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Dynamics of unitary operators

David Damanik,1 Jake Fillman,2 and Robert Vance

Abstract. We consider the iteration of a unitary operator on a separable Hilbert space and

study the spreading rates of the associated discrete-time dynamical system relative to a

given orthonormal basis. We prove lower bounds for the transport exponents, which mea-

sure the time-averaged spreading on a power-law scale, in terms of dimensional properties

of the spectral measure associated with the unitary operator and the initial state. �ese

results are the unitary analog of results established in recent years for the dynamics of

the Schrödinger equation, which is a continuum-time dynamical system associated with a

self-adjoint operator. We discuss how these general results may be studied by means of sub-

ordinacy theory in cases where the unitary operator is given by a CMV matrix. An example

of particular interest in which this scenario arises is given by a time-homogeneous quantum

walk on the integers. For the particular case of the time-homogeneous Fibonacci quantum

walk, we illustrate how these components work together and produce explicit lower bounds

for the transport exponents associated with this model.
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1. Introduction

�is paper is concerned with the dynamics of unitary operators acting on Hilbert

spaces. Speci�cally, we �x a (separable) Hilbert space H, an orthonormal basis

.'n/n2A for H, a unitary operator U W H ! H, and a unit vector  2 H and con-

sider the discrete-time evolution  .k/ D U k . �e orthonormal basis .'n/n2A
will be indexed by a suitable countable set A - in general we may always take

A D ZC, but other countable sets may be more natural in certain settings. For ex-

ample, in the caseH D `2.Zd /, it is natural to use the orthonormal basis .ın/n2Zd .

Our goal is to give as complete a dynamical picture as possible for the spreading

of U k with respect to the basis .'n/n2A in terms of spectral characteristics of

U . By the spectral theorem, there is a Borel probability measure �U on the circle

@D D ¹z 2 C W jzj D 1º such that

h ; f .U / i D
Z

�.U/

f .z/ d�U .z/

for any bounded, Borel measurable function f on @D. Typically, we will suppress

the dependence of �U on U and simply write � .

�ere is an extensive literature devoted to the “self-adjoint case,” that is, the

time-evolution associated with the Schrödinger equation. Given a self-adjoint op-

erator H in H and a unit vector  2 H, one studies the spreading of e�itH rel-

ative to a given orthonormal basis. We refer the reader to [6, 9, 10, 11, 16] and the

references therein. Despite the obvious analogies, much less is known about the

unitary case – see [1, 8, 18], for example. One may be tempted to reduce questions

about the unitary case to known results in the self-adjoint case. In our opinion

this has at least two drawbacks. �e self-adjoint case leads naturally to Cesàro av-

erages in the continuous time-parameter and hence such results have no meaning

in the unitary setting, where the time-parameter is discrete. Moreover, a problem

in the unitary case is often given by an explicit unitary operator and one wants to

take advantage of the (usually) simple structure of the operator, which may not be

present in any associated self-adjoint operator. Speci�cally, we will discuss the

class of CMV matrices later in the paper and there is an extensive set of tools one

can use to analyze such an operator and verify the input to the general dynamical

results in the unitary case. It will be obvious that it is extremely desirable to stay

within the class of CMV matrices when proving delicate spectral properties such

as ˛-continuity, which are often di�cult to establish for a given operator.
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As a consequence, we prefer to work out the analogies between the self-adjoint

case and the unitary case. �at is, we will establish general results in the unitary

case that mirror known results in the self-adjoint case. �e advantage of this ap-

proach is that we obtain results that can readily be applied to a given setting in

which a time-evolution is given by the iteration of a unitary operator.

For example, there has been a lot of activity recently in the study of quantum

walks; compare [2, 3, 12, 13, 14] and references therein. A quantum walk is in-

deed given by the iteration of a unitary operator, and hence our general results be-

low apply directly to any quantum walk. More speci�cally, a time-homogeneous

quantum walk on the integers can be related in a simple way to a CMV matrix,

as pointed out in [2]. �us, for quantum walks of this kind, one wants to take

advantage of the tools available that allow one to prove the required spectral con-

tinuity results for spectral measures. One of the primary tools here is subordinacy

theory, which derives spectral continuity from solution estimates. �e latter may

be obtained by an analysis of the transfer matrices associated with a given CMV

matrix.

�e structure of the paper is as follows. In Section 2 we introduce some basic

quantities that capture the aspects of the dynamics in which we are interested. In

particular, the transport exponents are de�ned. In Section 3 we establish lower

bounds for the transport exponents in terms of regularity of the spectral measure.

In particular, the Hausdor� dimension and the packing dimension of the spectral

measure play a crucial role. In Section 4 we focus on the special case where the

unitary operator in question is given by a CMV matrix. We discuss how sub-

ordinacy theory provides an elegant way of establishing the spectral regularity

that was shown to imply lower transport bounds. �en we turn to the connection

between quantum walks on the integers and CMV matrices and explain how the

material from earlier parts of the paper gives a useful framework in which the

spreading rates of a quantum walk on the integers may be studied. Finally, we use

the Fibonacci quantum walk as an example for which we implement this overall

strategy, and derive explicit lower bounds for the spreading rates associated with

this model from the connection with CMV matrices, an analysis of the solutions

which provides the input to subordinacy theory and hence implies spectral reg-

ularity, and the derivation of the lower bounds for the transport exponents from

these spectral regularity properties.

Acknowledgements. We are grateful to the anonymous referees for several use-

ful suggestions that led to marked improvements of the paper.
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2. Preliminaries and basic de�nitions

We shall mirror the notation and development found in [6]. Let H be a complex

separable Hilbert space,U a unitary operator onH, and 2 H such that k k D 1.

We are interested in the time evolution of the vector  , that is,  .k/ D U k . Let

.'n/n2A be an orthonormal basis for H, indexed by a suitable countable set A – in

this paper, we will considerA D Z
d
C;Z

d as appropriate. To describe the spreading

of  with respect to the basis .'n/n2A, we �rst de�ne

a .n; k/ D jh'n;  .k/ij2 ;

which can be thought of as the probability that  is in the state 'n at time k. We

shall also be interested in the Cesàro time-averaged probabilities, given by

Qa .n;K/ D 1

K

K�1X

kD0
a .n; k/:

�roughout the paper, we shall be interested in Cesàro averages of quantities,

so, for a function f W Z�0 ! R, we introduce the notation hf i to denote the

average of f . More precisely, we set

hf i.K/ D 1

K

K�1X

jD0
f .j /:

For example, in this notation, one could write Qa .n;K/ D ha .n; �/i.K/.
For �xed k;K, a straightforward computation reveals

X

n2A
a .n; k/ D

X

n2A
Qa .n;K/ D 1

since .'n/n2A is an orthonormal basis for H.

Given R � 0, we are interested in the probability of �nding  within a ball of

radius R. Speci�cally, we de�ne

P
 
in .R; k/ D

X

jnj�R
a .n; k/;

P
 
out.R; k/ D

X

jnj>R
a .n; k/ D 1 � P in .R; k/;
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and their time-averaged counterparts

QP in .R;K/ D
X

jnj�R
Qa .n;K/ D hPin.R; �/i.K/;

QP out.R;K/ D
X

jnj>R
Qa .n;K/:

In the above formulae, jnj denotes the `1 norm of n, that is, jnj D jn1jC� � �Cjnd j.
We shall also describe transport behavior of U and  in terms of the moments

of the position operator, de�ned by

jX jp .k/ D
X

n

.jnjp C 1/a .n; k/;

with the time-averaged counterparts

hjX jp i.K/ D
X

n

.jnjp C 1/ Qa .n;K/

D 1

K

K�1X

kD0
jX jp .k/:

Remark 2.1. It is helpful to observe that

hjX jp i.K/ � Rp QPout.R;K/

for all R;K

We would like to compare the growth of jX jp .k/ to polynomial growth of

the form kˇp for a suitable exponent ˇ. In light of this, the following transport

exponents are natural objects to consider

ˇC
 .p/ D lim sup

k!1

log.jX jp .k//
p log.k/

;

ˇ�
 .p/ D lim inf

k!1

log.jX jp .k//
p log.k/

;

Q̌C
 .p/ D lim sup

K!1

log.hjX jp i.K//
p log.K/

;

Q̌�
 .p/ D lim inf

K!1

log.hjX jp i.K//
p log.K/

:
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By Jensen’s inequality, the functions ˇ˙
 and Q̌˙

 are non-decreasing functions

of p. For a detailed proof of this, the interested reader may consult Lemma 2.7

of [6], for example.

