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p-adic path set fractals and arithmetic
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Abstract. This paper considers a class of closed subsets of the p-adic integers Zp obtained by
graph-directed constructions analogous to that of Mauldin and Williams over the real numbers.
These sets are characterized as the collection of thosep-adic integers whose points havep-adic
expansions describable by paths in the graph of a finite automaton issuing from a distinguished
initial vertex. This paper shows that this class of sets is closed under the arithmetic operations
of addition and multiplication by p-integral rational numbers r 2 Q \ Zp: In addition the
Minkowski sum (underp-adic addition) of two sets in this class is shown to be another set in this
class. These results represent purely p-adic phenomena in that analogous closure properties
do not hold over the real numbers. We also show the existence of computable formulas for the
Hausdorff dimensions of such sets.
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1. Introduction

This paper studies a distinguished collection C.Zp/ of closed subsets of the p-adic
integers Zp , whose members Y are specified as sets of p-adic integers whose p-adic
expansions are given by infinite labeled paths starting from a fixed initial state of a
finite automaton, with edge labels specifying p-adic digits. We term such sets p-adic
path set fractals, because they generally have non-integer Hausdorff dimension, and
because they may be constructed geometrically in a fashion analogous to that of
the (real-valued) geometric graph-directed fractals of Mauldin and Williams [19]
and [20], as explained in Section 2.

The set of edge-labeled infinite paths in the graph of an automaton which start
from a fixed state can be studied abstractly in terms of one-sided symbolic dynamics,
as we consider elsewhere ([2]). Each such set defines a subset XG .v/ of the symbol
space AN, where A is a finite symbol alphabet, which is specified by a presentation
.G ; v/, in which G is a labeled directed graph with edges labeled by elements of A,
and v is a marked initial vertex of G . We call XG .v/ an (abstract) path set. Path sets
are closed subsets of the compact set AN endowed with the product topology, but
they are generally not invariant under the (one-sided) shift

� W AN �! AN

given by
�.˛0; ˛1; ˛2; : : : / D .˛1; ˛2; ˛3; : : : /:

The collection of path sets is closed under set union and set intersection, but is not
closed under complementation inside the symbol space AN.

A p-adic path set fractal Y is the image of an abstract path set embedded as a
geometric object inside a p-adic space Zp , using the symbol sequence to obtain the
p-adic digit labeling. More precisely,

Y D fp.XG .v// � Zp;

where
fp W AN �! Zp

is a (continuous) map that sends a symbol sequence to a set of p-adic digits, using a
digit assignment map

Nfp W A ! f0; 1; : : : ; p � 1g:
The digit assignment map Nfp need not be one-to-one, consequently a given abstract
path setXG .v/ has embeddings into Zp for every prime p. Moreover it typically has
different embeddings into a fixed Zp , giving rise to different p-adic path set fractals.
In the reverse direction any given p-adic path set fractal can be obtained as the
image of different abstract path sets using different digit assignment maps. However
any p-adic path set fractal Y can always be obtained by a one-to-one embedding
from a suitably chosen path set on the fixed alphabet A D f0; 1; : : : ; p � 1g, see
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Proposition 2.9 below. We call the data . Nfp;G ; v/ a presentation of the p-adic path
set fractal, and write

Y
defD . Nfp;G ; v/:

The initial part of this paper gives a formula for the Hausdorff dimension of such
a set Y in terms of the spectral radius of the adjacency matrix of an underlying
automaton of a suitable presentation of Y , described in Section 3. The Hausdorff
dimension of Y D fp.XG .v// depends on the underlying path set XG .v/, the value
of p, and on the digit assignment map fp . We obtain the formula by relating the
p-adic constructions of this paper to the real number constructions of Mauldin and
Williams [20], which permit carrying over their formulas for Hausdorff dimension of
(real) graph-directed fractals to the p-adic case.

The main object of this paper is to show that the collection of p-adic path set
fractals C.Zp/ is closed under the following operations using p-adic arithmetic:

(1) p-adic addition of a rational number r 2 Q \ Zp (such r are called p-integral);

(2) p-adic multiplication by a p-integral rational number r ;

(3) set-valued addition (Minkowski sum) of two p-adic path sets, using p-adic ad-
dition.

