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Rauzy fractals with countable fundamental group
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Abstract. We prove that every free group of �nite rank can be realized as the fundamental

group of a planar Rauzy fractal associated with a 4-letter unimodular cubic Pisot substi-

tution. �is characterizes all countable fundamental groups for planar Rauzy fractals. We

give an explicit construction relying on two operations on substitutions: symbolic splittings

and conjugations by free group automorphisms.
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1. Introduction

In 1982, Rauzy proved that the dynamical system generated by the Tribonacci sub-

stitution �.1/ D 12; �.2/ D 13; �.3/ D 1 is measure theoretically conjugate to an

exchange of domains on a compact subset of the plane with fractal boundary [28].

He even showed that this dynamical system is measure theoretically conjugate to

a translation on the two-dimensional torus: in other words, it has pure discrete

spectrum. �ese results were later generalized to every primitive irreducible uni-

modular Pisot substitution satisfying combinatorial conditions called coincidence

conditions [6], [12], [20], and [7]. �e Pisot conjecture states that such systems

always have pure discrete spectrum [3].

1�e �rst and the second author were supported by Agence Nationale de la Recherche and

Austrian Science Fund through the ANR/FWF project FAN, Fractals and Numeration, ANR-12-

IS01-0002, FWF I1136.

2 �e second author was also supported by the FWF Project 22 855, Topology of fractal tiles,

of the Austrian Science Fund.

3�e third author was supported by the Chinese National Natural Science Foundation Project

10971233.



428 T. Jolivet, B. Loridant, and J. Luo

�e associated Rauzy fractals and their subdomains are compact sets equal

to the closure of their interior, and they are attractors of graph directed iterated

function systems [31], and [30]. Besides these common properties, Rauzy fractals

enjoy a great topological diversity. In the literature, properties like connected-

ness, homeomorphy to a closed disc for planar Rauzy fractals or triviality of their

fundamental group are investigated. Most of these questions can be solved algo-

rithmically for a given substitution [30].

�e study of Rauzy fractals and their topological properties is motivated by

several applications. Examples are the numeration systems with non-integer bases

(see [34] and the survey [10]); the computation of simultaneous Diophantine ap-

proximations [17]; the theory of tiling dynamical systems [32], and [7]; the gen-

eration of discrete planes related to multidimensional continued fraction algo-

rithms [19] and [5]; the relation with some topological invariants of tiling spaces,

see [8]; and the search for explicit Markov partitions for hyperbolic toral automor-

phisms [18], [21], [1], and [26].

In the planar case, there are many known examples of Rauzy fractals which

are homeomorphic to a disc, or whose fundamental group is uncountable [24],

[25], and [30], and [23]. However, until now, no example with “intermediate”

constellation is known, where the fundamental group would be nontrivial, but

countable.

In this article, we prove that such an intermediate situation occurs by giving

a method to construct explicit examples. For any given K 2 N, we are able to

construct a 4-letter primitive unimodular cubic Pisot substitution whose Rauzy

fractal has a fundamental group isomorphic to the free group FK of rank K (�e-

orem 5.2). �is result is complete in the sense that every countable fundamental

group of a planar Rauzy fractal must be of this form (Proposition 2.8).

Our method relies on two symbolic operations on substitutions that induce ma-

nipulations on the subtiles of the associated Rauzy fractals, namely symbol split-

tings and conjugation by free group automorphisms. Questions about the e�ect

of conjugation by free group automorphisms on Rauzy fractals have already been

raised in [16] and [4]. A consequence of our work is that the fundamental group

of the Rauzy fractal of a substitution � is not preserved after conjugation of � by

free group automorphisms.

Outline �e paper is organized as follows. In Section 2, together with prelimi-

nary results, we recall that Rauzy fractals can naturally be decomposed into sub-

tiles and subsubtiles. We then manipulate these tile subdivisions within the fractal

in order to obtain the desired topological properties. Our tools consist of two sym-
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bolic operations on substitutions: symbol splittings (Section 3) and conjugation by

free group automorphisms (Section 4). Our main results are proved in Section 5.

Schematically, they are obtained via the following strategy (see Figure 1):

(a) start with a substitution � on three symbols whose Rauzy fractal and its sub-

tiles are disklike;

(b) take n large enough such that the subtiles of �n consist of su�ciently small

subsubtiles for the next two steps to be applicable (Proposition 5.1);

(c) split a symbol to isolate a subsubtile and turn it into a subtile of the Rauzy

fractal of a new substitution � on four symbols (Proposition 3.2);

(d) conjugate � by a suitable free group automorphism �. �e Rauzy fractal

associated with ��1�� now has a hole (Proposition 4.1).

(a) Subtiles of � . (b) Subsubtiles of �3.

(c) Subtiles after splitting a symbol in �3.

(d) Subtiles after conjugating by a free

group automorphism.

Figure 1. �e main steps of our strategy.

Note that the subtiles in Figure 1(d) do not overlap (see �eorem 5.2). �e

fractals in Figure 1(c) and 1(d) have di�erent areas, this is explained in Remark 2.2.