Usually, the initial state  will be explicitly given or clear from context, so we

will often suppress the dependence of the dynamical quantities on  , and simply

write a.n; k/; Pin.R; k/; jX jp.k/, etc.

3. Transport and singular continuous spectrum

In this section we prove estimates for the dynamical quantities introduced in the

previous section that hold for general unitary operators. We begin with results that

rely on suitable regularity properties of the spectral measure associated with the

operatorU and the initial state . Speci�cally, we �rst consider the case where the

measure is uniformly ˛-Hölder continuous for some ˛ > 0 and then study the case

of measures that have a non-trivial ˛-continuous component, that is, measures that

are not singular with respect to ˛-dimensional Hausdor� measure. In fact, the

latter case can be understood by approximation with measures covered by results

in the former case. As a consequence, we obtain quantitative estimates in terms of

the most continuous component of the spectral measure. One should emphasize

that these estimates are strictly one-sided. �at is, based on the analogy to the

self-adjoint case, one may expect that in some cases, transport can be fast even if

the spectral measure is highly singular.

3.1. Uniformly ˛-Hölder continuous spectral measures. We shall �rst be in-

terested in a description of continuity and singularity of measures supported on

@D. To that end, let us �rst recall the notion of uniform Hölder continuity for such

measures.

De�nition 3.1. We will say that a measure � on @D is uniformly ˛-Hölder con-

tinuous (U˛H) if there exists a constant C > 0 such that for every arc I � @D, we

have �.I / < C jI j˛ , where j � j shall be taken to mean one-dimensional Lebesgue

measure on @D.

We remark that a measure � on @D which is U˛H must necessarily be �nite,

for �.@D/ � C j@Dj˛ < 1.

�e following lemma provides the critical estimate for the results that follow.
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Lemma 3.2. Suppose � is a U˛H measure on @D for 0 � ˛ < 1. �ere exists a

constant 
 > 0 such that

Z

@D

ˇ̌
ˇ̌
ˇ
zKwK � 1
zw � 1

ˇ̌
ˇ̌
ˇ d�.w/ � 
K1�˛

for all z 2 @D and all K 2 ZC. In particular, 
 depends on neither z nor K.

Proof. By uniformity of �, it is no loss of generality to assume that z D 1, so we

may consider the integral

Z

@D

ˇ̌
ˇ̌w

K � 1
w � 1

ˇ̌
ˇ̌ d�.w/:

�e case ˛ D 0 is trivial: take 
 D �.@D/ and observe that

ˇ̌
ˇ̌w

K � 1
w � 1

ˇ̌
ˇ̌ D j1C w C w2 C � � � C wK�1j � K

for allw 2 @D by the triangle inequality, so that the integral in question is bounded

by �.@D/ �K.

Next, suppose 0 < ˛ < 1. For eachK, there are three parts of the integral that

we will control:

S1 D ¹z 2 @D W Re.z/ � 0º;

S2 D
°
ei� W � �

2K
� � � �

2K

±
;

S3 D
°
ei� W �

2K
< � � �

2
or � �

2
� � < � �

2K

±
:

It is easy to see that
ˇ̌
ˇwK�1
w�1

ˇ̌
ˇ �

p
2 on S1, and hence

Z

S1

ˇ̌
ˇ̌w

K � 1

w � 1

ˇ̌
ˇ̌ d�.w/ �

p
2�.@D/

Since � is U˛H, choose C such that �.I / � C jI j˛ for arcs I . In particular,

�.S2/ � C
� �
K

�˛
D C1K

�˛

with C1 D C�˛ .
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Since
ˇ̌
ˇwK�1
w�1

ˇ̌
ˇ � K for all w 2 S2 (indeed for all w 2 @D), we have

Z

S2

ˇ̌
ˇ̌w

K � 1

w � 1

ˇ̌
ˇ̌ d�.w/ � K�.S2/ � C1K

1�˛:

Lastly, we consider S3. We can decompose

S3 �
bp

Kc[

lD1
.Al [ Bl /

with

Al D
°
ei� W l

2�

2K
< � � .l C 1/2�

2K

±

and

Bl D
°
ei� W � .l C 1/2�

2K
� � < � l

2�

2K

±
:

We have

�.Al/; �.Bl/ � C
�.l C 1/2�

2K
� l2�

2K

�˛
� C2l

˛K�˛

with C2 D C
�
3�
2

�˛
Additionally, for w 2 Al [ Bl , one has

ˇ̌
wK � 1

ˇ̌
� 2 and

jw � 1j � sin
� l2�
2K

�
� l2

K
:

�us, if ˛ < 1, we have

Z

S3

ˇ̌
ˇ̌w

K � 1
w � 1

ˇ̌
ˇ̌ d�.w/ �

bp
KcX

lD1

Z

Al

ˇ̌
ˇ̌w

K � 1
w � 1

ˇ̌
ˇ̌ d�.w/C

bp
KcX

lD1

Z

Bl

ˇ̌
ˇ̌w

K � 1

w � 1

ˇ̌
ˇ̌ d�.w/

�
bp

KcX

lD1

4K

l2
� C2l˛K�˛

� 4C2K
1�˛

1X

lD1
l˛�2

� C3K
1�˛

with C3 D 4C2
P1
lD1 l

˛�2 (note that the series converges because ˛ < 1). Com-

bining the three estimates for S1; S2; and S3 gives us the desired bound.



Dynamics of unitary operators 399

Remark 3.3. It is relatively easy to see that the proof of Lemma 3.2 yields an

upper bound of constant times log.K/ in the case when ˛ D 1. Moreover, it is

well-known and not hard to verify that this upper bound is optimal when � is

Lebesgue measure on @D. However, the factor of log.K/ would not be optimal in

the following lemma, which is why a separate argument is necessary therein.

Lemma 3.2 gives estimates for Fourier coe�cients on the unit circle very sim-

ilar to those in Strichartz’ theorem [23].

