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Projections of random covering sets
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Abstract. We show that, almost surely, the Hausdor� dimension s0 of a random covering

set is preserved under all orthogonal projections to linear subspaces with dimension k > s0.

�e result holds for random covering sets with a generating sequence of ball-like sets, and

is obtained by investigating orthogonal projections of a class of random Cantor sets.
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1. Introduction

We begin by giving a de�nition for random covering sets. Given a sequence of

independent random variables .�n/, uniformly distributed on the torus T
d , and a

sequence of subsets of the torus, .gn/, random covering set E is the set of in�nitely

often covered points,

E D lim sup
n!1

.�n C gn/ D
1
\

kD1

1
[

nDk

.�n C gn/:

Here we interpret �n C gn � T
d . For further details and background on random

covering sets, see e.g. the survey [8]. Here we only mention a few key observa-

tions.

It is an immediate consequence of Borel–Cantelli lemma and Fubini’s theorem

that

L.E/ D

8

<

:

0; when
P1

nD1 L.gn/ < 1;

1; when
P1

nD1 L.gn/ D 1;
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where L is the Lebesgue measure. In the earlier research on the random covering

sets, the main emphasis has been on the full-measure case in the circle T
1. Of

particular interest have been variants of a problem posed by Dvoretzky in 1956

asking what kind of conditions on gn guarantee that

P.E D T
1/ D 1:

�is particular problem was fully solved by Shepp in 1972 [13], but many related

problems especially in higher dimensions are still open.

Recently, also the zero measure case has drawn a lot of attention among the

researchers. �e Hausdor� dimension of the random covering sets in T
1 when

gn are intervals of length 1=n˛ was �rst calculated by Fan and Wu [6]. Durand

[2] studied the Hausdor� measure and large intersection properties and reproved

the dimension result in T
1. For certain box-like random covering sets in T

d , the

dimension was obtained by Järvenpää, Järvenpää, Koivusalo, Li and Suomala [7].

Recently, Persson [10] generalized the result using the large intersection method.

In this article we study the dimensions of orthogonal projections of the random

covering sets (after embedding the torus Td into R
d in a natural way). Our moti-

vation stems from the classical results of projections of general sets by Marstrand,

Kau�man, Mattila and others. In particular, if the Hausdor� dimension of a Borel

set A � R
d , dimH A D s, then it is well known that for almost all k-dimensional

subspaces V � R
d the orthogonal projection of A into V , �V A is of Hausdor�

dimension min¹s; kº. Below, we refer to this fact as the projection theorem. For

background and references, see e.g. [9]. One should bear in mind that since this is

an almost all type statement, for most concrete sets there are plenty of exceptional

directions for which the dimension is less than the expected value. Moreover, if

one �xes a direction, the projection theorem cannot be used to obtain information

about the dimension of the projection in this direction.

For suitable random families of sets, the situation is di�erent. A model ex-

ample is the fractal percolation for which Falconer [4] and Falconer and Grim-

mett [5] showed that for the principal directions the dimension of the projection

of the limit set is almost surely equal to the expected value. It is harder to show,

and this was done only recently by Rams and Simon (for d D 2) [11] and [12], that

the same remains true for all directions simultaneously. �at is, if s is the almost

sure dimension of the fractal percolation limit set F � R
2, then almost surely,

dimH �l.F / D min¹s; 1º for all lines ` � R2.

Our approach is motivated by Shmerkin and Suomala [14] where a variant of

the fractal percolation model is used in order to study the dimension of non-tube

null sets. Some ideas have also been adapted from the forthcoming work [15],
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where Shmerkin and Suomala prove various results for the intersections and pro-

jections of families of martingale measures (for which fractal percolation is a cen-

tral example).

In our main result, �eorem 5.1, we establish that for the random covering

sets, there are almost surely no exceptional directions for the projection theorem.

�is, on the other hand, is a corollary of a similar result for a general class of

random Cantor sets, �eorem 2.1. �e main di�erence between our model and the

(variations of) fractal percolation in [11], [12], and [14], [15] is the fact that we do

not impose any bounds on how fast the diameter of the basic sets (or construction

cubes) goes to zero. �is is essential for the application to the random covering

sets and also the main reason why we cannot derive the result directly from [15].

�e paper is organized as follows. �e random Cantor sets are introduced in

Section 2 together with the required notation and de�nitions. �e main result

for these Cantor sets is also presented as �eorem 2.1. In Section 3 we present

some geometric lemmata, which have been adapted from [14] to the present set-

ting. Section 4 contains the main probabilistic argument, and concludes the proof

of �eorem 2.1. �e dimension result for the projections of the random covering

sets is then derived as a corollary in Section 5, see �eorem 5.1. �roughout Sec-

tions 2–5 we only consider the case d D 2. Higher dimensional generalizations

are discussed at the end in Section 6.