These closure results represent purely p-adic phenomena in the sense that analogous
closure results for applying real arithmetic operations1 fail to hold for Mauldin–
Williams graph-directed fractals over the real numbers. We show that the finite au-
tomata describing the new sets given by these operations are effectively computable;
these new automata depend on the input automata and on the value of p in a compli-
cated way having a number-theoretic flavor.

1.1. Results. As a preliminary top-adic results, in Section 2 we review the Mauldin–
Williams construction of graph-directed fractals over the real numbers. We then
formulate an alternate definition of p-adic path set fractals, defining them geomet-
rically as sets given by a solution of a set-valued functional equation using p-adic
contracting maps (Theorem 2.6 and Definition 2.7). That is, they are characterized
as a set-valued fixed point of a p-adic graph-directed fractal construction. Then we
establish the equivalence of this geometric definition to the symbolic dynamics defi-
nition given above, in terms of p-adic expansions describable by a finite automaton,
as the image in Zp of a path set under a digit assignment map (Theorem 2.10).

To state results, we need some additional terminology on presentations.

(1) A presentation Y
defD . Nfp;G ; v/ of a p-adic path set fractal is injective if the digit

assignment map Nfp is one-to-one.

(2) A path set presentation .G ; v/ is right-resolving if the directed graph underlying
G has the property that at each vertex of the graph, all exiting edges have different
labels.

1That is, for addition to and multiplication of a set by rational numbers, or for the Minkowski sum of
two sets.
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(3) A path set presentation .G ; v/ is reachable if every vertex in G can be reached
by a directed path from v.

Allp-adic path set fractals Y have presentations that are injective, right-resolving and
reachable, see Proposition 2.9. We call any such presentation a standard presentation.
In a standard presentation one may always choose to relabel the symbol alphabet
A D f0; 1; 2; : : : ; p � 1g, and choose the digit assignment map to be the identity
map.

Our first result concerns the Hausdorff dimension dH .Y / of a p-adic path set
fractal Y D fp.XG .v//. We show that dH .Y / is directly computable from a suitable
presentation of Y as a p-adic path set fractal, and is of an expected form.

Theorem 1.1 (Hausdorff dimension). LetY belong to C.Zp/ and letY
defD . Nfp;G ; v0/

be any standard presentation. Then its Hausdorff dimension dH .Y / is given by

dH .Y / D logp �.A.G // D log �.A.G //

logp
;

where �.A/ denotes the spectral radius of the adjacency matrix A D A.G /
defD Œai;j �

of G , in which ai;j counts the number of directed edges from vertex i to vertex j of
the underlying directed graph of G .

This result is proved in Section 3, where it is deduced from a result relating these
sets to real number graph-directed fractals (Theorem 3.1), where a similar Hausdorff
dimension formula has long been known. We use the fact that Hausdorff dimension
is preserved under the map taking a p-adic expansion of a p-adic integer to the
base p radix expansion of a real number. The corresponding real number objects
are Mauldin–Williams connstruction sub-objects. General properties of Hausdorff
dimension can be found in Rogers [23] or Falconer [10].

The main results of this paper concern p-adic arithmetic operations applied to
p-adic path set fractals. We begin with addition of p-adic rationals.

Theorem 1.2 (Closure under rational addition). Let Y belong to C.Zp/. Then for
any p-integral rational number r 2 Q \ Zp , the additively shifted set

Y C r
defD fy C r W y 2 Y g

has Y C r 2 C.Zp/.

The proof of this result is constructive and shows that given a standard presentation
Y

defD .N{p;G ; v/ one can directly compute from it a standard presentation Y C r
defD

.N{p;G 0; v0/. The new presentation depends on both r 2 Q and the value of p.
Theorem 1.2 also follows as a special case of the following result.
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Theorem 1.3 (Closure under Minkowski sum). Let Y1; Y2 2 C.Zp/ be two p-adic
path set fractals in Zp . Then their Minkowski sum-set

Y1 C Y2
defD fy1 C y2 W y1 2 Y1; y2 2 Y2g

has Y1 C Y2 2 C.Zp/:

The proof of this result is constructive and shows that given standard presentations
for Y1

defD .N{p;G1; v1/ and Y2
defD .N{p;G2; v2/ one can directly construct a (not neces-

sarily standard) presentation Y1 C Y2 D .N{p ;G3; v3/. In the given construction the
underlying path set presentation .G3; v3/ produced is not necessarily right-resolving.
However there exist standard algorithms to convert any given path set presentation to
one that is right-resolving, see [2], Theorem 3.2.