Lemma 3.4. Suppose � is a U˛H measure on @D for some 0 � ˛ � 1. For each

f 2 L2.@D; d�/, k 2 Z, de�ne

cf�.k/ D
Z

@D

z�kf .z/ d�.z/:

�en, there exists C > 0 such that for all f 2 L2.@D; d�/ and K > 0, we have

hjcf�j2i.K/ < Ckf k2
L2.�/

K�˛:

Proof. First, suppose ˛ < 1. A straightforward calculation reveals

hjcf�j2i.K/ D 1

K

K�1X

jD0
jcf�.j /j2

D 1

K

K�1X

jD0

Z

@D

Z

@D

zjwjf .z/f .w/d�.z/ d�.w/

D 1

K

Z

@D

Z

@D

zKwK � 1
zw � 1 f .z/f .w/d�.z/ d�.w/:

By using the elementary inequality jabj � 1
2
jaj2 C 1

2
jbj2 and Fubini’s �eorem,

we see that this is in turn bounded above by

1

K

Z

@D

Z

@D

ˇ̌
ˇ̌
ˇ
zKwK � 1

zw � 1

ˇ̌
ˇ̌
ˇ jf .z/j

2 d�.z/ d�.w/:

Now, we integrate with respect to w and apply the previous lemma to see that this

is less than or equal to

1

K

K1�˛

Z

@D

jf .z/j2 d�.z/ D 
K�˛kf k2:
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�e case ˛ D 1 is essentially elementary. Suppose � is U1H, and let � denote

(normalized) Lebesgue measure on @D. Evidently, � is absolutely continuous

with respect to �. Moreover, by the Lebesgue Di�erentiation �eorem, g D d�
d�

is in L1.�/. Notice that f
p
g 2 L2.�/ and, evidently, kfp

gkL2.�/ D kf kL2.�/.
�us, by Plancherel, we have

hjcf�j2i.K/ D 1

K

K�1X

jD0
jcf�.j /j2

D 1

K

K�1X

jD0
jcfg.j /j2

� 1

K
kfgk2

L2.�/

� kgk1
K

kfp
gk2
L2.�/

D kgk1
K

kf k2
L2.�/

:

Notice thatb� has two di�erent meanings in the above argument. In the �rst line, it

is as de�ned in the statement of the lemma, while, in the second line, it denotes

the usual Fourier transform L2.@D; �/ ! `2.Z/.

Proposition 3.5. Let H, U ,  , and .'n/n2A with A D Z
d
C or A D Z

d . If the

spectral measure� is U˛H for some 0 � ˛ � 1, then there is a uniform constant

C0 > 0 such that the following hold for all N;K � 1:

QPin.N;K/ � C0N
dK�˛:

As a consequence, for each p > 0, there exists a constant Cp > 0 such that the

following holds for all K:

hjX jp i.K/ � CpK
p˛
d :

Proof. Let H denote the cyclic subspace spanned by U and  , with the corre-

sponding orthogonal projection P W H ! H . Next, let

V W H �! L2.@D; d� .z//

denote the natural unitary equivalence sending f .U / to f .z/. Put un D VP 'n.

We may observe that

a.n; k/ D j 1un � .k/j2
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by Fubini’s theorem and the spectral theorem. Hence, we obtain

QPin.N;K/ D 1

K

K�1X

kD0

X

jnj�N
a.n; k/

D
X

jnj�N
hj 1un � j2i.K/

�
X

jnj�N
CK�˛kun k2

L2.@D;d� /

� C0K
�˛N d :

�e third line follows from Lemma 3.4, and the �nal line follows from the obser-

vations kun kL2.@D;d� / D kP 'nk � k'nk D 1 and #¹n W jnj � N º � N d .

�is implies that

QPin

��K˛

2C0

�1=d
; K

�
� 1

2
:

Equivalently,

QPout

�� K˛

2C0

�1=d
; K

�
� 1

2
:

As a consequence of Remark 2.1, we then obtain the estimate

hjX jp i.K/ �
�K˛

2C0

�p=d
� 1
2

With Cp D 1

2.2C0/p=d
, we obtain the desired lower bound.

We can use the previous proposition to prove a reformulation of �eorem 3.2

of [16] in the present context:

Proposition 3.6. Suppose that � is U˛H for some 0 � ˛ � 1. �ere then exists

a constantC D C such that the following holds for any compact operatorA, any

p 2 N, and any K > 0:

1

K

K�1X

jD0
jh .k/; A .k/ij < C 1=p kAkpK�˛=p:

�e expression kAkp denotes the pth trace norm of A, that is,

kAkp D .tr .jAjp//1=p :

We allow the possibility that kAkp D 1, in which case the conclusion of the

theorem is trivial.
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Proof. �e proof is essentially identical to that given by Last for the self-adjoint

case in [16]. We provide the details for the case p > 1 for the convenience of the

reader. �e result when p D 1 is signi�cantly easier.

As before, let P W H ! H denote the orthogonal projection onto the cyclic

subspace spanned by U and  , and V W H ! L2.@D; d� / the standard uni-

tary equivalence. Given � 2 H with k�k D 1, put f� D VP �. Evidently,

kf�kL2.@D;d� / � 1. We may observe that

jh�;  .k/ij D jh�; U k ij

D jhf�.z/; zkiL2.@D;d� /j

D j1f�� .k/j:

In particular, Lemma 3.4 implies that there exists a constant C (which does not

depend on �) such that

hjh�;  .�/ij2i.K/ � C K
�˛: (1)

By the singular value decomposition, there exist real numbers sn � 0 and or-

thonormal bases .xn/ and .yn/ of H such that A can be written as

A� D
X

n

snhxn; �iyn:

Moreover, it is well known that kAkp D
�P

n s
p
n

�1=p
. Let q 2 .1;1/ denote the

exponent conjugate to p, so that 1
p

C 1
q

D 1. We may observe that, for each k, one

has

jh .k/; A .k/ij D
ˇ̌
ˇ
D
 .k/;

X

n

snhxn;  .k/iyn
Eˇ̌
ˇ

�
X

n

snjhxn;  .k/ihyn;  .k/ij:

�us, we obtain

1

K

K�1X

kD0
jh .k/; A .k/ij � 1

K

X

n

sn

K�1X

kD0
jhxn;  .k/ihyn;  .k/ij:

Applying Cauchy–Schwarz to the summation over k, we see that the expression

on the right hand side is bounded above by

1

K

X

n

sn

�K�1X

kD0
jhxn;  .k/ij2

�1=2�K�1X

kD0
jhyn;  .k/ij2

�1=2
:
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Applying Hölder’s inequality to the summation over n, this is in turn bounded

above by

1

K

�X

n

spn

�1=p�X

n

�K�1X

kD0
jhxn;  .k/ij2

�q=2�K�1X

kD0
jhyn;  .k/ij2

�q=2�1=q
:

Using Cauchy–Schwarz one last time on the right-hand summation in n and the

de�nition of the pth trace norm, this expression is less than or equal to

kAkp
��X

n

� 1
K

K�1X

kD0
jhxn;  .k/ij2

�q��X

n

� 1
K

K�1X

kD0
jhyn;  .k/ij2

�q�� 1
2q
:

Since .xn/ and .yn/ are orthonormal bases of H, unitarity of U and (1) imply that

the expression above is in turn bounded above by

kAkp..C K�˛/q�1.C K
�˛/q�1/

1
2q D kAkpC 1=p K�˛=p;

where we have used p�1 C q�1 D 1.

3.2. Spectral measures with a non-trivial ˛-continuous component. �e re-

sults above can be strengthened further. We brie�y review the de�nition of ˛-

dimensional Hausdor� measure.

De�nition 3.7. Fix ˛ � 0, and let E � @D. Given ı > 0, by a ı-cover of E,

we shall mean a (countable) collection of subsets S1; S2; : : : � @D which satis�es

diam.Sn/ < ı for all n and E �
S1
nD1 Sn. �e collection of all ı-covers of E will

be denoted Iı.E/. �e ˛-dimensional Hausdor� measure of E is then de�ned by

h˛.E/ D lim
ı!0C

inf
.Sn/2Iı.E/

1X

nD1
.diam.Sn//

˛ :

Note that the in�mum of such sums over ı-covers is monotone in ı so that the

indicated limit indeed exists.

�e Hausdor� dimension of a non-empty subset S of @D is given by

dimH.S/ D sup¹˛ W h˛.S/ > 0º

D sup¹˛ W h˛.S/ D 1º

D inf¹˛ W h˛.S/ < 1º

D inf¹˛ W h˛.S/ D 0º:
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We shall say that a measure � on @D is ˛-continuous (˛c) if �.E/ D 0 for all

sets E � @D having h˛.E/ D 0. One can easily check that a U˛H measure on

@D must necessarily be ˛-continuous. �e converse need not hold in general, but

we can adapt a theorem of Rogers and Taylor for measures on R to see that an ˛-

continuous measure on @D is “almost” a U˛H measure. �e precise formulation

follows.