430 T. Jolivet, B. Loridant, and J. Luo

Acknowledgements We thank the anonymous referees for many suggestions

improving the quality of the paper.

2. Preliminaries

In the following, A denotes a �nite set of symbols, andA
? denotes the free monoid

over A de�ned as the set of all �nite words over A, where the composition of two

words u and v is their concatenation uv. If w is an element of A? or AN, its i-th

letter is denoted by wi .

2.1. Substitutions. Let A be a �nite set of symbols. A substitution is a non-

erasing morphism of the free monoid A
?, i.e., a function � W A? ! A

? such that

�.uv/ D �.u/�.v/ for all words u; v 2 A
?, and such that �.a/ is nonempty for

every a 2 A.

We denote by P W A? ! Z
n the Abelianization map de�ned by

P.w/ D .jwj1; : : : ; jwjn/;

where jwji denotes the number of occurrences of i in w. �e incidence matrix M�

of � is the matrix of size n � n whose i-th column is equal to P.�.i// for every

i 2 A. A substitution � is

� unimodular if det.M� / D ˙1;

� primitive if M� is primitive (all the entries of Mn
� are strictly positive for

some n > 1);

� Pisot if the dominant eigenvalue of M� is a Pisot number: an algebraic integer

ˇ > 1 whose Galois conjugates ˇ1; : : : ; ˇd satisfy jˇi j < 1;

� irreducible if the algebraic degree d of the dominant eigenvalue ˇ of M� is

equal to the size of the alphabet of � .

An in�nite word u 2 A
N is a periodic point of � if there exists k 2 N such

that �k.u/ D u. Such a periodic point always exists when � is primitive [27,

Proposition 5.1].

2.2. Rauzy fractals and subtiles. Before de�ning Rauzy fractals we introduce

the necessary algebraic setup. Let � be a primitive unimodular Pisot substitution

on the alphabetA D ¹1; : : : ; nº, and let ˇ be the Pisot the dominant real eigenvalue

of M� , a Pisot number of degree d . Denote by ˇ1; : : : ; ˇr the r real conjugates of

ˇ, and denote by ˇrC1; ˇrC1; : : : ; ˇrCs; ˇrCs the 2s complex conjugates of ˇ (we
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have r C 2s D d � 1). Let vˇ be a left eigenvector of M� associated with ˇ. Let

�� the projection given by

�� W Rn �! R
r � C

s Š R
d�1;

ei 7�! .hvˇ1
; eii; : : : ; hvˇrCs

; eii/;

where each eigenvector vˇj
is obtained by replacing ˇ by ǰ in the coordinates

of vˇ . Note that the conjugates ˇrC1; : : : ; ˇrCs are not taken into account in the

de�nition of �� .

De�nition 2.1. Let � be a primitive unimodular Pisot substitution on the alphabet

A and let u be a periodic point of � . �e Rauzy fractal of � (with respect to vˇ )

is the set T� D
S

i2A T�.i/, where for each i 2 ¹1; : : : ; nº, T� .i/ is the subtile of

type i given by

T� .i/ D ¹��P.u1 : : : um/ W m 2 N and umC1 D iº:

Remark 2.2. In the above de�nition, the norm of vˇ does a�ect the area of the

sets T� and T�.i/ up to an in�ation factor. Standard de�nitions of Rauzy fractals

usually require kvˇ k1 D 1. In this article, we will not put any restriction on the

norm of vˇ , always specifying with respect to which vˇ we de�ne a Rauzy frac-

tal. �is will help us to avoid many technical di�culties when relating di�erent

Rauzy fractals (living in di�erent representation spaces) in Proposition 3.2 and

Proposition 4.1.

2.3. Subsubtiles and graph-directed iterated function system. In the de�-

nitions below we will need the mapping h� W Rr � C
s ! R

r � C
s, de�ned by

h� .x/ D diag.ˇ1; : : : ; ˇrCs/x. �e mapping h� is contracting on R
r � C

s be-

cause jˇi j < 1 for 1 6 i 6 r C s. It corresponds to the action of M� before

projecting by �� , in other words, ��M� D h��� .

In De�nition 2.1, we have given a decomposition of the tile T� into its subtiles

T� .i/. In Sections 3 and 4 we will need to decompose Rauzy fractals one step

further: each subtile T�.i/ can be decomposed into its subsubtiles T� .i; j I k/,

de�ned below in De�nition 2.3.

Intuitively, each subsubtile of T�.i/ corresponds to an occurrence of i in the

words �.j /. We formalize the notion of occurrence before de�ning subsubtiles.

A pair .j; k/ 2 A � N is an occurrence of the symbol i in � if �.j /k D i , that is

if the k-th letter of �.j / is i . We will denote occurrences by .j I k/ to emphasize

the fact that j is an element of A and k is an index. �e set of occurrences of i

in � is denoted by occ.�; i/. For example, for � W 1 7! 11213; 2 7! 331; 3 7! 1
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we have occ.�; 1/ D ¹.1I 1/; .1I 2/; .1I 4/; .2I 3/; .3I 1/º, occ.�; 2/ D ¹.1I 3/º and

occ.�; 3/ D ¹.1I 5/; .2I 1/; .2I 2/º.

