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The shape of the dust-likeness locus of self-similar sets

Miwa Aoki, Masayo Fujimura,1 and Masahiko Taniguchi2

Abstract. We prove that the dust-likeness locus in the deformation space of a contractive

holomorphic linear iterated function system is coincident with the quasiconformal deformation

space. Also, we determine explicitly the dust-likeness locus restricted to several slices which

are different from the Mandelbrot one, and provide specific examples that show diversity of

self-similar sets.
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1. Introduction

Let m; n be positive integers and n � 2. We say that an affine map S W R
m ! R

m

is a contracting similarity, or simply a CS, if there is an rS 2 .0; 1/ such that

jS.x/ � S.y/j D rS jx � yj for every x; y 2 R
m. We call rS the contraction ra-

tio of S . For a given family � D ¹Skºn
kD1

of n CSs, sgp.�/ denotes the semigroup

generated by ¹Skºn
kD1

. The pair .� ; R
m/ of the family � and the space R

m is called

an contractive linear IFS .iterated function system/ on R
m. The self-similar set E

for � is the unique non-empty compact set E in R
m which satisfies

E D
n

[

kD1

Sk.E/;

which is also called the forward limit set of sgp.�/ and denoted by ƒC.�/.

Definition 1.1. We say that two families �1 D ¹Sk;1ºn
kD1

and �2 D ¹Sk;2ºn
kD1

of

ordered n CSs of R
m with mutually distinct fixed points are equivalent if there is a

similarity T W R
m ! R

m such that Sk;2 D T �1 B Sk;1 B T for every k.

1The second author was partially supported by Grants-in-Aid for Scientific Research (C) (Grant

No. 22540240).
2The third author was partially supported by Grants-in-Aid for Scientific Research (C) (Grant

No. 23540202) and Grant-in-Aids for Scientific Research (B) (Grant No. 25287021).
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We call the set of all equivalence classes Œ� � of such families � the deformation

space D.n; m/ of IFSs.

The deformation space D.n; m/ can be identified with the space of all normalized

IFSs .� ; R
m/, where an � D ¹Skºn

kD1
is normalized if the points 0 D .0; � � � ; 0/

and e1 D .1; 0; � � � ; 0/ in R
m are the fixed points of S1 and S2, respectively. Hence,

D.n; m/ can be naturally identified with the product space

ND.n; m/ D ..0; 1/ � O.m//n � Conf.n � 2; R
m � ¹0; e1º/;

where O.m/ is the m-dimensional orthogonal group, i.e., the group of all orthogonal

transformations of R
m, and Conf.n � 2; R

m � ¹0; e1º/ is the configuration space of

ordered distinct n � 2 points on R
m � ¹0; e1º. For every � D ¹Skºn

kD1
, we call the

vector r� D .rS1
; � � � ; rSn

/ 2 .0; 1/n of the contraction ratios the contraction vector

of � .

Definition 1.2. We say that the forward limit set ƒC.�/ of sgp.�/ is dust-like if �

satisfies SSC (the strong separation condition), i.e., for every distinct i and j ,

Si .ƒ
C.�// \ Sj .ƒC.�// D ;:

We set

DL.n; m/ D ¹� 2 ND.n; m/ j ƒC.�/ is dust-likeº;

and call DL.n; m/ the dust-likeness locus of ND.n; m/.

Now, following is one of the fundamental problems concerning dust-like self-

similar sets.

Problem 1.1. Determine when two elements �k 2 DL.nk; m/ .k D 1; 2/ are quasi-

isometrically equivalent (bi-Lipschitz equivalent) to each other, i.e., there is a bi-

Lipschitz homeomorphism between ƒC.�1/ and ƒC.�2/.

Recently, various answers to this problem have been obtained. Some character-

izations of mutually quasi-isometrically equivalent pairs are given in [17] and [23],

for instance. Note that one of the rather explicit sufficient conditions using the con-

traction vectors is: for two �1 and �2 in DL.n; m/, if r�1
D r�2

, then �1 and �2

are quasi-isometrically equivalent. Also recall the famous necessary condition by

Falconer and Marsh. See for instance, [8] and [10]. (Also cf. [19].)

