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Boundary value problems on a half Sierpinski gasket
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Abstract. We study boundary value problems for the Laplacian on a domain � consisting
of the left half of the Sierpinski Gasket (SG), whose boundary is essentially a countable set
of points X . For harmonic functions we give an explicit Poisson integral formula to recover
the function from its boundary values, and characterize those that correspond to functions of
finite energy. We give an explicit Dirichlet to Neumann map and show that it is invertible. We
give an explicit description of the Dirichlet to Neumann spectra of the Laplacian with an exact
count of the dimensions of eigenspaces. We compute the exact trace spaces onX of theL2 and
L1 domains of the Laplacian on SG. In terms of the these trace spaces, we characterize the
functions in the L2 and L1 domains of the Laplacian on � that extend to the corresponding
domains on SG, and give an explicit linear extension operator in terms of piecewise biharmonic
functions.
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1. Introduction

The Laplacian on the Sierpinski Gasket was first constructed as a generator of a
stochastic process, analogous to Brownian motion, by Kusuoka [6] and Goldstein [3].
An analytic method of constructing the Laplacian on the Sierpinski Gasket as a renor-
malized limit of graph Laplacians was later developed by Kigami [4]. With a well
defined Laplacian, it is possible to study differential equations on the Sierpinski Gas-
ket, although strictly speaking, these are not differential equations.

Harmonic functions on the Sierpinski Gasket have been studied in detail and the
Dirichlet problem on the entire gasket reduces to solving systems of linear equations
and multiplying matrices. However, there has been little research into boundary value
problems on bounded subsets of fractals, except for [8], [9] and [13], that consider
domains generated by horizontal cuts of the gasket. Hence we believe it is appropriate
to begin our exploration by studying the Dirichlet problem on a boundary generated
by a vertical cut along one of the symmetry lines of the gasket. This is the simplest
example of a boundary given as a level set of a harmonic function. We hope our
results give insight into more general techniques for solving the Dirichlet problem
and other boundary value problems on more general domains.

Most of our results are applications of Kigami’s harmonic calculus on fractals
to our half gasket. His theory includes many mathematical objects specific to the
world of fractal analysis, such as renormalized graph energies, normal derivatives
and renormalized graph Laplacians. We will present some notation as we proceed,
but for precise definitions and known facts (in particular the results that we call
Proposition), see textbooks [5] and [11].

The Sierpinski Gasket, denoted SG, is the unique nonempty compact set satisfying

SG D
2[

j D0

Fj SG

where Fj are contractive mappings given by

Fjx D x C qj

2

and qj are the vertices of an equilateral triangle. Following convention, the boundary
of SG is defined to be

V0 D fq0; q1; q2g:
Hence boundary in our language differs from the standard topological definition of
boundary. Using the mappings Fj , we can iteratively generate a set of vertices Vm

wherem depends on the number of times we apply Fj . From Vm, we can find a graph
approximation �m. See Figure 1.1 for an illustration. Notice how the boundary points
fqj g are oriented and we keep this orientation for the entire paper.
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Figure 1.1. Left to right: �0; �1; �2; �3 of SG.

We work on the domain �, which can be defined in terms of the level sets of a
harmonic function. Let hs be the skew symmetric harmonic function with boundary
values

.hs.q0/; hs.q1/; hs.q2// D .0; 1;�1/:
Then

� D fx 2 SG n V0 W hs.x/ > 0g
and

@� D q0 [ q1 [X
where

X D fx 2 SG n V0 W hs.x/ D 0g:
We write

x� D �[ @�:
Figure 1.2 provides an illustration of x�, which is precisely the left half of SG

including the points on the symmetry line. In the figure, we labeled the points

xm D Fm�1
0 F2q1 and ym D Fm

0 q1:

Note that X D fxmg1mD1, so each xm is important for obvious reasons. Each ym is
important topologically because the removal of any ym turns � into a disconnected
set.

We also labeled the open sets

Ym D Fm�1
0 F1.SG n V0/:
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Note that
@Ym D fxm; ym�1; ymg

and we write
xYm D Ym [ @Ym:

xYm is classified as a cell because a cell is defined to be the image of SG under any
compositions of contractive mappings Fj . Thus x� DS1

mD1
xYm, which is an almost

disjoint union.
Although � is not globally self-similar because � cannot be written as a union

of smaller copies of itself, it is locally self-similar because each xYm is a fractal. The
retention of this local property is extremely important for our analysis because any
result regarding SG also holds for xYm with a proper normalization factor.

q1 x1

y1 x2

y2 x3

y3 x4

y4

q0

Y1

Y2

Y3

Figure 1.2. A decomposition of x�.

In the later sections, we will be interested in restriction and extension operators.
Hence, we need to label points on the other half of the gasket. Let zm and Zm the
reflections of ym and Ym respectively across the symmetry line containing X . Then
SG D S

m.Ym [ Zm/ is an almost disjoint union and this decomposition will be
useful in the later sections.

We begin by studying the Dirichlet problem on �:8̂̂̂
<
ˆ̂̂:
4u D 0 on �;

u.q1/ D a0 on @�;

u.xm/ D am on @�;

(1.1)

where 4 denotes the (Kigami) Laplacian with respect to the standard measure,
u W x� ! R is the unknown, and famg1mD0 is the boundary data. Notice that we
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do not prescribe boundary data at q0 even though q0 2 @�. This is by preference
and is inconsequential because for almost the entire paper, we will assume famg
converges. We will refer to (1.1) as “the BVP.”

In Section 2, we construct a solution to the BVP using the harmonic extension
algorithm, which we explain in that section. The space ofC.�/ solutions to the BVP
is one-dimensional, but in general, the solutions blow up at q0. We show that if the
boundary data converges, then we can find a C.x�/ solution that is unique in this
function space.

In Section 3, we study the graph energy of theC.x�/ solution to the BVP.Although
its energy is complicated, the culminating theorem presents an equivalence between
finite energy and the normalized summability of the the boundary data. In fact,
finiteness depends only on how quickly the data converges and not on the limiting
value.

In Section 4, we show that given stronger assumptions on the boundary data, we
can obtain the existence of normal derivatives on @�. In particular, we are interested
in the behavior of the normal derivatives on X . The normal derivatives of the C.x�/
solution on X can be found in terms of the boundary data. This relationship allows
us to define a Dirichlet to Neumann map and we show that this map is invertible.

In Section 5, we discuss both Dirichlet and Neumann eigenfunctions on �. For
more information on eigenvalues and eigenfunctions on fractals; see [2] and [10].
There are no new eigenfunctions on �, but for a fixed eigenvalue, its multiplicity
on � is different from its multiplicity on SG. For each eigenfunction, we count the
dimension of its eigenspace.

Section 6 and Section 7 are closely related to each other. We define a restriction
operator that maps a function to its restriction to and normal derivatives on X . We
characterize the function spaces domL2 4.SG/ and domL1 4.SG/ in terms of the
restriction operator. Using this result, we provide necessary and sufficient conditions
for extending functions in domL2 4.�/ and domL1 4.�/ to biharmonic functions
in domL2 4.SG/ and domL14.SG/ respectively.

Section 8 acts as an appendix and in this section, we prove numerous lemmas about
Green’s functions and special types of sequences and series. Since these results are
used in multiple sections and are purely technical lemmas, we have decided to place
them in its own section. While the sequence and series lemmas may not be new, we
have not found them in previously published work.

It is important to mention that the results presented in this paper hold for any
smaller copy of �, Fw.�/ for any word w, with different normalization constants.

Acknowledgments. The authors are grateful to the referee for suggesting the state-
ment and proof of Theorem 4.4.
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2. Solution to the boundary value problem

We begin this section by discussing the graph energy. The energy plays a central role
in fractal analysis on SG because other objects such as harmonic functions, normal
derivatives and the Laplacian, are defined in terms of the energy. Given a fixed value
ofm and a real valued function u on SG, the (renormalized) graph energy of levelm
is

Em.u/ D
X

x�my

�5
3

�m

Œu.x/ � u.y/�2;

where x �m y means x and y are in the same cell of level m. The graph energy of
u is E.u/ D limm!1 Em.u/, allowing the valueC1.

Given boundary conditions, we define a harmonic function to be the unique func-
tion that minimizes the graph energy subject these constraints. Additionally, our
suggestive use of the word “harmonic” is justified: harmonic functions as minimiz-
ers of energy are equivalent to functions that satisfy the differential equation4u D 0.
The Laplacian4 is defined in Section 4.

The simplest tool for constructing harmonic functions subject to boundary con-
ditions is the harmonic extension algorithm. For a function u defined on Vm, we can
define its harmonic extension to VmC1 as follows. Let fvj g be the three boundary
points of a cell with fu.vj /g given. Then the harmonic extension of u to the three
new points is shown in Figure 2.1. It is not difficult to see that given u on Vm, this is
the unique extension that minimizes the graph energy at level mC 1.

We can apply the harmonic extension algorithm infinitely many times and the
resulting function on V� D S

m Vm will be harmonic. It is not difficult to see that
functions generated by the harmonic extension algorithm must be continuous. Fur-
thermore, V� is dense in SG and so for continuous functions, it suffices to define them
on a dense subset. Thus, we say a harmonic function is determined by its boundary
values.

We can use the harmonic extension algorithm to construct a solution to the BVP.
Any harmonic function on xYm is determined by its values on @Ym. Since x� DS

m
xYm,

any harmonic function on x� is determined by its value at the points fxmg and fymg.
In the following lemma, we see that there are additional constraints we must take into
account.

Lemma 2.1. Fix m � 2. Let u be a continuous piecewise harmonic function with
boundary data given by (1.1). Then

4u.ym/ D 0
if and only if

u.ym/ D 16

5
u.ym�1/ � 3

5
u.ym�2/ � am � 3

5
am�1: (2.1)
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u.v1/ u.v2/

u.v0/

u.v0/C2u.v1/C2u.v2/
5

2u.v0/C2u.v1/Cu.v2/
5

2u.v0/Cu.v1/C2u.v2/
5

Figure 2.1. Harmonic Extension Algorithm.