De�nition 2.3. Let .j I k/ 2 occ.�; i/. �e subsubtile T�.i; j I k/ is de�ned by

T�.i; j I k/ D h� .T�.j // C ��P.�.j /1 � � � �.j /k�1/:

Note that T�.i; j I k/ is de�ned only if .j I k/ 2 occ.�; i/. �e tiles T�.i/ are

the solution of a graph-directed iterated function system, which can be conve-

niently expressed in terms of subsubtiles and symbol occurrences in the following

theorem.

Proposition 2.4 ([31] and [15]). Let � be primitive unimodular Pisot substitution

on the alphabet A. For every i 2 A we have

T�.i/ D
[

.j Ik/2occ.�;i/

T� .i; j I k/;

and this union is measure-disjoint.

�e proof for the measure-disjointness is given in [31] for the irreducible case

and in [15] for the reducible case. We also refer to [6], [10], [30], and [9].

Example 2.5. Let � W 1 7! 21; 2 7! 31; 3 7! 1. In Figure 1(b) we plot the sub-

subtiles of �3 W 1 7! 1213121; 2 7! 213121; 3 7! 3121. �e 9 subsubtiles of

T�3.1/ D T� .1/ correspond to the 9 occurrences of 1 in �3; the 5 subsubtiles of

T�3.2/ correspond to the 5 occurrences of 2 in �3; the 3 subsubtiles of T�3.3/

correspond to the 3 occurrences of 3 in �3.

Remark 2.6. According to see [6], the subtiles T�.i/, i 2 A, are measure-disjoint

if � satis�es the strong coincidence condition: for every .j1; j2/ 2 A
2, there

exists k 2 N and i 2 A such that �k.j1/ D p1is1 and �k.j2/ D p2is2 with

P.p1/ D P.p2/ or P.s1/ D P.s2/.

Remark 2.7. We mention that for N > 1 and i 2 A we have T�.i/ D T�N .i/.

Moreover, iterating the above equation, we obtain for all N > 1 and for every

i 2 A we have

T� .i/ D
[

.j Ik/2occ.�N ;i/

T�N .i; j I k/:
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2.4. Countable fundamental groups of Rauzy fractals are free. We now prove

that free groups of �nite rank are the only possible countable fundamental groups

of Rauzy fractals. Let us recall the following basic notions and results from topol-

ogy [35]. A topological space X is a continuum if it is compact and connected.

It is locally connected if it has a base of connected sets. A path from x to y in

X is a continuous function f W Œ0; 1� ! X with f .x/ D 0 and f .y/ D 1. X is

path-connected if every two points of X are joined by a path, and locally path-

connected if it has a base of path-connected sets. It follows from the theorem

of Hahn-Mazurkiewicz that any locally connected continuum is path-connected.

Moreover, in a metric space, every locally connected continuum is locally path-

connected by results of Mazurkiewicz, Moore and Menger (see [22, Section 50,

Chapter II, p. 254]).

Proposition 2.8. Let � be a primitive unimodular Pisot substitution and let T� be

its Rauzy fractal. Suppose that T� and its subtiles are planar locally connected

continua. If the fundamental group of T� is countable, then it is isomorphic to the

free group FK on K generators for some �nite rank K.

Proof. �e result follows directly from a theorem of Conner and Lamoreaux [13,

�eorem 3.1], which states that if a planar set is connected and locally path-con-

nected, then its fundamental group is not free if and only if it is uncountable. Note

that this result can also be proved using a theorem of Shelah [29].

3. Symbol splittings

We now de�ne a symbolic operation, symbol splitting, that we will use in Propo-

sition 3.2.

De�nition 3.1. Let � be a substitution on the alphabet A, let a 2 A, let b … A be a

new symbol and let I � occ.�; a/ be a nonempty set of occurrences of a in � . �e

splitting of symbol a to the new symbol b with occurrences I is the substitution

� de�ned by

�.i/ D

8

ˆ̂

<̂

ˆ
ˆ̂
:

the word �.i/ in which �.i/k is replaced by b

for every .i I k/ 2 I , if i ¤ b,

�.a/; if i D b:

See Example 3.3 for an example of symbol splitting. Note that if � is a prim-

itive unimodular Pisot substitution, then so also is any splitting � arising from �
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(Lemma 3.4). Moreover, we have �� .x/ D x ���.x/, where �� and �� are the char-

acteristic polynomials of M� and M� , respectively. �e action of symbol splittings

on the Rauzy fractal of a substitution � is described in the next proposition, and

is illustrated in Example 3.3.

Proposition 3.2. Let

� � be a primitive unimodular Pisot substitution on the alphabetAD ¹1; : : : ; nº,

� � be obtained by splitting of � from symbol a to a new symbol b D n C 1

with occurrences I � occ.�; a/,

� vˇ D .v1; : : : ; vn/ 2 R
n be a left eigenvector of M� associated with ˇ,

� wˇ D .v1; : : : ; vn; va/ 2 R
nC1 (which is a left eigenvector of M� associated

with ˇ, see Lemma 3.4),

� T� be the Rauzy fractal of � (with respect to the eigenvector vˇ ),

� T� be the Rauzy fractal of � (with respect to the eigenvector wˇ ).