The statement of Theorem 1.2 can be recovered from Theorem 1.3 as the special
case that the set Y2 is a one-element set, using the easy observation that the only path
sets in Zp consisting of a single element are those where this element is a rational
r 2 Q\Zp (Theorem 2.11). However the presentation obtained by the construction
of Theorem 1.3 is not necessarily right-resolving, while the construction given in the
proof of Theorem 1.2 is right-resolving.

We next consider multiplication by p-adic rationals.

Theorem 1.4 (Closure under rational multiplication). Let Y belong to C.Zp/. Then
for any rational number r 2 Q \ Zp , the dilated set

rY
defD fry W y 2 Y g

has rY 2 C.Zp/.

We prove this result in Section 5. This proof is constructive in the same sense as
Theorem 1.1; given a standard presentation for Y there is (in principle) an algorithm
to find a standard presentation for rY . Theorem 1.4 is obtained by concatenation of
constructions for several special cases, as follows.

(1) r D M is a positive integer with gcd.p;M/ D 1. A positive integer has an
infinite p-adic expansion with a finite pre-period and a periodic part with all
digits 0.

(2) r D 1
M

is the inverse of a positive integer M with gcd.p;M/ D 1.

(3) r D �1:Note that �1 has a purely periodic nonterminating p-adic expansion of
period 1:

�1 D
1X

kD0

.p � 1/pk D .: : : ; p � 1; p � 1; p � 1/p:

(4) r D pk , for k � 1.
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Finally we note that, at the level of symbolic dynamics, the arithmetic operations
are not compatible with the one-sided shift operation. That is, if Y is a p-adic path
set which is invariant under the one-sided shift �p W Zp ! Zp defined by

�p

� 1X
j D0

j̨ p
j
�

defD
1X

j D0

j̨ C1 p
j ;

then in general the sets Y C r , rY (for p-integral rational r) will not be invariant
under the one-sided shift �p .

1.2. Extensions and generalizations. In Theorem 1.1 we give a formula for the
Hausdorff dimension of a p-adic path set fractal Y in terms of the spectral radius of
a nonnegative integer matrix specifying the graph of the underlying path set. This
formula might initially appear unnecessary in the context of the p-adic arithmetic
operations studied, because given any setX � Zp and any nonzero ˛ 2 Zp, rational
or not, the sets X , X C ˛ and ˛X all have the same Hausdorff dimension. This fact
follows since both sets X C ˛ and ˛X are images ofX under bi-Lipschitz mappings
in the p-adic metric. In this context, the usefulness of Theorem 1.1 lies rather in the
opposite direction: using it, the known equality of Hausdorff dimensions yields the
equality of the spectral radii of two quite different appearing nonnegative matrices,
usually of different sizes.

It is of interest that the constructions of this paper will, when given a fixed set X
as input, by varying r yield infinite classes of nonnegative integer matrices having a
fixed spectral radius. This spectral radius always equals the largest real eigenvalue,
which is a particular type of real algebraic integer called a weak Perron number. Here
a weak Perron number is a (positive real) n-th root of a Perron number for some
n � 1, cf. Lind [15] and [16]. A Perron number is a real algebraic integer ˇ > 1,
all of whose algebraic conjugates ˇ� are smaller in modulus, i.e. jˇ� j < ˇ: Such
classes of matrices may be worth further study in connection with number theoretic
problems, see Section 7.

The constructions of this paper can be combined with other operations which
preserve the property of being a p-adic path set fractal but which do change the
Hausdorff dimension. For example, path sets are closed under set union and set
intersection ([2], Theorem 1.2), with the new path set presentations being effectively
computable from the given ones. Set union changes the Hausdorff dimension in a
predictable way, with the new set having dimension equal to the maximum of the
two dimensions, however set intersection changes Hausdorff dimension in seemingly
unpredictable ways. Given presentations of p-adic path set fractals Y1 and Y2 one
can, in principle, compute the Hausdorff dimension of intersections of additive and
multiplicative translates of these sets, such as Y1

T
.Y2 C r/ and Y1

T
.rY2/. This

study was undertaken to answer questions of this kind that arose in connection with
a problem of Erdős, see Erdős [9], and papers [13] and [3] of the authors. Computed
examples in [3] illustrate that the Hausdorff dimensions of sets Y \ .Y C r/ and
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Y \ rY vary with r , and the dependence on r of these Hausdorff dimensions appears
to be extremely complicated, with interesting structure.