Lemma 3.8. Suppose � is a �nite ˛-continuous measure on @D. �en, for each

� > 0, there exist mutually singular Borel measures ��1 and ��2 on @D such that

� D ��1 C ��2, �
�
1 is U˛H, and ��2.@D/ < �.

Proof. Let T W ei� 7! � be the usual map from @D to Œ0; 2�/. Evidently, � WD T��
is an ˛-continuous measure on Œ0; 2�/ � R, and hence, we may invoke the result of

Rogers and Taylor for measures on R [19, 20] to produce mutually singular Borel

measures ��1; �
�
2 on Œ0; 2�/ such that � D ��1 C ��2, �

�
1 is U˛H, and ��2.Œ0; 2�// < �.

Some slight untangling shows that ��1 WD .T �1/���1 and ��2 WD .T �1/���2 are the

desired measures on @D.

We shall say that � is ˛-singular if it is supported on a set having zero ˛-

dimensional Hausdor� measure. �is leads to a natural decomposition of our

Hilbert space, H D H˛c ˚ H˛s, where H� D ¹ 2 H W � is �º. One can check

that these are closed, mutually orthogonal subspaces of H. As usual, let us denote

by P� the orthogonal projection onto H�.

�eorem 6.1 of [16] generalizes to the present context.

Proposition 3.9. Suppose that P˛c ¤ 0 for some ˛ 2 Œ0; 1�. Choose d as in

Proposition 3.5. �en, for each p > 0, there exists a constant C D C ;p such that

for every K > 0, one has

hjX jp i.K/ > C ;pK˛p=d :

Proof. �e proof of this result is again essentially identical to that of �eorem 6.1

in [16]. We provide the details for completeness.

Put

 ˛c D P˛c and  ˛s D P˛s D  �  ˛c :

By Lemma 3.8, we may choose Borel measures�1 and�2 on @D such that� ˛c D
�1 C �2, �1 is U˛H, �2.@D/ <

1
2
k ˛ck2, and there is a set S � @D with

�1.@DnS/ D �2.S/ D 0.



Dynamics of unitary operators 405

Let  1 D �S .U / ˛c ,  2 D  � 1. By the spectral theorem, we may observe

that

� 1.E/ D h 1; �E.U / 1i
D h ˛c ; �E\S ˛ci
D � ˛c .E \ S/

D �1.E/:

�us, � 1 D �1. In particular, � 1 is U˛H.

De�ne the projection onto a ball of radius N via PNx D
P

jnj�N h'n; xi'n.
We may choose a constant C which depends solely on d such that #¹n W jnj � N º
� CN d . In particular, kPNk1 D tr.PN / � CN d . By Proposition 3.6, we may

choose a constant C D C 1 for which

1

K

K�1X

jD0
h 1.j /; PN 1.j /i < C 1kPNk1K�˛:

Using the fact that PN is a projection, we see that

1

K

K�1X

kD0
kPN 1.k/k2 D 1

K

K�1X

kD0
h 1.k/; PN 1.k/i

< C 1kPNk1K�˛

� C1N
dK�˛

with C1 D C 1C .

�us, we have

QPin.N;K/ D 1

K

K�1X

kD0
kPN .k/k2

� 1

K

K�1X

kD0
.kPN 1.k/k C kPN 2.k/k/2

� 1

K

K�1X

kD0
.kPN 1.k/k C k 2k/2

�
�vuut 1

K

K�1X

kD0
kPN 1.k/k2 C k 2k

�2

< .
p
C1N dK�˛ C k 2k/2;
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where we have used projectivity of PN and unitarity of U in the third line and

Cauchy–Schwarz in the fourth. Choose � > 0 with � <
p
6�2
2

. Hence,

QPin

���2k 1k4K˛

C1

�1=d
; K

�
< .�k 1k2 C k 2k/2

< 1 � 1

2
k 1k2;

where we have used k 1k; k 2k � 1 and the upper bound on � to obtain the second

line of the estimate. It follows that

QPout

���2k 1k4K˛

C1

�1=d
; K

�
>
1

2
k 1k2:

Making use of Remark 2.1, we see that

hjX jp i.K/ �
��2k 1k4K˛

C1

�p=d QPout

���2k 1k4K˛

C1

�1=d
; K

�

� C ;pK
˛p
d ;

where we take

C ;p D k 1k2
2

��2k 1k4
C1

�p=d
:

Remark 3.10. One should note that Proposition 3.9 is indeed stronger than the

second part of Proposition 3.5, since

� U˛H H) � is ˛-continuous H) P˛c D  ¤ 0:

Proposition 3.9 immediately yields a lower bound on the transport exponents
Q̌˙
 .p/.

Corollary 3.11. Suppose that  is such that P˛c ¤ 0 for some 0 � ˛ � 1. One

then has

Q̌�
 .p/ � ˛

d
:

Proof. �is is immediate from the de�nitions.

A succinct way of restating this last result involves the concept of the (upper)

Hausdor� dimension of a measure. Recall the following de�nition; see [7] for

background and more information.
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De�nition 3.12. Let � be a �nite Borel measure on @D. �e upper Hausdor�

dimension of � is given by

dimC
H .�/ D inf¹dimH.S/ W S � @D measurable; �.S/ D �.@D/º:

Loosely speaking, the upper Hausdor� dimension of the measure� is the smallest

Hausdor� dimension of a set which supports �.

Corollary 3.13. We have

Q̌�
 .p/ �

dimC
H .�

U
 /

d
:

Proof. If dimC
H .�

U
 / D 0, there is nothing to prove. �us, let us assume that

dimC
H .�

U
 / > 0 and choose ˛ 2 .0; dimC

H .�
U
 //. Since ˛ < dimC

H .�
U
 /, the de�ni-

tion of the upper Hausdor� dimension implies that in the Rogers-Taylor decom-

position of �U into an ˛-continuous piece and an ˛-singular piece, the former

must be nontrivial (for otherwise we could choose a suitable support of the latter

to derive a contradiction). �is implies that the previous corollary is applicable

with the ˛ in question and hence yields Q̌˙
 .p/ � ˛

d
. Since this estimate holds for

every ˛ 2 .0; dimC
H .�

U
 //, the assertion follows.

3.3. Extracting the ˛-continuous component of a measure on the circle. �e

previous subsection has shown that a non-trivial ˛-continuous component of a

spectral measure leads to a corresponding dynamical lower bound. �is moti-

vates the question of �nding a useful way to extract and study the ˛-continuous

component of a �nite measure on @D. In this subsection we summarize some

known results that answer this question and provide a bridge to the discussion of

CMV matrices in Section 4.

Let � be a �nite measure on @D. Given ˛ 2 .0; 1/ and z0 2 @D, let

D˛
�.z0/ D lim sup

"#0

�¹z 2 @D W z D z0e
i' ; ' 2 .�"; "/º

.2"/˛
2 Œ0;1�

and

S˛ D ¹z 2 @D W D˛
�.z/ D 1º:

�e following result is due to Rogers and Taylor [19, 20]; see also [22, �eo-

rem 10.8.7] and its discussion therein.

�eorem 3.14. Consider the restrictions

�˛c D �
ˇ̌
@DnS˛ ; �˛s D �

ˇ̌
S˛
:
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�en, �˛c gives zero weight to measurable S � @D with h˛.S/ D 0 and �˛s is

supported by a measurable set S � @D with h˛.S/ D 0. In particular,

� D �˛c C �˛s

is the decomposition of � into an ˛-continuous piece and an ˛-singular piece.