Proof. Consider the level m approximation of Ym�1 [ Ym. The value of u at the
midpoint of ym�1 and ym�2 and the midpoint of ym�1 and xm�1 are determined by
the harmonic extension algorithm, shown in Figure 2.2.

u.ym�2/ am�1

u.ym�1/

2u.ym�1/C2u.ym�2/Cam�1

5

2u.ym�1/Cu.ym�2/C2am�1

5

am

u.ym/

Figure 2.2. Harmonic extension.

If 4u.ym�1/ D 0, then u satisfies the mean value property at ym�1. Thus,
u.ym�1/ is the average of its four neighboring points in Vm and simplifying that
equation yields (2.1). Conversely, if (2.1) holds, then it is straightforward to check
that4u.ym�1/ D 0.
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Theorem 2.2. For every choice of convergent boundary data famg, there is a one
dimensional space of C.�/ solutions to the BVP. Given a parameter �, the solution
to the BVP u� is the harmonic extension of u�.xm/ D am, u�.y1/ D � and

u�.ym/ D 3mFm.�/C 1

5m
Gm.�/; (2.2)

where

Fm.�/ D 1

14

�
5� � a0 � a1 � 18

mX
kD2

1

3k
ak

�

and

Gm.�/ D 1

14

�
� 5�C 15a0 C 15a1 C 4

mX
kD2

5kak

�
:

Proof. By Lemma 2.1, u� must satisfy the recurrence (2.1). The recurrence is linear,
so we can formulate the equation in terms of matrices. Define

A D
2
4 0 0

�3
5
�1

3
5 and B D

2
4 0 1

�3
5

16

5

3
5 :

Then the recurrence can be written as"
u�.ym/

u�.ymC1/

#
D Bm

"
a0

�

#
C

mX
kD1

Bm�kA

"
ak

akC1

#
:

Solving the system, we find that

u�.ym/ D 3m
� 1
14

��
5� � a0 �

m�1X
kD1

1

3k
ck

�

C 1

5m

� 1
14

��
� 5�C 15a0 C

m�1X
kD1

5kck

�
;

where ck D 5akC1 C 3ak . We want our formula in terms of ak rather than ck , so
substituting

m�1X
kD1

5kck D 4
mX

kD2

5kak C 15a1 � 5m3am

and
m�1X
kD1

1

3k
ck D 18

mX
kD2

1

3k
ak C a1 � 1

3m
3am

into the previous equation for u�.ym/ yields (2.2). Extending these values by the
harmonic extension algorithm uniquely yields a harmonic function u� continuous
on �.
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Since u� is a linear combination of a 3m term and a 1=5m term, u� may blow up
at q0. Naturally, we ask whether we can find a � such that u� is continuous on x�.

Lemma 2.3. Suppose u� 2 C.�/ satisfies the BVP for convergent famg. Then
u� 2 C.x�/ if and only if

lim
m!1u�.ym/ D lim

m!1u�.xm/: (2.3)

Proof. Suppose u� 2 C.x�/ solves the BVP. Then u� is continuous at q0, which
implies (2.3). Conversely, it is easy to see that q0 is the only point at which u�

can be discontinuous. Then (2.3) implies u� is continuous at q0, which shows that
u� 2 C.x�/.

Theorem 2.4. If am ! 0 as m ! 1, then the function u given by the harmonic
extension of u.xm/ D am,

u.y1/ D 1

5

�
a0 C a1 C 18

1X
kD2

1

3k
ak

�
; (2.4)

and (for m � 2)

u.ym/ D 1

5m

�
a0 � 9

7

1X
kD1

1

3k
ak C 2

7

mX
kD1

5kak

�
C 9

7

1X
kD1

1

3k
amCk (2.5)

solves the BVP. Furthermore, this function is the unique solution in C.x�/.

Proof. Substituting (2.4) into (2.2) yields (2.5). By triangle inequality,

ju.ym/j � 1

5m

�
ja0j C 9

7

1X
kD1

1

3k
jak j C 2

7

mX
kD1

5k jak j
�
C 9

7

1X
kD1

1

3k
jamCk j:

We claim that ju.ym/j ! 0 as m ! 1. Clearly the first term tends to zero in the
limit. The second term tends to zero because convergent sequences are bounded.
Since both the boundary data and 1=5m converge to zero, for all " > 0, there exists
M such that for all m � M , we have jamj < " and 1=5m < ". For m � M , we see
that 1X

kD1

1

3k
jamCk j � "

1X
kD1

1

3k
D "

2

and

1

5m

mX
kD1

5k jak j D 1

5m

MX
kD1

5k jak j C
mX

kDM C1

5k�mjak j � C1". max
1�k�M

jakj/C C2":
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Therefore u satisfies condition (2.3) and by Lemma 2.3, u 2 C.x�/. Since harmonic
functions that are continuous up to the boundary satisfy the maximum principle [13],
uniqueness follows from the standard uniqueness argument for linear differential
equations that satisfy the maximum principle.

Corollary 2.5. If am ! A as m ! 1 for some constant A, then the function u
given by the harmonic extension of u.xm/ D am,

u.y1/ D 1

5

�
a0 C a1 C 18

1X
kD2

1

3k
ak

�
; (2.6)

and (for m � 2)

u.ym/ D 1

5m

�
a0 � 9

7

1X
kD1

1

3k
ak C 2

7

mX
kD1

5kak

�
C 9

7

1X
kD1

1

3k
amCk (2.7)

solves the BVP. Furthermore, this function is the unique solution in C.x�/.

Proof. Consider the modified BVP8̂̂̂
<
ˆ̂̂:
4u D 0 on �;

u.q1/ D a0 � A on @�;

u.xm/ D am � A on @�:

(2.8)

Since am � A ! 0, the hypotheses of Theorem 2.4 are satisfied. Then there exists
w 2 C.x�/ that solves (2.8) and the formula for w.ym/ is given by (2.5) under the
map ak 7! ak � A. By construction, the function u D w C A solves the BVP with
u 2 C.x�/. The maximum principle implies that u is unique.

3. Energy estimate

In this section, we look to answer questions regarding the energy of theC.x�/ solution
to the BVP. In particular, is the energy always finite and if not, can we characterize
functions of finite energy in terms of a condition on the boundary data? Our main
theorem shows that harmonic functions on � do not necessarily have finite energy
and provides a simple characterization.

Given a function u, we say u 2 dom E if and only if E.u/ < 1. Following
standard notation, dom0 E is the space of functions that have finite energy and vanish
on the boundary V0. It is known that dom E � C.SG/ and in fact, is a dense subset.
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Suppose u is a piecewise harmonic function on � that is harmonic on each Ym

with data given by (1.1). Then the energy of u restricted to Ym is constant after level
m and is determined by u.ym/, u.ym�1/, and am. It follows that

E.u/jYm
D

�5
3

�m

Œ.u.ym/ � u.ym�1//
2 C .u.ym/ � am/

2 C .u.ym�1/ � am/
2�;

where it is understood that u.y0/ D u.q1/ D a0. Then E.u/ is the sum of the energy
of each cell,

E.u/

D
1X

mD1

�5
3

�m

Œ.u.ym/ � u.ym�1//
2 C .u.ym/ � am/

2 C .u.ym�1/ � am/
2�:

(3.1)

If we add the additional assumption that u 2 C.x�/ solves the BVP, then an equation
for E.u/ as a function of famg can be obtained by substituting (2.6) and (2.7) into (3.1).
However, E.u/ is series of quadratic terms of series, which is too complicated to
analyze directly. Instead, we estimate it.

Lemma 3.1. Suppose u 2 C.x�/ solves the BVP with convergent famg. Then we
have the energy estimate

C1

1X
mD1

�5
3

�m

.amC1 � am/
2 � E.u/

� C2

1X
mD1

�5
3

�m

.amC1 � am/
2:

Proof. We prove the lower bound first. By ignoring the first term of (3.1), we have

E.u/ �
1X

mD1

�5
3

�m

Œ.u.ym/ � am/
2 C .u.ym�1/ � am/

2�

D
1X

mD1

�5
3

�m

.u.ym/ � am/
2 C

1X
mD0

�5
3

�mC1

.u.ym/ � amC1/
2:

Using basic calculus, we find that u.ym/ D .1=8/.5amC1 C 3am/ minimizes the
previous series. Substituting this value of u.ym/ into the previous inequality, we
obtain 1X

mD1

�5
3

�m 5

8
.amC1 � am/

2 C 5

3
.a1 � a0/

2 � E.u/:

For the upper bound, consider the piecewise harmonic function w given by the har-
monic extension of w.xm/ D w.ym/ D am and w.q1/ D a0. Since u is a global



12 W. Li and R. S. Strichartz

harmonic function whilew is a piecewise harmonic function, we have E.u/ � E.w/.
Note that E.w/ is given by (3.1) becausew is a piecewise harmonic function satisfying
the boundary conditions. Then

E.u/ � E.w/ D
1X

mD1

�5
3

�m 10

3
.amC1 � am/

2 C 10

3
.a1 � a0/

2 <1;

which completes the proof.

Theorem 3.2. Suppose u 2 C.x�/ solves the BVP with convergent boundary data
am ! A. Then u 2 dom E if and only if k.5=3/m=2.am �A/k`2 <1. Additionally,
we have the upper bound E.u/ � Ck.5=3/m=2.am � A/k`2 .

Proof. Suppose u 2 C.x�/ solves the BVP with convergent boundary data am ! A.
Lemma 3.1 says that E.u/ < 1 if and only if k.5=3/m=2.amC1 � am/k`2 < 1.
Applying Lemma 8.9 yields the desired statement.

4. Normal derivatives

Although the normal derivative and the (standard) Laplacian on SG are defined inde-
pendently, they are closely connected via the Gauss–Green formula.

For a continuous function u, its normal derivative at qj 2 V0, denoted @nu.qj /,
is defined to be

@nu.qj / D lim
m!1

�5
3

�m

Œ2u.qj / � u.Fm
j qj C1/ � u.Fm

j qj �1/�: (4.1)

We say @nu.qj / exists if the above limit exists. In the special case u is harmonic, we
have the simplified formula

@nu.qj / D 2u.qj / � u.qj �1/ � u.qj C1/: (4.2)

The formula for the normal derivative of a harmonic function at a boundary point
of a cell is similar to the above formula, except we require a renormalization factor
depending on the level. A junction point is a boundary point of two adjacent cells
of the same level, and the normal derivative with respect to the cells will differ by a
minus sign. If we need to distinguish between the two normal derivatives at a junction
point, we use either . ;!/, .%;./ or .-;&/, corresponding to the geometrical
notion of a normal derivative.