On the other hand, it is clear that the answers to Problem 1.1 will become complete

only after we know the shape of DL.n; m/ explicitly.
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Problem 1.2. Determine the shape of the dust-likeness locus DL.n; m/.

This problem has been considered since early research on fractal geometry of

self-similar sets, but chiefly on the "connectedness locus" where the forward limit

sets are connected, and for the special slice called the "Mandelbrot set". See the

references cited after Theorem 1.2.

Remark 1.1. If n > 2, then the dust-likeness locus is not the complement of the

connectedness locus (cf. [20]), though it is well-known that it is if n D 2. Recently, the

dust-likeness locus has been investigated from various viewpoints. For instance, the

dust-likeness locus in the deformation space of IFSs without nomalization, together

with a natural kind of boundary, were discussed in [12]. See also the references

therein.

More specifically, we consider in the sequel, the deformation space ND.n/ of

normalized contractive holomorphic linear IFSs in ND.n; 2/ which consists of CSs

S1.z/ D �1z;

S2.z/ D �2.z � 1/ C 1;

S3.z/ D �3.z � ˛3/ C ˛3;

: : : ;

Sn.z/ D �n.z � ˛n/ C ˛n

of C D R
2. ND.n/ can be considered as the complex manifold .U �/n � Conf.n � 2;

C � ¹0; 1º/, where U � D ¹0 < jzj < 1º.

Let DL.n/ be the dust-likeness locus of ND.n/. Fix a point �0 in DL.n/. Then,

we obtain a canonical semigroup isomorphism

�� W sgp.�0/ �! sgp.�/

for every � 2 DL.n/, and hence a canonical holomorphic map

FPW DL.n/ �! C
sgp.�0/ D C

1;

by setting the T -th component of FP.�/ to be the fixed point of �� .T / for every

T 2 sgp.�0/. Also, FP induces a holomorphic motion of the set in C comprising all

components of FP.�0/. (See for instance, [1] and [13].)

Remark 1.2. It can be easily seen that the fixed points of elements in sgp.�/ determine

� D ¹Skºn
kD1

for every � 2 DL.n/, or more precisely, that S1; � � � ; Sn are determined

by the .2n � 2/ fixed points of S3; � � � ; Sn; S2S1; S1S2; � � � ; S1Sn, for instance.
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We say that a normalized quasiconformal self-map f of C preserves the markings

of �1 and �2 if f maps every T -th component of FP.�1/ to the T -th component of

FP.�2/ for every T 2 sgp.�0/. Then we have the following facts.

Theorem 1.1. The dust-likeness locus DL.n/ is a domain contained in

°

� 2 ND.n/
ˇ

ˇ

ˇkr�k
�

D
r

X

r2
Sj

�

< 1
±

:

For every two points �1 and �2 in DL.n/, there is a quasiconformal self-map of C

preserving the markings of �1 and �2.

The assertions of Theorem 1.1 are rather well-known (cf. [6] and [9]). But for the

sake of convenience, we provide a proof in §2.

As shown in Theorem 1.1, DL.n/ is contained in the quasiconformal deformation

space of a contractive holomorphic linear IFS .� ; C/ of n CSs with the dust-like

forward limit set. Hence, we can introduce the Teichmüller distance on DL.n/ in a

canonical manner as follows.

Definition 1.3 (Cf. [15] and [18]). The Teichmüller distance dT .�1; �2/ between

two points �1 and �2 in DL.n/ is the infimum of log K.f / among all quasiconformal

maps of C that preserve the markings of �1 and �2, where K.f / is the maximal

dilatation of f .

Remark 1.3. To conclude that dT is a distance, we need to show that �1 D �2

if dT .�1; �2/ D 0 for �k 2 DL.n/. This follows from the fact that a normalized

conformal map of C�ƒC.�1/ onto C�ƒC.�2/ is actually the identical map, which

in turn follows, for instance, from the classical fact that ƒC.�1/ has absolute area 0.

See Corollary 2.1 below.

Now, we will prove in §2 the following theorem.

Theorem 1.2. The Teichmüller distance dT on DL.n/ is complete. In particular,

DL.n/ is coincident with the quasiconformal deformation space of a contractive

holomorphic linear IFS in DL.n/.