�is shows that the ˛-derivativeD˛
� of a measure may be used to extract the ˛-

continuous component of it. �e following connection is also very useful. Recall

that the Carathéodory function F associated with � is given by

F.z/ D
Z

@D

ei� C z

ei� � z
d�.ei�/:

�e following equivalence is established in [22, Lemma 10.8.6].

Proposition 3.15. For z0 2 @D, we have

D˛
�.z0/ D 1 () lim sup

r"1
.1� r/1�˛jF.rz0/j D 1:

As we will see in Section 4, the rate of divergence of jF.rz0/j as r " 1 can be

studied by quite e�ective means in the case of CMV matrices. In particular, this

provides a direct path toward dynamical lower bounds for such operators.

3.4. A consequence of the Parseval identity. In this subsection we work out a

unitary analog of a lemma that has proved to be useful in the self-adjoint case.

Namely, it is a consequence of the Parseval identity that a modi�ed time aver-

age of the dynamics is related, via Fourier transform, to an energy average of the

resolvent of the operator.

Lemma 3.16. For K � 1 and n arbitrary, we have

X

k�0
e�2k=Ka.n; k/ D e2=K

Z 2�

0

jh'n; .U � e1=KCi�/�1 ij2 d�
2�
:

Proof. �e proof is an adaptation of the proof of [15, Lemma 3.2] to the unitary

case at hand. We give the details for the convenience of the reader.

Denote

f .k/ D

8
<̂

:̂

e�k=K
Z

@D

zkun .z/ d� .z/ k � 0;

0 k < 0:
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�en,

Of .�/ D
X

k2Z
e�ik�f .k/

D
X

k�0
e�ik�e�k=K

Z

@D

zkun .z/ d� .z/

D
Z

@D

un .z/ d� .z/

1 � e�1=K�i�z

D e1=KCi�
Z

@D

un .z/ d� .z/

e1=KCi� � z

D �e1=KCi�h'n; .U � e1=KCi�/�1 i:

�e Parseval identity now implies that
X

k�0
e�2k=Ka.n; k/ D kf k2

`2.Z/

D 1

2�
k Of k2

L2.0;2�/

D e2=K
Z 2�

0

jh'n; .U � e1=KCi�/�1 ij2 d�
2�
;

as claimed.

Remark 3.17. Lemma 3.16 suggests that instead of Cesàro averages, we consider

the following averages,

hf i.K/ D 2

K

X

k�0
e�2k=Kf .j /:

�e transport exponents associated with these time averages are actually the same

as the ones associated with Cesàro time averages, provided that the function f

satis�es some power-law upper bound; see [6, Lemma 2.19]. �us, when study-

ing the quantities Q̌˙
 .p/, we can freely use the more convenient underlying time

average.

3.5. Packing dimensions of spectral measures. In [11], the authors prove a

companion result to those in [16], by bounding Q̌C from below by the packing

dimension of the relevant spectral measure in the self-adjoint case.

Proposition 1 of [11] carries over to the present context. For the reader’s con-

venience, we produce the details presently.
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Lemma 3.18. Let F � A be a subset of the indexing set of the orthonormal basis

.'n/n2A. Given K 2 ZC and 0 < � < 1, choose N D N.K; �/ so that

2N�2 � K�p
�
< 2N�1:

Partition @D into dyadic arcs as follows: for 0 � j � N , put

�j;N D j�

2N�1 ;


j;N D ei�j;N ;

�j;N D ¹ei� W �j;N � � < �jC1;N º:

Given � > 0, one has

1

K

X

n2F

K�1X

lD0
jh'n;  .l/ij2 � 2� C 8�p

�

X

n2F

2N�1X

jD0
jh'n; ��j;N .U / ij2:

Proof. We can see that @D is the disjoint union of the �j;N as j runs from 0 to

2N � 1. We may then approximate  .l/ D U l by

 K.l/ D
2N�1X

jD0

 lj;N��j;N

.U / :

Indeed, one readily observes that, for 0 � l � K, one has

k .l/ �  K.l/k2 D




U l �

2N�1X

jD0

 lj;N��j;N

.U / 






2

D
2N�1X

jD0

Z

�j;N

jzl � 
 lj;N j2 d� .z/

�
2N�1X

jD0

Z

�j;N

� l�

2N�1

�2
d� .z/

D
� l�

2N�1

�2

< �:
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�e �rst line is a de�nition, the second follows from the spectral theorem, the third

by construction of the �j;N , the fourth from � .@D/ D k k D 1, and the �fth

from our choice of N and 0 � l � K. It follows that

1

K

X

n2F

K�1X

lD0
jh'n;  .l/ij2

� 2

K

X

n2F

K�1X

lD0
jh'n;  K.l/ �  .l/ij2 C 2

K

X

n2F

K�1X

lD0
jh'n;  K.l/ij2

< 2� C 2

K

X

n2F

2N�1X

lD0
jh'n;  K.l/ij2:

We have used the elementary inequality jaj2 � 2ja�bj2C2jbj2 in the second line.

�e third line is a consequence of previous estimates, nonnegativity of summands,

and K < 2N . By expanding  K and performing some algebraic manipulations,

we see that the above is equal to

2� C 2

K

X

n2F

2N�1X

lD0

2N�1X

jD0

2N�1X

kD0

 lj;N 


l
k;N

h'n; ��j;N .U / ih'n; ��k;N .U / i:

Summing over l and k, this is equivalent to

2� C 2

K

X

n2F

2N�1X

jD0

2N�1X

kD0
2N ıj;kh'n; ��j;N .U / ih'n; ��k;N .U / i

D 2� C 2

K

X

n2F

2N�1X

jD0
2N jh'n; ��j;N .U / ij2:

By using the the relationship between N;K, and �, the above is at most

2� C 8�p
�

X

n2F

2N�1X

jD0
jh'n; ��j;N .U / ij2;

which completes the proof of the lemma.

Proposition 3.19. Choose d as in Propositions 3.5 and 3.9. Given N 2 ZC
and 0 < ˛ < 1, let IN;˛ D ¹j W �.�j;N / < 2�N˛º, AN;˛ D

S
j2IN;˛ �j;N , and

bN;˛ D �.AN;˛/. If bN;˛ > 0, then there exists a constant M˛;d depending only

on ˛ and d such that for all K with bN;˛2
N�2 � 9�K < bN;˛2

N�1, one has

QPout.M˛;d .b
3�˛
N;˛ K

˛/1=d ; K/ � bN;˛

2
:
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Proof. Put  N D �AN;˛.U / . Evidently, we have

k N k2 D h ; �AN;˛.U / i D �.AN;˛/ D bN;˛ :

Let � D 1
9

and put � D .�bN;˛/
2. Given m 2 ZC, take Fm D ¹n W jnj � mº.

We note then that bN;˛2
N�2 � 9�K < bN;˛2

N�1 is equivalent to 2N�2 � K�p
�
<

2N�1. �us, applying Lemma 3.18 to �; Fm and  N , we see that

1

K

X

jnj�m

K�1X

lD0
jh'n; U l N ij2 � 2�2b2N;˛ C 8�

�bN;˛

X

jnj�m

2N�1X

jD0
jh'n; ��j;N .U / N ij2:

We can control the sum on the right hand side as follows:

X

jnj�m

2N�1X

jD0
jh'n; ��j;N .U / N ij2 D

X

jnj�m

X

j2IN;˛

jh'n; ��j;N .U / ij2

�
X

jnj�m

X

j2IN;˛

k�
�j;N

.U /'nk2k��j;N .U / k2

<
X

jnj�m

X

j2IN;˛

2�N˛k�
�j;N

.U /'nk2

�
X

jnj�m
2�N˛

� Cdm
d2�N˛:

�e �rst line holds because  N D �AN;˛.U / . �e second line follows from

Cauchy–Schwarz, the third by de�nition of IN;˛ , and the fourth from k'nk D 1.

In the �fth line, Cd is a constant which only depends on d .

Now, take

m D
� 1

4�Cd
.�bN;˛/

32N˛
�1=d

:

Substituting this value of m into the above inequality yields

1

K

X

jnj�m

K�1X

lD0
jh'n; U l N ij2 � 2�2b2N;˛ C 8�

�bN;˛
Cdm

d2�N˛

D .2�bN;˛/
2:

Now, let Pm be the projection onto a ball of radius m, that is,

Pm D
X

jnj�m
h�; 'ni'n:
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With  0
N D  �  N , we have

QPin.m;K/ D 1

K

K�1X

lD0
kPm .l/k2

D 1

K

K�1X

lD0
kPmU l . N C  0

N /k2

� 1

K

K�1X

lD0
.kPmU l Nk2 C 2kPmU l N kkPmU l 0

Nk C kPmU l 0
N k2/

� .2�bN;˛/
2 C 4�bN;˛ C k 0

Nk2:

In the �nal line, we have used the previous estimate, projectivity of Pm, unitarity

of U , k 0
Nk � 1, and Cauchy–Schwarz. �us, we see that

QPout.m;K/ D 1� QPin.m;K/

� 1 � .2�bN;˛/2 � 4�bN;˛ � k 0
N k2

D bN;˛ � .2�bN;˛/
2 � 4�bN;˛

>
bN;˛

2
:

�e �rst line is trivial, the second follows from the estimate above, the third from

orthogonality of  N and  0
N , and the �nal follows from bN;˛ � 1 and the choice

of �. In particular, we may deduce that QPout.R;K/ � bN;˛=2 whenever R � m.

Recalling the relationships between the variables, we have 2N > 18�K
bN;˛

, which

yields

m D
� 1

4�Cd
.�bN;˛/

32N˛
�1=d

> M˛;d .K
˛b3�˛
N;˛ /

1=d ;

with

M˛;d D
��3.18�/˛

4�Cd

�1=d
:

�e proposition follows.

Recall the de�nition of the ˛-dimensional packing measure p˛; compare [7].

De�nition 3.20. Suppose S � @D and ı > 0. A ı-packing with centers in S is

a countable collection of mutually disjoint closed arcs, ¹Ij ºj2ZC
, each of which

has length bounded by ı and center belonging to S . We set

p˛ı .S/ D sup
° 1X

jD1
jIj j˛ W ¹Ij ºj2ZC

is a ı-packing with centers in S
±
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and

Qp˛.S/ D lim
ı!0

p˛ı .S/ D inf
ı>0

p˛ı .S/:

We also set

p˛.S/ D inf
° 1X

kD1
Qp˛.Sk/ W S D

1[

kD1
Sk

±
:

Note that Qp˛
ı
.S/ decreases as ı decreases. �is shows that the limit and the

in�mum above are indeed equal. Restricted to Borel sets S , p˛ is a Borel measure.

It is not hard to show that p˛.S/ D 0 whenever p˛
0

.S/ < 1 and 0 � ˛0 < ˛.

De�nition 3.21. �e packing dimension of a non-empty subset S of @D is given

by

dimP.S/ D sup¹˛ W p˛.S/ > 0º

D sup¹˛ W p˛.S/ D 1º

D inf¹˛ W p˛.S/ < 1º

D inf¹˛ W p˛.S/ D 0º:

De�nition 3.22. Let � be a �nite Borel measure on @D. �e upper packing di-

mension of � is given by

dimC
P .�/ D inf¹dimP.S/ W S � @D measurable; �.S/ D �.@D/º:

For the proof of the corollary below, the following characterization of the upper

packing dimension is useful; compare Chapter 10 of [7] and the appendix of [11].

Proposition 3.23. �e upper packing dimension of � is also given by

dimC
P .�/ D � ess sup

E2R

�
lim sup
"!0

log.�.ŒE � "; E C "�//

log."/

�
:

Corollary 3.24. We have

Q̌C
 .p/ �

dimC
P .�

U
 /

d
:

Proof. We argue as in [11]. If dimC
P .�

U
 / D 0, then there is nothing to prove, so

assume given 0 � ˛ < dimC
P .�

U
 /. One easily veri�es that

E 2 lim sup
N!1

AN;˛ () lim sup
"!0

log.�.ŒE � "; E C "�//

log."/
> ˛:
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In particular, Proposition 3.23 implies that �.lim supN!1AN;˛/ > 0, which, by

Borel–Cantelli, implies that
P
N2ZC

�.AN;˛/ D 1. Hence, there is a sequence

.Nj /
1
jD1 of integers such that bNj D �.ANj ;˛/ > N�2

j (for if not, a simple com-

parison would imply that the divergent sum above converges). Lemma 3.19 then

implies that

QPout.M˛;d .b
3�˛
Nj

K˛
j /
1=d ; Kj / �

N�2
j

2
:

Of course, we have chosen an increasing subsequence of sampling timesK1 <

K2 < � � � so that Proposition 3.19 is relevant, that is, such that bNj 2
Nj�2 �

9�Kj < bNj 2
Nj�1. We can then make use of Remark 2.1 to see that

hjX jp i.K/ � M
p

˛;d
.b3�˛
Nj

K˛
j /
p=d

N�2
j

2

� 1

2
M
p

˛;d
K
˛p=d
j N

.2˛�6/p
d

�2
j :

We claim that Q̌C
 .p/ � ˛=d . As a consequence of the above inequality, it

su�ces to prove that

lim
j!1

log.Nj /

log.Kj /
D 0:

To that end, we begin by noticing that
log.Nj /

log.Kj /
is uniformly bounded above. To see

this, simply choose j large enough that 2Nj � 36�N 3
j , and observe that one has

Kj � bNj ;˛

36�
2Nj � Nj for such j .by using bNj ;˛ � N�2

j /. �us,
log.Nj /

log.Kj /
� 1 for

su�ciently large j , from which the boundedness observation follows.

Now, let � > 0 be given, and choose j su�ciently large so that log.Nj / < �Nj .

We can take the logarithm of the relationship bNj 2
Nj�2 � 9�Kj , use bNj > N

�2
j

and rearrange to obtain

Nj log.2/

log.Kj /
� 1C log.36�/C 2 log.Nj /

log.Kj /
:

Evidently, the expression on the right is uniformly bounded for all j by a positive

constant, say, C > 0. �us, for j chosen su�ciently large as above, we have

0 � log.Nj /

log.Kj /
� �Nj

log.Kj /
� C�

log.2/
:

�us, we obtain Q̌C
 .p/ � ˛

d
. Since this holds for all ˛ < dimC

P .� /, the proposi-

tion follows.
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4. CMV matrices

In this section we consider the special case where the unitary operator is given by

a CMV matrix. A CMV matrix is a semi-in�nite matrix of the form

C D

0
BBBBBBBBBBBB@

N̨0 N̨1�0 �1�0 0 0 : : :

�0 � N̨1˛0 ��1˛0 0 0 : : :

0 N̨2�1 � N̨2˛1 N̨3�2 �3�2 : : :

0 �2�1 ��2˛1 � N̨3˛2 ��3˛2 : : :

0 0 0 N̨4�3 � N̨4˛3 : : :

: : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCA

;

where ˛n 2 D D ¹w 2 C W jwj < 1º and �n D .1 � j˛nj2/1=2. C de�nes a unitary

operator on `2.ZC/.

�ese particular unitary operators play an important role in the theory of or-

thogonal polynomials on the unit circle as well as in the study of quantum walks

in one dimension. Moreover they provide a canonical representation of general

unitary operators in the following sense. Given any unitary operator U in H and

an initial state  2 H, the evolution U n takes place inside the spectral sub-

space H generated by U and  . �e action of U on H is unitarily equivalent

to multiplication by z in L2.@D; d�U /. Choosing the so-called CMV basis of

L2.@D; d�U /, the matrix representation of the latter operator with respect to this

basis is then given by a CMV matrix.

Sometimes it makes sense to consider extended CMV matrices, acting on

`2.Z/. �ey have the exact same form, but are two-sided in�nite and may be put in

one-to-one correspondence with two-sided in�nite sequences ¹˛nºn2Z � D. �ey

are typically denoted by E. Hence, such an extended CMV matrix, corresponding

to a sequence ¹˛nºn2Z � D, takes the form

E D

0
BBBBBBBBBBBBBBBBBBB@

: : : : : : : : : : : : : : : : : : : : : : : :

: : : � N̨�3˛�4 ���3˛�4 0 0 0 0 : : :

: : : N̨�2��3 � N̨�2˛�3 N̨�1��2 ��1��2 0 0 : : :

: : : ��2��3 ���2˛�3 � N̨�1˛�2 ���1˛�2 0 0 : : :

: : : 0 0 N̨0��1 � N̨0˛�1 N̨1�0 �1�0 : : :

: : : 0 0 �0��1 ��0˛�1 � N̨1˛0 ��1˛0 : : :

: : : 0 0 0 0 N̨2�1 � N̨2˛1 : : :

: : : : : : : : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCCCCA

:

For example, when the ˛n’s are obtained by sampling along the orbit of an invert-

ible ergodic transformation, the general theory of such operators naturally consid-
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ers the two-sided situation. Special cases of this scenario that are of great interest

include the periodic case, the almost periodic case, and the random case.

4.1. Spectral regularity via subordinacy theory. Here we describe conditions

on a CMV matrix that imply that some of the dynamical results presented in the

previous section are applicable. �at is, we state criteria for local and global reg-

ularity of spectral measures that are e�ective in the sense that for any given CMV

matrix, there is clear path toward establishing these su�cient conditions since

they are phrased in terms of solution estimates, which can be obtained in a variety

of ways from the coe�cients of the given matrix.

We begin with the half-line case. Suppose a CMV matrix C with Verblunsky

coe�cients ¹˛nºn�0 � D is given. �e associated probability measure � on the

unit circle is given by the spectral measure associated with the unitary operator C

on `2.ZC/ and the unit vector ı0 2 `2.ZC/. Recall that the Carathéodory function

F associated with � is given by

F.z/ D
Z

@D

ei� C z

ei� � z
d�.ei�/:

�e transfer matrices associated with these Verblunsky coe�cients are de�ned

as follows. For z 2 @D, ˛ 2 D, and � D .1� j˛j2/1=2, write

T .z; ˛/ D ��1
�
z � N̨

�˛z 1

�
:

�en, for n � 1, let

Tn.z/ D T .z; ˛n�1/ � � �T .z; ˛0/:
We also set T0.z/ D I .

�e orthonormal polynomials of the �rst and second kind are de�ned by

�
'n.z/

'�
n .z/

�
D Tn.z/

�
1

1

�

and �
 n.z/

 �
n .z/

�
D Tn.z/

�
1

�1

�
;

respectively; compare [21, Proposition 3.2.1].

For a sequence a0; a1; a2; : : : of complex numbers and L 2 .0;1/, let

kakL D
bLcX

nD0
janj2 C .L� bLc/jabLcC1j2:
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�at is, k � kL is a local `2 norm for integer values of L, and k � k2L is linearly

interpolated in between.

�e following result is [22, �eorem 10.8.2]:

�eorem 4.1 (OPUC version of the Jitomirskaya-last inequality). Suppose z 2 @D
and r 2 Œ0; 1/. De�ne L.r/ to be the unique solution of

.1� r/k'.z/kL.r/k .z/kL.r/ D
p
2:

�en, for some universal constant A 2 .1;1/, we have

A�1k .z/kL.r/
k'.z/kL.r/

� jF.rz/j � A
k .z/kL.r/
k'.z/kL.r/

:

Recall that by Proposition 3.15, the divergence rate of jF.rz/j is connected to

the ˛-derivative of � at z. Combining this with �eorem 4.1 one arrives at the

following equivalence, which is [22, �eorem 10.8.5].

Corollary 4.2. Given ˛ 2 .0; 1/, let ˇ D ˛
2�˛ . �en, for z0 2 @D, we have

D˛
�.z0/ D 1 () lim inf

L!1

k'.z0/kL
k .z0/kˇL

D 0:

�is result has the following immediate consequence:

Corollary 4.3. Suppose that for z0 2 @D, we have

k'.z0/kL & L
1 ; k .z0/kL . L
2

for L � 1, where 0 < 
1 < 
2 < 1. �en, with

˛ D 2
1


1 C 
2
;

we have

D˛
�.z0/ < 1:

In particular, the restriction of � to the set

P.
1; 
2/ D ¹z 2 @D W k'.z/kL & L
1 ; k .z/kL . L
2º

(with implicit constants that may depend on z) is ˛-continuous for this choice of ˛.
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Proof. We have

k'.z0/k2�˛
L

k .z0/k˛L
&
L
1.2�˛/

L
2˛
D L�˛.
1C
2/C2
1 D L0 D 1:

�is shows that

lim inf
L!1

k'.z0/k2�˛
L

k .z0/k˛L
> 0;

which in turn implies

lim inf
L!1

k'.z0/kL
k .z0/kˇL

> 0:

�e result therefore follows from Corollary 4.2.

Let us now turn to the whole-line case and consider extended CMV matrices E,

determined by a two-sided in�nite sequence of coe�cients ¹˛nºn2Z � D. �ere

is a close analog of Corollary 4.3. Namely, suitable power-law estimates imply

continuity properties of spectral measures. In fact, it su�ces to have such power-

law estimates on one half-line, say the right half-line for de�niteness. However,

these estimates need to hold “uniformly in the boundary condition.” �at is, one

has to consider all vector-valued sequences of the form
�
�n

�n

�
D Tn.z/

�
�0

�0

�
; (2)

where

j�0j D j�0j D 1: (3)

�e following result was shown in [17]. It is an adaptation of a result shown by

Damanik, Killip, and Lenz in the Schrödinger context [4].

Proposition 4.4. Suppose that for z 2 @D, there are constants 0 < 
1.z/ <


2.z/ < 1 and 0 < C1.z/; C2.z/ < 1 so that

C1.z/L

1.z/ � k�kL � C2.z/L


2.z/; L � 1

for every solution of (2) that is normalized in the sense of (3). �en, for every

spectral measure � of E, we have D˛
�.z/ < 1, where ˛ D 2
1.z/


1.z/C
2.z/ .
In particular, if S � @D is a Borel set such that there are constants 0 < 
1 <


2 < 1 and, for each z 2 S , there are constants 0 < C1.z/; C2.z/ < 1 so that

C1.z/L

1 � k�kL � C2.z/L


2 ; L � 1

for every z 2 S and every solution of (2) that is normalized in the sense of (3),

then the restriction of every spectral measure of E to S is purely 2
1

1C
2 -continuous,

that is, it gives zero weight to sets of zero h
2
1

1C
2 measure.
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4.2. Quantum walks on the line. Let us recall the standard quantum walk for-

malism. �e Hilbert space is given by H D `2.Z/˝ C
2. A basis is given by the

elementary tensors jni ˝ j "i, jni ˝ j #i, n 2 Z. A time-homogeneous quantum

walk scenario is given as soon as coins

Cn D
 
c11n c12n

c21n c22n

!
2 U.2/; n 2 Z; (4)

are speci�ed. As one passes from time t to time t C 1, the update rule of the

quantum walk is as follows,

jni ˝ j"i 7�! c11n jnC 1i ˝ j"i C c21n jn � 1i ˝ j#i; (5)

jni ˝ j#i 7�! c12n jnC 1i ˝ j"i C c22n jn � 1i ˝ j#i; (6)

Extend this by linearity to general elements of H. �is de�nes a unitary operator

U on H.

Order the basis of H as follows:

: : : ; j � 1i ˝ j"i; j � 1i ˝ j#i; j0i ˝ j"i; j0i ˝ j#i; j1i ˝ j"i; j1i ˝ j#i; : : : : (7)

In this ordered basis, the matrix representation of U W H ! H is given by

U D

0
BBBBBBBBBBBBBBBBBBB@

: : : : : : : : : : : : : : : : : : : : : : : :

: : : 0 c12�2 0 0 0 0 : : :

: : : c21�1 0 0 c11�1 0 0 : : :

: : : c22�1 0 0 c12�1 0 0 : : :

: : : 0 0 c210 0 0 c110 : : :

: : : 0 0 c220 0 0 c120 : : :

: : : 0 0 0 0 c211 0 : : :

: : : : : : : : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCCCCA

; (8)

as can be checked readily using the update rule (5)–(6); compare [2, Section 4].1

1Note that we follow the conventions of [2] here. One could argue that the correct matrix to

consider is the transpose ofU in (8). To conform with [2] and subsequent papers, we will consider

the matrix U as given above in what follows. In the Fibonacci example we discuss below, this

does not make a di�erence since the matrix entries will be real and hence the transpose of U

is the inverse of U . Since our argument is based on spectral continuity of U , and the spectral

continuity properties of U and U�1 are the same, the �nal result does not depend on the choice

one makes at this juncture.



Dynamics of unitary operators 421

Recall that an extended CMV matrix corresponding to Verblunsky coe�cients

¹˛nºn2Z has the form

E D

0
BBBBBBBBBBBBBBBBBBB@

: : : : : : : : : : : : : : : : : : : : : : : :

: : : � N̨�3˛�4 ���3˛�4 0 0 0 0 : : :

: : : N̨�2��3 � N̨�2˛�3 N̨�1��2 ��1��2 0 0 : : :

: : : ��2��3 ���2˛�3 � N̨�1˛�2 ���1˛�2 0 0 : : :

: : : 0 0 N̨0��1 � N̨0˛�1 N̨1�0 �1�0 : : :

: : : 0 0 �0��1 ��0˛�1 � N̨1˛0 ��1˛0 : : :

: : : 0 0 0 0 N̨2�1 � N̨2˛1 : : :

: : : : : : : : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCCCCA

:

In particular, if all Verblunsky coe�cients with odd index vanish, the matrix be-

comes (recall that �n D .1� j˛nj2/1=2)

E D

0
BBBBBBBBBBBBBBBBBBB@

: : : : : : : : : : : : : : : : : : : : : : : :

: : : 0 �˛�4 0 0 0 0 : : :

: : : N̨�2 0 0 ��2 0 0 : : :

: : : ��2 0 0 �˛�2 0 0 : : :

: : : 0 0 N̨0 0 0 �0 : : :

: : : 0 0 �0 0 0 �˛0 : : :

: : : 0 0 0 0 N̨2 0 : : :

: : : : : : : : : : : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCCCCA

: (9)

�e matrix in (9) strongly resembles the matrix representation of U in (8).

Note, however, that all �n’s need to be real and non-negative for genuine CMV

matrices, and this property is not guaranteed when matching (8) and (9). But this

can be easily resolved, as shown in [2]. Concretely, given U as in (8), write

ckkn D jckkn jei�kn ; n 2 Z; k 2 ¹1; 2º; �kn 2 Œ0; 2�/

and de�ne ¹�nºn2Z by

�0 D 1; ��1 D 1; �2nC2 D e�i�1n�2n; �2nC1 D ei�
2
n�2n�1:

With the unitary matrix ƒ D diag.: : : ; ��1; �0; �1; : : :/, we then have

E D ƒ�Uƒ;

where E is the extended CMV matrix corresponding to the Verblunsky coe�cients

˛2nC1 D 0; ˛2n D �2n

�2n�1
Nc21n ; n 2 Z: (10)
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In order for one to prove lower bounds for the spreading rates of a quantum

walk on the line, the strategy is now clear. One needs to establish solution esti-

mates for a given model that feed into Proposition 4.4. Once Proposition 4.4 is

shown to be applicable, its output provides the input for an application of Proposi-

tion 3.9 and its corollaries. In the next subsection we present a non-trivial example

where this strategy may be implemented and yields lower bounds for the spread-

ing rates of the quantum walk discussed there, which are explicit in terms of the

parameters of the model.

4.3. �e Fibonacci quantum walk. We discuss the special case of the Fibonacci

quantum walk, which is an example that requires the full extent of the machinery

developed in this paper in conjunction with the subordinacy result from [17] de-

scribed in Subsection 4.1. In this example the sequence of coins takes only two

di�erent values, and the order in which these two unitary 2 � 2 matrices occur is

determined by an element of the Fibonacci subshift.

Let us recall how the latter is generated. Consider two symbols, a and b. �e

Fibonacci substitution S sends a to ab and b to a. �is substitution rule can be

extended by concatenation to �nite and one-sided in�nite words over the alphabet

¹a; bº. �ere is a unique one-sided in�nite word that is invariant under S , denote

it by u. It is, in an obvious sense, the limit as n ! 1 of the words sn D Sn.a/.

�at is, s0 D a, s1 D ab, s2 D aba, etc., so that u D abaababaabaab : : :. �e

Fibonacci subshift � is given by

� D ¹! 2 ¹a; bºZ W every �nite subword of ! occurs in uº:

Take �a; �b 2 .��
2
; �
2
/ and consider the rotations

Ca D
�

cos �a � sin �a

sin �a cos �a

�
; Cb D

�
cos �b � sin �b
sin �b cos �b

�
:

Given! 2 �, the associated sequence of coins ¹C!;nºn2Z is given byC!;n D C!n .

�e associated unitary operator will be denoted by U! . Inspecting (10) one sees

that U! already has the form of an extended CMV matrix and we will therefore

denote it by E! to emphasize this fact.

Let us relabel the basis elements, ordered as in (7), and write them as .'n/n2Z.

We consider a non-zero �nitely supported initial state  2 `2.Z/ and study the

spreading in space of En! as jnj ! 1 with respect to this basis.

Implementing the strategy outlined at the end of the previous subsection, [5]

establishes solution estimates in the form needed in Proposition 4.4. �us, Propo-

sition 3.9 and Corollaries 3.11 and 3.13 may be applied, and one obtains the fol-

lowing result:
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�eorem 4.5. De�ne

I.z/ D Re .z/2.sec2 �a C sec2 �b/

C .Re .z2/ sec �a sec �b � tan �a tan �b/
2

� 2.Re .z/2 sec2 �a sec2 �b.Re .z2/ � sin �a sin �b//

� 1;

(1)

C.z/ D max¹2C
p
8C I.z/; .sec�a/

�1; .sec�b/
�1º; (2)


1.z/ D
log

�
1C 1

4C.z/2

�

16 log �
; (3)

where � is the golden mean;


2.z/ D 4 log2K.z/; (4)

where K is a z-dependent constant;2

ˇ.z/ D 2
1.z/


1.z/C 2
2.z/C 1
: (5)

�en, for all  ; !; p as above, we have

Q̌˙
!; .p/ � max

®
ˇ.z/ W z 2 supp �E! ; 

¯
;

where �E! ; denotes the spectral measure associated with the unitary operator

E! and the state  .

�is theorem was stated and proved in [5]. �e proof given there used Propo-

sition 4.4, proved in [17], and Proposition 3.9 and Corollaries 3.11 and 3.13, proved

in this paper. �us, these three papers work together in establishing �eorem 4.5.
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