The class C.Zp/ of p-adic path set fractals are closed under another operation:
decimation, i.e. extracting a fixed arithmetic progression of their p-adic digits. We
set

 j;m.˛0; ˛1; ˛2; : : : / D . j̨ ; j̨ Cm; j̨ C2m; j̨ C3m; : : : /;

and the define the .j; m/-decimated set

 j;m.Y / D f j;m.x/ W x 2 Y g:
The fact that  j;m.Y / set belongs to C.Zp/ if Y does follows at the path set level
from [2], Theorem 1.5, which shows that a presentation of  j;m.Y / is effectively
computable given a standard presentation of Y . Study of the effect of decimation
operations on Hausdorff dimension of the images seems an interesting topic for further
research.

There are a number of further directions in which the results may be generalized.
The methods of this paper apply to arithmetic operations applied to theg-adic numbers
for arbitrary g � 2, as defined by Mahler [18]. As a topological space one has
Zg D Q

pjg Zp . However when g contains prime powers one would use a g-adic
expansion corresponding to the alphabet A D f0; 1; : : : ; g � 1g.

A second generalization is to allow sets in the p-adic numbers Qp , in which
case addition or multiplication of arbitrary rational numbers would be permitted.
One may also generalize the notion of p-adic path sets to higher dimensions, which
would correspond to .Zp/

d . In this case one may investigate various relaxations of
the overlap conditions imposed in the Mauldin–Williams construction. In the real
number analogue Rn results have been obtained by Ngai and Wang [22], Das and
Ngai [6], and Ngai, Wang, and Dong [21].

1.3. Contents of the paper. Section 2 recalls Mauldin–Williams constructions,
gives two equivalent characterizations of p-adic path set fractals, and determines
all Y 2 C.Zp/ that contain exactly one element. Section 3 gives formulas for Haus-
doff dimension of path set fractals. Section 4 proves results on addition of rational
numbers to p-adic path set fractals, and on set-valued addition of two p-adic path
set fractals. Section 5 proves results on multiplication of p-adic path set fractals
by rational numbers. Section 6 presents examples illustrating the results. Section 7
makes concluding remarks about how the constructions of this paper relate to integer
matrices.

Acknowledgments. The authors thank the reviewer for helpful comments.
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2. Relation to geometric graph-directed constructions

We first describe the Mauldin–Williams geometric graph-directed construction in the
real number case. Then we formulate a (restricted) p-adic analogue to it, and show
that all p-adic path set fractals are obtained by such a construction, and conversely.
The final subsection characterizes those p-adic path set fractals containing exactly
one element.

2.1. Mauldin–Williams graph-directed constructions. In the 1980s Mauldin and
Williams [20] introduced general graph-directed constructions of fractal sets over
the real numbers, and computed their Hausdorff dimensions, see also Edgar [7],
Chapter 4, and Edgar and Golds [8]. We follow the notation established in Mauldin
and Williams [20].

Definition 2.1. A geometric graph-directed construction in Rm consists of the fol-
lowing data.

(G1) A finite sequence of nonoverlapping,2 compact subsets J1; : : : ; Jn of Rm, such
that each Ji has a nonempty interior.

(G2) A directed graphG with vertex set consisting of the integers 1; : : : ; n, such that
for each pair .i; j / there is at most one directed edge from i to j . Additionally,
this graph must have the following properties:

(a) for each vertex i , there must be at least one exit edge, i.e. some j such that
.i; j / 2 G;

(b) the underlying undirected graph must be connected.

(G3) For each graph edge .i; j / there is assigned a similarity map

Ti;j W Rm �! Rm;

with similarity ratio ti;j such that:

(a) for each i , fTi;j .Jj / j .i; j / 2 Gg is a nonoverlapping family and

Ji �
[

fTi;j .Jj /j.i; j / 2 GgI (2.1)

(b) if the path component of G rooted at the vertex i1 is a cycle:

Œi1; : : : ; iq; iqC1 D i1�;

then these satisfy the contraction condition

qY
kD1

tik ;ikC1
< 1: (2.2)

2Sets J1 and J2 overlap if their intersection has a nonempty interior.
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Note that in this construction the similarity maps Ti;j will be applied to map sets
in the reverse direction to that of the edges of G.