We have

(1) T� .i/ D T�.i/ if i … ¹a; bº,

(2) T� .a/ D
[

.j Ik/2occ.�;a/nI

T�.a; j I k/,

(3) T� .b/ D
[

.j Ik/2I

T�.a; j I k/.

Example 3.3. Let � W 1 7! 1213121; 2 7! 213121; 3 7! 3121. We split the symbol

a D 1 to the new symbol b D 4 with occurrences I D ¹.1I 1/; .2I 6/; .3I 2/º of 1 in

� . �e resulting substitution � and its Rauzy fractal are shown below. (�e tiles

associated with 4 are shown in black.)

� W

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1 7�! 4213121;

2 7�! 213124;

3 7�! 3421;

4 7�! 4213121:

In order to prove Proposition 3.2 we need Lemma 3.4 and Lemma 3.5 below.
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Lemma 3.4. Under the hypotheses of Proposition 3.2, ˇ is an eigenvalue of M�

and wˇ a left eigenvector of M� associated with ˇ. Hence, the Rauzy fractal T�

mentioned in the statement of Proposition 3.2 is well-de�ned.

Proof. By de�nition of symbol splittings we have

� .M� /i;j D .M� /i;j for all i … ¹a; n C 1º and j ¤ n C 1,

� .M� /nC1;j D .M� /a;j for all j … ¹a; n C 1º,

� .M� /i;a C .M� /i;nC1 D .M� /i;a for all i ¤ n C 1.

Hence, by de�nition of wˇ we have .wˇ M� /i D .vˇ M� /i if i ¤ n C 1 and

.wˇ M� /nC1 D .vˇM� /a, so wˇ M� D ˇwˇ , which proves the lemma.

Lemma 3.5. Under the hypotheses of Proposition 3.2, let i 2 ¹1; : : : ; n; b D nC1º

and .j I k/ 2 occ.�; i/, and let i 0 D a if i D b and i 0 D i otherwise. We have

T� .i; j I k/ D T� .i 0; j I k/ if j … ¹a; bº, and T� .i; aI k/ [ T� .i; bI k/ D T� .i 0; aI k/.

Proof. First, note that h� D h� by de�nition, they are both equal to diag.ˇ1; : : : ;

ˇrCs/ (recall that �� .x/ D x � ��.x/, see Section 2.3). Also, by Lemma 3.4, for

j D 1; : : : ; r Cs, ǰ is an eigenvalue and wˇj
is a left eigenvector of M� associated

with ǰ , where wˇj
is obtained by replacing ˇ by ǰ in the coordinates of wˇ . It

follows that ��P.i/ D ��P.i/ for all i ¤ b and ��P.b/ D ��P.a/. We will use

these facts later in the proof.

Next, we claim that T� .i/ D T� .i/ if i … ¹a; bº and T� .a/ [ T� .b/ D T� .a/.

Indeed, let u be a periodic point of � , and let u0 be de�ned by u0
m D a if um D b

and u0
m D um otherwise. �en it is easy to check that u0 is a periodic point of

� , and that ��P.u1 � � � um/ D ��P.u0
1 � � � u0

m/ for all m > 1, so our claim follows

from De�nition 2.1 of Rauzy fractals. Finally, we have

T� .i; j I k/ D h�T� .j / C ��P.�.j /1 � � � �.j /k�1/

D h�T�.j / C ��P.�.j /1 � � � �.j /k�1/

D T�.i 0; j I k/ for j … ¹a; bº;

and

T� .i; aI k/ [ T� .i; bI k/ D h� .T� .a/ [ T� .b// C ��P.�.a/1 � � � �.a/k�1/

D h�T� .a/ C ��P.�.a/1 � � � �.a/k�1/

D h�T�.a/ C ��P.�.a/1 � � � �.a/k�1/

D T� .i 0; aI k/;

which proves the lemma.
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Proof of Proposition 3.2. Let .j I k/ 2 occ.�; i/, and let i 0 D a if i D b and i 0 D i

otherwise. We have

T� .i/ D
[

.j Ik/2occ.�;i/

T� .i; j I k/ (by Proposition 2.4)

D
[

.j Ik/2occ.�;i/
j …¹a;bº

T� .i; j I k/ [
[

.aIk/2occ.�;i/

T� .i; aI k/ [
[

.bIk/2occ.�;i/

T�.i; bI k/

D
[

.j Ik/2occ.�;i/
j …¹a;bº

T� .i; j I k/ [
[

.aIk/2occ.�;i/

T� .i; aI k/ [ T� .i; bI k/

D
[

.j Ik/2occ.�;i/
j …¹a;bº

T� .i 0; j I k/ [
[

.aIk/2occ.�;i/

T� .i 0; aI k/ (by Lemma 3.5)

D
[

.j Ik/2occ.�;i/
j ¤b

T� .i 0; j I k/:

�e third line of the above equation follows from the second line because .aI k/ 2

occ.�; i/ if and only if .bI k/ 2 occ.�; i/, by de�nition of symbol splittings. State-

ments (1)–(3) of Proposition 3.2 can now be proved by combining the above equal-

ity and the fact that the condition “.j I k/ 2 occ.�; i/ and j ¤ b” is equivalent to

� .j I k/ 2 occ.�; i/ if i … ¹a; bº, which proves (1);

� .j I k/ 2 occ.�; a/ n I if i D a, which proves (2);

� .j I k/ 2 I if i D b, which proves (3).

