (Ag,)k,; = 0 whenever k € E;. Then
p+a
(Ag, -+ Ag, A§n+1)i,j = Z(Aél v ’Aén)i,k(ASnJrl)k,j'

k=1

Again, (A5n+1)k,j = 0 whenever k € &, so

D (Ag - Ag ik (e, Dk = Y (AL - AL )ik (g, ks

keE, keE,
] r cee r P
- (Afl A$n+1)l’f' =
In particular, an important consequence of Lemma 3.3 is that forevery &1, ..., &, €

{0,...,N—1}andi € &,

AT X
& Ay AP

ve([ifl,...,gn) — ﬁQn ,

(3.4)

where p = (vg(I;))jez, and &; is the i th element of the natural basis of R*Z7. Now,
we define a left-shift invariant measure 7 on the symbolic space ¥ = {0,..., N — 1N,
Endow X with the metric d(§,{) = N7 for & = (£1,&,,...)and ¢ = (81,80, ...),
where n is the largest integer such that & = ¢;(1 < i < n). For a cylinder set

E1,....&6]={1.0,..) el =6, k=1,...,n}let

AT o7 ,oA
e Ag - Agp

n(Er.....&] = o : 3.5)

A

where ¢ = ) ..z ;. By (3.3), nis a probability measure.

F i
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Lemma 3.4. The probability measure 1 is o -invariant and mixing and hence ergodic,
where o denotes the left-shift operator on X.

Proof. First, we prove the invariance. It is enough to prove for the cylinder sets.
Since the vector ¢ is a left-eigenvector of Zévz_ol Ag (3.3), then for a cylinder set

[§1.. ... 6nl

N—-1
N Er B = ) (6 D)
£=0
N-1 éTAsA; . Ag »
- = fQn+1
AR Y.
o
= (&1 &)

To prove the mixing property it is enough to show that for any cylinder sets

[élv""gk] and [;1’---76:1]
nli)fr;ofl([&,.-.fk] No "¢, ....al) = n(&1. ... &Dn((S1. - ... &)

By the definition of 1 (3.5), for sufficiently large n

n(Er - &0 o™ G, )
N-1 5T 5
gAgl...AgkAlrl...Ar kAgl...AEIB

- ¥ =

HQn+l
i15esln—k =0

N—-1
AT r r r n—k r r oA
€ Aél'”ASk(ZAi) Zl'”AQE
i=0

ﬁQn+l

Applying Lemma 3.1 and the basic properties of aperiodic, irreducible Markov chains,
we have
N-1 —k
i (1S 4D

éT
n—00 nQ”—k -

=P

’

which implies the mixing property. O
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Lemma 3.5. Denote by hy, the entropy of measure . If N 4 §Q and N + 1 < Q2
then h, <logN.

Proof. We argue by contradiction. Suppose that 1, = log N. By Theorem 4.10
in [14] and Theorem 4.18 in [14] we have that

N-1 3T 4r oA oT Ar o
b= lim — L T s TR T o Ag - Ag P
T nsoo né T =0 g gQn '
Lseesén=

and the right hand side decreases as n — oo. That is, i, = log N if and only if

éTAg o Ap P 1
W = foreveryn > land &1,...,&, €{0,...,N —1}.
(3.6)

By Lemma 3.1 there exists a K > 0 such that (Zévz_ol Ag)K > 0, i.e. each element
of the matrix is strictly positive. Without loss of generality, we may assume that
K > (p + ¢)? + 1. Then there exists a word (¢, .., {xg) of length K such that
(Z o AL pX—Ap AL > 0. Let A= {0,..., N = *\{(%1,....{x)}. By
Perron Frobemus theorem there exists a p > 0 and u, v vectors such that p is the
largest eigenvalue of the matrix ZSG A Ag and u, v are the corresponding left and

right eigenvectors. Moreover,

. 1 r\n __ T
Jim Q4D = v 37
EeA

By our assumption (3.6)

HQKM 1QFWE -1

—loge (ZA) = NE =logT.
EeA
On the other hand, by (3.7)
nll)n;ogloge (ZA ) = log p.
EeA
kX