Now for each i let K.Ji / denote the space of compact subsets of Ji , with the
Hausdorff metric, �H . Mauldin and Williams prove the following result.

Proposition 2.2. For each geometric graph-directed construction, there exists a
unique vector of compact sets, .K1; : : : ; Kn/ 2 Qn

iD1 K.Jj / such that, for each i ,

Ki D
[

fTi;j .Kj / j .i; j / 2 Gg: (2.3)

Proof. This is proved by Mauldin and Williams ([20], Theorem 1, p. 812), using the
results of Hutchinson [12].

The construction object K is then defined by

K D
n[

iD1

Ki : (2.4)

The individual Kj are the construction sub-objects.
Our definition of p-adic path sets will correspond to all possible construction

sub-objects Kv in the Mauldin–Williams construction.
Associated to the graph G is an n � n construction matrix A D A.G/ (with

n D jV.G/j) given by
A D A.G/

defD Œti;j �1�i;j �n; (2.5)

where ti;j is defined to be zero if .i; j / … G. Now for ˇ > 0, set

Aˇ D Œ.ti;j /
ˇ �1�i;j �n;

and let
ˆ.ˇ/

defD Spectral radius of Aˇ :

This is the largest non-negative eigenvalue of Aˇ , by the Perron–Frobenius theorem.
Mauldin and Williams [20], Theorem 2, observe that for each construction matrix,
one has

(1) ˆ.0/ � 1,

(2) ˆ.ˇ/ is a continuous, strictly decreasing function of ˇ � 0,

(3) limˇ!1ˆ.ˇ/ D 0:

It follows that there is a unique value ˛ � 0 such that ˆ.˛/ D 1. They term this
value the matrix dimension of the matrix A D AG .

Mauldin and Williams determine the Hausdorff dimension of the construction
object K and also of its individual sub-objects Kj . For the construction object K it
is given as follows.
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Proposition 2.3. For each geometric graph-directed construction, the Hausdorff
dimension ofK, the construction object, is ˛, where ˛ is the matrix dimension of the
construction matrix A.G/ D Œti;j �1�i;j �n, with n D jV.G/j: That is, it is the unique
value ˛ � 0 such that the spectral radius �.A˛/ D 1, where Aˇ

defD Œ.ti;j /
ˇ �1�i;j �n

for ˇ > 0:

Proof. This is Theorem 3 of Mauldin and Williams [20].

Hausdorff dimension formulas for construction sub-objectsKv involve the strong-
ly connected components of the directed graph G, and use matrices which are
square submatrices of A.G/, extracting specified rows and corresponding columns.
A strongly connected component of a directed graph G is a maximal subgraph that
is strongly connected (i.e. each vertex in the component is reachable from each other
vertex in it by a directed path.) We let SC.G/ denote the set of strongly connected
components of the connected graph G. There is a natural partial ordering on SC.G/
which sets H1 � H2 provided there is a directed path in G from a vertex in H1 to
one in H2. We let ˛H denote the matrix dimension of the square submatrix AH of
the construction matrix AG corresponding to the strongly connected component H
of G.

Proposition 2.4. For each geometric graph-directed construction, the following hold.

(1) The Hausdorff dimension of K, the construction object, is ˛, where

˛ D maxf˛H j H 2 SC.G/g:

Furthermore the set K has positive � -finite H ˛ measure.

(2) The Hausdorff dimension of each construction sub-object Kj is j̨ , where

j̨
defD maxf˛H j H 2 Cj g;

where Cj is the set of strongly connected components of G reachable from ver-
tex j . The sub-objectKj has positive� -finite j̨ -dimensional Hausdorff measure.
This measure is finite if and only if fH 2 Cj j ˛H D j̨ g consists of (pairwise)
incomparable elements in the partial order � on SC.G/.

Proof. This statement combines Theorems 4 and 5 of Mauldin and Williams [20],
p. 814 and p. 824.

2.2. p-adic graph-directed constructions. We formulate a p-adic variant of the
Mauldin–Williams construction inside the compact set Zp as follows.
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Definition 2.5. A (restricted) p-adic graph-directed construction on the p-adic in-
tegers Zp consists of the following data.