Proposition 4.1. Suppose u 2 dom4. Then at each junction point, the local normal
derivatives exist and% @nu C . @nu D 0. This is called the matching condition
for normal derivatives.
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The Laplacian of a function is defined in terms of its weak formulation. First, we
define the (symmetric) bilinear form of the energy: given functions u; v and integer
m, the bilinear form of the energy is

Em.u; v/ D
X

x�my

�5
3

�m

Œu.x/ � u.y/�Œv.x/ � v.y/�:

SG has a unique symmetric self-similar probability measure that we denote dx. Then
the Laplacian can be defined as follows. Suppose u 2 dom E and f is continuous.
Then we say u 2 dom4 with4u D f if

E.u; v/ D �
Z

SG
f .x/v.x/ dx

for all v 2 dom0 E (functions in dom E vanishing on V0). Since E.u; v/ D E.v; u/,
subtracting the Gauss–Green formula from its transposed version yields the symmetric
Gauss–Green formulaZ

SG
.4uv � u4v/ dx �

X
V0

.v@nu � u@nv/ D 0: (4.3)

The following result relates the normal derivatives of a function with its Laplacian.

Proposition 4.2 (Gauss–Green). Suppose u 2 dom4. Then @nu exists on V0 and
the Gauss–Green formula,

E.u; v/ D �
Z

SG
4uv dx C

X
V0

v@nu;

holds for all v 2 dom E .

For the remainder of this section, we assume u 2 C.x�/ solves the BVP with
convergent boundary data. Naturally, we are interested in analyzing the behavior of
@nu.x/ for x 2 @�. For all points in x� except q0, the formulas for the normal deriva-
tives of u are given by (4.2). Using this equation, with the appropriate normalization
factor, the normal derivative of u at ym with respect to the cell Ym is

% @nu.ym/ D
�5
3

�m

Œ2u.ym/ � u.ym�1/ � am�: (4.4)

Similarly, the normal derivative of u at xm with respect to Ym is

! @nu.xm/ D
�5
3

�m

Œ2am � u.ym/ � u.ym�1/�: (4.5)

However (4.2) does not give us the equation for " @nu.q0/ because u is only defined
on x�. But we can define @nu.q0/ in a natural way.
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Lemma 4.3. If u 2 dom4.SG/, then

" @nu.q0/ D 2 � lim
m!1% @nu.ym/: (4.6)

Proof. Write u D us C ua, where us and ua are the parts of u that are symmetric
and skew-symmetric with respect toX , respectively. Since uajF m

0
.SG/ D O.1=5m/,

we have
" @nua.q0/ D 2 � lim

m!1% @nua.ym/ D 0:
For the symmetric part, consider the triangle Tm with boundary points fq0; ym; zmg
and the harmonic function v on Tm with v.q0/ D v.ym/ D v.zm/ D 1. Applying
the symmetric Gauss–Green formula (4.3) for us and v, we find that

# @nus.q0/ C% @nus.ym/ C- @nus.zm/ D
Z

Tm

4us dx:

Notice that% @nus.ym/ D- @nus.zm/ by symmetry. Using the normal derivative
matching condition of u at q0, we see that " @nus.ym/ D � # @nus.q0/. Making
these substitutions and taking the limit m!1, we find that

2 � lim
m!1% @nus.ym/ � " @nus.q0/ D lim

m!1

Z
Tm

4us dx D 0;

because4u is bounded and the measure of Tm tends to zero in the limit.

Motivated by this lemma, we define " @nu.q0/ for u defined on � by (4.6). In
the special case that u 2 C.x�/ solves the BVP with convergent data, then

" @nu.q0/ D lim
m!1

h
5m

�30
7

� 1X
kDmC1

1

3k
ak � 1

3m

�12
7

� mX
kD1

5kak

i
; (4.7)

which we obtained by substituting (2.7) into the definition of " @nu.q0/.
Notice that (4.2) implies that the normal derivatives of harmonic functions SG

exist everywhere. However, this is not true for harmonic functions on � because
the limit in (4.7) may not exist. The following theorem characterizes when the limit
exists.

Theorem 4.4. The normal derivative " @nu.q0/ exists if and only if the boundary
data has the representation am D A1 C A2.3=5/

m C o..3=5/m/ for some constants
A1 and A2.

Proof. Suppose the limit (4.7) exists. Let bm be the term in parentheses, and define
B D limm!1 bm and cm D .3=5/mC1bm. A direct calculation shows that

35cmC2 � 112cmC1 C 21cm D C.amC2 � amC1/;
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where C D �126. This implies am is dominated by a geometric series, hence it is
a Cauchy sequence and converges to some limit A1. Writing am as a telescoping
series, we have

A1 � am D
1X

kDm

.akC1 � ak/ D 1

C

1X
kDm

.35ckC2 � 112ckC1 C 21ck/

D 1

C

1X
kDm

�3
5

�kC2

.21bkC2 � 112bkC1 C 35bk/:

Let A2 D .252=5/.B=C /. Adding A2.3=5/
m D 56.B=C /

P1
kDm.3=5/

kC2 to both
sides of the above equation, we find that

A1�amCA2

�3
5

�m D 1

C

1X
kDm

�3
5

�kC2

Œ21.bkC2�B/�112.bkC1�B/C35.bk�B/�:

Finally, taking the absolute value of both sides, we obtainˇ̌̌
am � A1 � A2

�3
5

�m ˇ̌̌

� C 0
1X

kDm

�3
5

�kC2

.jbkC2 � Bj C jbkC1 � Bj C jbk � Bj/:

Since jbk�Bj ! 0 as k !1, we conclude that am�A1�A2.3=5/
m D o..3=5/m/.

Conversely, if am D A1 C A2.3=5/
m C o..3=5/m/, then clearly the limit (4.7)

exists and equals a constant times A2.

To find the normal derivatives on X in terms of the boundary data, we substi-
tute (2.7) into (4.5), which yields

�m D
�5
3

�m�
3am � 12

7

1X
kD1

1

3k
amCk

�

� 1

3m

�
6a0 C 12

7

mX
kD1

5kak � 54
7

1X
kD1

1

3k
ak

�
;

(4.8)

where �m D! @nu.xm/. We can think of (4.8) as a Dirichlet to Neumann map onX
because it maps the Dirichlet boundary data to the corresponding normal derivatives.
Define the infinite vectors

� D

2
66664
�1

:::

�i

:::

3
77775 ; a D

2
66664
a1

:::

ai

:::

3
77775 ; and a0 D 6a0

2
66664
1=3
:::

1=3i

:::

3
77775 ;
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and the infinite matrices L D DiagŒ.5=3/i � and K with entries

Ki;j D

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

7

16
� 27
8

1

5i

1

3j
if i D j;

3

4

3i

3j
� 27
8

1

5i

1

3j
if i < j;

3

4

5j

5i
� 27
8

1

5i

1

3j
if i > j:

Then (4.8) can be written as

� D 16

7
L.I �K /aC a0:

Since we assumed famg converges and u 2 C.x�/, we see that famg; fu.ym/g 2 `1.
Then (4.5) implies k.3=5/m�mk`1 < 1. For this reason, for a real number r , we
define the space

`r;1 D ffcmg W krmcmk`1 <1g:
Then we define the Dirichlet to Neumann map

DN W `1 �! `3=5;1

given by

DN a D 16

7
L.I �K /aC a0:

Theorem 4.5. The Dirichlet to Neumann map is invertible.

Proof. We see thatDN is a composition of L W `1 ! `3=5;1 with I�K W `1 ! `1
plus a translation. The translation is not important and obviously L is invertible
because it is diagonal.

It is well known that I �K is invertible if and only if �.K / < 1, where �.K / is
the spectral radius of K . The sum of the entries of the i -th row is

1X
j D1

Ki;j D Ki;i C
i�1X
j D1

Ki;j C
1X

j DiC1

Ki;j <
7

16
C 3

4

� i�1X
j D1

5j

5i
C

1X
j DiC1

3i

3j

�
:

Consequently,

kKk1 D sup
i

1X
j D1

Ki;j <
7

16
C 3

4

� 1X
j D1

1

5j
C

1X
j D1

1

3j

�
D 1:

Since K is a positive matrix, the Perron-Frobenius Theorem for positive matrices
states that�.K / � kKk1. Thus, �.K / < 1, which shows thatI�K is invertible.
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5. Eigenfunctions

The exact spectral asymptotics on the whole gasket and the structure of the spectrum
has been analyzed previously [12]. Motivated by that result, we discuss eigenvalues
and eigenfunctions on the half gasket. Observe that

(1) a Dirichlet eigenfunction on � extends by odd reflection to a Dirichlet eigen-
function on SG and conversely and

(2) a Neumann eigenfunction on� extends by even reflection to a Neumann eigen-
function on SG and conversely.

Thus there are no new eigenvalues on� because odd eigenfunctions on SG are Dirich-
let eigenfunctions on� and even eigenfunctions on SG are Neumann eigenfunctions
on �. Hence we count the number of even and odd eigenfunctions on SG.

On SG, there are #Vm D .3mC1 C 3/=2 vertices on level m, of which mC 1 lie
on q0 [ X and three are boundary points V0. The eigenfunctions with eigenvalue
� � C05

m for a specific choice of C0 are born on level k � m and are in one-to-one
correspondence with the graph eigenfunctions on Vm, so there are .3mC1 C 3/=2
Neumann eigenfunctions and .3mC1 � 3/=2 Dirichlet eigenfunctions. Thus on �,

#fNeumann eigenfunctions with � � C05
mg D 1

2

�3mC1 C 3
2

CmC 1
�
;

and

#fDirichlet eigenfunctions with � � C05
mg D 1

2

�3mC1 � 3
2

�m
�
;

because the m C 1 vertices on q0 [ X contribute even functions to the Neumann
count while the m vertices on X do not contribute to the Dirichlet count. Note that
the correction termsmC1 and�m are of the order log 5m. This is consistent with the
observation that @� is zero dimensional. We can be more specific about individual
multiplicities of eigenvalues on �. For a set U , define the functions

N.U / D #fNeumann eigenfunctions on U g;
and

D.U / D #fDirichlet eigenfunctions on U g:

Each eigenfunction born on level k restricts to a graph eigenfunction on Vk with
eigenvalue � with � D 0; 2; 3; 5; or 6. We say that the eigenfunction belongs to the
�-series. This is explained in detail in [11] and [12], together with bifurcation rules
that explain how the restriction of the eigenfunction to Vk leads to several different
eigenfunctions on SG. The multiplicity of the eigenspaces only depends on k and �
and is explicitly computed on � as follows.
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(1) 0-series (constant eigenfunctions) have multiplicity N.�/ D 1 and D.�/ D 0.

(2) 2-series only show up in the Dirichlet spectrum on SG, but they are all even
so they are absent from the Dirichlet spectrum of �. Thus, N.�/ D 0 and
D.�/ D 0.

(3) 3-series are entirely Neumann eigenfunctions on SG that are born on level 0 with
multiplicity 2. Then N.�/ D 1 and D.�/ D 0.

(4) 5-series are born on level k where k � 1 for Dirichlet eigenfunctions and k � 2
for Neumann eigenfunctions. If Sk denotes the number of cycles of level less
than k, then on SG, we find that N.SG/ D Sk and D.SG/ D Sk C 2. For
a cycle that lies on X , the eigenfunction is odd, so that contributes to D.SG/
but not to N.SG/. See Figure 5.1 for an example of such a function. Note
that any unlabeled point means the function is defined to be zero at that point.
Additionally, of the two extra Dirichlet eigenfunctions on SG, exactly one is odd,
as shown in Figure 5.2.

�1

1

1

�1

�1 1

Figure 5.1. Odd eigenfunction on �2.

1 �1 �11

Figure 5.2. Another odd eigenfunction on �2.
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The number of cycles of level n is 3n�1 and exactly one of these lies on X . So
there are .3n�1C1/=2 odd eigenfunctions and .3n�1�1/=2 even eigenfunctions.
Thus

N.�/ D
k�1X
nD1

1

2
.3n�1 � 1/ D 1

2

�3k�1 C 1
2

� k
�

and

D.�/ D
� k�1X

nD1

1

2
.3n�1 C 1/

�
C 1 D 1

2

�3k�1 C 1
2

C k
�
:

(5) 6-series on SG are born on level k where k � 1 for Neumann eigenfunctions
and k � 2 for Dirichlet eigenfunctions. We know that N.SG/ D #Vk�1 and
D.SG/ D #Vk�1� 3. Neumann eigenfunctions are obtained by giving arbitrary
values on the points in Vk�1, while Dirichlet eigenfunctions are obtained by
giving arbitrary values on the points Vk�1 n V0.

To find the multiplicities on �, we just have to count the even eigenfunctions
and the odd eigenfunctions. Hence

N.�/ D 1

2

�3k C 3
2
C k

�
and D.�/ D 1

2

�3k � 3
2
� k C 1

�
:

6. Trace theorem

Consider the restriction mapR given byRu D f.u.xm/; @nu.xm//g, where u is some
function defined on some set containing X . That is, R maps u to its function values
on X and its normal derivatives on X . In this section, we determine the image of
domL2 4.SG/ and domL1 4.SG/ under R. We say that u 2 domL2 4.SG/ if u is
continuous on SG and4u 2 L2.SG/, and analogously for u 2 domL1 4.SG/.

To simplify notation, we define the following spaces. Define the Lipschitz space

Lip D ffcmg W there exists M such that jcmC1 � cmj �M for all mg:
The norm on Lip/Constants is kcmkLip D inf M where the infimum is taken over all
M satisfying the previous condition. It follows directly from the definition of Lip
that fcmg 2 Lip if and only if there existsM such that jcm � cnj �M jm� nj for all
m and n.

We define the following trace spaces:

T1 D ff.am; �m/g W am D A1 C A2.3=5/
m C a0

m;

k5ma0
mk`1 <1; k3m�mkLip <1g;
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and

T2 D ff.am; �m/g W am D A1 C A2.3=5/
m C a0

m;

k.25=3/m=2a0
mk`2 <1; k3m=2�mk`2 <1g;

with their respective norms

kf.am; �m/gkT1
D jA1j C jA2j C k5ma0

mk`1 C k3m�mkLip;

and

kf.am; �m/gk2T2
D jA1j2 C jA2j2 C k.25=3/m=2a0

mk2`2 C k3m=2�mk2`2 :

Clearly both trace norms satisfy the triangle inequality. Note that the defined norm
k � kT2

makes T2 a Hilbert Space with the obvious inner product. Similarly, we define
norms on domL1 4.SG/ and domL2 4.SG/ by

kukdomL1 4.SG/ D kukL1.SG/ C k4ukL1.SG/;

and

kuk2dom
L2 4.SG/ D kuk2L2.SG/

C k4uk2
L2.SG/

:

In the above definition, we could have replaced k � k2
L2 term with k � k2L1 , but that

would not be a Hilbert Space norm.
As suggested by the notation, our goal is to prove that R maps domL14.SG/

and domL2 4.SG/ to their corresponding trace spaces. In Section 7, we will show
that the mapping is onto.

Theorem 6.1 (Trace theorem). (1) The restriction operator

R W domL14.SG/ �! T1

is bounded and

kRukT1
� C1kukL1.SG/ C C2k4ukL1.SG/:

(2) The restriction operator

R W domL2 4.SG/ �! T2

is bounded and

kRukT2
� C1kukL1.SG/ C C2k4ukL2.SG/:
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The proof of the theorem is technical and rather long, so we split the proof into
multiple lemmas. Our primary tool will be the Green’s formula. Given any function
u on SG for which4u exists, we can write

u.x/ D
Z

SG
G.x; y/4u.y/ dy C h.x/; (6.1)

where G.x; y/ is the Green’s function (the definition is given in Section 8.1) and
h is the harmonic function with boundary conditions hjV0

D ujV0
. We will use

the Green’s function to relate an arbitrary function to its restriction to X and its
normal derivatives on X . The derivations are digressive, so we have placed these
computations into their own section. The important formulas and inequalities are
given by (8.4), (8.5), and (8.7). Note that the definition of the function ‰m is given
in (8.3).

Since it is easy to check the conditions for the harmonic function h in (6.1), let us
do that first.

Lemma 6.2. If h is harmonic, then Rh 2 T1 and Rh 2 T2 with

kRhkT1
D ju.q0/j C 1

2
ju.q1/C u.q2/ � 2u.q0/j; (6.2)

and

kRhk2T2
D ju.q0/j2 C 1

4
ju.q1/C u.q2/ � 2u.q0/j2 C 1

8
ju.q1/ � u.q2/j2: (6.3)

Proof. If h is harmonic, then h is a linear combination of the constant function, the
skew-symmetric harmonic function (with respect to X) and the symmetric harmonic
function (with respect to X). Then0

B@
u.q0/

u.q1/

u.q2/

1
CA D A1

0
B@
1

1

1

1
CAC A2

0
B@
0

1

1

1
CAC A3

0
B@
0

�1
1

1
CA;

where the coefficients are the coefficients A1, A2, and A3 are the weights of the
constant, symmetric and skew-symmetric functions respectively. Solving the system
for A1; A2; A3 in terms of ujV0

, we find

A1 D u.q0/;

A2 D 1

2
.u.q1/C u.q2/ � 2u.q0//;

and

A3 D 1

2
.u.q1/ � u.q2//:

On X , we see that
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(1) a constant function is constant with zero normal derivative;

(2) a skew-symmetric harmonic function is zero with normal derivative A3=3
m;

(3) a symmetric harmonic function has valuesA2 .3=5/
m with zero normal derivative;

Then h.xm/ D A1 C A2.3=5/
m and @nh.xm/ D A3=3

m.

In the following lemma, we prove the bulk of the domL14.SG/ case. Proving
the lemma directly from the Green’s formula would be difficult, so we employ the
following indirect method. For the function values of u 2 domL14.SG/ on the
vertical boundary, we prove an intermediate statement about the linear combination
5u.xmC1/�3u.xm/. We consider the linear combination5u.xmC1 /�3u.xm/because
the troublesome

Pm
kD1‰k.1; 2; 2/ term of (8.5) cancels out in the linear combination

5G.xmC1; y/�3G.xm; y/. Then the intermediate result, coupled with a lemma from
Section 8.2, will give us the desired statement, except for a few estimates which we
prove without much trouble.

Likewise, for the normal derivatives of u 2 domL14.SG/ on the vertical bound-
ary, we prove an intermediate statement about the linear combination 3�mC1 � �m

because the troublesome
Pm

kD1 3
k‰k.0;�1; 1/ term in (8.7) disappears in the lin-

ear combination. The intermediary result, combined with the proper lemma from
Section 8.2 and more bounding, yields the desired normal derivative estimate.

Lemma 6.3. If u 2 domL1 4.SG/ with u D 0 on V0, then Ru 2 T1 and

kRukT1
� Ck4ukL1.SG/: (6.4)

Proof. Suppose u 2 domL1 4.SG/ with Ru D f.am; �m/g. Using the Green’s
formula (Proposition 8.1) on 5amC1 � 3am and the equation for G.xm; y/ given
by (8.5), after some simplification, we obtain

5amC1 � 3am D 1

10

�3
5

�m
Z

SG
Œ3‰mC1.3; 1; 1/� 5‰m.�1; 1; 1/�4u dy

Then applying inequality (8.4) yields

j5amC1 � 3amj � k4ukL1

1

10

�3
5

�m
Z

SG
j3‰mC1.3; 1; 1/� 5‰m.�1; 1; 1/j dy

� k4ukL1

C

5m
:

Rearranging the above inequality yields

k5m.5amC1 � 3am/k`1 � Ck4ukL1 :

Lemma 8.6 implies that am D A.3=5/m C a0
m, where A D limm!1.5=3/mam and

k5ma0
mk`1 � k5m.5amC1 � 3am/k`1 :
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The previous two inequalities immediately yield

k5ma0
mk`1 � Ck4ukL1 : (6.5)

Since am D u.xm/ D
R

SGG.xm; y/4u.y/ dy, we have

jamj � k4ukL1

Z
SG
jG.xm; y/j dy:

However, it follows from (8.4) and (8.5) thatZ
SG
G.xm; y/ dy � C

�3
5

�m

;

so �5
3

�mjamj � Ck4ukL1 :

Since A D limm!1.5=3/mam, the above implies that

jAj � Ck4ukL1 : (6.6)

We use a similar technique to prove the desired statement about the normal derivatives.
Using the equation for �m given by (8.7) to compute 3�mC1 � �m, we obtain

3�mC1��m D 1

10

Z
SG
Œ�3‰mC1.5; 1;�1/C 5‰m.1;�1; 1/�4u dy� 3'mC1C'm;

where 'm was defined in the lemma. Then

j3�mC1 � �mj � Ck4ukL1

Z
SG
j3‰mC1.5; 1;�1/� 5‰m.1;�1; 1/j dy

C j3'mC1 � 'mj

� Ck4ukL1

1

3m
;

where we used (8.4) and (8.1) to bound the first and second terms respectively. Re-
arranging, we find that

k3m.3�mC1 � �m/k`1 � Ck4ukL1 :

The above estimate allows us to apply Lemma 8.7 which gives us

k3m�mkLip D k3m.3�mC1 � �m/k`1 :

The previous two inequalities imply

k3m�mkLip � Ck4ukL1 : (6.7)

Finally, combining our inequalities (6.5), (6.6), and (6.7), we see that

kRukT1
D jAj C k5ma0

mk`1 C k3m�mkLip � Ck4ukL1 :

Since am D A.3=5/m C a0
m and kRuk <1, we conclude that Ru 2 T1.
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In the following lemma, we prove the majority of the domL2 4.SG/ statement of
the Trace Theorem. We use an indirect approach similar to that of the proof for the
domL1 4.SG/ case, except the statements are considerably harder to prove. Proving
the lemma directly from the Green’s formula without proving the intermediary result
would be extremely difficult, mainly because the Cauchy–Schwarz inequality is too
wasteful for the type of estimate we desire.

The outline of the proof is similar to that of Lemma 6.3. For u 2 domL24.SG/,
we prove intermediary results about the linear combinations 5amC2 � 8amC1C 3am

and 3�mC1�16�mC1C5�m, where as usual, am D u.xm/ and �m D @nu.xm/. These
linear combinations are written as linear combinations of integrals, but the primary
integrand of each linear combination is supported on a set not containing q0. This
support allows us give a more precise estimate, thereby limiting the wastefulness of
Cauchy–Schwartz. Then applying results from Section 8.3 and some more bounding
will give us the desired statements.

Lemma 6.4. If u 2 domL2 4.SG/ with u D 0 on V0, then Ru 2 T2 and

kRukT2
� Ck4ukL2.SG/: (6.8)

Proof. Suppose u 2 domL2 4.SG/ with Ru D f.am; �m/g. Using the Green’s
formula (Proposition 8.1) on 5amC2 � 8amC1C 3am and the equation for G.xm; y/

given by (8.5), after much computation, we obtain

5amC2 � 8amC1 C 3am D
�3
5

�m
Z

SG

xGm4u dy;

where we defined

xGm.y/ D 1

50
Œ9‰mC2.3; 1; 1/� 20‰mC1.1; 0; 0/C 25‰m.1;�1;�1/�:

We show that xGm is supported onDm D Ym[YmC1[YmC2[Zm[ZmC1[ZmC2.
Since xGm is a linear combination of harmonic splines, we see that xGm vanishes on
Ym0 [ Zm0 for m0 < m. Using the harmonic extension algorithm, notice that

25‰m.1;�1; 1/.ymC2/ D 25‰m.1;�1; 1/.zmC2/ D �9;
20‰mC1.1; 0; 0/.ymC2/ D 20‰mC1.1; 0; 0/.zmC2/ D 0;

and

9‰mC2.3; 1; 1/.ymC2/ D 9‰mC2.3; 1; 1/.zmC2/ D 9:
Thus xGm.ymC2/ D xGm.zmC2/ D 0 and consequently, xGm vanishes on Ym0 [ Zm0

form0 > mC 2, which proves that xGm is supported onDm. Taking advantage of the
support of xGm, we can write

5amC2 � 8amC1 C 3am D
�3
5

�m
Z

Dm

xGm4u dy:
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Applying Cauchy–Schwarz and inequality (8.4) on the above equation yields

j5amC2 � 8amC1 C 3amj2 � Ck4uk2L2.Dm/

� 3
25

�m

:

By definition of Dm and linearity of the integral, we have

k4uk2
L2.Dm/

D
mC2X
kDm

k4uk2
L2.Yk[Zk/

and

k4uk2
L2.SG/

D
1X

kD1

k4uk2
L2.Yk[Zk/

:

Using the upper bound on j5amC2 � 8amC1 C 3amj2 and the above two equations,
we obtain

k.25=3/m=2.5amC2 � 8amC1 C 3am/k`2 � Ck4ukL2.SG/:

This estimate allows us to apply Lemma 8.10. Thus

am D A1 C A2.3=5/
m C a0

m;

where

A1 D lim
m!1 am;

A2 D lim
m!1.5=3/

m.am � A1/;

and
k.25=3/m=2a0

mk`2 � Ck.25=3/m=2.5amC2 � 8amC1 C 3am/k`2 :

The above two inequalities immediately yield

k.25=3/m=2a0
mk`2 � Ck4ukL2.SG/: (6.10)

We claim that A1 D 0 and jA2j � Ck4ukL2.SG/. Applying Cauchy–Schwarz to the
Green’s formula for am, we find that that

�5
3

�mjamj � Ck4ukL2.SG/:

The above inequality implies that A1 D 0 and

jA2j � Ck4ukL2.SG/: (6.11)
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We use a similar argument to prove the estimate on the normal derivatives. Using
Lemma 8.5 to compute 3�mC2 � 16�mC1 C 5�m, we see that

3�mC2 � 16�mC1 C 5�m D
Z

SG
ˆm4u dy � .3'mC2 � 16'mC1 C 5'm/;

where we defined

ˆm D 1

10
Œ�3‰mC2.5; 1;�1/C 10‰mC1.8; 1;�1/� 25‰m.1;�1; 1/�:

We show that ˆm has support on Dm as well. Since ˆm is a linear combination
of harmonic splines, ˆm vanishes on Ym0 [ Zm0 for m0 < m. Using the harmonic
extension algorithm, we have

�25‰m.1;�1; 1/.ymC2/ D 25‰m.1;�1; 1/.zmC2/ D 1;
�10‰mC1.8; 1;�1/.ymC2/ D 10‰mC1.8; 1;�1/.zmC2/ D �2;

and

�3‰mC2.5; 1;�1/.ymC1/ D 3‰mC2.5; 1;�1/.zmC1/ D �3:
Thus, ˆm.ymC2/ D ˆm.zmC2/ D 0 and consequently, ˆm vanishes on Ym0 [ Zm0

for m0 > mC 2. Using the compact support of ˆm, we can write

3�mC2 � 16�mC1 C 5�m D
Z

Dm

ˆm4u dy � .3'mC2 � 16'mC1 C 5'm/:

It is straightforward to find an upper bound on the linear combination of 'm terms.
Using Cauchy–Schwarz and inequality (8.2), we obtain

j3�mC2 � 16�mC1 C 5�mj2

� C.j'mC2j2 C j'mC1j2 C j'mj2/

� Ck4uk2
L2.Dm/

1

3m
:

Using Cauchy–Schwarz and inequality (8.4), we find thatˇ̌̌
ˇ
Z

Dm

ˆm4u dy
ˇ̌̌
ˇ
2

� k4uk2
L2.Dm/

Z
Dm

jˆmj2 dy � Ck4uk2L2.Dm/

1

3m
:

Combining the above two inequalities and (6.9) yields

k3m=2.3�mC2 � 16�mC1 C 5�m/k`2 � Ck4ukL2.SG/: (6.12)

The hypothesis of Lemma 8.11 is satisfied, so we have �m D 5mAC �0
m with

k3m=2�0
mk � C1.�2 � 5�1/

2 C C2k3m.3�mC2 � 16�mC1 C 5�m/k`2 : (6.13)
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However, applying Cauchy–Schwarz to (8.7) yields

j�mj � Ck4ukL2.SG/

1

3m=2
:

This forces A D 0 and so �m D �0
m. Note that the above bound provides the

upper bound .�2 � 5�1/
2 � Ck4uk2

L2.SG/
. Combining this inequality with (6.12)

and (6.13) yields
k3m=2�0

mk2 � Ck4uk2L2.SG/
: (6.14)

Finally, using (6.10), (6.11), and (6.14), we see that

kRuk2T2
D jA1j2 C jA2j2 C k.25=3/m=2a0

mk2`2 C k3m=2�mk2`2 � Ck4uk2L2.SG/
:

Since am D A2.3=5/
m C a0

m and kRuk2
T2
<1, we conclude that Ru 2 T2.

Finally, we have the necessary results to prove the Trace Theorem.

Proof of the trace theorem. Suppose u 2 domL14.SG/ or u 2 domL2 4.SG/, and
Ru D f.am; �m/g. Leth be the harmonic function determined by the boundary values
hjV0

D ujV0
. Let w D u � h, and note that 4w D 4u and w D 0 on V0. The

Green’s formula states that

u.x/ D h.x/C
Z

SG
G.x; y/4w.y/ dy:

(1) Suppose u 2 domL1 4.SG/. Using triangle inequality on u D w C h, the
estimate (6.2) applied to h, and the estimate (6.4) applied to w, we find that

kRukT1
� ju.q0/j C 1

2
ju.q1/C u.q2/ � 2u.q0/j C Ck4ukL1.SG/:

(2) Suppose u 2 domL24.SG/. Using triangle inequality on u D w C h, (6.3)
applied to h, and (6.8) applied to w, we find that

kRuk2T2
� ju.q0/j2 C 1

4
ju.q1/C u.q2/ � 2u.q0/j2

C 1

8
ju.q1/ � u.q2/j2 C Ck4uk2L2.SG/

:

7. Extension operators

In this section, we present two different extension theorems. The first extension
will be a right inverse to the restriction map R. The second extension will map
solutions to differential equations on the half-gasket to a well-behaved function on
the whole gasket. The ideas behind the two extensions are similar, but with different
computations and formulas. In order to construct the desired extensions, we will
require the following result. If will give us the exact conditions under which a
piecewise function is in the domain of the Laplacian.
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Proposition 7.1 (Gluing theorem). Let u and f be defined by gluing pieces fuj g
and ffj g (j D 0; 1; 2), with 4uj D fj on Fj SG. Then u 2 dom4 with 4u D f

if and only if fj .Fiqj / D fj .Fj qi / (i 6D j ) holds for fuj g and ffj g (so u and f
are continuous) and the matching conditions on normal derivatives hold at the three
points.

7.1. The inverse operator to R. We seek a linear extension operatorE that is a right
inverse of the restriction operator R. The desired extension will satisfy E W T1 !
domL1 4.SG/ and E W T2 ! domL2 4.SG/. In order to construct this extension
operator, we study piecewise biharmonic functions. Biharmonic functions satisfy
the differential equation42u D 0 and in particular, biharmonic functions satisfying
4u D C for some constantC is a four-dimensional space on SG. One way to specify
a constant Laplacian function on SG is to specify the value of the function on V0 and
the constant.

Lemma 7.2. Suppose 4u D C on some cell of level m with boundary points
p0; p1; p2. Then the outward normal derivative of u at pj is

@nu.pj / D
�5
3

�m

Œ2u.pj / � u.pj C1/ � u.pj �1/�C C

3mC1
: (7.1)

Proof. Let v be the harmonic function on the cell with the boundary values v.pj / D 1
and v.pj C1/ D v.pj �1/ D 0. Since v is harmonic on a cell of level m, using (4.1)
with the proper normalization, we have @nv.pj / D 2.5=3/m while @nv.pj C1/ D
@nv.pj �1/ D �.5=3/m. Applying the symmetric Gauss–Green formula (4.3), we
obtain the desired formula.

Lemma 7.3. Given any sequences famg and f�mg, there exist a piecewise biharmonic
function u on SG and sequences fC 0

mg and fCmg such that Ru D f.am; �m/g,4u D
C 0

m on Ym, 4u D Cm on Zm, and the normal derivative matching conditions hold
at fxmg, fymg, and fzmg.
Proof. We construct two functionsu1 andu2 such thatu1.xm/ D am but@nu1.xm/ D
0, while u2.xm/ D 0 but @nu.xm/ D �m. Then the sum u D u1 C u2 will satisfy
Ru D f.am; �m/g. Of course, we must do this carefully so that u satisfies the other
claimed properties.

Consider the symmetric piecewise biharmonic function u1 satisfying u1.xm/ D
am, u1.ym/ D u1.zm/ D .1=8/.5amC1 C 3am/, and4u1 D D0

m on Ym [Zm with

D0
m D 5m

�3
8

�
.5amC1 � 8am C 3am�1/:

This information determines u1 on Ym[Zm because as mentioned earlier, a constant
Laplacian function is determined by its boundary values and the value of its Lapla-
cian. Consequently, u1 is determined everywhere because SG D S

m.Ym [ Zm/.
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Using (7.1) to compute the normal derivatives of u1 at xm, ym and zm, it is straight-
forward to check that @nu1.xm/ D 0 and the normal derivative matching conditions
hold.

Consider the skew-symmetric piecewise biharmonic function u2 satisfying the
conditionsu2.xm/ D 0,u2.ym/ D �.1=8/.3=5/m.�mC1C�m/,u2.zm/ D �u2.ym/,
4u2 D �Em on Ym and4u2 D Em on Zm, where

Em D 3m
�1
8

�
.3�mC1 � 16�m C 5�m�1/:

Again, these constraints determine u2 everywhere on SG. Writing down the normal
derivatives of u2 at xm, ym and zm using (7.1), we see that @nu2.xm/ D �m and the
normal derivative matching conditions hold.

Then the function u D u1 C u2 satisfies u.xm/ D am, @nu.xm/ D �m,

u.ym/ D 1

8
.5amC1 C 3am/ � 1

8

�3
5

�m

.�mC1 C �m/;

u.zm/ D 1

8
.5amC1 C 3am/C 1

8

�3
5

�m

.�mC1 C �m/;

(7.2)

4u D C 0
m on Ym, and4u D Cm on Zm, where

C 0
m D 5m

�3
8

�
.5amC1 � 8am C 3am�1/ � 3m

�1
8

�
.3�mC1 � 16�m C 5�m�1/;

(7.3a)
and

Cm D 5m
�3
8

�
.5amC1 � 8am C 3am�1/C 3m

�1
8

�
.3�mC1 � 16�m C 5�m�1/:

(7.3b)

Because normal derivatives add linearly, u satisfies the normal derivative matching
conditions at xm, ym and zm.

As a result of the above lemma, we can define the extension operator E which
maps two sequences f.am; �m/g to the function u given in the lemma. This operator
is well defined because the process described by the lemma generates exactly one
function for each pair of sequences. Additionally, it is not difficult to see that E is a
linear operator.

Theorem 7.4. There exist a bounded linear extension map

E W T1 �! domL1 4.SG/

and
E W T2 �! domL2 4.SG/

with
R B E D Id:
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Proof. Suppose f.am; �m/g 2 T1 and let u D Ef.am; �m/g. In order to apply
the gluing theorem, we need to check that u is continuous. It suffices to check for
continuity at q0 becauseu is clearly continuous everywhere else. In order to show that
u is continuous at q0, we need to show that limm!1 u.xm/ D limm!1 u.ym/ D
limm!1 u.zm/. Since f.am; �m/g 2 T1, we have am D A1CA2.3=5/

mC a0
m with

k5ma0
mk`1 <1 and k3m�mkLip <1. Then (7.2) reads

u.ym/ D A1 C 3

4

�3
5

�m

A2 C 1

8
.5a0

mC1 C 3a0
m/ �

1

8

�3
5

�m

.�mC1 C �m/

and

u.zm/ D A1 C 3

4

�3
5

�m

A2 C 1

8
.5a0

mC1 C 3a0
m/C

1

8

�3
5

�m

.�mC1 C �m/:

Taking the limitm!1 in the above equations, we see thatA1 D limm!1 u.ym/ D
limm!1 u.zm/ D limm!1 am, which verifies the continuity of u at q0. Recall that
Lemma 7.3 tells us that u satisfies the normal derivative matching conditions at fxmg,
fymg and fzmg. Thus the hypotheses of the gluing theorem are satisfied, so the
theorem implies that 4u is well defined. We need to show that 4u 2 L1.SG/.
Observe that (7.3) reads

C 0
m D 5m

�3
8

�
.5a0

mC1 � 8a0
m C 3a0

m�1/ � 3m
�1
8

�
.3�mC1 � 16�m C 5�m�1/

and

Cm D 5m
�3
8

�
.5a0

mC1 � 8a0
m C 3a0

m�1/C 3m
�1
8

�
.3�mC1 � 16�m C 5�m�1/:

Using Lemma 8.7 to obtain an upper bound on the normal derivative terms in Cm and
C 0

m, we find that

k4ukL1 � kCmk`1 C kC 0
mk`1 �M1k5ma0

mk`1 CM2k3m�mkLip:

Therefore, E W T1 ! domL14.SG/.
Suppose f.am; �m/g 2 T2 and let u D Ef.am; �m/g. Again, we need to check that

u is continuous at q0 in order to apply the gluing theorem. By definition of T2, we have
am D A1 C A2.3=5/

m C a0
m with k.25=3/m=2a0

mk`2 < 1 and k3m=2�mk`2 < 1.
Then ja0

mj ! 0 and j�mj ! 0. By the same argument for the T1 case, u is continuous
at q0, hence continuous everywhere. By Lemma 7.3, u satisfies the normal matching
conditions at fxmg, fymg and fzmg. Then4u is well defined by the gluing theorem.
Finally,4u 2 L2.SG/ because

k4uk2
L2 D

1X
mD1

jC 0
mj2 C jCmj2

3m
�M1

1X
mD1

�25
3

�mja0
mj2 CM2

1X
mD1

3mj�mj2:

Therefore, E W T2 ! domL24.SG/.
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7.2. Extensions of solutions to differential equations on �. The material pre-
sented in this section is motivated by the classical theory of extending functions with
4u 2 Lp on a nice domain in Euclidean space Rn to functions with the same property
on Rn. We ask the following questions.

(1) Given u 2 domL1 4.�/, does there exist an extension Nu 2 domL14.SG/?

(2) Given u 2 domL2 4.�/, does there exist an extension Nu 2 domL2 4.SG/?

We present two motivating examples before we proceed to the main extension results.

Theorem 7.5. If u is a harmonic function on �, then either u belongs to the two
dimensional space of restrictions to � of even global harmonic functions on SG, or
the even extension of u is not in dom4.

Proof. Let Nu denote the even extension of u. Then 4Nu D 0 on both � and its
reflection. If Nu 2 dom4 then 4Nu must be a continuous function on SG, hence
identically zero, so Nu is an even global harmonic function.

Theorem 7.6. Suppose u 2 C.x�/ solves the BVP with a0 D C1 and am D
.2=3/.3=5/m.C1 C C2/ for some constants C1; C2. Then there exists a harmonic
extension of u.

Proof. Consider the harmonic function Nu on SG determined by the boundary values
Nu.q0/ D 0, Nu.q1/ D C1 and Nu.q2/ D C2. Simple computation shows that Nu.xm/ D
.2=3/.3=5/m.C1 C C2/. Thus, u D Nu on x� and 4Nu D 0, which shows that Nu is
indeed a harmonic extension.

In special cases, such as the one presented in the previous result, there exists a
harmonic extension. In general, the desired extension will not be harmonic because
the space of harmonic functions on SG is a three dimensional space so finding a
harmonic extension Nu of u satisfying the infinite number of conditions Nu.xm/ D am

is unlikely. For that reason, we look for a piecewise biharmonic extension. In fact,
this motivates our study of piecewise biharmonic functions to begin with. To prove
the existence of an extension, we need the analogue of Lemma 7.3.

Lemma 7.7. Suppose u 2 domL14.�/ or u 2 domL2 4.�/. Then there exist a
sequence fCmg and a piecewise biharmonic function Nu on SG satisfying Nu D u on
x�, 4Nu D Cm on Zm, and the normal derivative matching conditions hold at fxmg
and fzmg.

Proof. For convenience, we write am D u.xm/ and �m D @nu.xm/. Consider the
function Nu D u on x�,

Nu.zm/ D 1

8
.5amC1 C 3am/C 1

8

�3
5

�m

.�mC1 C �m/; (7.4)
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and4Nu D Cm on Zm where

Cm D 5m
�3
8

�
.5amC1� 8amC 3am�1/C 3m

�1
8

�
.3�mC1� 16�mC 5�m�1/: (7.5)

For the same reason as before, these constraints completely determine Nu on Zm.
Hence we have defined a function Nu on SG.

We claim that the normal matching conditions hold at xm and zm. Using (7.1),
we get

 @n Nu.xm/ D
�5
3

�m

Œ2 Nu.xm/ � Nu.zm/ � Nu.zm�1/�C Cm

3mC1
;

- @n Nu.zm/ D
�5
3

�m

Œ2 Nu.zm/ � Nu.zm�1/ � Nu.xm/�C Cm

3mC1
;

and

& @n Nu.zm/ D
�5
3

�mC1

Œ2 Nu.zm/ � Nu.zmC1/ � Nu.xmC1/�C CmC1

3mC2
:

It is straightforward to check that our formulas for Nu.xm/, Nu.zm/, and Cm imply the
matching conditions hold at fxmg and fzmg.

The lemma allows us to define an extension operator. Let E� be the extension
operator that maps a function u 2 domL14.�/ or u 2 domL2 4.�/ to the function
E�u on SG as given in the lemma. This operator is well defined because for each
u, there is exactly one E�u. It is clear that E� is linear and that E�u is continuous
except possibly at q0.

Theorem 7.8. Suppose that u 2 domL1 4.�/. If Ru 2 T1, then we have E�u 2
domL1 4.SG/ and

k4.E�u/kL1.SG/ � k4ukL1.�/ C CkRukT1
:

The Trace Theorem implies the converse: if E�u 2 domL14.SG/, then Ru 2 T1.

Proof. Suppose u 2 domL14.�/ and Ru D f.am; �m/g 2 T1. By definition of
T1, we haveam D A1CA2.3=5/

mCa0
m withk5ma0

mk`1 <1 andk3m�mkLip <1.
We need to check that E� is continuous at q0. Observe that (7.4) becomes

E�u.zm/ D A1 C A2

�3
5

�m C 1

8
.5a0

mC1 C 3a0
m/C

1

8

�3
5

�m

.�mC1 C �m/:

Taking the limit in the above equation, we see that

A1 D lim
m!1 am D lim

m!1E�u.zm/:
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This proves that E�u is continuous. By Lemma 7.7, the matching conditions for u
at fxmg and fzmg are satisfied. This allows us to apply the gluing theorem, and so
4.E�u/ exists.

To prove that E�u 2 domL14.SG/, observe that

k5m.5amC1 � 8am C 3am�1/k`1 � 16k5ma0
mk`1

and by Lemma 8.7,

k3m.3�mC1 � 16�m C 5�m�1/k`1 � 16k3m�mkLip:

Using the above inequalities and the equation for Cm given by (7.5), we find that

k4.E�u/kL1.�0/ D max
m
jCmj �M1k5ma0

mk`1 CM2k3m�mkLip:

Then by triangle inequality,

k4.E�u/kL1.SG/ � k4ukL1.�/ CM1k5ma0
mk`1 CM2k3m�mkLip;

which completes the proof.

Theorem 7.9. Suppose u 2 domL24.�/. If Ru 2 T2, then E�u 2 domL24.SG/
and

k4.E�u/k2L2.SG/
� k4uk2

L2.�/
C CkRuk2T2

:

The Trace Theorem implies the converse: if E�u 2 domL2 4.SG/, then Ru 2 T2.

Proof. Suppose u 2 domL24.�/ and Ru D f.am; �m/g 2 T2. By definition of
T2, we know that am D A1 C A2.3=5/

m C a0
m with k.25=3/m=2a0

mk`2 < 1 and
k3m=2�mk`2 < 1. Then ja0

mj ! 0 and j�mj ! 0. Using these limits, the same
argument given in the proof of Theorem 7.8 shows that E�u is continuous. Again,
Lemma 7.7 guarantees the matching conditions for u at fxmg and fzmg hold. The
gluing theorem implies 4.E�u/ is well defined.

To see why E�u 2 domL2 4.SG/, we first see that

k4.E�u/k2L2.�0/
D

1X
mD1

1

3m
jCmj2

�M1

1X
mD1

�25
3

�mja0
mj2 CM2

1X
mD1

3mj�mj2:

Since k4.E�u/k2L2.SG/
D k4uk2

L2.�/
Ck4.E�u/k2L2.�0/

, using the above inequal-
ity gives us

k4.E�u/k2L2.SG/

� k4uk2
L2.�/

CM1

1X
mD1

�
25

3

�m

ja0
mj2 CM2

1X
mD1

3mj�mj2:
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We can interpret Theorem 7.8 and Theorem 7.9 by the following: Ru 2 T1 is the
minimal condition for extending an arbitrary function in domL14.�/ to a function
in domL14.SG/ and Ru 2 T2 is the minimal condition for extending an arbitrary
function in domL2 4.�/ to a function in domL2 4.SG/.

A function belonging to domL2 4.�/ or domL14.�/ is naturally a solution to
the differential equation 4u D f for f 2 L2 or f 2 L1 respectively. Solutions to
this differential equation can be found using Theorem 8.2.

As a special case of E�, we can extend harmonic functions u on � provided that
Ru 2 T2 or Ru 2 T1. Recall that the solution to this differential equation was
explicitly given in Section 2. The formula for the extended function will be given
by (7.4) and (7.5), which can be simplified by using the normal derivative formula
for harmonic functions (4.2) and the recurrence relation (2.1).

8. Appendix

8.1. Green’s function formulas. For a givenm and a point x 2 Vm nV0, let m
x .y/

denote the piecewise harmonic spline of level m satisfying  m
x .y/ D ıx.y/ for

y 2 Vm and extended harmonically for levels m0 > m. Notice that  m
x 2 dom0 E

because x 62 V0.

Proposition 8.1 (Green’s Formula). On SG, the Dirichlet problem�4u D f on SGn
V0 and u D 0 on V0 has a unique solution in dom4 for any continuous f , given by
u.x/ D R

SGG.x; y/f .y/ dy for the Green’s functionG.x; y/ D limM !1GM .x; y/

(uniform limit) where

GM .x; y/ D
MX

kD1

X
s;s02VknVk�1

g.s; s0/ k
s .x/  

k
s0.y/

and

g.s; s0/ D

8̂̂̂
<
ˆ̂̂:
3

10

�
3

5

�k

for s D s0 2 Vk n Vk�1;

1

10

�
3

5

�k

for s; s0 2 FwK; jwj D k � 1 and s 6D s0:

From the Green’s formula, we have the following simple observation.

Theorem 8.2. Let G.x; y/ denote the Green’s function on SG. Let G�.x; y/ D
G.x; y/ � G.x;Ry/ for x; y 2 � where R denotes the reflection. Then G� is the
Green’s function for �, namely

u.x/ D
Z

�

G�.x; y/f .y/ dy

solves �4u D f on � subject to uj� D 0.
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To simplify notation, we drop the superscript m on functions of the form  m
xm

,
 m

ym
, and  m

zm
because unless otherwise notated, the superscript index matches the

subscript index. It follows immediately from the definition thatZ
SG
j xm

j dy D
Z

SG
j ym
j dy D

Z
SG
j zm
j dy D 2

3mC1
: (8.1)

Additionally, since j xm
j2 � j xm

j, we haveZ
SG
j xm

j2 dy D
Z

SG
j ym
j2 dy D

Z
SG
j zm
j2 dy � 2

3mC1
: (8.2)

To further simply notation, define the function

‰m.a; b; c/.y/ D a xm
.y/C b ym

.y/C c zm
.y/: (8.3)

Using (8.1) and (8.2), we have the estimatesZ
SG
j‰m.a; b; c/j dy � C1

3m
and

Z
SG
j‰m.a; b; c/j2 dy � C2

3m
; (8.4)

for constants C1 and C2 depending only on a; b; c.

Lemma 8.3. The Green’s function evaluated at xm is

G.xm; y/ D 2

15

�3
5

�m
mX

kD1

‰k.1; 2; 2/.y/C 1

6

�3
5

�m

‰m.1;�1;�1/.y/: (8.5)

Proof. Note the following observations.

(1) If k > m, then  k
s .xm/ D 0.

(2) If k D m, then  xm
.xm/ D 1. If k D m and s 6D xm, then  m

s .xm/ D 0.

(3) If k < m with s 6D yk and s 6D zk , then  k
s .xm/ D 0.

Using these facts, we have

G.xm; y/ D
m�1X
kD1

X
s02VknVk�1

Œg.yk ; s
0/ yk

.xm/C g.zk ; s
0/ zk

.xm/� 
k
s0.y/

C
X

s02VmnVm�1

g.xm; s
0/ m

s0 .y/:

Using the harmonic extension algorithm, for k < m, we have

 yk
.xm/ D 2

3

�3
5

�m�k

and  zk
.xm/ D 2

3

�3
5

�m�k

:
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Since g.s; s0/ D 0 if s and s0 are in different cells of level k � 1, we deduce that

X
s02VknVk�1

Œg.yk; s
0/C g.zk ; s

0/� k
s0.y/ D 1

5

�3
5

�k

‰k.1; 2; 2/.y/;

and

X
s02VmnVm�1

g.xm; s
0/ m

s0 .y/ D 1

10

�3
5

�m

‰m.3; 1; 1/.y/:

Substituting these equations into the most recent equation for G.xm; y/ completes
the proof.

Lemma 8.4. The Green’s function evaluated at zm is

G.zm; y/

D 1

10

�3
5

�m
mX

kD1

‰k.1; 2; 2/.y/C 1

10

� 1

5m

� mX
kD1

3k‰k.0;�1; 1/.y/:
(8.6)

Proof. We use a similar process to find the formula forG.zm; y/. Note the following
observations.

(1) If k > m, then  k
s .zm/ D 0.

(2) If k D m, then  zm
.zm/ D 1. If k D m and s 6D zm, then  m

s .zm/ D 0.

(3) If k < m with s 6D yk and s 6D zk , then  k
s .zm/ D 0.

Using these facts, we have

G.zm; y/ D
m�1X
kD1

X
s02VknVk�1

Œg.yk; s
0/ yk

.zm/C g.zk; s
0/ zk

.zm/� 
k
s0.y/

C
X

s02VmnVm�1

g.zm; s
0/ m

s0 .y/:

Using the harmonic algorithm, for k < m, we have

 yk
.zm/ D 1

2

�3
5

�m�k � 1
2

�1
5

�m�k

and

 zk
.zm/ D 1

2

�3
5

�m�k C 1

2

�1
5

�m�k

:
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Since g.s; s0/ D 0 if s and s0 are in different cells of level k � 1, we deduce that

X
s02VknVk�1

g.yk ; s
0/ k

s0.y/ D 1

10

�3
5

�k

‰k.1; 3; 1/.y/;

X
s02VknVk�1

g.zk; s
0/ k

s0.y/ D 1

10

�3
5

�k

‰k.1; 1; 3/.y/;

and

X
s02VmnVm�1

g.zm; s
0/ m

s0 .y/ D 1

10

�3
5

�m

‰m.1; 1; 3/.y/:

Making these substitutions into the previous equation for G.zm; y/ completes the
proof.

Lemma 8.5. If u D 0 on V0 and4u exists on SG, then

@nu.xm/ D 3

5

�
1

3m

� mX
kD1

3k

Z
SG
‰k.0;�1; 1/4u dy

� 1
2

Z
SG
‰m.1;�1; 1/4u dy � 'm;

(8.7)

where

'm D
Z

Zm

 xm
4u dy:

Proof. Let v be the harmonic function on Zm determined by the boundary values
v.xm/ D 1 and v.zm�1/ D v.zm/ D 0. Note that v D  xm

on Zm. Since Zm is a
cell of levelm and v is harmonic, using (4.1) with the proper normalization constant,
we have  @nv.xm/ D 2.5=3/m and & @nv.zm�1/ D - @nv.zm/ D �.5=3/m.
These equations, together with the symmetric Gauss–Green formula (4.3) applied to
the functions u and v, yield

 @nu.xm/ D
Z

Zm

 xm
4u dy C

�5
3

�m

Œ2u.xm/ � u.zm/ � u.zm�1/�:

Using the Green’s formula, the formulas for G.xm; y/ and G.zm; y/ given by (8.5)
and (8.6) respectively, and the normal derivative matching condition at xm yields the
desired formula.
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8.2. Lemmas for sequences

Lemma 8.6. Given a sequence famg, k5m.5amC1 � 3am/k`1 < 1 if and only if
am D A.3=5/m C a0

m with k5ma0
mk`1 <1. Furthermore,

k5ma0
mk`1 � k5m.5amC1 � 3am/k`1 :

Note that the equation for am and the bound for a0
m impliesA D limm!1.5=3/mam.

Proof. Clearly the second statement implies the first statement. Conversely, making
the substitution dm D .5=3/mam, we find that

3k3m.dmC1 � dm/k`1 D k5m.5amC1 � 3am/k`1 <1:

This inequality implies that fdmg is a Cauchy sequence and by completeness of the
reals, dm ! D for some D. Then am D .3=5/mDC .3=5/m.dm �D/. Writing dm

as a telescoping series

dm D D C
1X

kDm

.dk � dkC1/

and using the inequality k3m.dmC1 � dm/k`1 <1, we obtain

jdm �Dj �
1X

kDm

jdk � dkC1j � 1

3m
k5m.5amC1 � 3am/k`1 :

Then defining a0
m D .3=5/m.dm �D/, we see that

k5ma0
mk`1 D k3m.dm �D/k`1 � k5m.5amC1 � 3am/k`1 :

Lemma 8.7. Given a sequence f�mg, k3m.3�mC1 � �m/k`1 < 1 if and only if
k3m�mkLip <1. In fact,

k3m.3�mC1 � �m/k`1 D k3m�mkLip:

Proof. If k3m.3�mC1 � �m/k`1 <1, then

k3m�mkLip D sup
m
3mj3�mC1 � �mj D k3m.3�mC1 � �m/k`1 <1:

Conversely, if k3m�mkLip <1, then

3mj3�mC1 � 3�j D k3mC1�mC1 � 3m�mk � k3m�mkLip <1:
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8.3. Lemmas for series

Lemma 8.8. Fix a constant r < 1 and a sequence famg. Then krm=2amk`2 <1 if
and only if krm=2.amC1 � am/k`2 <1. More specifically,

krm=2amk`2 � C1ja1j2 C C2krm=2.amC1 � am/k`2 :

Proof. The first statement obviously implies the second statement. Conversely, writ-
ing am as a telescoping series

am D a1 C
m�1X
kD1

.akC1 � ak/ D a1 C
m�1X
kD1

.am�kC1 � am�k/;

we see that

rm=2am D rm=2a1 C
m�1X
kD1

.am�kC1 � am�k/r
.m�k/=2rk=2:

Using Minkowski’s inequality, we have

�����
m�1X
kD1

.am�kC1 � am�k/r
.m�k/=2rk=2

�����
`2

�
1X

kD1

rk=2k.am�kC1 � am�k/r
.m�k/=2	k<mk`2

�
1X

kD1

rk=2k.amC1 � am/r
m=2k`2 :

Using Minkowski’s inequality again and the above inequality, we find that

krm=2amk`2 � krm=2a1k`2 C
�����

m�1X
kD1

.am�kC1 � am�k/r
.m�k/=2rk=2

�����
`2

;

which completes the proof.

Lemma 8.9. Fix a constant r > 1 and a sequence famg. Then am D AC a0
m with

krm=2a0
mk`2 <1 if and only if krm=2.amC1 � am/k`2 <1. In fact,

krm=2a0
mk`2 � Ckrm=2.amC1 � am/k`2 :
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Proof. Clearly, the first statement implies the second statement. To prove the con-
verse, we first show that famg is Cauchy. For m > n, we have

am � an D
m�1X
kDn

.akC1 � ak/ r
k=2r�k=2

and applying Cauchy–Schwarz yields

jam � anj �
� m�1X

kDn

.akC1 � ak/
2rk

�1=2� m�1X
kDn

1

rk

�1=2 � C
r
1

rn
:

It follows that famg is Cauchy and by completeness of the reals, am ! A for someA.
Since

am � A D
1X

kDm

.ak � akC1/ D
1X

kD0

.amCk � amCkC1/;

we see that

rm=2.am � A/ D
1X

kD0

r .mCk/=2r�k=2.amCk � amCkC1/:

Using this equation and Minkowski’s inequality, we have

krm=2.am � A/k`2 �
1X

kD0

r�k=2k.akCm � akCmC1/r
.kCm/=2k`2

�
1X

kD0

r�k=2k.am � amC1/r
m=2k`2 ;

which completes the proof.

Lemma 8.10. Given a sequence famg, k.25=3/m=2.5amC2�8amC1C3am/k`2 <1
if and only if am D A1 C A2.3=5/

m C a0
m with k.25=3/m=2a0

mk`2 < 1. More
specifically,

k.25=3/m=2a0
mk`2 � Ck.25=3/m.5amC2 � 8amC1 C 3am/k`2 :

Note that the equation for am and the bound for a0
m imply that A1 D limm!1 am

and A2 D limm!1.5=3/m.am � A1/.

Proof. Clearly the second statement implies the first statement. To prove the converse,
we apply Lemma 8.9 twice. Making the substitution 3mdm D 5m.amC1�am/ yields

1X
mD1

�25
3

�m

.5amC2 � 8amC1 C 3am/
2 D 9

1X
mD1

3m.dmC1 � dm/
2 <1:
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The hypotheses of the lemma are satisfied for fdmg, so we have dm D D C d 0
m with

1X
mD1

3mjd 0
mj2 � C

1X
mD1

3m.dmC1 � dm/
2:

In order to apply the lemma again, define em D am C .5=2/.3=5/mD so that

1X
mD1

3mjd 0
mj2 D

1X
mD1

�25
3

�m

.emC1 � em/
2 <1:

Using the lemma again, except on the sequence femg, we have em D E C e0
m with

the estimate 1X
mD1

�25
3

�mje0
mj2 � C

1X
mD1

�25
3

�m

.emC1 � em/
2:

Finally, using the definition of em, we find that am D E � .5=2/.3=5/mD C e0
m.

Combining the above equations and inequalities, we obtain

1X
mD1

�25
3

�mje0
mj2 � C

1X
mD1

�25
3

�m

.5amC2 � 8amC1 C 3am/
2:

Lemma 8.11. Given a sequence f�mg, k3m=2.3�mC2 � 16�mC1 C 5�m/k`2 <1 if
and only if �m D 5mAC �0

m with k3m=2�0
mk`2 <1. Furthermore,

k3m=2�0
mk2`2 � C1.�2 � 5�1/

2 C C2k3m=2.3�mC2 � 16�mC1 C 5�m/k2`2 :

Proof. The second statement obviously implies the first statement. To prove the
converse, we use both Lemma 8.8 and Lemma 8.9. Define em D 3m.�mC1 � 5�m/

so that

1X
mD1

3m.3�mC2 � 16�mC1 C 5�m/
2 D

1X
mD1

1

3m
.emC1 � em/

2 <1:

Applying Lemma 8.8 to the sequence femg gives us

1X
mD1

1

3m
jemj2 � C1je1j2 C C2

1X
mD1

3m.3�mC2 � 16�mC1 C 5�m/
2 <1:

Making the substitution 5mdm D �m, we see that

1X
mD1

1

3m
jemj2 D

1X
mD1

3m.�mC1 � 5�m/
2 D 25

1X
mD1

75m.dmC1 � dm/
2 <1:
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Applying Lemma 8.9 to the sequence fdmg, we find that dm D D C d 0
m with

X
75mjd 0

mj2 � C
1X

mD1

75m.dmC1 � dm/
2:

It follows from the definition of dm that �m D 5mDC 5md 0
m. Defining �0

m D 5md 0
m

and combining the above equations and inequalities, we obtain

1X
mD1

3mj�0
mj2 � C1.�2 � 5�1/

2 C C2

1X
mD1

3m.3�mC2 � 16�mC1 C 5�m/
2:
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