2. Random Cantor sets and their projections

In this section, we de�ne the random Cantor type sets that we consider and state

the main results for the dimension of their orthogonal projections.

Given k 2 N, we call the closed squares Œ i
k

; iC1
k

� � Œ j
k

; j C1
k

�, 0 � i; j � k � 1,

k-adic. In a similar way, we can consider the k-adic grid of any Q D Œx; x C �� �
Œy; y C �� � Œ0; 1�2 consisting of the k2 closed subsquares of Q of side-length

�=k.

Given M 2 N and 0 < s < 1, we consider the following random model.

Decompose the unit square into M -adic subsquares and randomly choose N �
M 2 of these subsquares Q1; : : : ; QN , all choices being independent and uniformly

distributed (i.e. P.Qi D Q/ D M �2 for each Q in the grid and each 1 � i � N ).

We stress that the chosen subsquares need not be disjoint, that is, the same square

is allowed to be chosen multiple times.
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Let .Mn/ � N and .Nn/ � N be sequences of integers with Nn � M 2
n

(Mn � 2) for all n and

s D lim inf
n!1

Pn
iD1 log Ni

Pn
iD1 log Mi

< 1: (1)

Let

rn D
�

n
Y

kD1

Mk

��1

; (2)

and

Pn D
n

Y

kD1

Nk : (3)

We consider a random construction obtained by iterating the above construc-

tion with M D Mn and N D Nn � M 2
n . We �rst choose randomly F1 D

.Q1;1; : : : ; Q1;N1
/ among the squares in the M1-adic grid of the unit square as

in above. Suppose that for n 2 N, Fn D .Qn;1; : : : ; Qn;Pn
/ are chosen r�1

n -adic

squares. Independently inside each of these Qn;j , we consider the MnC1-adic

grid and perform the above construction with M D MnC1 to obtain NnC1 chosen

subsquares of each Qn;j . Let FnC1 consist of all the chosen subsquares inside

the Qn;j 2 Fn. Again, it should be pointed out that the elements of FnC1 do

not have to be disjoint. For this reason we use the notation .Qn;1; : : :/ rather than

¹Qn;1; : : :º. For convenience, we however stick to notations like Q 2 Fn instead

of the more rigorous Q D Qn;i , i 2 ¹1; : : : ; Pnº.
Denote by ! the elements in the probability space � induced by the construc-

tion described above. Let F D F.!/ be the random limit set

F D
1
\

nD1

[

Q2Fn

Q:

For each line ` in the plane, denote by �` the orthogonal projection to ` and by

dimH .F / the Hausdor� dimension of a set F . Our main result for the random

Cantor sets is the following.

�eorem 2.1. Almost surely for all lines `, dimH �`.F / D s.

Remark 2.2. It is an immediate consequence of the de�nitions that we have the

dimension upper bound dimH .F / � s for all F . It is more or less standard to

show that almost surely, also dimH .F / � s (and these estimates remain true also

for 1 � s � 2). We do not give the proof here, since in the case s < 1 that is

relevant for us, �eorem 2.1 yields a much stronger result.
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When the sequence .Mn/ is bounded, �eorem 2.1 could be obtained by adapt-

ing the argument of [14]. It would also follow directly from the general results for

martingale measures in [15]. Whence the main content in �eorem 2.1 is that we

do not impose any bounds on the growth of the numbers Mn. We also remark

that if Mn is bounded, then the packing dimension of F almost surely equals

s0 D lim supn!1
Pn

iD1 log Ni
Pn

iD1 log Mi
, whereas in the unbounded case the packing dimen-

sion can be anything in between s0 and 2 depending on the growth speed of Mn.

Let

�n D
X

Q2Fn

cnLjQ; where cn D
n

Y

iD1

M 2
i N �1

i D r�2
n P �1

n ; (4)

and LjQ is the Lebesgue measure on Q. �en �n is a probability measure for

each n and since the measure of any r�1
n -adic square remains unchanged after n

steps, it follows that the sequence .�n/ converges in weak� topology to a random

probability measure � on Œ0; 1�2.

In the following, tubular neighborhoods of lines in the unit cube are called

strips. More precisely, a strip S of width w.S/ D ı > 0, de�ned by a line `, is the

set

S D ¹x 2 Œ0; 1�2 j dist.x; `/ < ı=2º
where dist is the Euclidean distance.

j` \ Fnj WD
X

Q2Fn

H
1.` \ Q/;

where H
1 is the 1-dimensional Hausdor� measure. Since the same square can

occur many times in Fn, this is in general di�erent than the length of `\
S

Q2Fn
Q.

For a strip S , denote

Z.S; n/ D #¹Q 2 Fn j Q \ S ¤ ;º;

where #J denotes the cardinality of a set J . Denote the indicator function of an

event A by �A and the complement of A by Ac. Finally, denote by f�� the image

measure of � under a mapping f .

�eorem 2.1 is easily deduced from the following estimate for the projections

of the limit measure �, which is proved in Sections 3–4.

�eorem 2.3. Let t < s. �ere is a constant C0 < C1 such that there is a positive

probability for the event

.�`/��.B.x; r// � C0r t for all lines `; for all x 2 ` and for all r > 0 :
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Proof of �eorem 2.1 assuming �eorem 2.3. Obviously

dimH �`.E/ � dimH .E/ � s

for all lines, so we concentrate on the lower bound.

For all t < s, by �eorem 2.3 the estimate

.�`/��.B.x; r// � C0r t ;

holds with positive probability for all `, x and r , and thus with positive probability

a lower bound dimH �`.F / � t holds for all lines ` (See e.g. [3, 4.2]). Since the

event “dimH �`.F / � t for all lines” is a tail event, the Kolmogorov zero-one law

implies that this lower bound holds almost surely. Approaching s along a sequence

gives, almost surely for all lines `, the lower bound dimH �`.F / � s.

3. Geometric lemmata

In this section, we present some simple geometric observations. �e following

lemma is an adaptation of [14, Lemma 3.3] to our setting. We do not repeat the

proof here. We call a line ` admissible, if it does not contain a side of any r�1
n -adic

square, n 2 N. Observe that there are only countably many non-admissible lines.

Lemma 3.1. �ere is a collection of admissible lines, An, such that for any ad-

missible line ` there is Q̀ 2 An with

j` \ Fnj � j Q̀ \ Fnj C rn

and An has at most C r�4
n elements, where C < C1 is a constant.

Lemma 3.2. Let 2 � M 2 N. �ere is a �nite family of strips D with at most

16M 3 elements so that for any M �1 � ı � 1 and any strip S of width ı, there is
zS 2 D such that w. zS/ � 5w.S/ and S � zS .

Proof. Denote by B the collection of all lines connecting any two disjoint points

in the collection

¹.0; k
M

/ 2R2 j k; l D 1; : : : ; M º [ ¹.1; k
M

/ 2 R
2 j k; l D 1; : : : ; M º

[ ¹. k
M

; 0/ 2 R
2 j k; l D 1; : : : ; M º [ ¹. k

M
; 1/ 2 R

2 j k; l D 1; : : : ; M º:

Denote by D
1 the collection of all strips of width 5M �1 de�ned by the at most

16M 2 lines in the collection B. �is has the desired property for all strips S of

width M �1 � w.S/ � 2M �1.
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Repeat this argument for all i D 2; : : : ; M to obtain collections Di , that satisfy

the claim for strips S of width iM �1 � w.S/ � .i C 1/M �1. �en choose

D D D
1 [ � � � [ D

M .

Lemma 3.3. Let 0 � V 2 R. If j` \ Fnj � V for all admissible lines `, then for

a strip S with width 0 < w.S/ � rn,

Z.S; n/ � 2.1 C 2
p

2/r�1
n V:

Proof. Let ` be the line de�ning S , `0 a line perpendicular to ` with ` \ `0 D ¹xº
for x 2 R

2 and `y lines parallel to ` with `0 \ `y D ¹yº. Denote by r the number

w.S/C2
p

2rn and by B.x; r/ the ball of center x and radius r on the line `0. �en

Fubini’s theorem, (4) and the assumption j`0 \ Fnj � V imply

�n.��1
`0 .B.x; r/// D cn

Z

B.x;r/

j`y \ Fnj dy � 2V rcn:

If Q \ S ¤ ;, then Q � ��1
`0 .B.x; r//, and from (4), we have

Z.S; n/P �1
n � �n.��1

`0 .B.x; r/// � 2V rcn ;

as required.

4. Main proofs

�roughout this section, we �x a number t < s and let 0 < 2� < s � t . By slight

abuse of notation, denote by E.� j Fn/ the expectation conditional on construction

squares up to level n being chosen, and by P.� j Fn/ the corresponding conditional

probability.

Notation 4.1. Let ` be a line, S a strip and n 2 N. Let G.`; n/ be the event

j` \ Fnj � RPnr tC1
n C rn, where R > 0 is a large constant. Denote by A.S; n/

the event Z.S; n/ � 500 � 5tRPnw.S/t . Let Gn be the event that G.`; n/ occurs

for all admissible lines `, and An the event that A.S; n/ occurs for all strips S with
1
5
rn < w.S/ � 1

5
rn�1. Finally, let �n be the event An \ Gn.

In order to prove �eorem 2.3 we wish to verify that

P.
T1

nD1 �n/ > 0; (5)

since then for all ! 2
T1

nD1 �n the bound .�`/��.B.x; r// � C r t holds, as will

be shown at the end of the section. To that end, we start by estimating the random
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variables Z.S; n C 1/ conditional on Fn and bound the probability of the events

Ac
nC1. Using similar ideas, we then provide estimates for the probability of Gc

nC1

conditional on Fn.

Lemma 4.2. For any strip S with rnC1 < w.S/ � rn, we have

P.Z.S; n C 1/ > 500RPnC1w.S/t j Fn/

� exp.�500Rw.S/tPnC1 C 20w.S/r�1
n NnC1Z.S; n//:

Proof. Denote w.S/ by ı and Z.S; n/ by K; let ¹Q1; Q2; : : : ; QKº be the r�1
n -adic

squares from Fn that hit S, and for i D 1; : : : ; K let ¹Qi;1; Qi;2 � � � Qi;mi
º be the

r�1
nC1-adic squares inside Qi that hit S . Conditional on Fn these notions are de-

terministic. For each 1 � i � K, let .U i
1 ; : : : ; U i

NnC1
/ D ¹U 2 FnC1 j U � Qiº.

Further, let Xi;j ; 1 � j � NnC1 be the random variables de�ned as

Xi;j D

8

<

:

1; when U i
j \ S ¤ ;;

0; otherwise.

�en, conditional on Fn, Xi;j are independent random variables and take value 1

with probability mi M
�2
nC1, where mi is the number of r�1

nC1-adic subsquares of Qi

that touch S . Further,

Z.S; n C 1/ D
K

X

iD1

NnC1
X

j D1

Xi;j :

It is easy to see that miM
�2
nC1 � 5ı

p
2r�1

n , so that P.Xi;j D 1 j Fn/ � 5ı
p

2r�1
n .

Applying Markov’s inequality to the random variable eZ.S;nC1/ gives

P.Z.S; n C 1/ > 500RıtPnC1 j Fn/ � e�500Rıt PnC1E.eZ.S;nC1/ j Fn/: (6)

Since Xi;j are mutually independent so are the eXi;j , and

E

�

Y

i;j

eXi;j j Fn

�

D
Y

i;j

E.eXi;j j Fn/ D
Y

i;j

.emiM
�2
nC1 C .1 � mi M

�2
nC1//:

Using the fact that .1 C x/ � ex for all x, and miM
�2
nC1 � 5ı

p
2r�1

n , we have

E.eZ.S;nC1/ j Fn/ � exp..e � 1/5ı
p

2r�1
n NnC1K/:

Combining the above calculations with (6) and recalling ı D w.S/, K D Z .S; n/

gives

P.Z.S; n C 1/ > 500Rw.S/tPnC1 j Fn/

� exp.�500Rw.S/tPnC1/ exp..e � 1/5
p

2w.S/r�1
n NnC1Z.S; n//

�nishing the proof.
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Notation 4.3. Consider the collection given by Lemma 3.2 for M D 5r�1
nC1.

Denote by Sn the strips in this collection with width bounded from above by rn.

Note that by the construction in Lemma 3.2 all strips in collection Sn have width

bounded from below by rnC1.

Proposition 4.4. �ere is a constant C3 > 0 such that for all large n

E.�\k�n�k
P.Ac

nC1 j Fn// � P.
Tn

kD1 �k/2000r�3
nC1 exp.�C3r�

nC1/:

Proof. Condition on \k�n�k . Note that for large n, when �n and thus Gn occurs,

then by Lemma 3.3 and (4),

Z.S; n/ � 4.1 C 2
p

2/RPnr t
n � 20RPnr t

n (7)

for all strips S of width rnC1 < w.S/ � rn. Recall that 0 < � < s� t and hence for

all large enough n we have PnC1 � r�t��
nC1 . Let n be at least this large. When Gn

occurs, for a strip S with rnC1 < w.S/ � rn, we obtain using Lemma 4.2 and (7)

P.Z.S; n C 1/ > 500RPnC1w.S/t j Fn/

� exp.�500Rw.S/tPnC1 C 20w.S/r�1
n NnC1Z.S; n//

� exp.�500Rw.S/tPnC1 C 400w.S/r�1
n NnC1RPnr t

n/:

Plugging in PnC1 D NnC1Pn, this is bounded from above by

exp.�w.S/tPnC1R.500 � 400w.S/1�tr t�1
n // � exp.�C3r��

nC1/

for a positive constant C3. Fix an ! such that Z. zS; n C 1/ � 500RPnC1w. zS/t

holds for all zS 2 Sn where Sn is given in Notation 4.3. �en, for any strip S with
1
5
rnC1 < w.S/ � 1

5
rn, by Lemma 3.2, there is a strip zS 2 Sn with S � zS and

w. zS/ � 5w.S/. �us

Z.S; n C 1/ � Z. zS; n C 1/ � 500 � 5tRPnC1w.S/t ;

and further, AnC1 occurs. Apply Lemma 4.2 and Lemma 3.2 to all strips zS in the

collection Sn, to obtain from the above calculation that

E.�\k�n�k
P.Ac

nC1 j Fn// � P.
Tn

kD1 �k/2000r�3
nC1 exp.�C3r��

nC1/:

Our next task is to adjust the argument of Lemma 4.2 in order to get, with high

probability, a good upper bound for j` \ FnC1j.
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Lemma 4.5. For all 0 < � < r�1
nC1

p
2 and all admissible lines `, we have the

bound

P.j` \ FnC1j > PnC1Rr tC1
nC1 j Fn/

� exp.��PnC1Rr tC1
nC1/ exp

� 2�NnC1j` \ Fnj
M 2

nC1.2 � rnC1�
p

2/

�

:

Proof. Condition on Fn. Let Q1; Q2; � � � ; QK (K D K.`;Fn/) be the squares in

Fn hitting ` and Li D H
1.` \ Qi /. For each Qi , let Qi;1; Qi;2; � � � ; Qi;mi

denote

all the r�1
nC1-adic subsquares of Qi touching ` and put Li;j D H

1.` \ Qi;j /. We

have

j` \ Fnj D
K

X

iD1

Li and Li D
mi
X

j D1

Li;j :

For each 1 � i � K, let .U i
1 ; : : : ; U i

NnC1
/ D ¹U 2 FnC1 j U � Qiº. �en let

Xi;k ; 1 � k � NnC1 be random variables with

Xi;k D H
1.` \ U i

k/:

Note that, conditional on Fn, Xi;k are independent. We may write

j` \ FnC1j D
K

X

iD1

NnC1
X

kD1

Xi;k:

Let 0 < � < r�1
nC1

p
2. We apply Markov’s inequality for the random variable

e�j`\FnC1j to obtain an estimate

P.j` \ FnC1j > PnC1Rr tC1
nC1 j Fn/ � e��PnC1Rr

tC1
nC1E.e�j`\FnC1j j Fn/: (8)

Now we estimate E.e�j`\FnC1j j Fn/. Firstly, notice that

E.e�Xi;k j Fn/ D 1 � mi

M 2
nC1

C 1

M 2
nC1

mi
X

j D1

e�Li;j :

For all jxj < 2, we use the fact ex � 1 C 2x=.2 � x/ and �Li;j < 2, to obtain

e�Li;j � 1 C �Li;j

2

2 � �rnC1

p
2

;

and further

E.e�Xi;k j Fn/ � 1 C �Li

1

M 2
nC1

� 2

2 � �rnC1

p
2

� exp
� �Li

M 2
nC1

� 2

2 � �rnC1

p
2

�

:

(9)
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Since Xi;k are independent, (9) yields

E.ej`\FnC1j j Fn/ D
Y

i;k

E.e�Xi;k j Fn/

� exp
��NnC1j` \ Fnj

M 2
nC1

� 2

2 � �rnC1

p
2

�

:

Combining this with (8) �nishes the proof.

Next we estimate the probability of the event Gc
nC1.

Proposition 4.6. �ere is a constant C2 > 0 independent of �, and N D N.�/ 2 N

such that for all n � N ,

E.�\k�n�k
P.Gc

nC1 j Fn// � P.
Tn

kD1 �k/C r�4
nC1 exp.�C2r��

nC1/

where C is from Lemma 3.1.

Proof. To begin with, recall that when �n occurs, so does Gn and then for all

admissible lines `

j` \ Fnj � PnRr tC1
n C rn: (10)

Further, when Gn occurs, by Lemma 4.5 and (10), the probability P.j` \FnC1j >

PnC1Rr tC1
nC1 j Fn/ is bounded from above by

exp.��PnC1Rr tC1
nC1/ exp

� 2�NnC1j` \ Fnj
M 2

nC1.2 � rnC1�
p

2/

�

� exp.��PnC1Rr tC1
nC1/ exp

�2�NnC1rnPnRr t
n.1 C P �1

n R�1r�t
n /

M 2
nC1.2 � rnC1�

p
2/

�

� exp
�

� �PnC1Rr tC1
nC1

�

1 �
2M t�1

nC1.1 C P �1
n R�1r�t

n /

.2 � rnC1�
p

2/

��

;

for any admissible `. Choose � D r�1C�
nC1 . Recall that for large n, by (1) and the

choice of � we have Pn � r�t�2�
n . �en the term 1 � 2M t�1

nC1
.1CP �1

n R�1r�t
n /

.2�rnC1�
p

2/
is

bounded from below by a constant C2 > 0 for large values of n.

�us, for all large n and for each admissible `, recalling PnC1 � r�t�2"
nC1 , we

arrive at the estimate

P.j` \ FnC1j > PnC1Rr tC1
nC1 j Fn/ � exp.��r1�2�

nC1 C2/ D exp.�C2r��
nC1/:
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Fix an ! such that the estimate j Q̀\FnC1j � PnC1Rr tC1
nC1 holds for all lines Q̀ 2

AnC1, where AnC1 is given by Lemma 3.1. �en by Lemma 3.1 for any admissible

line ` we �nd a line Q̀ 2 AnC1 with

j` \ FnC1j � j Q̀ \ FnC1j C rnC1 � PnC1Rr tC1
nC1 C rnC1;

that is, G.`; n C 1/ occurs. �us by above calculations

E.�\k�n�k
P.Gc

nC1 j Fn//

� E.�\k�n�k
P.j` \ FnC1j � PnC1Rr t

nC1 for some Q̀ 2 AnC1 j Fn//

� P.
Tn

kD1 �k/C r�4
nC1 exp.�C2r��

nC1/;

as required.

�eorem 4.7. We have P.
T1

kD1 �k/ > 0.

Proof. Choose N so large that 1�2000r�3
n exp.�C3r��

n /�C r�4
n exp.�C2r��

n / are

positive and the claims of Propositions 4.4 and 4.6 hold for n � N . Choosing the

constant R in Notation 4.1 large enough we can make sure that P.
TN

iD1 �i / > 0.

Observe that the choice of the constants C; C2; C3 can be made independent of

R � 1. �en, by Propositions 4.4 and 4.6, for all m � N C 1,

P.�m j
Tm�1

kD1 �k/

D P.�m \
Tm�1

kD1 �k/

P.
Tm�1

kD1 �k/

D 1

P.
Tm�1

kD1 �k/
E.�\k�m�1�k

P.�m j Fm�1//

� 1

P.
Tm�1

kD1 �k/
E.�\k�m�1�k

.1 � P.Ac
m j Fm�1/ � P.Gc

m j Fm�1///

� 1 � 2000r�3
m exp.�C3r��

m / � C r�4
m exp.�C2r��

m /:

Iterating the observation

P.
Tn

kD1 �k/ D P.
TN

kD1 �k/
Qn

mDN C1 P.�m j
Tm�1

iD1 �i /

� P.
TN

kD1 �k/
Qn

mDN C1.1 � 2000r�3
m exp.�C3r��

m /

� C r�4
m exp.�C2r��

m //
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and noticing that the series

1
X

mD1

2000r�3
m exp.�C3r��

m / C C r�4
m exp.�C2r��

m /

converges, �nishes the proof.

We �nish the proof of �eorem 2.1 by giving a proof to �eorem 2.3.

Proof of Lemma 2.3. Let ! 2
T1

kD1 �k. Fix a line `, a point x 2 ` and r > 0.

Let n be number with 1
5
rnC1 < 2r � 1

5
rn and `0 the line perpendicular to ` with

` \ `0 D ¹xº, and

S D ¹y 2 R
2 j d.y; `0/ < rº:

�en S D ��1
`

.B.x; r//. Since ! 2 �nC1, the event AnC1 occurs and, in particu-

lar, A.S; n C 1/ occurs as well. �us, taking (4) into account,

�nC1.S/ � 500 � 5tRPnC1w.S/tcnC1r2
nC1 � 500 � 5tRw.S/t :

For k � n C 1, we have �k.Q/ D �nC1.Q/ for all Q 2 FnC1 and thus

�k.��1
` .B.x; r/// � 500 � 5t2t Rr t ;

as well. Letting k ! 1, the claim follows.

5. Application to random covering sets

In this section �eorem 2.1 is applied to the problem of calculating dimensions

of projections of random covering sets. �e random covering set is de�ned as a

subset of torus, but then projected as a subset of plane. We �rst recall the de�nition

of random covering sets with generating sequence of ball-like sets. A sequence

.gn/ is a sequence of ball-like subsets of the torus T2 if there exists a sequence of

balls B.xn; ın/ � gn such that lim sup
n!1

�n

ın
< C1, where �n is the diameter of gn

and decreases to zero. More generally, we can replace this by the slightly weaker

condition

lim
n!1

log �n

log ın

D 1 : (11)

Let �n be a sequence of independent random variables uniformly distributed on

T
2, and denote the induced probability space by .�;P/. �e random covering set

is de�ned as

E WD lim sup
n!1

.�n C gn/:
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As shown in [7, Proposition 4.7], the mass transference principle [1, �eorem 2],

easily implies that almost surely,

dimH .E/ D inf¹s � 0 W
1

X

nD1

�s
n < 1º D lim sup

n!1

log n

� log �n

WD s0 ;

provided s0 � 2. In the above formula, �n can be replaced by ın due to (11).

�e following theorem is the main result of the paper.

�eorem 5.1. Let s0 < 1. �en almost surely for every line `, we have

dimH �`.E/ D s0:

Proof. Since the upper bound dimH �`.E/ � s0 is clear, it su�ces to show the

almost sure lower bound dimH �`.E/ � s0.

For simplicity, we assume that the balls B.xn; ın/ are centered at the origin.

�is will not cause loss of generality since they are to be translated by uniformly

distributed random variables. Denote by Bn D �n C B.0; ın/ D B.�n; ın/ � T
2

the randomly translated balls. �en lim sup
n!1

Bn � E.

Our aim is to construct, with positive probability, a random Cantor-like set

F � E in order to apply �eorem 2.1.

To that end, choose a sequence ¹nkº of natural numbers such that

lim
k!1

log nk

� log ınk

D lim sup
n!1

log n

� log ın

D s0; (12)

nk � 256 k2n2
k�1ı�2

nk�1
; (13)

lim
k!1

log ınk�1

log ınk

D 0: (14)

We now construct the Cantor-like subset by induction. Our construction is a

simpli�cation of the one in [7], but we repeat the argument for the convenience of

the reader. Let N1 D zN1 D b1
2
n1c and de�ne I.1;T2/ D ¹1; : : : ; N1º. Decompose

T
2 (which we identify with the unit square) into M 2

1 disjoint subsquares, where

M1 D d2ı�1
n1

e, and denote by D1 the collection of closed M1-adic subsquares

of T2. Here and hereafter, for all x 2 R, the notation bxc is used for the largest

integer smaller than x and dxe for the smallest integer larger than x. For each

i 2 I.1;T2/, pick Qi 2 D1 satisfying

�i 2 Qi � Bi ; (15)
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Note that, since ıi are in decreasing order and the sidelength of the cubes satis�es

M �1
1 � ın1

2
, such a choice is possible. In case there are more than one cubes

satisfying (15), that is, �i is on the boundary of a cube, just choose any of them

(Since the boundaries of the cubes are of zero Lebesgue measure, the event that

any of the �i lies on the boundary of a cube has zero probability anyway). Denote

the collection of such Qi ’s by

C1 D ¹Qi 2 D1 W i 2 I.1;T2/º:

For completeness (see the de�nition of �k and qk for k > 1 below), we de�ne

�1 D � and q1 D P.�1/ D 1.

We continue the random construction inductively as follows. Assume that

numbers M1; : : : ; Mk�1 and zN1; : : : ; zNk�1 have been de�ned and suppose that

for all i D 1; : : : ; k � 1 we are given a collection Ci of zNi squares in Di , where

Di is the family of .
Qi

j D1 Mj /-adic subsquares of T2.

Denote

Ck�1 D ¹ zQ1; � � � ; zQ zNk�1
º:

Let mk D bnk�nk�1

zNk�1

c. For any 1 � l � zNk�1, consider the random family of

indices consisting of those nk�1 C .l � 1/mk C 1 � j � nk�1 C lmk , for which

�j 2 zQl . If there are at least b1
2
mkL. zQl/c WD Nk such indices j , let I.k; zQl/

denote the �rst Nk of them. Let �k be the event that I.k; zQl/ is well de�ned for

all zQl 2 Ck�1.