(P1) A finite sequence of (identical) initial sets Ji D Zp, for 1 � i � n; these sets
overlap.

(P2) A finite directed labeled graph G D .G; V;E/ with vertex set V consisting of
the integers 1; 2 : : : ; n, with E � V � V � A, with each labeled edge assigned
data .i.e/; f .e/; je/ in which i.e/; f .e/ 2 V denote the initial and final vertices
of the directed edge, and the label je 2 A D f0; 1; : : : ; p � 1g is drawn from
the usual alphabet of p-adic digits. No two edges have the same data .i; f; j /.
Each vertex of the underlying directed graph G has at least one exit edge.

(P3) To the label je is associated a p-adic similarity map

� W Zp �! Zp

given by

�e.y/ D py C je:

This is a contractive mapping in the p-adic metric.

Note that in this construction the similarity maps �e in (P3) will be applied to sets in
the direction reverse to that assigned to the directed graph edge e ofG, compare (2.6)
below.

This definition differs from the Mauldin and Williams real number graph-directed
construction in several ways. Firstly, in condition (P1) it starts with initial sets Ji

that have overlaps, which is forbidden in (G1) of the Mauldin–Williams construction.
Secondly, in condition (P2) the underlying directed graph G (ignoring labels) is
permitted to have loops (i.e/ D t .e/) and multiple edges (having same i.e/; v.e//,
which are forbidden in (G2). (Mauldin–Williams forbid these conditions in order
to handle maps having different contraction ratios ti;j on different edges.) Thirdly,
condition (P3) requires that all contraction ratios ti;j be equal, which is a narrower
condition than the Mauldin–Williams condition (G3). We note that Condition (P3)
implies that analogues of conditions (G3) (a), (b) automatically hold, aside from the
non-overlapping condition:

(a) the initial sets Jj D Zp satisfy the condition

Jj �
[

f�e.Jf .e// W e D .i.e/; f .e// has initial vertex i.e/ D j gI

(b) each map �e has p-adic contraction ratio

te
defD jpjp D 1

p
< 1:
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Thus for Œe1; : : : ; eq; eqC1 D e1� a directed cycle of edges in G, the contracting
cycle condition holds:

qY
j D1

ti.ej /;f .ej / < 1;

The following result gives existence and uniqueness for the p-adic construction.

Theorem 2.6 (p-adic geometric graph-directed construction). Let G D .G; V;E/

be a connected labeled graph with vertices V D f1; 2; : : : ; ng, and with edge label
alphabet A D f0; 1; 2; : : : ; p � 1g. Then there exist unique nonempty compact sets
fKi W i 2 V g, each contained in Zp , that satisfy the set-valued functional relations,
for each vertex i 2 V ,

Ki D
[

fe W i.e/Dig
�e.Kf .e//: (2.6)

Proof. The existence and uniqueness of the compact set-valued fixed point (2.6)
follow from Hutchinson [12], Theorem 3.1. The Hutchinson proof establishes that
the Ki are obtained by the following iterative process. We start with initial sets
K

.0/
i D Zp , and iteratively define, for each vertex i 2 V ,

K
.kC1/
i

defD
[

fe W i.e/Dig
�e.K

.k/

f .e/
/;

We obtain a sequence of closed sets

K
.0/
i � K

.1/
i � K

.2/
i 	 : : : ;

and these converge downwards to the compact sets Ki ; as n ! 1.

Definition 2.7. Any set Y
defD Ki for some sub-objectKi 
 Zp in a (restricted) p-adic

graph directed system is called a geometric p-adic path set fractal. We denote the
set of all such Y 
 Zp as CG.Zp/.

In Theorem 2.10 below we will show that this definition gives exactly the same
class of sets as those defined in the introduction, i.e. CG.Zp/ D C.Zp/.

Many different construction pairs .G ; v/ can produce the same geometric p-adic
path set fractal Y . One can use this freedom to make good choices for G . For
example, one may require G to be right-resolving, and in addition to have at most one
directed edge between any directed pair of vertices, see the proof of Theorem 3.1(1)
in Section 3.



p-adic path set fractals and arithmetic 57

2.3. Path sets and p-adic path set fractals. We now show that geometric p-adic
path set fractals in Section 2.2 comprise exactly the same sets as the images in Zp of
abstract path sets under a symbol labeling. We recall a formal definition of path set
given in [2]. Let AN be the full one-sided shift space on A. A pointed graph over
an alphabet A consists of a pair .G ; v/, where G D .G;E/ is a finite edge-labeled
directed graph G, with labeled edges E � E � A having labels drawn from an
alphabet A, and v a vertex of G. We let V.G / and E.G / denote the set of vertices
and directed edges of G, respectively. Following [2] we make a basic definition.