On the other hand, it seems that little is known about the explicit shape of DL.n/.

Much research on Problem 1.2 has been done for the special slice defined by

M D ¹� 2 ND.2/ j �1 D �2º;

which is called the Mandelbrot set. Here, another clearly equivalent family consisting

of yS1.z/ D �z and yS2.z/ D �z C 1 is usually considered. See for instance [2], [4],

[5], and [21].
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In this paper, we investigate other slices Sl.2I !1; !2/ of DL.2/ which consist of

all �.r; sI !1; !2/ D ¹S1; S2º with

S1.z/ D r!1z; S2.z/ D s!2.z � 1/ C 1;

where r > 0; s > 0 and !4
k

D 1. Then, we can determine explicitly the shape of

Sl.2I !1; !2/.

Theorem 1.3. (1) Suppose that both !k are real, i.e., !k 2 ¹˙1º, then

Sl.2I !1; !2/ D ¹�.r; sI !1; !2/ 2 ND.2/ j r C s < 1º:

(2) Suppose that !1 is purely imaginary, i.e., ˙i , but !2 is real. Then

Sl.2I !1; !2/ D ¹�.r; sI !1; !2/ 2 ND.2/ j r2 C s < 1º:

(3) Suppose that both !k are purely imaginary. Then

Sl.2I !1; !2/ D ¹�.r; sI !1; !2/ 2 ND.2/ j r2 C sr < 1; s2 C sr < 1º:

A proof of Theorem 1.3 is given in §3.

Finally in §4, we show by examples that the slices considered in Theorem 1.3 are

as rich as the Mandelbrot slice. We provide in §4 explicit examples of the self-similar

sets corresponding to IFSs in the slices such as dendrites, closed domains, and porous

ones.

Acknowledgement. The authors would like to express heartfelt thanks to the referee

for his/her valuable comments.

2. Proof of Theorems 1.1 and 1.2

First, we include a proof of Theorem 1.1 for the sake of convenience. Here, recall that

SSC implies the expanded separation condition (ESC), i.e., there is a non-empty open

set O such that Sj .O/ � O for every j and that Sj .O/\Sk.O/ D ; for every distinct

j and k. Indeed, if ƒC.�/ satisfies SSC, then we can take a sufficiently small � > 0

so that � satisfies ESC with the open �-neighborhood ¹z 2 C j d.z; ƒC.�// < �º of

ƒC.�/.

Proof of Theorem 1.1. Take an � in DL.n/. Since it is clear that the same O satisfies

ESC for all �
0 sufficiently near � , it implies that DL.n/ is open.

Also, the same O satisfies ESC for every such �
0 2 DL.n/ that every fixed point

˛0

k
for �

0 equals ˛k for � and that r� 0 is not greater than r� component-wise. Hence,

given two �1 and �2 in DL.n/, we first connect �k to an �
0

k
as above with an arc in

DL.n/ for each k, by shrinking the contraction vectors component-wise. Here, we
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may assume that r�
0

1
and r�

0

2
have the same sufficiently small components. Then,

sliding the fixed points suitably, we can connect �
0

1 to �
0

2 by an arc in DL.n/. Thus,

we conclude that DL.n/ is a domain.

Next, suppose that there is an � in DL.n/ with kr�k � 1. Since � satisfies the

open set condition (OSC), the theorem in [21] implies that the Hausdorff dimension

of ƒC.�/ should not be less than 2, and hence should be 2. But then ƒC.�/ could

not be totally disconnected, for instance, by the corollary in [21]. Thus, we conclude

the first assertion.

Finally, the so-called � lemma (cf. for instance [13], [15], and [18]) implies the

second assertion.

The following corollary follows from Theorem 1.1 and the classical nest test. See,

for instance, [18].

Corollary 2.1. ƒC.�/ has absolute area 0 for every � 2 DL.n/.

Next, to prove Theorem 1.2, we recall that the cross-ratio �.z1; z2; z3; z4/ of 4

distinct points in C is defined by

�.z1; z2; z3; z4/ D z1 � z2

z1 � z4

z3 � z4

z3 � z2

:

For the given ordered 4 distinct elements � D .T1; � � � ; T4/ of sgp.�0/, we have a

holomorphic function

�� W DL.n/ �! C � ¹0; 1º
by setting �� .�/ D �.z� ;T1

; � � � ; z� ;T4
/, where z� ;Tk

is the fixed point of �� .Tk/.

We call such holomorphic functions on DL.n/ the cross ratio functions. (Cf. [24].)

For every vector � as stated above and every two points �k in DL.n/, we know that

dh.��.�1/; ��.�2// � dT .�1; �2/;

where dh is the hyperbolic distance on C � ¹0; 1º. See, for instance, [16].

Proof of Theorem 1.2. Suppose that dT is not complete. Then, there should be a

constant M > 0 and a sequence ¹�nº such that �n tend to "the boundary" of DL.n/

as n ! 1, but satisfies dT .�0; �n/ � M for every n.

First, assume that all components of r�n
stay in a compact set in .0; 1/ but that

the points corresponding to �n tend to the boundary of Conf.n � 2; C � ¹0; 1º/ in

the natural compactification. (For the definition, see for instance [11].) Then, there

are two different elements T1; T2 of sgp.�0/ such that ds.z�n;T1
; z�n;T2

/ ! 0 as

n ! 1, where ds is the spherical distance on the Riemann sphere. Hence, by

choosing two other suitable and different T3; T4 of sgp.�0/, we can construct a cross

ratio function � such that �.�n/ tend to 0 as n ! 1. But this implies that dT .�0; �n/

tend to C1, which is a contradiction.
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Next, suppose that some of the components of r�n
tend to 0 as n ! 1. Then it

is easy to construct a cross ratio function such as above, and we have a contradiction

in this case also.

Hence by Theorem 1.1, taking a subsequence if necessary, we may assume that

�n tend to a point �1 D ¹Sk;1º 2 ND.n/ � DL.n/. Since �1 does not satisfy

SSC, there is a point contained in two different Sk;1.ƒC.�1//. Since the set of

the components of FP.�1/ is dense in ƒC.�1/ (cf. for instance, [14]), we can find

four different elements T1; � � � ; T4 of sgp.�0/ such that the corresponding cross ratio

function �� satisfies

lim
n!1

dh.�� .�0/; ��.�1// > M:

Since the fixed points move continuously on ND.n/, we conclude that for every

sufficiently large n,

dh.��.�0/; ��.�n// > M;

which provides a contradiction. Thus we have finished the proof of Theorem 1.2.

Remark 2.1. Even if �1 2 DL.n/ but �2 62 DL.n/, there can exist a bi-Lipschitz

homeomorphism between ƒC.�1/ and ƒC.�2/. Cf. [7] and [20].

3. Proof of Theorem 1.3

The case (1). This case is classical and well known. Indeed,

� if both of !j D 1, then set I D Œ0; 1�;

� if !1 D �1; !2 D 1, then set I D Œ�r; 1�;

� if !1 D 1; !2 D �1, then set I D Œ0; 1 C s�;

� if both of !j D �1, then set

I D
��r.s C 1/

1 � rs
;

s C 1

1 � rs

�

:

Then, it is clear that I D ƒC.�/ if r Cs � 1, and ƒC.�/ is dust-like if r Cs < 1.

In the sequel, we use the family �t .r; sI !1; !2/ D ¹S t
1; S t

2º with

S t
1.z/ D r!1z; S t

2.z/ D s!2.z � 1 � i t / C 1 C i t;

which is equivalent to �.r; sI !1; !2/. Also, let J˛; ˇK be the rectangle

J˛; ˇK D ¹z D x C iy 2 C j a � x � c; b � y � dº;
for all complex numbers ˛ D a C ib; ˇ D c C id with a < c; b < d .

The case (2). First, assume that .!1; !2/ D .i; 1/. Set t D r and

L D J�r2 � r3i; 1 C riK:
Then, by simple computation, we see that S t

j .L/ � L for each j .
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Lemma 3.1. ƒC.�t / is dust-like if and only if r2 C s < 1.

Proof. If r2 C s < 1, then S t
1.L/ \ S t

2.L/ D ;, and hence ƒC.�t / is dust-like. If

r2 C s � 1, then we can see that the diagonal of L having positive inclination is

contained in ƒC.�t / as illustrated on the left in Figure 1, and hence ƒC.�t / cannot

be dust-like, and is connected actually.

Figure 1. The diagonal in the attractor for the case .i; 1/.

Next, assume that .!1; !2/ D .i; �1/. Then set t D r and

L D
s

�r2.1 C s/ � r3.1 C s/i

1 � r2s
;
1 C s C r.1 C s/i

1 � r2s

{
;

and we have the same conclusion as in the above lemma.

In the other cases, since the family �t is conjugate to one of the above ones by

the complex conjugation, we can conclude the assertion of Theorem 1.3 (2).

The case (3). First, assume that .!1; !2/ D .i; �i/. Here, we also assume that

s � r .

Set

t D r � s

1 C rs

and

L D
s

�r2.1 C s2/ � r3.1 C s2/i

1 � r2s2
;
1 C s2 C r.1 C s2/i

1 � r2s2

{
:

Then, by simple computation, we see that S t
j .L/ � L for each j . Also similarly as

before, we conclude that ƒC.�t / is dust-like if and only if r2 Csr < 1. See Figure 2.
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Figure 2. The diagonal in the attractor for the case .i; �i/.

Next, assume that .!1; !2/ D .i; i/. Again, we also assume that s � r . Set

t D r.1 � s2r2/

1 � s.r3 C r � s/

and

L D
s

�r2.1 C s2/ � r3.1 C s2/i

1 � s.r3 C r � s/
;
1 C s2 C r.1 C s2/i

1 � s.r3 C r � s/

{
:

Then similarly as before we conclude the same assertion, where the segment in the

attractor is not a diagonal but a segment with positive inclination as in Figure 3.

Figure 3. The segment in the attractor for the case .i; i/.

In the other cases, since the family �t is equivalent to one of the above ones and the

complex conjugation of them, we can conclude the assertion of Theorem 1.3 (3).

4. Examples

We provide examples of � 2 ND.2/ such that

(1) ƒC.�/ is a closed domain.

(2) ƒC.�/ is a dendrite in a sense that ƒC.�/ is a connected and locally connected

set with the connected complement and has no interior points.

(3) ƒC.�/ is porous, or equivalently, ƒC.�/ is connected but not so for its comple-

ment.
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First, simple computation show the following fact.

Example 4.1. In the case of Sl.2I i; �i/, if 1 � 2rs, then ƒC.�/ is S t
1.L/ [ S t

2.L/,

and hence a closed domain.

Next, recall that, in the case of ND.2/, ƒC.�/ is either dust-like or connected.

Hence, boundary points of the dust-likeness locus in the slice as shown in Theorem 1.3

give dendrites.

Lemma 4.1. For the boundary point � of the slice as in case (3) of Theorem 1.3,

ƒC.�/ is a dendrite except for .r; s/ D .1=
p

2; 1=
p

2/.

Proof. First, from the proof of Theorem 1.3, ƒC.�t / is connected, and we can see

from the construction that so is the complement of ƒC.�/, when �t is on the boundary

of DL.n/. Also, recall that the connected self-similar sets are locally connected, as

is easily seen from the definition.

Finally, if s < r and r2 C rs D 1, then ƒC.�t / has area 0, since such an �

satisfies OSC and r2 C s2 < r2 C rs D 1. Hence, there are no interior points by the

corollary in [21].

Figure 4. A dendrite on the boundary of ND.n/.

Finally, we give an explicit example of � with the porous attractor. Presently, the

locus of IFSs corresponding to the porous attractors is not clear.
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Example 4.2. Set

S t
1.z/ D 7i

10
z; S t

2.z/ D �100

149

�

z � 1 � 7i

10

�

C 1 C 7i

10
:

Then ƒC.�t / is porous.

Indeed, we can see that there appears to be a hole in the union of 5-th crones of L.

On the other hand, the union of 5-th crones of the diagonal in the attractor surrounds

the hole, which shows that ƒC.�t / has a hole and hence, has the porous attractor.

See Figure 5.

Figure 5. A hole and a surrounding closed curve in the attractor.
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Similarly, we can construct examples of IFSs with porous attractors, also in other

subcases of case (2) in Theorem 1.3.
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