Conditioning on �k , decompose every Q 2 Dk�1 to M 2
k

disjoint subsquares,

where Mk D d2ı�1
nk

.…k�1
j D1Mj /�1e, and denote by Dk the collection of closed

.…k
j D1Mj /-adic subsquares of T2. For any i 2 I.k; zQl/, pick Qi 2 Dk satisfying

�i 2 Qi � Bi :

Since the sidelength of these squares is .…k
j D1Mj /�1 � ınk

2
, one can always �nd

such Qi , and it is unique outside a zero measure set of �i -s. Set

Ck D ¹Qi 2 Dk W Q 2 Ck�1; i 2 I.k; Q/º

and zNk WD #Ck D zNk�1Nk .

For ! 2 �1 D \k�1�k, consider the random Cantor set F D F.!/ de�ned

as

F D
1
\

kD1

[

Q2Ck

Q � lim sup
n!1

Bn � E :
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We next check that P.�1/ > 0. Using [7, Proposition 2.6] and the construc-

tion of Ck, we have the following lower bound for the conditional probabilities

qk WD P.�kj�1; : : : ; �k�1/,

qk � 1 � zNk�1

4.1 � L.Q//

mkL.Q/
� 1 �

4 zNk�1.…k�1
j D1Mj /2

mk

where Q 2 Ck�1. Note that since

mk � nk � nk�1

2 zNk�1

� nk

4 zNk�1

(16)

and …k�1
j D1Mj � 4ı�1

nk�1
, we have

qk � 1 �
256 zN 2

k�1
ı�2

nk�1

nk

� 1 �
256n2

k�1
ı�2

nk�1

nk

� 1 � 1

k2
;

where the second inequality follows because zNk�1 � nk�1 and the third one is

due to (13). �erefore, P.�1/ D …1
kD1

qk > 0:

Now F is a random Cantor set as de�ned in Section 2 with the de�ning se-

quences .Mn/ and .Nn/. �us, we can apply �eorem 2.1 to obtain with positive

probability for all lines ` � R
2,

dimH �`.E/ � dimH �`.F / D lim inf
k!1

Pk
j D1 log Nj

Pk
j D1 log Mj

:

Since
Qk

j D1 Mj � 4ı�1
nk

and using (16)

Nk � mk

4
Qk�1

j D1 M 2
k

�
nkı2

nk�1

16 zNk�1

�
nkı3

nk�1

16
;

recalling (14) we have,

Pk
j D1 log Nj

Pk
j D1 log Mj

� lim
k!1

log nk

� log ınk

D s0 :

Finally, since

dimH �`.E/ � s0 for all lines `

is a tail event of positive probability, the Kolmogorov zero-one law implies that it

must have full probability.
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Remark 5.2. In [7] and [10], dimension formulas are obtained for certain a�ne

type random covering sets. For these classes of random covering sets there is no

similar result to �eorem 5.1. Here is a counterexample.

Let .gn/ be a sequence of rectangles in T
2 with the sidelength of the sides

parallel to the x-axis ˛1.gn/ D n�˛ and of those parallel to the y-axis ˛2.gn/ D
n�ˇ , where ˇ > ˛ > 1. �en the Hausdor� dimension dimH .E/ D ˛�1 almost

surely. However, for the projection to the y-axis, �y, instead dimH .�y.E// D ˇ�1.

6. Generalizations

For simplicity, in above we have considered the case d D 2 only. In a similar way,

one can de�ne the random Cantor sets F with de�ning sequences .Mn/, .Nn/,

Nn � M d
n and almost sure Hausdor� dimension

s D lim inf
n!1

Pn
iD1 log Ni

Pn
iD1 log Mi

also on the higher dimensional torus Td for any d � 3. Embedding T
d in a nat-

ural way into the unit cube of Rd one can then consider orthogonal projections

of F into k-dimensional linear subspaces of Rd . Let Gd;k denote the family of

all k-dimensional linear subspaces of Rd and for V 2 Gd;k, let �V denote the or-

thogonal projection onto V . �e proofs from Sections 2–4 can be easily modi�ed

to this setting in order to obtain the following generalization of �eorem 2.1.

�eorem 6.1. If s < k � d , then almost surely for every V 2 Gd;k, we have

dimH �V .F / D s.

As in case d D 2, this result can then be applied for the random covering sets

of the torus in order to prove

�eorem 6.2. Let E � T
d be a ball-like random covering set with almost sure

Hausdor� dimension s0 < k. �en almost surely for all V 2 Gd;k,

dimH �V .E/ D s0:
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