Definition 2.8. For a pointed graph .G ; v/ its associated (abstract) path set (or pointed
follower set) P D XG .v/ � AN is the set of all infinite one-sided symbol sequences
giving the successive labels of all one-sided infinite walks in G issuing from the
distinguished vertex v. Many different .G ; v/may give the same path set P , and we
call any such .G ; v/ a presentation of P .

Recall that the class C.Zp/ ofp-adic path set fractals consists of images fp.P / D
fp.XG .v// of a path set P under a digit assignment map Nfp , sending a path address
to a p-adic expansion. We show that the class C.Zp/ agrees with the geometric class
CG.Zp/ given by the geometric Mauldin–Williams construction. For this purpose it
is helpful to know that every element of C.Zp/ has presentation Y

defD . Nfp;G ; v/ of
the special form called a standard presentation in Section 1.1.

Proposition 2.9 (Standard presentation). (1) Every path set P D XG .v/ on an
alphabet A has a presentation .G ; v/ that is right-resolving and reachable.

(2) Every p-adic path set fractal Y in C.Zp/ has a presentation Y D . Nfp;G ; v/

that is injective, right-resolving and reachable; that is, a standard presentation.
Furthermore one may specify that the presentation alphabet is A D f0; 1; : : : ; p�1g
with the identity digit assignment map N{p .

Proof. (1) Any path set X on any alphabet A has a right-resolving, reachable pre-
sentation P D .G ; v/ on this alphabet, withX D XG .v/, by a standard construction,
see [2], Theorem 3.2.

(2) By hypothesis Y 2 C.Zp/ comes with a presentation Y D fp.XG 0.v0//, on
an alphabet A0. Using the digit assignment map Nfp W A0 ! f0; 1; : : : ; p � 1g, we
may relabel the underlying edges of the graph of G 0 by the image labels in A D
f0; 1; ::; p�1g, obtaining a labeled directed graph G 00 with Y D ip.XG 00.v0//. By (1)
the path set XG 00.v/ has another presentation XG .v/, in which the new graph G is
right-resolving and reachable, and uses the same label alphabet A. By inspection
Y

defD .N{p;G ; v0/ is still a presentation of Y , and it is injective, right-resolving and
reachable.
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Note the one-sided shift space AN, for A D f0; 1; : : : ; p � 1g, topologized with
the product topology, is homeomorphic to Zp with its usual p-adic topology, where
one identifies a symbol sequence ˛0˛1˛2 � � � 2 AN with the p-adic expansion

x D
1X

j D0

j̨p
j D .: : : ˛2˛1˛0/p 2 Zp:

This is exactly the map ip underlying the standard presentation Y D .N{p;G ; v/ of a
p-adic path set fractal above.

Now we relate the class C.Zp/ to the geometric class CG.Zp/. To this end we
note that attached to any labeled directed graph G D .G; V;E/ on alphabet A D
f0; 1; : : : ; p�1g there is associated a (restricted) p-adic graph-directed construction,
(as in Section 2.2) based on the same graph data G D .G; V;E/where the edge label
j 2 A is now assigned the map �j .x/ D px C j:

Theorem 2.10. There holds CG.Zp/ D C.Zp/. Specifically, we have what follows.

(1) Let Kv 2 CG.Zp/ be a construction sub-object of a (restricted) p-adic graph
directed construction with data G D .G; V;E/ using edge maps �e D px C je

with 0 � je � p�1, associated to vertex v ofG. Create a path set from the same
data G .G; V;E/, interpreting the edge labels je 2 A D f0; 1; : : : ; p�1g, and let
Y

defD ip.XG .v// be the p-adic path set fractal with presentation Y
defD .N{p ;G ; v/.

Then Y D Kv: It follows that CG.Zp/ � C.Zp/.

(2) Let Y 2 C.Zp/ be any p-adic path set fractal. Then it has a standard presen-
tation Y D .N{p;G ; v/ with a labeled directed graph G D .G; V;E/, having the
additional property that all vertices of the graph G have at least one exit edge.
By (1) there is an associated (restricted) p-adic graph directed construction
having a sub-object Kv, with Y D Kv . Thus C.Zp/ � CG.Zp/.

Proof. (1) The correspondence between Kv and Y proceeds by relating paths to the
address labels of points in the graph-directed fractal, compare Edgar [7], Section 4.3.
We study the set-valued iterationK.k/

i given in Theorem 2.6 for the geometric p-adic
path set fractal determined by G D .G; V;E/. We prove by induction on k � 0 that
for all vertices i ,

K
.k/
i

defD
[
..˛0 C ˛1p C � � � C ˛k�1p

k�1/C pkZp/;

where the set union is taken over label sequences .˛0; : : : ; ˛k�1/ of legal walks in the
directed graph G of lengthk starting from vertex i . (The edge leaving the initial vertex
i has label ˛0.) The hypothesis that an exit edge exists from each vertex guarantees
that all paths extend one step. The base case k D 0 holds since all K.0/

i D Zp . For

the induction step, we have that K.kC1/
i is comprised of sets

�e.K
.k/

f .e/
/ D je C

k�1X
iD0

˛ip
iC1 C pkC1Zp;
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where .˛0; : : : ; ˛k�1/ are labels from a directed walk in G starting from vertex f .e/.
But now .je; ˛0; : : : ; ˛k�1/ are vertices of a directed walk of lengthkC1 starting from
vertex i , and all such walks are enumerated this way. This completes the induction
step. Letting k ! 1, for each vertex i these sets decrease to Ki , which is now
identified with all infinite walks in G starting from vertex i . Choosing i to be the
original marked vertex, we obtain Ki D N{p.XG .v// D Yv , as asserted.

(2) Given a p-adic path set fractal Y we take a standard form presentation Y D
.N{p;G 0; v/. We now prune the graph G 0 to remove any vertices with no exit edges,
since such vertices contribute no infinite paths to the path set P D XG .v/, and leave
Y unchanged. The new graph may still have vertices with no exit edges, but by
repeating this operation a finite number of times, we will arrive at a presentation
Y D .N{p;G ; v/ in which all vertices have at least one exit edge. The right-resolving
and reachability properties are unaffected, so the new presentation is still standard.
The construction of part (1) now applies to give the result.

It is known that the class of path sets on a fixed alphabet is closed under finite
unions and intersections ( [2], Theorem 1.1). Theorem 2.10 implies that the collection
of p-adic path set fractals C.Zp/ is closed under set union and intersection as well.

2.4. One element p-adic path set fractals. We characterize path sets consisting of
a single element.

Theorem 2.11 (Single element p-adic path set fractals). The p-adic path set fractals
Y 2 C.Zp/ that consist of a single element are exactly those Y D frg for which r is
a p-integral rational number, i.e. r 2 Q \ Zp .

Remark 2.12. This simple result supplies a dynamical characterization of the p-in-
tegral rational numbers r inside Zp .

Proof. Given a p-adic path set fractal Y , assume it is given with a standard presen-
tation .N{p;G ; v0/. Using the pruning construction used in proving Theorem 2.10 we
may without loss of generality assume each vertex in G has at least one exit edge.
Such a presentation has an underlying path set XG .v0/ consisting of a single infinite
path if and only if there is exactly one exit edge from each vertex, and if the path is
eventually periodic. The latter forces any element r to be a rational number in Zp .
Conversely, we may easily construct a path set consisting of a single element giving
the p-adic expansion of r .

3. Hausdorff dimension of p-adic path set fractals

We obtain a formula for the Hausdorff dimension of a p-adic path set fractal Y ,
computable from a standard form presentation of Y . The formula is based on a
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Hausdorff dimension relation between p-adic path set fractals and graph-directed
constructions on the real numbers.

To state the result, we note that the adjacency matrix A D A.G/ of a directed
graph G is a non-negative integer matrix whose rows and columns are numbered by
the vertices of G (in the same order) with entry Aij counting the number of directed
edges outgoing from vertex i and incoming to vertex j .

Theorem 3.1 (Hausdorff dimension formula). Let Y belong to C.Zp/; and suppose
that Y

defD . Nfp;G ; v/ is a standard form presentation of Y .

(1) The map �p W Zp ! