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Abstract. In this paper we construct measures supported in Œ0; 1� with prescribed multifractal
spectrum. Moreover, these measures are homogeneously multifractal (HM, for short), in the
sense that their restriction on any subinterval of Œ0; 1� has the same multifractal spectrum as
the whole measure. The spectra f that we are able to prescribe are suprema of a countable set
of step functions supported by subintervals of Œ0; 1� and satisfy f .h/ � h for all h 2 Œ0; 1�. We
also find a surprising constraint on the multifractal spectrum of a HM measure, that we call
Darboux theorem for multifractal spectra of measures: the support of its spectrum within Œ0; 1�
must be an interval. This result is optimal, because there exists a HM measure with spectrum
supported by Œ0; 1� [ ¹2º. Using wavelet theory, we also build HM functions with prescribed
multifractal spectrum.

Mathematics Subject Classification (2010). Primary 26A16, 28A80, 28C15; Secondary
28A78, 42C40.

Keywords. Hausdorff dimensions and measures, multifractal analysis, Hölder exponent,
regularity of measures and local dimensions, wavelets.

1The first author received support from the Hungarian National Foundation for Scientific research
K075242 and K104178.

2The second author is partially supported by the grant ANR MUTADIS ANR-11-JS01-0009.



296 Z. Buczolich and S. Seuret

1. Introduction

The multifractal spectrum is now a widely studied subject in analysis. It allows
one to describe the local behavior of a given Borel measure, or a function. Our
goal is to investigate the possible forms that a multifractal spectrum can take. We
obtain a new Darboux-like theorem for the spectrum of homogeneous multifractal
measures, and we are able to construct measures with prescribed non-homogeneous
and homogeneous multifractal spectrum obtained as suprema of countable sets of step
functions, when the local dimensions of the measure are less than 1. Using wavelet
methods, we extend our result to non-monotone functions.

Before exposing our results, let us explain how the local regularity is quantified.
Recall that the support of a Borel positive measure, denoted by Supp.�/, is the
smallest closed set E � Rd such that �.Rd n E/ D 0.

Definition 1.1. The local regularity of a positive Borel measure � on Rd at a given
x0 2 Supp.�/ is quantified by the (lower) local dimension h�.x0/ (also called local
Hölder exponent), defined as

h�.x0/ D lim inf
r!0C

log�.B.x0; r//

log r
; (1)

where B.x0; r/ denotes the open ball with center x0 and radius r . When x0 …
Supp.�/, by convention we set h�.x0/ D C1.

Let Z 2 L1
loc.R

d /, and ˛ > 0. The function Z belongs to the space C ˛
x0

if there
are a polynomial P of degree less than Œ˛� and a constant C > 0 such that

for every x in a neighborhood of x0, jZ.x/ � P.x � x0/j � C jx � x0j˛: (2)

The pointwise Hölder exponent of Z at x0 is hZ.x0/ D sup¹˛ � 0W f 2 C ˛
x0

º:

We mainly focus on real functions and measures, i.e. d D 1. Even more, we
consider only measures and functions whose supports are included in Œ0; 1�: this has
no influence on our dimension questions.

Observe that when hZ.x0/ � 1, the pointwise Hölder exponent ofZ at x0 is also
given by the formula

hZ.x0/ D lim inf
x!x0

log jZ.x/ �Z.x0/j
log jx � x0j : (3)

Of course, there is a correspondence between the exponents and the spectrum of
a measure � and the same quantities for its integral F�.x/ D �.Œ0; x�/. Comparing
formulae (1) and (3), we see that when h�.x0/ < 1, hF�

.x0/ D h�.x0/. Problems
may occur when h�.x0/ � 1 due to the presence of a polynomial in (2). Since we
mainly consider exponents less than 1 for measures, the problem may rise only when
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h�.x/ D 1. In order to guarantee that h�.x/ D 1 is equivalent to hF�
.x/ D 1 in

our results, we add to each measure another fixed measure Q� satisfying hF Q�
.x/ D 1

for all x (see Proposition 1.16 for the existence of Q�). Hence, in the sequel, we work
equivalently with continuous monotone functions on the interval Œ0; 1�, or with diffuse
measures supported on Œ0; 1�.

Definition 1.2. The multifractal spectrum of a measure � (resp. a function Z) is the
mapping d� (resp. dZ) defined as

h � 0 7�! d�.h/ WD dimE�.h/ (resp. dZ.h/ WD dimEZ.h/),

where

E�.h/ WD ¹xW h�.x/ D hº (resp. EZ.h/ WD ¹xW hZ.x/ D hº). (4)

By convention, we set dim ; D �1. The support of the multifractal spectrum of �
(resp. of Z) is the set

Support.d�/ D ¹h � 0W d�.h/ � 0º (resp. Support.dZ/ D ¹h � 0W dZ.h/ � 0º).
(5)

Observe that d�.h/ � 0 as soon as there is a point in E�.h/. The multifractal
spectrum describes the geometrical distribution of the singularities of the measure or
the function under consideration. It is natural to investigate the forms possibly taken
by a multifractal spectrum; this is our goal in this paper.

A first question concerns the prescription of the local dimension of a measure or a
function. The pointwise Hölder exponents of functions are well understood (see [12],
[5], and [18]): given a continuous function f W Œ0; 1� ! R, the mapping x 7! hf .x/

is the liminf of a sequence of positive continuous functions, and, reciprocally, any
liminf of a sequence of positive continuous functions is indeed the map x 7! hf .x/

associated with some continuous function f .
It is much more delicate to deal with the local dimensions of measures, as stated

by the following lemma.

Lemma 1.3. Let � be a probability measure supported on the closure of an open set
� � Rd . If the mapping x 7! h�.x/ is continuous, it is constant equal to d .

Lemma 1.3 is quite easy (see Section 2), but it helps to understand that, from the
local regularity standpoint, measures are less flexible than functions.

Definition 1.4. A measure � supported in Œ0; 1� is homogeneously multifractal (for
short, HM) when the restriction of � to any non-degenerate subinterval of Œ0; 1� has
the same multifractal spectrum, i.e. for any non-empty subinterval U � Œ0; 1�,

for any h � 0, dim¹x 2 U W h�.x/ D hº D dim¹x 2 Œ0; 1�W h�.x/ D hº
D d�.h/:

A similar definition applies to HM functions ZW Œ0; 1� ! R.
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Some results related to the prescription of multifractal spectrum have already
been obtained. The main result is due to Jaffard in [11], and concerns only general
functions (non-monotone). Jaffard proved, by wavelet methods, that any supremum of
a countable family of positive piecewise constant functions with support in .0;C1/

is the multifractal spectrum of a function ZW Œ0; 1� ! R, which is non-HM and
non-monotone. This interesting result yields no information on the possible spectra
of measures (which are integrals of positive non-decreasing functions), nor on HM
measures or functions.

In this article, we obtain the first results for the prescription of multifractal spec-
trum of measures, both HM and non-HM, and also of HM functions. In addition, when
the measures � are homogeneously multifractal, we discover a surprising constraint
on Support.d�/.

Our first result is a Darboux-like theorem for multifractal spectra of HM measures
(thus, it holds also for monotone functions) for exponents less than 1. Darboux’s
theorem for a real differentiable function ZW R ! R asserts that the image Z0.I /
of any interval I � R by the derivative of Z is an interval. We obtain a similar
result for HM measures with exponents less than one: the support of the multifractal
spectrum of �, Support.d�/ defined by (5), always contains an interval. In other
words, there is no spectrum gap for exponents less than 1 in the multifractal spectrum
of HM measures. The necessary connectedness of Support.d�/ when � is HM is
a delicate issue. Establishing conditions under which Support.d�/ computed using
limit exponents (not liminf exponents, as we do here) is necessarily connected, would
be very interesting and useful in some situations, for instance for self-similar measures
with overlaps, self-affine measures, or Bernoulli convolutions; see [8] for instance
and also [10], [9], and [17] for the existence of an isolated exponent for the third
convolution of the Cantor measure and generalizations. We prove the following.

Theorem 1.5. For any non-atomic HM probability measure � supported on Œ0; 1�,
Support.d�/ \ Œ0; 1� is necessarily an interval of the form Œ˛; 1�, where 0 � ˛ � 1.

Remark 1.6. Actually a more general theorem, Theorem 3.3, will be proved, which
is much easier to apply than Theorem 1.5, because it requires only the density of
E�.˛/ on the support of the measure �, where ˛ D inf.Support.d�//. In particular,
Theorem 3.3 can certainly be applied to very large classes of self-similar or self-affine
measures.

Theorem 1.5 is false for non-monotone functions: the non-differentiable Riemann
function X

n�1

sin�n2x

n2

is HM, but its multifractal spectrum is supported by the set Œ1=2; 3=4�[¹3=2º, which
admits an isolated point [13]. This theorem is also false for exponents greater than
one, as stated by the following complementary result proved in [3].
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Proposition 1.7. There is a HM measure � such that Support.d�/ D Œ0; 1�[ ¹2º.

Nevertheless, one can derive a theorem equivalent to Theorem 1.5 for the limsup
exponents greater than 1 (i.e. when the liminf in (1) is replaced by a limsup) using
an argument of inversion of measures, i.e. by considering the inverse measure ��1

of � defined as ��1.Œ0; �.Œ0; x�/�/ D x. This inversion procedure transforms liminf
exponents for � into limsup exponents for ��1. The argument is due to Mandelbrot
and Riedi in [16], and the details are left to the reader. The associated result using
the upper multifractal spectrum defined as

d�.h/ D dim
°
xW lim sup

r!0C

log�.B.x; r//

log r
D h

±

is the following theorem.

Theorem 1.8. For any non-atomic HM measure supported on Œ0; 1�, Support.d�/\
Œ1;C1/ is necessarily an interval of the form Œ1; ˛� where ˛ 2 Œ1;C1�.

Our second main result deals with the prescription of multifractal spectrum of a
non-HM measure. It is known (see Proposition 2.1) that the multifractal spectrum of
a probability measure � always satisfies d�.h/ � min.h; 1/, for every h � 0.

Let us introduce functions which are candidates to be a multifractal spectrum.

Definition 1.9. For every function f W Œ0; 1� ! Œ0; 1�[ ¹�1º, we define

Support.f / D ¹xW f .x/ > �1º
and Support�.f / as the smallest interval of the form Œh; 1� containing Support.f /.

This definition is analogous to the definition of the support of the multifractal
spectrum of a measure or a function as defined in equation (5).

Definition 1.10. The set F consists of functions f W Œ0; 1� ! Œ0; 1�[¹�1º satisfying
the following: for each f 2 F , there exists a countable family of functions .fn/n�1,
fnW Œ0;C1� ! Œ0; 1�[ ¹�1º such that

� for everyn � 1, Support.fn/ is a closed, possibly degenerate interval In � Œ0; 1�,
� infn�1 min.In/ > 0,
� fn is constant over In, and for every x 2 In, fn.x/ � x,
� for every x 2 S

n�1 In, f .x/ D supn�1 fn.x/.

The set F contains for instance the continuous functions and the lower semi-
continuous functions (provided that they satisfy f .x/ � x) supported by subintervals
of Œ0; 1�, and one can also allow functions fn with degenerate, one-point supports.
We prove the following theorem.
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Theorem 1.11. For every f 2 F , there is a Borel probability measure �, supported
by Œ0; 1� such that the multifractal spectrum of � satisfies

(i) for all h 2 Support.f / n ¹1º, d�.h/ D f .h/;

(ii) d�.h/ D �1 if h 2 RC n Support.f /;

(iii) the set of points ¹x 2 Œ0; 1�W h�.x/ D 1º has Lebesgue measure 1.

In particular, Support.d�/ D Support.f / [ ¹1º.

The proof of Theorem 1.11 is somewhat classical: we concatenate measures �n

whose spectra are (close to be) the functions fn (used in Definition 1.10). When
dealing with HM measures, the result is different.

Theorem 1.12. For every f 2 F , there is a HM Borel probability measure �,
supported by Œ0; 1� such that the multifractal spectrum of � satisfies

(i) for all h 2 Support�.f / n ¹1º, d�.h/ D max.f .h/; 0/;

(ii) d�.h/ D �1 if h 2 RC n Support�.f /;
(iii) the set of points ¹x 2 Œ0; 1�W h�.x/ D 1º has Lebesgue measure 1.

In particular, Support.d�/ D Support�.f /.

The notation d�.h/ D max.f .h/; 0/ indicates that either h 2 Support.f /, which
implies f .h/ � 0 and d�.h/ D f .h/, or h 2 Support�.f / n Support.f /, and in this
second case d�.h/ D 0, except for h D 1, for which d�.1/ D 1; see Figure 1.

Observe that, by Theorem 1.5, in Theorem 1.12 the intersection of Support.d�/

with Œ0; 1� must be an interval. This is why we introduced Support�.f /, and why
Theorems 1.11 and 1.12 differ. Theorem 1.12 is optimal for the class of functions F

when Support.d�/ is included in Œ0; 1�.

d�.h/

1

1 h0

d�.h/

1

1 h0

Figure 1. Spectrum of a non-HM measure (left) and a HM measure (right).
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The proof of Theorem 1.12 is quite original. The method consists in building a
sequence of measures�n by applying an iterative algorithm which allows to superpose
various affine spectra; it is then proved that the sequence .�n/n�1 converges to a limit
measure�which enjoys the required multifractal properties. Applying this algorithm
iteratively, we loose control on the local dimensions of the limit measure �, but only
on a zero-dimensional set of exceptional points. It is really nice that Theorem 1.5
asserts that this is the normal situation (hence giving the optimality of Theorem 1.12),
since an uncountable set of points with new exponents appears for HM measures.
Theorems 1.5, 3.3 and Lemma 3.2 can also help us to verify that after this modification
we still have a HM measure.

Remark 1.13. Although the measures built in Theorem 1.12 have the same multi-
fractal spectrum on any interval, they do not have to satisfy in general any kind of
multifractal formalism (their spectrum has no reason to be concave).

Remark 1.14. The key point to prove Theorems 1.11 and 1.12 is the explicit construc-
tion of a non-HM measure � which has an affine spectrum, achieved in Theorem 4.1
in Section 4. Theorem 4.1 can be admitted at first reading, the other proofs use only
the existence of such measures.

We have a similar result for the prescription of spectra of monotone functions.

Theorem 1.15. For every f 2 F , there exists a HM strictly monotone increasing
continuous function ZW Œ0; 1� ! R satisfying

(i) for all h 2 Support�.f /, dZ.h/ D max.f .h/; 0/;

(ii) dZ.h/ D �1 if h 2 RC n Support�.f /,
(iii) the set of points ¹x 2 Œ0; 1�W hZ.x/ D 1º has Lebesgue measure 1.

There is a subtle difference between Theorems 1.15 and 1.12 concerning the
exponents larger than 1. This difference is due to the fact that (2) eliminates the
polynomial trends, while (1) does not: hence if a monotone function Z is exactly
linear with positive slope around a point x, one has hZ.x/ D C1, whilst for the
corresponding measure � (the derivative of F ) one has h�.x/ D 1. Hence, to prove
Theorem 1.15, it is enough to get rid of the points ¹x 2 Œ0; 1�W hZ.x/ > 1º by adding
the function constructed in the following proposition, proved in [3].

Proposition 1.16. There exists ZW Œ0; 1� ! Œ0; 1� a strictly monotone increasing HM
function with hZ.x/ D 1 for all x 2 Œ0; 1�.

It is also clear that Theorem 1.15 implies Theorem 1.12 if we consider the measure
� for which �..a; b// D .Z.b/ �Z.a//=.Z.1/ �Z.0//, for all 0 � a < b � 1:

Our final result concerns the prescription of the spectrum of HM non-monotone
functions, which are more “flexible” than HM monotone functions. Combining The-
orem 1.15 with wavelet methods, we obtain the following result.
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Theorem 1.17. Let 0 < ˛ < ˇ be two real numbers, and consider f 2 F . There
exists a continuous HM function ZW Œ0; 1� ! Œ0; 1� satisfying

(i) for all h 2 .˛ C .ˇ � ˛/ Support�.f // n ¹ˇº,

dZ.h/ D max
�
f

�h � ˛

ˇ � ˛

�
; 0

�
;

(ii) dZ.h/ D �1 if h … ˛ C .ˇ � ˛/ Support�.f /,
(iii) the set of points ¹x 2 Œ0; 1�W hZ.x/ D ˇº has Lebesgue measure 1.

The fact that the functions Z constructed in Theorem 1.17 are non-monotone
allows one to take any support for the multifractal spectrum of Z. Theorem 1.17
is certainly far from being optimal, and the most general form of the multifractal
spectrum of a function is an open issue. This leads to some open questions.

Question 1. How to characterize and to prescribe local dimensions mapping h 7!
d�.h/ of probability measures �? of HM probability measures �?

Question 2. How to prescribe the multifractal spectrum with exponents larger than
one for measures? Same questions for a HM spectrum.

Question 3. Characterize the most general form of the multifractal spectrum of a
function, or of a measure? By Theorem 1.5 it is not the same for functions and
measures. Can one state something more precise?

Question 4. Characterize the most general form of the multifractal spectrum of a
function, or of a measure satisfying a multifractal formalism?

Question 5. What about higher dimensional results?

Let us finally mention that, since the writing of this paper, some of these questions
have been addressed in [1].

The paper is organized as follows. Section 2 contains preliminary results, and
the proof of Lemma 1.3. In Section 3, we prove the Darboux Theorem 1.5 for HM
measures, using a maximal inequality result (Proposition 3.1). Section 4 presents
the construction of a non-HM monotone function with an affine increasing spectrum.
As explained in Remark 1.14, the proof of Theorem 4.1 can be omitted upon a first
reading. Using this construction, we prove Theorem 1.11 in Section 5. In Section 6,
we develop an iterative algorithm which yields a sequence of monotone functions
converging to a HM monotone function according to the constraints of Theorem 1.12.
Finally, using wavelet methods, non-monotone HM functions with spectra which are
dilated and translated versions of the function set F are built in Section 7.
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2. Notation and preliminary results

The open ball centered at x 2 R and of radius r is denoted by B.x; r/. By B.x; r/
we denote the closed ball.

For a set A � Rd we denote its diameter by jAj and by �.A/ its d -dimensional
Lebesgue measure. int(A/ stands for the (open) interior of A.

The sum of two non-empty sets isACB D ¹aCbW a 2 A; b 2 Bº forA;B � Rd .
We refer to [6], [7], and [14] for the standard definition of the Hausdorff mea-

sure H s.E/ and Hausdorff dimension dim.E/ of a set E.
We will use the level setsE� .h/ of the Hölder exponents (4), but also the following

sets related to the Hölder exponents:

E
�
Z.h/ D ¹x 2 Œ0; 1�W hZ.x/ � hº and E�

� .h/ D ¹x 2 Œ0; 1�W h�.x/ � hº: (6)

Standard results on multifractal spectra of monotone functions and measures give
upper bounds for their Hausdorff dimension.

Proposition 2.1 ([4]). Let � be a Borel probability measure on Œ0; 1�.

� For every h 2 Œ0; 1�, dimE�
� .h/ � h.

� In particular, for every h 2 Œ0; 1�, d�.h/ D dimE�.h/ � h.

� The same holds forE�
Z.h/ andEZ.h/ for any monotone functionZW Œ0; 1� ! R.

From this proposition one deduces Lemma 1.3.

Proof of Lemma 1.3. Assume that the mapping x 7! h�.x/ is continuous, and that
h�.x0/ ¤ d for an x0 2 �. By continuity, for some constants 0 < " < M , one has
" � jh�.x/�d j � M for all x in an open ballB � � around x0 such that�.B/ > 0.

If h�.x/ � d � "when x 2 B , then dimH .¹x 2 B W h�.x/ � d � "º/ D d , which
is impossible by Proposition 2.1.

If h�.x/ � d C " when x 2 B , then the argument is as follows. Fix � > 0. For
every x 2 B , there exists 0 < rx < � such that B.x; rx/ � B and �.B.x; rx// �
jB.x; rx/jdC"=2. Hence, ¹B.x; rx/ºx2B forms a covering of B by balls centered at
points ofB . By Besicovitch’s covering theorem, there is an integerQ0.d/ depending
only on the dimension d such that one can findQ0.d/ families Fi , i D 1; : : : ;Q0.d/
of disjoint balls amongst the balls B.x; rx/ such that

B �
[

iD1;:::;Q0.d/

[
B02Fi

B 0:
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All the balls within one Fi are disjoint, hence (using that �.B 0/ D Cd2
�d jB 0jd

for any ball B 0 � Rd , where Cd is the volume of the unit ball in Rd )

�.B/ �
Q0.d/X
iD1

�.
[

B02Fi

B 0/

D
Q0.d/X
iD1

X
B02Fi

�.B 0/

�
Q0.d/X
iD1

X
B02Fi

jB 0jdC"=2

� �"=2

Q0.d/X
iD1

X
B02Fi

jB 0jd

� �"=22d

Cd

Q0.d/X
iD1

X
B02Fi

�.B 0/

� �"=22d

Cd

Q0.d/�.B/:

Letting � tend to zero we obtain �.B/ D 0, which is impossible.

3. The Darboux theorem for HM measures

3.1. A maximal inequality. We need a variant of the maximal inequality used for
the deduction of the Hardy–Littlewood maximal inequality. In the sequel, we always
consider the case d D 1, but the next proposition holds in any finite dimension, d .

Proposition 3.1. Suppose that I � Œ0; 1�d is an open ball, � is a measure on Œ0; 1�d ,
0 < ˇ � 1 and set

M�
I;ˇ �.x/ WD sup

°�.B.x; r//
.2r/dˇ

W r > 0; B.x; r/ � I
±
:

Then, there exists a constant Q.d/ > 0 (depending on the dimension d only) such
that for all t > 0, the set M�

t D ¹x 2 Œ0; 1�d WM�
I;ˇ
�.x/ > tº satisfies

�.M�
t / � Q.d/�.I / jI jd.1�ˇ/

t
:



Measures and functions with prescribed spectrum 305

Proof. For every x 2 M�
t , there is rx such that �.B.x; rx// � t .2rx/

dˇ . Hence the
family of balls ¹B.x; rx/ºx2M �

t
forms a covering of M�

t by balls centered at points

of M�
t . Recall that for a ball B � Rd of radius r , �.B/ D Cd r

d D Cd2
�d jBjd .

Using Besicovitch’s covering theorem, there exists a constantQ0.d/ > 0 (depending
only on the dimension) such that one can extract from this (possibly uncountable)
family a countable system B.xi ; ri/ � I , xi 2 M�

t such that

� the union of these balls covers M�
t ,

� no point x 2 Rd is covered by more than Q0.d/ balls of the form B.xi ; ri/,

� for every i , we have

�.B.xi ; ri// > t.2ri/
dˇ D t � 2dˇ � .Cd /

�ˇ � �.B.xi ; ri//
ˇ

D t � 2dˇ � .Cd /
�ˇ � �.B.xi ; ri// � �.B.xi ; ri//

ˇ�1

� t � 2dˇ � .Cd /
�ˇ � �.B.xi ; ri// � �.I /ˇ�1

� t � 2d � .Cd /
�1 � �.B.xi ; ri// � jI jd.ˇ�1/:

(7)

Since no point is covered by more thanQ0.d/ ballsB.xi ; ri/, one can select an index
set � such that the balls B.xi ; ri/, i 2 � are disjoint and the Lebesgue measure
of [i2�B.xi ; ri/ is greater than 1=Q0.d/ times that of M�

t . Then summing (7) for
i 2 � , one obtains

1

Q0.d/
�.M�

t / �
X
i2�

�.B.xi ; ri//

� 2�dCd jI jd.1�ˇ/ 1

t

X
i2�

�.B.xi ; ri//

� 2�dCd�.I /jI j1�ˇ

t
:

Hence the result with Q.d/ D Q0.d/�12�dCd .

3.2. The minimum property of the spectrum for HM measures

Lemma 3.2. Suppose that � is a non-atomic measure supported on Œ0; 1� and 0 �
˛ < 1. Assume that

� for every " > 0, E�
� .˛ C "/ is dense in Œ0; 1�,

� h�.x/ � ˛ for all x 2 Œ0; 1�.
Then E�.˛/ is dense in Œ0; 1�.
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Observe that Lemma 3.2 implies that for a non-atomic HM measure, if ˛0 D
inf¹h�.x/W x 2 Œ0; 1�º < 1, then necessarily d�.˛0/ � 0:

Proof. Suppose 0 � a < b � 1. Choose x1 2 .a; b/ and r1 2 .0; 1/ such that

�.B.x1; r1// > r
˛C 1

2

1 . Since� is non-atomic one can choose a small non-degenerate
closed interval I1 � .a; b/ such that x1 2 I1 and

�.B.x; r1// > r
˛C 1

2

1 ; for any x 2 I1:

Suppose that we have defined the non-degenerate nested intervals I1 � I2 � � � � � In

and r1 > r2 > � � � > rn > 0 such that

rn < 1=n and �.B.x; rn// > r
˛C 1

nC1
n ; for any x 2 In: (8)

By our assumption we can choose xnC1 2 int.In/ and rnC1 2 .0; 1
nC1

/ such that

�.B.xnC1; rnC1// > r
˛C 1

nC2

nC1 :

By continuity of �, one can also choose a non-degenerate closed interval InC1 � In

such that

�.B.x; rnC1// > r
˛C 1

nC2

nC1 ; for any x 2 InC1:

By induction we can define the infinite nested sequence of intervals In such that (8)
holds for all n. Then any x˛ 2 \1

nD1In � .a; b/ satisfies h�.x˛/ D ˛:

3.3. Continuity of the support of the multifractal spectrum Support.d�/. The-
orem 1.5 is a direct consequence of the next result.

Theorem 3.3. Let � be a non-atomic Borel probability measure supported in the
interval Œ0; 1�. Assume that there exists 0 � ˛ < 1 such that for every " > 0,
¹xW h�.x/ � ˛ C "º is dense in Œ0; 1� and h�.x/ � ˛ for all x 2 Œ0; 1�. Then,

for every ˇ 2 Œ˛; 1�, d�.ˇ/ � 0

and d�.ˇ/ D �1 for ˇ < ˛.

Proof. The function F�.x/ D �.Œ0; x�/ is continuous, monotone increasing and
hence �-almost everywhere differentiable by Lebesgue’s theorem. We denote byD�

the set of those points x 2 .0; 1/ where (a finite) F 0
�.x/ exists.

The case ˇ D ˛ is treated in Lemma 3.2. The case ˇ D 1 is slightly different and
will be discussed later.
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Suppose ˛ < ˇ < 1. We are going to build iteratively a nested sequence of
intervals converging to one point x such that h�.x/ D ˇ.

Put ˇ0 D 1Cˇ
2

(so that ˇ < ˇ0 < 1). Clearly, for any x 2 D� there exists rˇ;x

such that �.B.x; r// � rˇ 0

for all 0 < r < rˇ;x < 1:

Choose an x0 2 D� and suppose that r0 � rˇ;x0
satisfies

�.B.x0; r0// � r
ˇ 0

0 and r
ˇ 0�ˇ
0 < 1=10: (9)

We start the induction. Let n � 1 be fixed. Assume that one can construct two
sequences of positive real numbers

¹.x0; r0/; .x1; r1/; : : : ; .xn; rn/º

and

¹. Qx0; Qr0/; . Qx1; Qr1/; : : : ; . Qxn�1; Qrn�1/º
satisfying the following properties:

(P0) the real numbers x0; x1; : : : ; xn; Qx0; Qx1; : : : ; Qxn�1 belong to the interval Œ0; 1�;

(P1) the radii are decreasing with n, and they satisfy

r0 > Qr0 > r1 > Qr1 > � � � > Qrn�1 > rn > 0I

(P2) for i D 1; : : : ; n, one has

B.xi ; ri/ � B. Qxi�1; Qri�1=3/ � B.xi�1; ri�1=3/; (10)

�.B.xi ; ri// � r
ˇ 0

i ; (11)

�.B. Qxi�1; Qri�1// D Qrˇ
i�1I (12)

(P3) if x 2 B.xi ; ri=3/ for some i D 1; : : : ; n, and if B.x; r/ 6� B.xi ; ri / but
B.x; r/ � B.xi�1; ri�1/, then

�.B.x; r// < 300 � rˇ : (13)

Observe that (P2) implies that for any x 2 B.xi ; ri/ we have

�.B.x; 2 Qri�1// � �.B. Qxi�1; Qri�1// D Qrˇ
i�1: (14)
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B.xn;rn=3/‚ …„ ƒ

B. Qxn;Qrn/‚ …„ ƒ

„ƒ‚…
B.xnC1;rnC1/

�.B.xn; rn// < r
ˇ0

n

�.B. Qxn; Qrn// D Qrˇ
n

�.B.xnC1; rnC1// < r
ˇ0

nC1

Figure 2. Nested sequence of balls in the construction.

Let us explain why such a sequence is key to prove Theorem 3.3.

Lemma 3.4. If there exist four infinite sequences .xn/, .rn/, . Qxn/ and . Qrn/ satisfy-
ing (P0–3) for all n 2 N, then Theorem 3.3 is proved.

Proof. The sequences of radii obviously converge to zero by (P1) and (P2).
Let ¹xº D T1

iD1 B.xi ; ri/. The “nesting” relation (10) implies that x is always
located in the “middle part” of the balls B.xi ; ri/, more precisely in B.xi ; ri=3/ and
B. Qxi ; Qri=3/.

By definition of h�.x/, and using (14), we obtain

h�.x/ � lim inf
i!C1

log�.B.x; 2 Qri//
log jB.x; 2 Qri/j � ˇ: (15)

Property (P3) allows us to control the behavior of �.B.x; r//, for every r 2
.0; r1=3/. Indeed, fix such a radius r , and choose i � 1 as the unique integer such
that ri=3 < r � ri�1=3 . By construction, one has x 2 B.xi ; ri=3/. Let R be
the largest positive real number such that B.x; R/ � B.xi ; ri/. Obviously, one has
2ri=3 � R � ri � ri�1=3.

� If ri=3 < r � R: using (11), one gets

�.B.x; r// � �.B.xi ; ri// � .ri/
ˇ 0 � 3ˇ 0

rˇ 0

:

� If R � r � ri�1=3: then we are in the situation described by (P3), since
B.x; r/ 6� B.xi ; ri/ but from x 2 B.xi�1; ri�1=3/ it follows that B.x; r/ �
B.xi�1; ri�1/. Hence (13) holds true.

In any case, one sees that �.B.x; r// � Crˇ for any r � r1, for some constant C .
This implies that h�.x/ � ˇ. Combining this with (15), Lemma 3.4 is proved.
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It remains us to prove that as soon as we are given .xi , ri/ for i D 0; : : : ; n

and . Qxi , Qri / for i D 1; : : : ; n � 1 fulfilling properties (P0-3), we can construct
.xnC1; rnC1/; . Qxn; Qrn/ satisfying the same properties.

From rn � r0, (9), and (11), one deduces that

�.B.xn; rn// � rˇ 0

n and rˇ 0�ˇ
n <

1

10
: (16)

By our assumption the set ¹xW h�.x/ < ˇº is dense in Œ0; 1�. Choose Qxn 2 B.xn; rn=6/

such that h�. Qxn/ < ˇ.

Lemma 3.5. There exists a largest real number Qrn such that 0 < Qrn < rn and

�.B. Qxn; Qrn// D . Qrn/ˇ (17)

and

if Qrn < r and B. Qxn; r/ � B.xn; rn/; then �.B. Qxn; r// < r
ˇ : (18)

Moreover, one necessarily has Qrn < rn=10.

Proof. If r � rn=10 and B. Qxn; r/ � B.xn; rn/ then from (16) we deduce that

�.B. Qxn; r// � �.B.xn; rn// � rˇ 0

n � 1

10
rˇ

n � 10ˇ

10
rˇ < rˇ :

Hence, if there exists a suitable Qrn, then Qrn < rn=10.
Since h�. Qxn/ < ˇ, there exists 0 < r < rn=20 such that �.B. Qxn; r// > rˇ .

By continuity of the map r 7! �.B. Qxn; r//, we can choose Qrn as the largest r such
that (17) is satisfied. This choice of Qrn implies relation (18).

Observe that, since Qxn 2 B.xn; rn=6/ and Qrn < rn=10, one has

B. Qxn; Qrn/ � B.xn; rn=3/: (19)

Lemma 3.6. Let x 2 B. Qxn; Qrn=3/, r � Qrn=3 and assume that B.x; r/ � B.xn; rn/.
Then we have

�.B.x; r// < 5rˇ : (20)

Proof. By construction, B.x; r/ � B. Qxn; 4r/.

� If B. Qxn; 4r/ � B.xn; rn/: using (18), we obtain

�.B.x; r// � �.B. Qxn; 4r// � .4r/ˇ � 4rˇ :
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� If B. Qxn; 4r/ 6� B.xn; rn/: the fact that Qxn 2 B.xn; rn=6/ implies that 4r >
5rn=6, that is, r > 5rn=24, and

�.B.x; r// � �.B.xn; rn// � rˇ 0

n � rˇ
n < .24=5/ˇrˇ < 5rˇ : (21)

Set
InC1 D B. Qxn; Qrn/ and yInC1 D B. Qxn; Qrn=3/:

Now, apply Proposition 3.1 with I D InC1 and t D 50. Since �.InC1/ D
�.B. Qxn; Qrn// D . Qrn/ˇ , we have

�.¹xWM�
InC1;ˇ�.x/ > 50º/ � Q.1/ � . Qrn/ˇ .2 Qrn/1�ˇ

50
< �. yInC1/:

For the last inequality, we have used that the constant Q.1/ in Proposition 3.1 is
less than 5; see [14]. Hence, recalling that D� has full Lebesgue measure in yInC1,
we can pick xnC1 2 yInC1 \ D� D B. Qxn; Qrn=3/ \ D� such that for all r > 0 if
B.xnC1; r/ � B. Qxn; Qrn/ then

�.B.xnC1; r// � 50.2r/ˇ � 100rˇ : (22)

Using that xnC1 2 D�, one can also choose 0 < rnC1 < Qrn=100 such that

B.xnC1; rnC1/ � B. Qxn; Qrn=3/ � B.xn; rn=3/ and �.B.xnC1; rnC1// � r
ˇ 0

nC1:

(23)

Lemma 3.7. For all x 2 B.xnC1; rnC1=3/, if we have B.x; r/ 6� B.xnC1; rnC1/ but
B.x; r/ � B.xn; rn/, then �.B.x; r// < 300rˇ :

Proof. The case r � Qrn=3 is a consequence of Lemma 3.6.
Let x be as in the statement, and assume that r < Qrn=3.
From B.x; r/ 6� B.xnC1; rnC1/, we deduce that 2rnC1=3 < r: Hence, B.x; r/ �

B.xnC1; 3r/ and B.x; r/ � B. Qxn; Qrn/.
� If B.xnC1; 3r/ � B. Qxn; Qrn/ then by (22), we have

�.B.x; r// � �.B.xnC1; 3r// � 100 � 3ˇ rˇ < 300rˇ :

� If B.xnC1; 3r/ 6� B. Qxn; Qrn/ then one necessarily has 3r > 2 Qrn=3. Since
r < Qrn=3 and Qrn < rn=10, we have the inclusions B.x; r/ � B.x; Qrn=3/ �
B.xn; rn/. Finally, by (20) used with r D Qrn=3, we infer

�.B.x; r// � �.B.x; Qrn=3// � 5. Qrn=3/ˇ < 5.9r=6/ˇ < 25rˇ :
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Summarizing the above, (P0-3) hold when i D n C 1. Iterating the procedure
and applying the above technical lemmas, we complete our inductive construction.

Finally, we discuss the case ˇ D 1, indicating the minor adjustments in the proof.
If there exists x 2 D� such that F 0

�.x/ > 0, then

h�.x/ D lim inf
r!0

log�.B.x; r//

log 2r
D lim inf

r!0

log jF�.x C r/ � F�.x � r/j
log 2r

D 1;

and we are done. Hence, we suppose that F 0
�.x/ D 0 for all x 2 D�.

Choose an x0 2 D� and r0 such that instead of (9) we have

�.B.x0; r0// � r0=20:

Assume that n � 0 and .x0; r0/, …, .xn; rn/; . Qx1; Qr1/; : : : ; . Qxn; Qrn/ are given as
before and that (10) holds. Instead of (11) and (12) we have

�.B.xi ; ri// � ri=20 and �.B. Qxi�1; Qri�1// D Qri�1 for i D 1; : : : ; n:

This implies that (14) and (13) hold true with ˇ D 1. Further, instead of (16) we use

�.B.xn; rn// � rn=20: (24)

We select Qxn and Qrn such that (17) holds with ˇ D 1.
By (24), fromB. Qxn; r/ � B.xn; rn/ one deduces�.B. Qxn; r// � �.B.xn; rn// �

rn=20: Hence, for r � rn=10we have �.B. Qxn; r// < r . Therefore, (19) holds in this
case as well.

Finally, Lemma 3.1 with t D 50 allows us to select some real number xnC1, and
we keep on arguing as before. One only needs to remove the inequality containing
r

ˇ 0

n from (21) and in (23) instead of rˇ 0

nC1 we have to use rnC1=20. We also have to
keep in mind that xnC1 2 D� and our assumption implies F 0

�.xnC1/ D 0:

Remark 3.8. It is not difficult to modify the above proof so that at each step, in
B.xn; rn/, two balls B.x0

nC1; r
0
nC1/ and B.x00

nC1; r
00
nC1/ are found with the required

properties. Iterating this remark, one concludes that E�.ˇ/ is uncountable.

4. A non-HM monotone function with an affine spectrum

In this section, we work with monotone functions rather than measures: although the
result is the same at the end, here functions are more convenient to deal with.

We construct a monotone function whose spectrum is affine on an interval strictly
included in Œ0; 1� and compatible with the conditions of a spectrum (Proposition 2.1).
In the next sections, we explain how the superposition of functions built in Theo-
rem 4.1 yield HM and non-HM measures with prescribed spectrum. The function
11�

Œ˛0;ˇ0�
.h/ equals 1 if h 2 Œ˛0; ˇ0� and equals �1 otherwise.
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Theorem 4.1. Let 0 < ˛0 � ˇ0 < 1. Let 0 < d < ˛0 and � > 0 satisfy

d.1C �ˇ0/ � ˇ0 and d.1C �˛0/ � ˛0: (25)

Then there exists a monotone continuous function Z with the properties

� Z.x/ D 0 when x � 0,

� Z.x/ D 1 when x � 1,

� dZ.C1/ D 1 and

dZ.h/ D d.1C �h/11�
Œ˛0;ˇ0�.h/; h 2 Œ0;1/: (26)

Moreover, Z can be constructed with the additional properties

(i) ¹xW hZ.x/ < C1º D ¹xW hZ.x/ < 1º D ¹xW hZ.x/ � ˇ0º is located on a
Cantor set C , strictly included in Œ0; 1�,

(ii) Œ0; 1�nC consists of a countable number of open intervals whose maximal length
is less than 1/10,

(iii) there exists 0 < r0 < 1 such that for every x 2 Œ0; 1� and 0 < r < r0,

!B.x;r/.Z/ D jZ.x C r/ �Z.x � r/j � .2r/˛0 : (27)

Definition 4.2. We denote by F � the class of functions dZ appearing in (26) with
all possible choices of parameters .˛0; ˇ0; d; �/ satisfying the assumptions of Theo-
rem 4.1 (see Figure 3).

dZ.h/

1

10 h˛0 ˇ0

d.1C �h/

Figure 3. Function in the space F �.
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It will be useful to keep in mind that after division by ˛0 the second inequality

in (25) is of the form d
� 1
˛0

C �
� � 1.

The rest of this section is devoted to the proof of Theorem 4.1.

We assume ˛0 < ˇ0 and indicate (between parenthesis) during the proof the
places where the case ˛0 D ˇ0 requires a slightly different argument.

For every integer n � 1, let us denote by

˛n;0 WD ˛0 < ˛n;1 < ˛n;2 < � � � < ˛n;n < ˛n;nC1 WD ˇ0

the unique set of nC 2 real numbers equally spaced in the interval Œ˛0; ˇ0�.

(For the ˛0 D ˇ0 case, choose ˛0
0 2 .˛0; 1/ such that

.1 � ˛/˛0

.1� ˛0/˛0

> 1� ˛0; ˛; ˛0 2 Œ˛0; ˛
0
0�: (28)

For this case we set

˛n;0 D ˛0 D ˇ0; ˛n;1 D ˛0 C ˛0
0 � ˛0

nC 1
; ˛n;2 D ˛0 C 2.˛0

0 � ˛0/

nC 1
;

and we do not define ˛n;i , for i � 3:)

For every integer n � 1, we set

�n;i D d.1C �˛n;i /.1� 10�n/:

By (25) for any ˛ 2 Œ˛0; ˇ0�,

d.1C �˛/

˛
D d

� 1
˛

C �
�

� d
� 1
˛0

C �
�

� 1;

hence
�n;i < ˛n;i : (29)

The function Z will be obtained as the sum of an infinite number of functions
Zn, n � 1, whose increments of order ˛n;i , i 2 ¹1; 2; : : : ; nº, have their cardinality
controlled. Some notation for dyadic intervals are needed.

Definition 4.3. Let .k; j / be two positive integers, and 0 < ˛ � 1 be a real number.
We set Ij;k D Œk2�j ; .k C 1/2�j / and

aj;k.˛/ D .k C 1/2�j � 2�j=˛ and Ij;k.˛/ D Œaj;k.˛/; .k C 1/2�j �:

Then the length of the interval Ij;k.˛/ is 2�j=˛.
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4.1. First step. Let us begin with the function Z1. Let

"0 D min¹˛0; 1� ˇ0º=2 > 0: (30)

(We also suppose that

1� "0 > ˛n;2; (31)

when ˛0 D ˇ0.)
Consider ˛1;1, which belongs to .˛0; ˇ0/, and choose an integer J1 so large that

2100 < 2

�
J1

�1;1
˛1;1

�
C1
< 2J1=10; (32a)

J1 � 2"0J1 ; (32b)

2�J1=ˇ0 <
2�J1

100
; (32c)

and

2�1 � 2J1
ˇ0�˛0

2 > 1: (32d)

Inequality (32a) can be satisfied since �1;1 < ˛1;1 by (29).

(When ˛0 D ˇ0, we need to argue differently: since ˛1;1 D ˛0 C ˛0
0

�˛0

2
does not

belong to .˛0; ˇ0/, inequality (32d) should be replaced by 2�12J1

˛0
0

�˛0
2 > 1:)

We denote by T1 the set of integers

T1 WD
°
k 2 ¹1; : : : ; 2J1 � 1ºW k is a multiple of 2

�
J1

�
1� �1;1

˛1;1

��±
:

We also put T1;1 D T1. Then

1

2
� 2J1�

�
J1.1� �1;1

˛1;1
/
�
< #T1;1 < 2 � 2J1�

�
J1

�
1� �1;1

˛1;1

��
:

By (32a) we also have #T1;1 D 2
J1

�1;1
˛1;1

.1�"1;1/
with "1;1 � 1

10
:

The function Z1 is obtained as follows.

� For every k 2 ¹0; 1; : : : ; 2J1 � 1º such that k 62 T1, for every x 2 IJ1;k , we set

Z1.x/ D x=2:

Hence, Z1 is just affine on IJ1;k , with slope 1=2.
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� For every integer k 2 T1, we set for every x 2 IJ1;k ,

Z1.x/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

2�1k2�J1

if x 2 Œk2�J1 ; aJ1;k.˛1;1//;

2�1..k C 1/2�J1 C 2
J1

1�˛1;1
˛1;1 .x � .k C 1/2�J1//:

if x 2 IJ1;k.˛1;1/:

Hence Z1 is first constant on Œk2�J1 ; aJ1;k.˛1;1//, and then affine with a large

slope 2
J1

1�˛1;1
˛1;1 on the interval IJ1;k.˛1;1/.

0 1 x

1=2

.k C 1/2�J1

k2�J1

Z1.x/

k2�J1
.k C 1/2�J1

aJ1;k.˛1;1/

Figure 4. Sketch of the graph of Z1.

A quick analysis shows that the function Z1 is continuous, piecewise affine, with
Z1.0/ D 0 and Z1.1/ D 1=2, and that Z1.x/ � x=2. Observe that the oscillations
of Z1 on the intervals IJ1;k.˛1;1/, k 2 T1, satisfy

!IJ1;k.˛1;1/.Z1/ D 2�12�J1 D 2�1jIJ1;k.˛1;1/j˛1;1 :

We remark that the cardinality of T1 is 2
J1�

�
J1

�
1� �1;1

˛1;1

��
� 2

J1
�1;1
˛1;1 .
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4.2. Construction of Zn. Let n � 2, and assume that Z1; Z2; : : : ; Zn�1 are con-
structed. We also suppose that the sets of integers Tn�1;i satisfy

#Tn�1;i D 2
Jn�1

�n�1;i
˛n�1;i

.1�"n�1;i /
; where "n�1;i � 10�.n�1/: (33)

(When ˛0 D ˇ0, we have Tn�1;i only for i D 1. In this case in the sequel we
consider only the index i D 1, instead of i D 1; : : : ; n:)

Choose an integer Jn satisfying the conditions

4n10n � 2Jn�1102n=˛0 � Jn � �n;0 � Jn (34a)

and

2n2Jn.1�10�n/ � 2Jn�Jn�1=˛0 ; (34b)

moreover

4nJn � 2"0Jn ; 2
Jn. 1

ˇ0
�1/

> 1 and 2�n2Jn
ˇ0�˛0

nC1 > 1: (35)

(When ˛0 D ˇ0, we need to replace the last inequality by 2�n2Jn

˛0
0

�˛0
nC1 > 1:/

One has
ŒJn � �n;0� � ŒJn � �n;i � �

h
Jn

�n;i

˛n;i

i
;

and by (25)

�n;i

˛n;i

D d
� 1

˛n;i

C �
�
.1� 10�n/ � d

� 1
˛0

C �
�
.1� 10�n/ � .1� 10�n/:

Hence by (34) for every i 2 ¹1; : : : ; nº, one obtains

h
Jn

�n;i

˛n;i

i
� ŒJn�n;0� � 2Jn�1=˛0 and

nX
iD1

2

�
Jn

�n;i
˛n;i

	
� 2Jn�Jn�1=˛0 :

Simultaneously for all exponents ˛n;i , i 2 ¹1; 2; : : : ; nº, our aim is now to spread
as uniformly as possible the intervals I on whichZn has oscillations of order jI j˛n;i

(as we performed during the construction of Z1). This is achieved as follows.

Let p1 D 3, p2 D 5, …, pn be the first n odd prime numbers. For every
i 2 ¹1; 2; : : : ; nº, we denote by Tn;i the set of integers

Tn;i WD
°
k 2 ¹1; : : : ; 2JnºW k � pi is a multiple of 2

�
Jn

�
1� �n;i

˛n;i

��
, and

there exists an integer 0 < i 0 � n � 1 such that

k2�Jn belongs to IJn�1;K.˛n;i 0/ for some K 2 Tn�1;i 0

±
:

(36)
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(When ˛0 D ˇ0, we use only p1 D 3, consider only Tn;1 and use only i 0 D 1 in
the definition of Tn;i D Tn;1.)

To estimate the cardinality of Tn;i we have

1

2

n�1X
i 0D1

.#Tn�1;i 0/2�Jn�1=˛n;i0 � 2Jn�
�

Jn

�
1� �n;i

˛n;i

��

< #Tn;i

< 2 �
n�1X
i 0D1

.#Tn�1;i 0/2�Jn�1=˛n;i0 � 2Jn�
�
Jn

�
1� �n;i

˛n;i

��

< 4n2
Jn

�n;i
˛n;i ;

that is,

#Tn;i � 2 �
n�1X
i 0D1

.#Tn�1;i 0/2�Jn�1=˛n;i0 � 2Jn
�n;i
˛n;i :

Hence, using (33) and (34) we have

#Tn;i D 2
Jn

�n;i
˛n;i

.1�"n;i /
; where "n;i � 10�n. (37)

Finally, we set (when ˛0 D ˇ0, we have Tn D Tn;1)

Tn D
n[

iD1

Tn;i : (38)

Lemma 4.4. If 1 � i < j � n, then Tn;i \ Tn;j D ;. Moreover, if k 2 Tn;i and
k0 2 Tn;j such that k ¤ k0 (one may have i D j ), then

IJn;k.˛n;i /
\
IJn;k0.˛n;j / D ;:

Proof. Suppose that an integer q belongs to Tn;i \ Tn;j . Hence q can be written

q D pi Cmi2

�
Jn

�
1� �n;i

˛n;i

��
D pj Cmj 2

�
Jn

�
1� �n;j

˛n;j

��
:

Assume that 2

�
Jn

�
1� �n;i

˛n;i

��
� 2

�
Jn

�
1� �n;j

˛n;j

��
, the other case is similar. Then

0 6D jpj � pi j

D 2

�
Jn

�
1� �n;j

˛n;j

��ˇ̌̌
mj �mi2

�
Jn

�
1� �n;i

˛n;i

��
�
�
Jn

�
1� �n;j

˛n;j

��ˇ̌̌

> 2

�
Jn

�
1� �n;j

˛n;j

��
:

(39)
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Obviously, by Bertrand’s postulate (proved by Chebyshev) about prime numbers

we have 0 < jpj � pi j � pn � 2nC1, while 2

�
Jn

�
1� �n;j

˛n;j

��
>> 2nC1. Hence, it is

impossible to realize (39).
Finally, if k ¤ k0, since ˛n;i and ˛n;j are smaller than one, it is clear from the

construction that IJn;k.˛n;i / \ IJn;k0.˛n;j / D ;:
The non-decreasing mapping Zn is obtained as follows.

� for k 2 ¹0; 1; : : : ; 2Jn � 1º such that k 62 Tn, for every x 2 IJn;k , we set

Zn.x/ D 2�nx:

� When the integer k belongs to some Tn;i , we set, for every x 2 IJn;k ,

Zn.x/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

2�nk2�Jn

if x 2 Œk2�Jn ; aJn;k.˛n;i //;

2�n..k C 1/2�Jn C 2
Jn

1�˛n;i
˛n;i .x � .k C 1/2�Jn//

if x 2 IJn;k.˛n;i /:

As above, the functionZn is continuous, piecewise affine, and it obviously satisfies
Zn.0/ D 0, Zn.1/ D 2�n and Zn.x/ � 2�nx. Moreover, the oscillations of Zn on
the intervals IJn;k.˛n;i /, k 2 Tn;i , satisfy

!IJn;k.˛n;i /.Zn/ D 2�n2�Jn D 2�njIJn;k.˛n;i /j˛n;i :

In addition, a key remark is thatZn is not a linear function with slope 2�n only on
some intervals IJn;k that are included in intervals IJn�1;k0 on which Zn�1 has large
oscillation. These nested intervals will be the intermediary steps of the construction
of a Cantor set.

4.3. Construction of Z

Definition 4.5. We define the mapping ZW Œ0; 1� ! Œ0; 1� by the formula

for every x 2 Œ0; 1�, Z.x/ D
C1X
nD1

Zn.x/:

Immediate properties of Z are gathered in the next Proposition.

Proposition 4.6. The mappingZ is continuous (as uniform limit of continuous func-
tions), strictly increasing, and satisfies Z.0/ D 0 and Z.1/ D 1.
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This obviously follows from the construction, and from the fact that

kZ �ZN k1 D



 X

n�N C1

Zn




1 � 2�N C2; for every N � 1.

Moreover, let us call C the (closed) Cantor set

C D
\

N �1

[
n�N

n[
iD1

[
k2Fn

IJn;k.˛n;i /; (40)

Fn meaning that the intervals IJn;k.˛n;i / considered are only for those k which
appear in the construction of Zn.

Lemma 4.7. If x … C , then hZ.x/ D C1.

Proof. If x … C , then there exists r > 0 such that the distance between x and C is
larger than r . In particular, x does not belong to any interval of the form IJn;k.˛n;i /

appearing in the definition of C , for n larger than some integer N > 0. In other
words, Z is affine in a neighborhood of x, hence the conclusion.

Lemma 4.7 and our construction yield items (i) and (ii) of Theorem 4.1 concerning
the size of the complement of the Cantor set.

4.4. Local regularity properties of Z . To find the multifractal spectrum of Z, we
start by studying its local oscillations.

For every N , k, i and every r > 0, let us define the intervals IJN ;k.i; r/ by

IJN ;k.i; r/ D IJN ;k.˛N;i /C B.0; r/:

Definition 4.8. For i0 D 1; : : : ; N C 1 let us introduce the sets

EN;i0;r D ¹x 2 Œ0; 1�W!B.x;r/.Z/ � .2r/˛N;i0 º;

E 0
N;i0

D
[

i Wi<i0

[
k2TN;i

IJN ;k.˛N;i /;

E 00
N;i0;r D

[
i Wi<i0

[
k2TN;i

IJN ;k.i; r/:

(When ˛0 D ˇ0, we consider these sets only for i0 D 1; 2, this restriction applies
in Lemma 4.9 as well.)
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Heuristically, E 0
N;i0

contains all the intervals on which ZN has an exponent less
than ˛N;i0 , and E 00

N;i0;r is the r-neighborhood of these points. Also, E 00
N;1;r D ;:

We also remark that

C D
1\

N D1

E 0
N;N C1: (When ˛0 D ˇ0 then C D

1\
N D1

E 0
N;2.)

The next Lemma, very technical, allows us to “locate” the elements around which
Z has an oscillation of a given size.

Lemma 4.9. Let r 2 .0; 2�J5�1/, and let N � 5 be the unique integer such that

2�JNC1 � 2r < 2�JN : (41)

Let i0 2 ¹1; : : : ; N C 1º. One has

(i) if 2
� JN

˛0.1�ˇ0/ < 2r < 2
� JN

˛N;i0 , then EN;i0;r � E 00
N;i0;r ;

(ii) if 2r > 2
� JN

˛N;i0 , or if 2r < 2� JN
˛0.1�ˇ0/ , then EN;i0;r D ;;

(iii) moreover, if x 2 E 0
N;i0

, then there is 0 < r � 2�JN =˛N;i0 such that x 2 EN;i0;r :

Proof. We are going to investigate the possible values of !B.x;r/.Z/, for all possible
values of x 2 Œ0; 1� and r > 0. We also emphasize that 0 < "0 by (30) is so small
that 0 < ˛0 � "0 < ˇ0 C "0 < 1. Recall also that we supposed that N is the only
integer satisfying (41).

We fix i0 2 ¹1; : : : ; N C 1º, and we look for the locations of the elements of
EN;i0;r . Obviously, !B.x;r/.Z/ D P

n�1 !B.x;r/.Zn/. Let us compare the terms in
this sum according to the value of n.

(i) n � N C 1. By construction, B.x; r/ is covered by at most .2r=2�Jn/ C 2 �
4r2Jn dyadic intervals of generation Jn, on which the oscillation of Zn is exactly
2�Jn2�n. Hence !B.x;r/.Zn/ � 4r2Jn2�Jn2�n � 4 � 2�nr . Since N > 4 summing
over n � N C 1 yields

X
n�N C1

!B.x;r/.Zn/ � 8 � 2�N r � .2r/=4 � .2r/˛N;i0=4: (42)

(ii) n � N � 1. By construction, Zn has a maximal slope of 2�n2
Jn

1�˛n;j
˛n;j , for

some integer j 2 ¹1; : : : ; nº, which by 2�n < 1, 1 � ˛n;j < 1, ˛n;0 < ˛n;j verifies

2�n2
Jn

1�˛n;j
˛n;j < 2

Jn
1

˛n;0 D 2Jn=˛0 : (43)
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By (34) and (35), for every n < N one has

JN � 2Jn=˛0 and 4NJN � 2"0JN . (44)

By (43) we have !B.x;r/.Zn/ � 2Jn=˛02r . By (41) and (44) we obtain

N �1X
nD1

!B.x;r/.Zn/ �
N �1X
nD1

2Jn=˛0.2r/

� 4NJN .2r/=4

� 2"0JN 2r=4

� .2r/1�"0=4:

Since 1� "0 > ˇ0 D ˛N;N C1 � ˛N;i0 , we deduce that

N �1X
nD1

!B.x;r/.Zn/ � .2r/˛N;i0=4: (45)

(When ˛0 D ˇ0, we also use (31).)

(iii) n D N . It remains to study the oscillation ofZN onB.x; r/. By (42) and (45),
if x 2 EN;i0;r , then one necessarily has

!B.x;r/.ZN / � .2r/˛N;i0=2: (46)

Our goal is now to identify the elements satisfying (46).
By (41), B.x; r/ contains at most one dyadic number k2�JN . Recall that TN

defined by (38) contains the integers k such that ZN possesses large oscillations on
intervals of the form IJN ;k.˛N;i /. If B.x; r/ does not meet any interval of the form
IJN ;k.˛N;i /, then the oscillation of ZN on B.x; r/ is less than 2�N 2r (since 2�N is
the value of the slope of ZN on such intervals), and (46) cannot be realized.

We thus assume thatB.x; r/ intersects an interval of the form IJN ;k.˛N;i /, where
i 2 ¹0; 1; : : : ; N º and k 2 TN;i . Observe that B.x; r/ can intersect at most two such
intervals, and when it does, 2r � 2�JN and !B.x;r/.ZN / � 2 � 2�N � 2�JN . Thus, in
this case, x 62 EN;i0;r .

We thus assume thatB.x; r/ intersects exactly one interval of the formIJN;k.˛N;i /,
where i 2 ¹0; 1; : : : ; N º and k 2 TN;i .

1. If 2r > 2
�JN =˛N;i0 , then by definition ofZN the oscillation on the intersection

IJN ;k.˛N;i /\B.x; r/ is less than the oscillation ofZN on one interval of size 2�JN ,
i.e. less than 2�N 2�JN � 2�N .2r/˛N;i0 � .2r/˛N;i0=4. Hence, x cannot belong to
EN;i0;r .
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2. Next we assume
2r � 2

�JN =˛N;i0 : (47)

2A. If 2r � 2
� JN

.1�ˇ0/˛0 , keeping in mind that 1 > 1 � ˛N;i , 1 � ˇ0 � 1 � ˛N;i0 ,
and ˛0 � ˛N;i , this implies that

2r < 2
�JN

.1�ˇ0/˛0 < 2

�JN .1�˛N;i /

.1�˛N;i0
/˛N;i : (48)

(At this point, when ˛0 D ˇ0, extra care is needed. In this case i0 D 1, or 2.

To obtain (48) one can use (28) with ˛ D ˛N;i0 and ˛0 D ˛N;i to get
.1�˛N;i0

/˛N;i

.1�˛0/˛0
>

1 � ˛0 > 1� ˛N;i :)
By (48), one gets

!B.x;r/.ZN / < 2
�N 2

JN

1�˛N;i
˛N;i 2r < 2�N .2r/�1C˛N;i0 .2r/ � .2r/˛N;i0=4;

and x 62 EN;i0;r . Since this argument applies for any x 2 Œ0; 1� for 2r < 2
�JN

.1�ˇ0/˛0

we have EN;i0;r D ;.

2B. If 2
�JN

.1�ˇ0/˛0 < 2r < 2
�JN =˛N;i0 and ˛N;i � ˛N;i0

, then the slope of the

function ZN on the interval IJN ;k.˛N;i / is exactly 2�N 2
JN

1�˛N;i
˛N;i . The ball B.x; r/

can also intersect IJN ;k�1, or IJN ;kC1 but by (35) on these intervals the slope ofZN

equals 2�N < 2�N 2
JN

1�˛N;i
˛N;i . Consequently, the oscillation of ZN on B.x; r/ is

less than 2�N2
JN

1�˛N;i
˛N;i 2r , which by (47) and ˛N;i0=˛N;i � 1 is no more than

2�N .2r/
�˛N;i0

1�˛N;i
˛N;i .2r/ � .2r/

.˛N;i �1/
˛N;i0
˛N;i

C1
=4

� .2r/˛N;i=4

� .2r/˛N;i0=4:

Once again, x … EN;i0;r .

2C. If 2
�JN

.1�ˇ0/˛0 < 2r < 2
�JN =˛N;i0 and ˛N;i < ˛N;i0

, then observe that if x 62
E 00

N;i0;r , then B.x; r/ does not intersect any interval of the form IJN ;k.˛N;i / with
˛N;i � ˛N;i0 . Hence, x 62 EN;i0;r . We deduce that necessarily EN;i0;r � E 00

N;i0;r .

This concludes the proof of the parts (i) and (ii) of Lemma 4.9.
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To obtain part (iii) of the lemma, assume that x 2 E 0
N;i0

, for some i0 2 ¹1; : : : ;
NC1º. (When˛0 D ˇ0, this means i0 D 2, since E 0

N;1 D ;.) Then there exists i < i0
and k 2 TN;i such that x 2 IJN ;k.˛N;i /. Choose r D 2�JN =˛N;i < 2�JN =˛N;i0 .
Then B.x; r/ � IJN ;k.˛N;i / and

!B.x;r/.ZN / � 2�N � 2�JN

D 2�N .2�JN =˛N;i /˛N;i0 .2�JN =˛N;i /˛N;i �˛N;i0 :

Using (35), one concludes that

!B.x;r/.ZN / � 2�N 2
JN

˛N;i0
�˛N;i

˛N;i � r˛N;i0 � 2�N 2JN
ˇ0�˛0
NC1 r˛N;i0 > r˛N;i0 :

Consequently, x 2 EN;i0;r .

From these considerations, one deduces easily item (iii) of Theorem 4.1: for every
x 2 Œ0; 1�, for every r > 0 small enough, Z.x C r/ �Z.x � r/ � 2r˛0 .

Indeed, consider 0 < r < 2�J5�1 and the associated integerN > 4 such that (41)
holds. By Lemma 4.9 we have EN;1;r � E 00

N;1;r D ;. Hence, for any x 2 Œ0; 1�,
!B.x;r/.Z/ D Z.x C r/ �Z.x � r/ < .2r/˛N;1 < .2r/˛N;0 D .2r/˛0 : (49)

4.5. Upper bound for the spectrum of Z . We need to consider only points within
the Cantor set C .

Let ˛0 � ˛ � ˇ0, and assume that a real number x satisfies hZ.x/ � ˛. (When
˛0 D ˇ0, we need to consider only the case ˛ D ˛0.) By definition, for every " > 0
such that 0 < ˛0 � " < ˇ0 C " < 1, one can find a strictly increasing sequence of
integers p such that x belongs to an ENp;iNp ;2�p.Z/, where in is the largest integer
satisfying ˛n;in � ˛ C ", (in depends on ˛ and ", but we omit the subscripts for
clarity). Otherwise we would have for every small r > 0

!B.x;r/ < .2r/
˛C "

2 ;

which contradicts the fact that hZ.x/ � ˛.
Hence, we have the inclusion

E
�
Z.˛/ D ¹xW hZ.x/ � ˛º � lim sup

p!C1
ENp;iNp ;2�p D

\
P �1

[
p�P

ENp;iNp ;2�p : (50)

Using this, we prove that the Hausdorff dimension of E�
Z.˛/ is less than d.1C �˛/.

Let s > d.1C �˛/.



324 Z. Buczolich and S. Seuret

By (50), E�
Z.˛/ is covered for every P � 1 by the union

S
p�P ENp;iNp ;2�p :

Let us count the number of intervals in ENp;iNp ;2�p . Recalling (37) we deduce using
the decomposition above that ENp ;iNp ;2�p is covered by the union over each i such
that i < iNp

of

2 � 2JNp

�Np;i

˛Np;i
.1�"Np;i /

intervals of the form IJNp ;k.i; 2
�p/ (here the value of i depends on the value of

2�p). But as noticed above, in order to have hZ.x/ � ˛, one necessarily has x 2
IJNp ;k.˛Np ;i/ (not only x 2 IJNp ;k.i; 2

�p/).
Hence, the s-Hausdorff pre-measure H s

ı
(which is obtained by using covering of

size less than ı � 2�p) of ENp;iNp ;2�p is bounded from above by

H s
ı .ENp;iNp ;2�p/ �

iNp �1X
iD1

jIJNp ;k.˛Np;i /js � 2 � 2JNp

�Np;i

˛Np;i
.1�"Np;i /

� C

iNp �1X
iD1

2
JNp

� �Np;i

˛Np;i
.1�"Np;i /� s

˛Np;i

�
:

Then,

H s
ı .E

�
Z.˛// �

X
p�P

H s
ı .ENp ;iNp ;2�p /

� C
X

p�P

iNp �1X
iD1

2
JNp

� �Np;i

˛Np;i
.1�"Np;i /� s

˛Np;i

�
:

This series converges since s > d.1 C �˛/ > �Np;iNp
> �Np ;i and "Np;i �

10�Np (for every indices p and i ). We conclude that H s
ı
.E

�
Z.˛// D 0, hence

dimH E
�
Z.˛/ � s. Since this holds for every s > d.1C �˛/ we obtained our upper

bound for the spectrum of Z when ˛ 2 Œ˛0; ˇ0�.
By (27), hZ.x/ � ˛0 for any x 2 Œ0; 1� and hence ¹xW hZ.x/ < ˛0º D ;:
On the other hand, in order to have hZ.x/ < C1 one needs x 2 \1

N D1E 0
N;N C1.

But then by Lemma 4.9 there exists rN ! 0 such that x 2 EN;N C1;rN
. Since

˛N;N C1 D ˇ0 we obtain that in this case hZ.x/ � ˇ0:

(When ˛0 D ˇ0, we have x 2 EN;2;rN
and ˛N;2 ! ˛0 D ˇ0:)

4.6. Lower bound for the spectrum of Z . Let ˛ 2 Œ˛0; ˇ0�, and consider the
sequence of sets Fn.˛/ D S

k2Tn;in
IJn;k.˛n;in/, where in 2 ¹1; : : : ; nº is the largest

integer satisfying ˛n;in < ˛. (In case of ˛ D ˛0, such an integer does not exist and
we set in D 1 in this case.)
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Consider the Cantor set

F .˛/ D
\
n�2

Fn.˛/:

Obviously F .˛/ � C D \1
N D1E

0
N;N C1, where C is the Cantor set defined by (40)

on which the function Z has exponents between ˛0 and ˇ0.
First remark that by (34) the sequence .Jn/n�2 is lacunary (for instance, we have

Jn � 2Jn�1). In addition, recall that by (37), one has

#Tn;in D 2
Jn

�n;in
˛n;in

.1�"n;in/
:

From the lacunarity of .Jn/, one deduces that

log
� nY

mD1

#Tm;im

�
�n!C1 log #Tn;in :

Finally, the intervals of I , which are all of length 2�Jn=˛n;in belonging to Fn.˛/ are
embedded in those of Fn�1.˛/, and (remembering definition (36)), these intervals
are separated by a distance at least equal to

2

�
Jn

�
1� �n;in

˛n;in

��
2�Jn � 2

�Jn
�n;in
˛n;in :

By a classical argument (see [7], Examples 4.6 and 4.7, for instance) allowing to
compute the Hausdorff dimension of this type of Cantor sets, we have

dimH F .˛/ � lim inf
n�C1

� log
� nY

mD1

#Tm;im

�

log 2�Jn=˛n;in

D lim inf
n�C1

� log #Tn;in

log 2�Jn=˛n;in

D lim
n!C1 �n;in.1� "n;in/

D d.1C �˛/:

Suppose ˛0 < ˛ � ˇ0 and 0 < r < 2�J5�1 and choose N satisfying (41). Then

x 2 EN .˛/ D
[

k2TN;iN

IJN ;k.˛N;iN /

and we have
EN .˛/ \E 00

N;iN ;r D ;:
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This implies x 62 EN;iN ;r .Z/, that is,

!B.x;r/.Z/ < .2r/
˛N;iN :

If ˛ D ˛0 by (49) we have !B.x;r/.Z/ < .2r/
˛0 .

On the other hand, EN .˛/ � E 0
N;iN C1 and there exists r 0 � 2�JN =˛N;iN C1 �

2�JN such that
!B.x;r 0/.Z/ � .2r 0/˛N;iN C1 :

Since ˛N;iN C1 � ˛N;iN ! 0 as N ! 1 and ˛N;iN � ˛ < ˛N;iN C1 we have
hZ.x/ D ˛:

5. Multifractal spectrum prescription of a non-HM measure

Let f 2 F . We build a probability measure � whose multifractal spectrum d�.h/ is
exactly f .h/ for the exponents h < 1. To get part (iii) of Theorem 1.11 (the spectrum
for h D 1), it is enough to consider the measure .�C �/=2, where � is the Lebesgue
measure on Œ0; 1�.

We call . Qfn/ the sequence of functions associated with f 2 F , which are constant
over a closed interval In � Œ0; 1� and satisfy Qfn.x/ � f .x/. We set

˛0 D inf
n�1

min In > 0: (51)

Recall that F �, introduced in Definition 4.2, was the set of functions suitable
for Theorem 4.1. For each Qfn, there exists a countable sequence of affine functions
.fn;p/p�1, fn;p 2 F � such that Support.fn;p/ D In for all p and Qfn D supp fn;p .

Hence, if we consider the countable family of functions .fn;p/n�1; p�1, we still
have f D supn�1; p�1 fn;p: By adjusting our notation we call this new countable
family .fp/p�1, and we have f D supp�1 fp .

Remark 5.1. This procedure will be used in the next section also.

For every integer p � 1, by Theorem 4.1, one can find a surjective monotone
function ZpW Œ0; 1� ! Œ0; 1� whose multifractal spectrum is exactly fp . Let us call
�p the measure defined as the integral of Zn, �p.Œ0; x�/ D Zp.x/. We obtain the
measure� as follows: for everyp � 1, the restriction of� to the interval Œ2�p ; 2�pC1�

coincides with 2�p.�p B p̀/, where p̀ is the unique affine bijective increasing map
from Œ0; 1� to Œ2�p; 2�pC1�.

It is a trivial matter to see that

d� D sup
p�1

d�p
;
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since affine mappings do not modify the multifractal spectrum and since the supports
of the measures �p B p̀ are disjoint. Problems may occur only at the concatenation
points between the supports of the measure, i.e. at the rationals 2�p , p � 1, and at 0.
In reality, there is no problem at the rationals 2�p , because of item (i) of Theorem 4.1
(and the fact that 0 and 1 are isolated points and do not belong to the support of
the measures �p), which ensures that these points satisfy h�.2

�p/ D C1. Hence,
only 0 may be a problem, but it is easy to modify the measure � (for instance by
performing a time subordination which is singular at 0) to ensure that h�.0/ D C1.
This yields Theorem 1.11.

6. Multifractal spectrum prescription of a HM measure

Let f be a function belonging to the set of functions F . We apply the same proce-
dure as in the previous Section 5 to get a countable family of functions .fp/p�1 all
belonging to F � and satisfying f D supp�1 fp .

For each function fp , using Theorem 4.1, there exists a function Zp whose spec-
trum on Œ0;C1/ is exactly fp . The construction of Theorem 4.1 guarantees that the
function Zp has a particular form: the points x such that hZp

.x/ < C1 are located
on a Cantor set Cp , and the largest interval in the complementary set of Cp in Œ0; 1�
has length less than 1/10. The functions Zn are extended as continuous functions
R ! R, by setting Zn.x/ D 0 if x � 0 and Zn.x/ D 1 if x � 1.

The idea behind our construction is to “insert” in each open interval complemen-
tary to the Cantor set Cp a copy of another functionZp0 , so that the new function will
have a multifractal spectrum equal to the supremum of the spectra of fp and fp0 , since
the two functions have disjoint supports. We will repeat this a countable number of
times, with a strong redundancy, and the function Z obtained as the uniform limit of
continuous functions .Yn/ will have the desired homogeneous multifractal spectrum.

We will first construct the HM function Z as the uniform limit of a sequence of
functions .Yn/n�1, using a suitable subsequence of functions .gn/n�1 which will be
selected from the set of functions .fp/p�1. For the moment, we do not explain how
this choice is made, we will do it at the end of this section. By abuse of notation,
we still denote by Zn the function built in Theorem 4.1 whose spectrum equals gn.
Afterwards, we will explain how we choose each function gn among the functions
.fp/p�1 in order to impose a homogeneous multifractal spectrum for Z.

We denote by Z0 the function obtained from Proposition 1.16.
Set Y1 D Z0 C Z1. Then for all x 2 Œ0; 1� we have hY1

.x/ � 1 and the set of
singularities zC1 D ¹x 2 Œ0; 1�W hY1

.x/ < 1º is located on a Cantor set.

For every n � 2, we assume that Yn has been built, and that the set zCn of
singularities of Yn, i.e. zCn D ¹x 2 Œ0; 1�W hYn

.x/ < 1º has the structure of a Cantor
set: there exists a sequence of sets .Cn;p/p�1 satisfying the following:
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� the Cn;p are nested, i.e. for every p � 1, Cn;pC1 � Cn;p ,

� Cn;p is a finite union of pairwise disjoint closed intervals,

� the maximal length of the intervals inCn;p is strictly decreasing with p and tends
to zero when p tends to infinity,

� zCn D T
p�1 Cn;p .

We also assume that hYn
.x/ � ˛0 for all x 2 Œ0; 1�:

Then we construct YnC1 as follows: let zLn be one of the longest open intervals
contiguous to zCn in Œ0; 1�, and let L0

n be concentric with zLn but of length 2�n2
times

that of zLn, i.e. jL0
nj D 2�n2 j QLnj.

We set (see Figure 5)

YnC1.x/ D Yn.x/C 2�n2=j zLnj �ZnC1.Sn.x//; for all x 2 Œ0; 1�; (52)

where Sn on L0
n is the unique increasing affine function mapping L0

n to Œ0; 1�, other-
wise Sn is continuous and constant on the components of Œ0; 1� n L0

n.

y

1:0

0:9

0:7

0:6

0:4

0:3

0:1

1 x

YnC1

Yn

L0
n

zLn

Figure 5. Definition of Yn and YnC1.
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By (27) of Theorem 4.1 we have hYnC1
.x/ � ˛0 for all x 2 Œ0; 1�.

Then YnC1 obviously satisfies the same properties as Yn: its set of singularities
zCnC1 D ¹x 2 Œ0; 1�W hYnC1

.x/ < 1º has the structure of a Cantor set, since it is the

union of two Cantor sets ( zCn and the image of CnC1 by S�1
n ) which “do not cross”,

i.e. between any two points of the image of CnC1 by S�1
n , there is no point of zCn.

Moreover, in case zCn had only one contiguous interval of maximal size, zLn then the
size of one of the largest open interval in the complement of zCnC1 is less than that
of the largest open intervals in the complement of zCn, since the interval zLn has been
cut in many parts (at least 2). Otherwise the (finite) number of contiguous intervals
to zCnC1 of size zLn is one less than that for zCn.

We iterate this construction.

Proposition 6.1. The sequence of functions .Yn/n�1 converges uniformly to a con-
tinuous function ZW Œ0; 1� ! R.

Proof. Using the definition of Yn in (52), this follows from the fact that 0 < j zLnj < 1
is non-increasing, and that the series

P
n�1 2

�n2=j zLnj converges.

In addition, the sequence of lengths .j zLnj/n�1 is not only non-increasing, but it
also tends to zero. Indeed, at a fixed step n, the set of intervals in the complementary
set of zCn whose size is between j zLnj and j zLnj=2 is finite. Since any further step
divides by more than two the size of one of the maximal intervals, after a finite
number of steps, the size of the maximal interval(s) in the complement of zCnCn0 will
be less than j zLnj=2. Hence, .j zLnj/n�1 converges to zero when n tends to infinity.

Since we are adding monotone functions the oscillation of Yn on a given interval I
can only increase when n increases. One consequence is that for each x 2 zCN , the
Hölder exponent of Z at x is not larger than the Hölder exponent of YN at x.

Moreover, using (27), all the Hölder exponents of Z are larger than ˛0.
Hence the multifractal spectrum of Z has a support included in Œ˛0;C1�.

We now prove the key proposition to obtain Theorem 1.15: it asserts that the
set of those points where the Hölder exponent can be altered during the iterative
construction of the functions Yn has Hausdorff dimension 0.

Proposition 6.2. For every N � 2, the Hausdorff dimension of the set

zFN D ¹x 2 Œ0; 1�W hZ.x/ < hYN
.x/º

is zero.
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Proof. Let us choose an x 2 Œ0; 1� with hZ.x/ < hYN
.x/ � 1. This means that

hYN
.x/ has a value, greater than ˛0 and not exceeding 1. Let n > N . The maximal

value of the oscillation of the contribution of Yn is 2�n2=j zLnj. Moreover, all the further
contributions of the Yn0 , for n0 � n, are all of magnitudes less than 2�.n0/2=j zLn0 j
(which itself is less than 2�.n0/2=j zLnj), so the sum of all the maximal oscillations is
less than 2 � 2�n2=j zLnj.

One knows that for every r small enough,

!B.x;r/.YN / � rhYN
.x/�": (53)

We assumed that hZ.x/ < hYN
.x/, and let " > 0 be such that hZ.x/C3" < hYN

.x/.
Necessarily, for some small values for r , one must have

!B.x;r/.Z/ � rhZ.x/C" > rhYN
.x/�2" > 2rhYN

.x/�"

and
rhYN

.x/C"=2 � rhYN
.x/C2":

This and (53) imply that for some small values of r > 0

!B.x;r/.Z � YN / � rhZ.x/C"=2 � rhZ.x/C2" > r: (54)

In order to modify the oscillation of YN on B.x; r/, the ball B.x; r/ should
intersect at least one of the intervals L0

n for an n � N C 1. Let n � N C 1 be the
minimal integer such that B.x; r/ \ L0

n ¤ ;. The maximal possible value of the

oscillation of the function 2�n2=j zLnj �ZnC1.Sn.x// (which is added at step nC 1 to
construct YnC1 from Yn) equals 2�n2=j zLnj. This oscillation is obtained on the interval
L0

n of length 2�n2 j zLnj. The difference between !B.x;r/.Yn/ and !B.x;r/.YnC1/ is

at most 2�n2=j zLnj. Using the remark above, summing all the further oscillations
(for n0 � nC 1) does not change much the size of !B.x;r/.Yn/.

Assume that r > jL0
nj D 2�n2 j zLnj. Also recall that j zLnj � 1=10: The difference

between !B.x;r/.Yn/ and !B.x;r/.Z/ is at most

2 � 2�n2=j zLnj << 2�n2Clog2 j zLnj D 2�n2 j zLnj D jL0
nj � r:

Therefore, we have

j!B.x;r/.Z/ � !B.x;r/.Yn/j � r;

and

j!B.x;r/.Yn/ � !B.x;r/.YN /j D 0:

This contradicts (54).
Hence, we need to consider the case r � jL0

nj and B.x; r/ \ L0
n 6D ;. This

implies that x must belong to the interval concentric with L0
n, but of length 3jL0

nj.
Let us call these intervals L00

n.
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In order to change at x the oscillation of Z compared to that of YN , the point x
must belong to an infinite number of intervals L00

n. Let us now find an upper-bound
for the dimension of the set � of such points. For any s > 0, if �n D jL00

nj, the unionS
n0�nL

00
n0 forms an �n-covering of � , thus we have

H s
�n
.�/ �

X
n0�n

jL00
n0 js � 3s

X
n0�n

j2�n02
=j zLn0 jjs � 3s

X
n0�n

j2�n02
=j zLN jjs:

This last sum obviously converges for any value of s > 0. Hence H s.�/ D 0 and
dim.�/ � 0. Since zFN � � we proved the proposition.

By taking a countable union of sets of dimension zero, we obtain the following
corollary.

Corollary 6.3. Let F D [1
N D2

zFN . Then F is the subset of Œ0; 1� for which the
exponent of Z at x is modified due to our “scheme of iteration” and dim F D 0.

We finish by explaining the choice of the functions .fn/n�1 in the construction
of the function Z. This sequence is obtained recursively.

� Step 1. We use gn D f1 until each dyadic interval I1;k, for k D 0; 1 contains a
copy of Z1.

� Step 2. We use gn D f1 until each dyadic interval I2;k , for k D 0; : : : ; 22 � 1

contains a copy ofZ1. Then we use fn D g2 until each dyadic interval I2;k , for
k D 0; : : : ; 22 � 1 contains a copy of Z2.

� …

� Step p. We use gn D f1 until each dyadic interval Ip;k , for k D 0; : : : ; 2p � 1

contains a copy ofZ1. Then we use gn D f2 until each dyadic interval Ip;k , for
k D 0; : : : ; 2p � 1 contains a copy of Z2 …Finally we use gn D fp until each
dyadic interval Ip;k , for k D 0; : : : ; 2p � 1 contains a copy of Zp .

� …

At the end of the construction, we obviously have the following property: any non-
trivial interval I � Œ0; 1� contains a copy of any function fp . If h 2 Support.f / and
f .h/ > 0 then from dim F D 0 it follows that dZ.h/ D f .h/: If f .h/ D 0 and
h � ˛0 then Theorem 3.3 can be used to verify that dZ.h/ D f .h/ D 0: Indeed,
hZ.x/ � hYN

.x/ for any x 2 Œ0; 1� and N 2 N. By the choice of ˛0 in (51) and
by construction ¹xW hZ.x/ � ˛0 C "º is dense in Œ0; 1� for any " > 0. Moreover,
hZ.x/ � ˛0 for any x 2 Œ0; 1�:The existence and the value of the rest of the spectrum
(i.e. the exponents h for which dZ.h/ D 0) are obtained by combining the results of
the previous section.
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7. Multifractal spectrum prescription of a HM (non-monotone) function

Theorem 1.17 is simply the consequence of the following Theorem proved in [2].
Let . j;k/j 2Z;k2Z be any orthogonal wavelet basis of L2.R/ (see for instance [15]
for the existence and the construction of wavelet bases).

Theorem 7.1. Let � be a measure on Œ0; 1�, 0 < ˛ < ˇ. Consider the wavelet series

F�.x/ D
X
j �1

2j �1X
kD0

dj;k  j;k.x/;

where the wavelet coefficients of F� are defined by dj;k D 2�j˛�.Ij;k/
ˇ�˛:

Then for every x 2 Œ0; 1�, hF�
.x/ D ˛ C .ˇ � ˛/ � h�.x/:

This implies that for every exponent h such that h�˛
ˇ�˛

belongs to Support.d�/, one
has

dF�
.h/ D d�

�h � ˛
ˇ � ˛

�
:

Theorem 7.1 combined with Theorem 1.12 yields Theorem 1.17.
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