Note that Statement (1) of Proposition 3.2 was already established in the proof of

Lemma 3.5.

4. Conjugation by free group automorphisms

In this section we describe the action of a particular family of free group auto-

morphisms on the Rauzy fractal of a substitution in Proposition 4.1, which will be

used to prove our main result, �eorem 5.2.

A free group morphism on the alphabetA is a non-erasing morphism of the free

group generated byA, consisting of the �nite words made of symbols a and a�1 for

a 2 A. Substitutions can be seen as a particular case of free group automorphisms,

where no “�1” appears in the image of each letter. �e inverse of a free group

automorphism � is the unique morphism (denoted by ��1) such that ���1 D ��1�
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is the identity. For example, the inverse of � W 1 7! 1; 2 7! 211, is ��1 W 1 7! 1,

2 7! 21�11�1.

�e fundamental operation we will perform on a substitution � is conjugation

by a free group automorphism �, i.e., forming the product ��1�� where � is an

automorphism. In the speci�c cases that we will consider, � and ��1�� will always

both be substitutions (i.e., contain no “�1”). We will use a particular family of free

group automorphisms, consisting of the mappings �ij given by (together with their

inverses)

�ij .k/ D

8

<

:

ij if k D j;

k if k ¤ j;
��1

ij .k/ D

8

<

:

i�1j if k D j;

k if k ¤ j:

�e next proposition describes how a Rauzy fractal is a�ected when its associated

substitution is conjugated by a free group automorphism �ij . Example 4.2 and

Example 4.3 provide examples of conjugacy of free groups, and their actions on

Rauzy fractals when combined with symbol splittings.

Proposition 4.1. Let

� � be a primitive unimodular Pisot substitution on the alphabet A,

� b 2 A be such that there exists a unique c 2 A such that for every .j I k/ 2

occ.�; b/, we have k > 2 and �.j /k�1 D c,

� � D ��1
cb

��
cb

,

� wˇ 2 R
nC1 be a left eigenvector of M� associated with ˇ,

� zˇ D wˇ M�cb
2 R

nC1 (which is a left eigenvector of M� associated with ˇ),

� T� be the Rauzy fractal of � (with respect to eigenvector wˇ ),

� T� be the Rauzy fractal of � (with respect to eigenvector zˇ ).

We have

(1) T�.i/ D T� .i/ if i … ¹b; cº,

(2) T�.b/ [ T� .c/ D T� .c/.

More precisely,

(3) T�.b/ D
[

.j Ik/2occ.�;b/

T�.c; j I k � 1/ D T� .b/ � ��P.c/,

(4) T�.c/ D
[

.j Ik/2occ.�;c/
.j IkC1/…occ.�;b/

T� .c; j I k/:

In particular, T� D
S

i¤b T� .i/.
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Proof. We �rst check that zˇ is a left eigenvector of M� associated with ˇ,

zˇ M� D wˇ M�cb
M� D wˇ M�cb

M�1
�cb

M� M�cb

D wˇ M� M�cb
D ˇwˇ M�cb

D ˇzˇ :

Hence, the Rauzy fractal T� mentioned in the statement of the Proposition is well-

de�ned. We now prove Statements (1) and (2). Let u be a periodic point of � (i.e.,

there exists k > 1 such that �k.u/ D u), and let v D �cb.u/. It is easy to check

that v is a periodic point of � :

�k.�cb.u// D .�cb���1
cb /k�cb.u/ D �cb�k��1

cb �cb.u/ D �cb�k.u/ D �cb.u/:

Let ` W N ! N be the unique function de�ned by induction as follows for m > 2:

`.1/ D

8

<

:

1 if u1 ¤ b;

2 if u1 D b;
`.m/ D

8

<

:

`.m � 1/ C 1 if um ¤ b;

`.m � 1/ C 2 if um D b:

In particular, we have um D v`.m/ for all m 2 N. �e de�nition of ` is illustrated

below, on an example where u3 D v4 D b, v3 D c and u1; u2; u4; v1; v2; v5 …

¹b; cº.

u D u1 u2 u3 D b u4 : : : ;

�cb.u/ D v D v1 v2 v3 D c v4 D b v5 : : : ;

D v`.1/ v`.2/ v`.2/C1 v`.3/ v`.4/ : : : :