K . .. .
So p = QK — ﬂ]\s,z—K but this is a contradiction since QX — NE € Q\Z cannot
be a root of characteristic polynomial of ZSG A Ag, which is a matrix of integer
coefficients. - O
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Proof of Theorem 1.2. Let I" be the natural projection from X to interval [0, 1], that
is,

o0 i:n
L1 b)) =) > (3.8)
1,62 ’;N

Denote /1y, the linear function, mapping Iy to [0, 1], that is, hg (x) = gx —(k—1—p).
The measure

’179 = Z 1)9|Ik oh1:1 = noF_l

kel,

is Nx mod 1 invariant and ergodic by (3.4) and Lemma 3.4. Moreover,

dimg ¥ = min dimg vg|;, o h}' = dimg vp. (3.9)
1<k<p+q k

By the Volume Lemma Theorem 10.4.1 and Theorem 10.4.2 in [13] and Lemma 3.5,
we have

h
dimg Uy = ﬁ <1. (3.10)
The statement of the theorem follows from (3.9), (3.10) and Proposition 1.1. O

4. Proof of Theorem 1.3 and Theorem 1.4

In the rest of the paper we assume that projg A = [—tan 6, 1]. In the previous section
we have shown that the matrices, constructed in (1.4) can be used for determine
the dimension of the projected natural measure. In this section we show that the
matrices can be used for determine the box dimension of the slices, with the additional
assumption that the projection is an interval.

We note that if projgA = [—tan 0, 1] then E, = E and E; = #. In particular,
Ag = Ag forevery £ € {0,..., N — 1}.

Lemma 4.1. Let Q € {0,....N —1}2 and 0 € [0, w/2) such that tan 6 = g and

projoA = [—tan 6, 1]. Then, fora = k_% + é Yomey % we have

n

logeyAg, -~ Ag, e

dimp Eg,, = lim inf nlog N
and
logeyAg, -~ Ag, e

n

dimgEg, = lims
BLfG.a n—)oL<1>p n 10g N

’

where ey, is the kth element of the natural basis of RPT4.
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Proof. Leta = k_lT_p + é Yoo % Let us recall the definition (2.1) of G, (6, a),
which is the number of cylinder sets intersecting the line Lg ,. Since projyA =
[—tan 6, 1] let us observe that for every n > 1 and every w € Q"

Fo((0,11) NLgy #0 < Fu(A)N Loy # 0.

Hence
1Gn(0.a) = fH{w € Q": F,([0.11*) N Lo 4 # 0}.

Since tan 6 is rational,

Fp([0,11) NLgy #0 < thereexistsal < j < p+gq
such that fg(]j) — 151,...,&

Using (3.2) we have ¢; Ag, -+ Ag,e = G (0,a). The statement follows from
Lemma 2.2. O

Proposition 4.2. Let Q € {0,...,N — 1}2 and § € [0, /2) such that tan § = g
and projgA = [—tan 0, 1]. Then there exists a constant § = P(0) depending only
on 6 such that

dimyg Eg, = dimp Eg, = B(0) for Leb.-a.e. a € projgA.

For the proof of Proposition 4.2 we refer to Section 7 in [9].

Now, let us recall the definition of the pressure function P (t), and b, defined
in (1.5), (1.6), i.e.

P(¢) = lim lo Ni (eT Ag, -+~ Ag e)' and by = lim LU
~ n—oconlogN gé : 0_ &1 En’ M e
1seeesSn=

Lemma 4.3. The pressure function P(t) exists for every t € R, and monotone
increasing, convex and continuous. Moreover, P(t) is continuously differentiable for
everyt > 0.

Proof. By Lemma 3.1, there exists a K > 0 such that (Z?’:_ol Ag)X > 0. Then
the existence follows from Lemma 2.2 in [3]. The differentiability follows from
Theorem 3.3 in [6], and the monotonicity, convexity, and continuity property can
be proven by standard argument. The continuity of the derivative is not explicitly
mentioned in Theorem 3.3 in [6], but it follows from convexity. O

Theorem 4.4 ([3], Theorem 1.1). Let Ag be non-negative matrices for § = 0, ...,
N — 1. If there exists a K > 0 such that Zf:o(zg;ol Ag)" > 0 then

loggTAg1 e Ag

dimg {§ € S lim

€ Y . px
Jim nlog N = oz} = 1rt1f{ at + P(t)} =: P*(a),
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where dimpy is defined according to the metric d(§,) = N7" for § = (§1,62,...)
and § = (81,82, ...), where n is the largest integer such that § = §;(1 <i <n).

Lemmad4.5. Foreveryt > Othereisaunique ergodic, left-shift invariant Gibbs meas-
ure [ty on X such that there exists a C > O that forany (&1,...,&,) € {0,..., N—1}*

pi (€1, - Enl)

c!< <C.
T (eTAg, -+ Ag,e)! NTPO
Moreover,
dimp p, = —tP'(t) + P(t)
and -
1 Ag - A
lim —2£ 26 A6E _ pryy for py-aa. (£1,6,...) € 3.
n—00 nlog N

The proof of the lemma follows from [6], Theorem 3.2, and [6], Proof of The-
orem 1.3.

Lemma 4.6. Foreveryt > 0

N—-1
P'(@) =nli>rgonlo N Z I‘Lt([slm--asn])lOgQTASl e Ag,e
g £1,...En=0
N-1
=il ey 2 el G logel g g e
- £1,..,6n=0

where [, is the Gibbs measure defined in Lemma 4.5.
The proof of the lemma follows from [4], Theorem 1.2, and [4], Lemma 2.2(ii).

Lemma 4.7. Forany § > 0

loge” Ag, -+ Ag,e

dimp {§ € X:lim sup

> 6§} < inf{-6t + P(¢
m su nlog N = 8} = inf{~61 + P (1)}

Proof. We will prove the upper bound with the method of Olsen and Winter [12].
Let ¢ > 0 be arbitrary but fixed. Let us define the set of cylinders

log QTAEl o Afkg}

An(e)IZ{[éh...,ék]:an,5—85 Klog NV

It is easy to see that the set

U &l

[E1,.Ex]€An (o)
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covers the set

locel Az -+ A
Gs = {E € X:lim sup %8¢ 7 L 8}.
- n—o0 nlog N

Let B, (¢) be the set of disjoint cylinders in A, (¢) such that

U &&= U & &

[£1,,Ex]€Br (e) [E1,.Ex]€An (o)

Then for every ¢ > 0

Je;s_zn-i-P(szs(Gg) < Z N—k(—8t+P(t)+2s)
[£1,.-.6k]1€BR (e)

< N7"E Z N—kP(t) (QTA’;'] . A’;'kg)t
[E1,...6k]€Bn (e)

By Lemma 4.5

KOGy <N Y En 8D < N
[61.....5k]€Bn (e)

Since ¢ > 0 and ¢ > 0 were arbitrary,

dimg Gg < ing{—& + P(1)}. O
>

Before we prove our main theorems let us introduce p + ¢ projecting maps from
Y. to Ij. That s,

k—1—
I = =22,
q

=
k=1 N
Denote Eg r) the union of slices corresponding to I'x (§), i.e.
p+aq
Eore = |J Eorco.
k=1

Proof of Theorem 1.3. By Proposition 4.2, it is enough to show that

dimg{a € projgA:dimy Eg, =dimp Eg, =5 —1} <1 4.1)
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(we remind that s = log §€2/log N is the Hausdorff dimension of the carpet). How-
ever,

dimg{a € projgA:dimg Eg, = dimp Eg, = 5 — 1}
< dimpg{a € projgA:dimp Eg, = s — 1}

p+q
= dimy | J{a € It:dimp Eg o =5 — 1}
k=1

p+q
= dimgy U {g € X:dimp EG,Fk(ﬁ) =5 — 1}
k=1

< dimH{§ € X:dimp Eg,p@ >s5—1}.
By Lemma 4.1 and Lemma 4.7
dimg{§ € X:dimp Egrg = s — 1} < lir;%{—(s — Dt + P(1)}.
By the definition of pressure function P (¢) we have P(0) = 1, P(1) = 5. Moreover,
by Lemma 4.3 and Lemma 4.5, we have P’(1) = s —dimg n > s — 1, where 7

is the probability measure defined in (3.5). Then there exists a ¢’ € [0, 1], such that
P(") <1+ (s—1)t’. Hence

}Ii%{_(s -+ PO —(s—1t' + Pt <1,

which implies (4.1) and completes the proof. O

Before we prove Theorem 1.4, we need two technical lemmas.

Lemma 4.8. Let ji; be the measure defined in Lemma 4.5. Then for p;-a.e. § € ¥

dimH Eg’p(g) = dimp Eg,p(g) = dimB Eg’r(g).

Proof. Let H:(x,y) — (x, px —qy mod 1) be amap of S! x S into itself. Then
H(A) € S! x S compact, Ty x Ty-invariant. Since p; is left-shift invariant then
py o ™1 is Ty-invariant. Using Proposition 2.6 in [8] we have for ;, o " 1-ae. x

dimg 7~ 1(x) = dimp 77! (x) = dimp 7~ (x),

where 7: H(A) — S is the projection to the first coordinate.

Let J: x > —gx mod 1 be the mapping proj, A into S'. Thenforeveryk,! € E
and £ € X, J(Tx(§)) = J(I1(§)) = ['(§), where I': ¥ +— [0, 1] is defined in (3.8).
Observe that 7~ '(I'(§)) = H(Egr)). The proof is completed by the fact that
dim H(Eg,re) = dim Eg 1), where dim denotes packing, Hausdorff and box
dimension simultaneously. O
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Lemma 4.9. For every § € (B(0), byax) there exists a 0 < t = tg such that
P ,([5) =4.

Proof. By Lemma 4.3, the function P’(¢) is monotone increasing and continuous for
t > 0, hence it is enough to show that 8(0) = lim,_o+ P’(¢).
First, we prove that

loge” Ag, -+ Ag,e

I =dimy {§ € = lim

n—00 nlog N - ﬁ(e)} = inf{—pO) + P@)}.

4.2)

The second equality follows from Theorem 4.4. Using Theorem 1.3, we have that
forevery k € E

£({a € Iy:dimp Egq = BO)) = L(Iy) = é

where £ denotes the Lebesgue measure on the real line. Let A be the uniform
Bernoulli measure on X. Using that ¢ * £|;, = Ao Fk_l, we have

I =gx£({a € lx:dimp Egq = f(0)}) = A({§ € Z:dimp Egr,z) = B(0)})

Hence, N
p+q

1 =4( ()& € S:dimp Egry ) = BO)})
P (4.3)

. : IOgQTASI Afng _
< A({g € % lim_ o = ,8(9)}).

Since dimgy A = 1, we get the first equation in (4.2).
The other consequence of (4.3) combined with the sub-additive ergodic the-
orem [14], p. 231, is that
N-1

1 T
Z Wlogg Ag, - Ag,e.
E1se-En=0

Moreover, it follows from the definition of Gibbs measures {j;};~0, defined in

Lemma 4.5, that u; — A weakly as t — 0+. Therefore, by Lemma 4.6,

B(6) = lim

n—oco nlog N

N-1
. / < . T cee
[lim P'(1) < A g N g 2;: Ouz([él,...,én])IOgé Ag, - Ag,e
1seesSn=
[l
_ T
1seeesSn=—

Since it holds for every n > 1, we have lim,, o+ P’(t) < B(6).
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On the other hand, it follows from Theorem 4.4 that, for every t > 0, we have
1 <—pB(0)t + P(t). Since P(0) = 0 and P(¢) is continuously differentiable for
t > 0, we have B(0) < lim;—o+ P’'(¢). O

Proof of Theorem 1.4. Denote by dim either the Hausdorff or packing dimension and
let § € [B(0), bmax) then

p+q
dimpg{a € projgA:dim Eg , = §} = dimg U {a € Iy:dim Eg , = §}.
k=1
Then using the properties of I'y: X +— I, we get
p+q
dimy | J{a € Ix:dim Eg, = 8} = dimp {§ € £:3k € B, dim Egr, ) = 5}
k=1

By simple property of dimension, we get
dimH{§ € ¥:3k € E, dim EG,F/\»@) = 5}
> dimH{§ € X:dimy Eg,p(g) = dimp Eg,p(g) = dimp Eg,p(g) = 5}

There are two possibilities, if 6 = S(6) than we consider the uniform measure A and
dimg A = P*(B(0)) = 1. Otherwise, by Lemma 4.9, there exists a 5 > 0 such
that P’(t5) = . Lemma 4.5 implies that dimg p,5 = —t5 P'(t5) + P(ts) = P*(5).
Using Lemma 4.8 we get

dimg{a € projgA:dim Eg , = 6}

> dimH{§ € X:dimyg Egre = dimp Eore = dimp Egre = 8}

> dimpg g

= P*(9),

which proves the lower bound. For the upper bound, using Lemma 4.7
dimp{§ € X:3k € E, dim Eg 1, 5) = 8}

< dimg{§ € X:dimpEg rg) > 8}
< tir;%{—«?t + P(1)}.

The function P(t) is convex (Lemma 4.3), hence ¢t +— —§¢ + P(t) is convex as
well. So either § = B(6) then lim,o4+ P'(t) = 6 = B(0) or § > B(H) then the
convexity of the function implies that

i1}f{—5t + P(t)} = im:){—St + P(1)} < thereexistsat > 0that P'(r) = 6.
t>
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Therefore,
dimg{a € projgA:dim Eg , = §} < in%{—St + P(t)} = P*(5),
>

which completes the proof. O

Now we will turn to the special case of Sierpifiski gasket.

Lemma 4.10. Suppose that A is the Sierpiriski gasket (ie. N = 2 and Q =
{0, 1}2\{(1, 1)}) then for any 0 € [0, /2) such that tan § € Q the set

o0
M:= | o*E1.6....) e Z:Vn = 13i,j € B.(Ag, - Ag,)i; = 0}

k=—00

has Hausdorff dimension 0. Moreover, for every § € T\N
ﬁBEe,rk@ = MBEQ,F@ = mBEe',l“(ag), k=1,....,p+q.

Proof. The first part of the lemma follows from Proposition 3.2 in [1].
To prove the rest of the statement, let us observe dimp Eg,, ® = dimp Eq,r@)
for every § € ¥ and k € E. Moreover, since gTAg <#Q-el and

loge” Ag, -~ Ag,e

n
9

dimg E = lim su
BLoT() n_)oop nlog N

we have EB EQ’F(S) < ﬁg EQ’F(O—S).
If § ¢ M then there exists a K = K(§) such that

Agl ---AEK > 0.
Therefore, for everyn > K + 1, ggAgl - Ag,e > gTAEKJrl - Ag, e for any k =

1,..., p+q. This implies that dimp Eg , (5) > dimp Eg ;- k). Hence,

di_mB EG,F(UKg) > di_mB Eg,p(ag)

>

o

1mpg Eg,p(g)

A%
=

imp Eg,r; (¢)

>

o

imBEG,F(UKg). O
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Proposition 4.11. If A is the Sierpiriski gasket then for every § ¢ M and k € E

di_mB Eg,pk(g) = dimp Eg’pk(g).

Proof. Let§ ¢ M and k € E. Moreover, let {A;} be an arbitrary countable de-

composition of Eg .- Since the set Egr, (¢) is compact, there exists a j such

that A; contains a non-empty interior in Eg r, (¢). That is, there exists an ¢ > 0 and

X € Eg (¢ such that B.(x) N Eg 1, ) € Aj. In particular, there exists ann > 1

and (wo, ..., wp—1) € Q" suchthat Fyy, .0, (A)NEgr, (&) € A;. Itiseasy tosee

that Fay,....0,—1 (A) N Eor ) = Foo,...wn—1 (Eo,r;ong) forani € {1,..., p+q}.
Using Lemma 4.10 and the fact that M is o invariant, we get

dimgA; > dimp Fu,,....0,_, (Egr, (@) = dimpg Egr;ong) = dimp Egri)-
The statement follows from the definition of packing dimension. O
Proof of Proposition 1.5. Let § € [bmin, bmax] arbitrary, then
dimp{a € projgA:dimp Eg, = &} = dimp{§ € X:3k € Edimp Egr, 5) = 6}
Using Proposition 4.11 and Lemma 4.10
dimg{§ € X:3k € E, dimp Eg 1, ) = 0}
= dimg{§ € £:3k € €, dimpEgr, ) = 6}
= dimg {§ € £:dimp Eg,r¢) = 5}

The statement follows from Lemma 4.1 and Theorem 4.4. O
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