�e equality zˇ D wˇ M�cb
implies that hzˇ ; eii D hwˇ ; eii if i ¤ b and

hzˇ ; ebi D hwˇ ; eci C hwˇ ; ebi. Hence, by de�nition of �� and �� we have

��P.i/ D ��P.i/ if i ¤ b and ��P.b/ D ��P.c/ C ��P.b/. It follows that

for all m 2 N,

��P.u1 � � � um/ D
X

16k6m
uk¤b

��P.uk/ C
X

16k6m
ukDb

��P.b/

D
X

16k6m
uk¤b

��P.v`.k// C
X

16k6m
ukDb

.��P.c/ C ��P.b//

D
X

16k6m
uk¤b

��P.v`.k// C
X

16k6m
ukDb

��P.v`.k/�1v`.k//

D ��P.v`.1/ � � � v`.m//:
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It is easy to verify that for all i … ¹b; cº, the map ` is a bijection between the sets

¹m 2 N W umC1 D iº and ¹m 2 N W vmC1 D iº, so

T� .i/ D ¹��P.u1 � � � um/ W umC1 D iº

D ¹��P.v1 � � � v`.m// W v`.m/C1 D iº

D T� .i/:

Moreover, ` is also a bijection between ¹m 2 N W umC1 D b or cº and m 2 N W

vmC1 D cº, so

T� .b/ [ T� .c/ D ¹��P.u1 � � � um/ W umC1 D b or cº

D ¹��P.v1 � � � v`.m// W v`.m/C1 D cº

D T� .c/:

�erefore, Statements (1) and (2) are proved. For the second equality of State-

ment (3), we compute

T� .b/ C ��P.c/ D ¹��P.u1 � � � um/ C ��P.c/ W umC1 D bº

D ¹��P.v1 � � � v`.m/c/ W v`.m/C2 D bº

D T� .b/:

We used here that m 7! `.m/ C 1 is a bijection between the sets ¹m 2 N W umC1 D

bº and ¹m 2 N W vmC1 D bº. We now prove the �rst equality of Statement (3)

(giving a precise description of the subsubtile decomposition of T� .b/). Note that

�.i/ D

8

ˆ̂
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ̂
:

the word �.i/ in which each occurrence of cb

is replaced by b, if i ¤ b

the word �.cb/ in which each occurrence of cb

is replaced by b; if i D b:

We apply Proposition 2.4, and use the fact that h� D h� as well as the above

correspondence between the occurrences of b in � and in � :

T�.b/ D
[

.j Ik/2occ.�;b/

h�T� .j / C ��P.�.j /1 � � � �.j /k�1/

D
[

.j Ik0/2occ.�;b/;j ¤b;c

h�T� .j / C ��P.�.j /1 � � � �.j /k0�2/

[
[

.cIk0/2occ.�;b/

h�T�.c/ C ��P.�.c/1 � � � �.c/k0�2/ (�)
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[
[

.cIk0/2occ.�;b/

h�T�.b/ C ��P.�.c/1 � � � �.c/k0�2/ (��)

[
[

.bIk0/2occ.�;b/

h�T� .b/ C ��P.�.c/�.b/1 � � � �.b/k0�2/: (���)

Recall that T� .b/ [ T�.c/ D T� .c/, hence, h� .T� .b/ [ T� .c// D h�T� .c/,

which allows us to combine (�) and (��) into a single union. Since ��P.�.c// D

h� ��P.c/ D h���P.c/ and T� .b/ C ��P.c/ D T� .b/, we can write in (���) that

h�T� .b/ C ��P.�.c/�.b/1 � � � �.b/k0�2/ D h�T� .b/ C ��P.�.b/1 � � � �.b/k0�2/:

�erefore, Statement (3) follows from

T� .b/ D
[

.j Ik0/2occ.�;b/

h�T� .j / C ��P.�.j /1 � � � �.j /k0�2/

D
[

.j Ik0/2occ.�;b/

T� .c; j I k0 � 1/:

Statement (4) can be proved via a similar computation for T� .c/.

Example 4.2. Let � W 1 7! 21; 2 7! 31; 3 7! 1. First we split �3 W 1 7! 1213121;

2 7! 213121; 3 7! 3121 from a D 1 to b D 4 with occurrences I D ¹.1I 7/º

to obtain � W 1 7! 1213124; 2 7! 213121; 3 7! 3121; 4 7! 1213124. �en we

conjugate � with �24 W 1 7! 1; 2 7! 2; 3 7! 3; 4 7! 24:

��1
24 ��24 W

8

ˆ
ˆ̂

<̂

ˆ
ˆ̂

:̂

1 7�! 1 7�! 1213124 7�! 121314;

2 7�! 2 7�! 213121 7�! 213121;

3 7�! 3 7�! 3121 7�! 3121;

4 7�! 24 7�! 2131211213124 7�! 213121121314:

�e e�ect of these operations on the Rauzy fractals are shown in Figure 1: the

subtiles of T� are shown in (a), the subsubtiles of T�3 are shown in (b), the subtiles

of T� are shown in (c), and the subtiles of T� are shown in (d).

Example 4.3. Let � W 1 7! 21; 2 7! 31; 3 7! 1. Let � be the splitting of �6 from 1

to 4 with occurrences I D ¹.1I 24/I .1I 31/I .1I 33/I .1I 40/º. (Note that �.1/p�1 D

2 for all .1; p/ 2 I .) Let � D ��1
24 ��24 with �24 W 1 7! 1; 2 7! 2; 3 7! 3; 4 7! 24.

�e e�ect of these operations on the Rauzy fractal are shown in Figure 2.
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Figure 2. Rauzy fractals of the substitutions de�ned in Example 4.3. �e subsubtiles of

T�6 (left), the subtiles of T� (center), and the subtiles of T� (right).

5. Main results

We now combine the results of Section 3 (symbol splittings) and Section 4 (con-

jugations by free group automorphisms) in order to prove our main result, �eo-

rem 5.2. First, we prove in Proposition 5.1 that it is possible to “dig holes” in a

“nice” planar Rauzy fractal by extracting some subsubtiles.

Proposition 5.1. Let � be a primitive unimodular Pisot substitution on the alpha-

bet A with dominant Pisot eigenvalue of degree 3, such that T� and its subtiles

T� .i/ (i 2 A) are homeomorphic to a closed disc. Let K > 1. �en there exist

two letters a ¤ c 2 A and N > 1 and

I � ¹.j I k/ 2 occ.�N ; a/ W �N .j /k�1 D cº
„ ƒ‚ …

DW ON

� occ.�N ; a/

such that the sets

T� .a/ n
[

.j Ik/2I

T�N .a; j I k/ D
[

.j Ik/2occ.�N ;a/nI

T�N .a; j I k/

and

T� n
[

.j Ik/2I

T�N .a; j I k/

are homeomorphic to a closed disc minus the union of K disjoint open discs of its

interior. Here, M denotes the closure of a set M .

Proof. Let a ¤ c 2 A such that the word ca occurs in a power of � , i.e., such that

�n0.j0/k0
D a and �n0.j0/k0�1 D c for some j0 2 A and n0; k0 > 1. We will dig

holes in the subsubtile T�n0 .a; j0I k0/ � T�.a/. Let x1; : : : ; xK be K points in the

interior of T�n0 .a; j0I k0/ and B1; : : : ; BK � T�n0 .a; j0I k0/ be K disjoint closed



442 T. Jolivet, B. Loridant, and J. Luo

discs such that for each m 2 ¹1; : : : ; Kº, Bm is centered at xm. We can assume

that B1; : : : ; BK all have the same radius r > 0 and that their boundaries do not

intersect the boundary of T�n0 .a; j0I k0/.

We can choose N such that all the subsubtiles of �N have diameter less than

r=2, because each subsubtile of �N is a copy of a subsubtile of � which is scaled

down by hN
� , and h� is a contraction. �anks to Proposition 2.4 and Remark 2.7,

we can further choose a set of K occurrences I WD ¹.j1I k1/; : : : ; .jpI kp/º �

occ.�N ; a/ such that for every m 2 ¹1; : : : ; Kº, we have xm 2 T�N .a; jmI km/.

Each subsubtile T�N .a; jmI km/ has diameter less than r=2, thus it is contained

in Bm. In particular, the subsubtiles T�N .a; j1I k1/; : : : ;T�N .a; jK I kK/ are all

disjoint and contained in T�n0 .a; j0I k0/.

We claim that I � ON . Indeed, by assumption, there exist a pre�x p 2 A
�

and a su�x s 2 A
� satisfying �n0.j0/ D pas, jpj D k0 � 1 and pk0�1 D c.

Moreover, it follows from the inclusion T�N .a; jmI km/ � T�n0 .a; j0I k0/ that

there exist p0
m; s0

m 2 A
� with the property that �N .jm/ D �n0.p0

m/ pas �n0.s0
m/

and j�n0.p0/pj D km � 1. �us �N .jm/km�1 D c and .jmI km/ 2 ON , for each

m 2 ¹1; : : : ; Kº.

Each subsubtile T�N .a; jmI km/ is a set which is homeomorphic to a disc and

which is contained in Bm. �erefore, by Schön�ies’ theorem [33], the closure of

T� n
S

.j Ik/2I T�N .a; j I k/ is homeomorphic to a disc from which K open discs

with disjoint boundaries have been removed. �e same property holds for

T� .a/ n
[

.j Ik/2I

T�N .a; j I k/ D
[

.j Ik/2occ.�N ;a/nI

T�N .a; j I k/

(note that the union on the right side is measure-disjoint by Proposition 2.4).

We are now able to prove our main result.

�eorem 5.2. Let K > 1 be an integer and denote by FK the free group of rank K.

�en,

(1) there exists a 4-letter primitive unimodular Pisot substitution � such that the

fundamental group of a subtile T� .a/ of the Rauzy fractal T� is isomorphic

to FK , and such that the subtiles of T� have disjoint interiors;

(2) there exists a 4-letter primitive unimodular Pisot substitution � such that the

fundamental group of the Rauzy fractal T� is isomorphic to FK and such that

the subtiles of T� have disjoint interiors.
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Proof. Let � be any primitive unimodular substitution on the alphabet ¹1; 2; 3º

whose dominant eigenvalue is a cubic Pisot number, and such that T� and its

subtiles are homeomorphic to a disc and have disjoint interiors. We also require

� to satisfy the strong coincidence condition (see Remark 2.6). One of the many

possible choices for � is the Tribonacci substitution 1 7! 12; 2 7! 13; 3 7! 1, for

which the above properties can easily be veri�ed [30], [9].

Let a ¤ c 2 A, N > 1 and

I � ¹.j I k/ 2 occ.�N ; a/ W �N .j /k�1 D cº
„ ƒ‚ …

DW ON

� occ.�N ; a/

as given in Proposition 5.1. �en
S

.j Ik/2occ.�N ;a/nI T�N .a; j I k/ is homeomor-

phic to a closed disc minus the union of K disjoint open discs. �us the funda-

mental group of this set is isomorphic to FK . Let � be the substitution obtained

from �N by splitting a to a new symbol b with occurrences I . By Proposition 3.2

we have T� .a/ D
S

.j Ik/2occ.�N ;a/nI T�N .a; j I k/, so T� .a/ is isomorphic to FK .

�e subtiles of T� are measure-disjoint. Indeed, �N is a primitive unimodular

Pisot substitution, thus for each i 2 A, the subsubtiles of T�N .i/ are measure-

disjoint for each i 2 A (see Proposition 2.4). Moreover, we chose � satisfying the

strong coincidence condition, so the subtiles T�.i/ D T�N .i/ (i 2 A) of T�N are

also measure-disjoint (see Remark 2.6). �erefore, Proposition 3.2 implies that

the subtiles of T� are measure-disjoint and Statement (1) is proved.

To prove Statement (2), we make use of the speci�c choice I � ON for the

set of occurrences. Indeed, a conjugation will have the e�ect of moving the sub-

subtiles associated with I from the tile associated with b into another tile, hence

leaving K holes in the fractal. We apply Proposition 4.1 to � , which is a primitive

unimodular Pisot substitution on the alphabet A0 WD A[¹bº, and to � D ��1
cb

��
cb

.

�e assumption on the occurrences of b is ful�lled because I � ON . Remember

that Proposition 3.2 also asserted that T� .i/ D T�N .i/ if i … ¹a; bº. It follows that

T� D
[

i¤b

T� .i/ D
[

i¤a;b

T� .i/ [ T� .a/

D
[

i¤a;b

T�N .i/

„ ƒ‚ …
S

i¤a T
�N .i/

[
[

.j Ik/2occ.�N ;a/nI

T�N .a; j I k/

D T� n
[

.j Ik/2I

T�N .a; j I k/

and its fundamental group is isomorphic to FK by Proposition 5.1.
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Finally, as all subtiles T� .i/ and there subsubtiles are measure-disjoint, we can

infer from Proposition 4.1 that the subtiles of T� are also measure-disjoint.

6. Conclusion

Our results are obtained with a �xed number of symbols (4) so there is no bound

of the number of holes by the number of symbols, which answers a question asked

to the authors by Minervino. It is not known whether there exists a 3-letter Pisot

substitution with nontrivial but countable fundamental group.

In further developments, we may try to realize higher homology/homotopy

groups for three-dimensional Rauzy fractals associated with Pisot numbers of de-

gree > 4. Indeed, illustrations of Figure 3 lead to think that our methods could

be adapted to higher dimensions, since Propositions 3.2 and 4.1 do not assume

planarity of the tiles. However this is out of reach for the moment, because we

need the essential preliminary fact that the subtiles are homeomorphic to a ball,

but appropriate criteria in 3-dimensions do not currently exist. A reason is that

the theorem of Schön�ies used in Proposition 5.1 does not generalize to higher di-

mensions. Developments in this direction have recently been obtained by Conner

and �uswaldner [14].

Figure 3. Drilling holes in the “Quadribonacci” substitution � W 1 7! 21; 2 7! 31; 3 7! 41,

4 7! 1. We have splitted the occurrences ¹.1; 8/; .2; 7/º of 1 to a new symbol 5 in �3,

and conjugated the result by �2;5 to obtain the substitution � W 1 7! 4121315;2 7! 121315,

3 7! 213121, 4 7! 3121; 5 7! 1213154121315. �e Rauzy fractals of � and � are plotted

above left and right, respectively. �ese fractals are three-dimensional because the associ-

ated Pisot eigenvalue is of degree 4.

Another perspective for further work is to describe some uncountable funda-

mental groups for some simple examples, such as the fractal shown in Figure 4.

�is has successfully been done for some fractals such as the Hawaiian earring or

the Sierpiński triangle [11] and [2].
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Figure 4. �e Rauzy fractals of 1 7! 2413; 2 7! 43; 3 7! 2433; 4 7! 1 (left) and 1 7! 2,

2 7! 4; 3; 3 7! 4; 4 7! 53; 5 7! 6; 6 7! 1 (right). �e �rst picture suggests that one of the

subtiles is homeomorphic to a disc from which in�nitely discs have been removed, which

would make it homeomorphic to the Hawaiian earring.
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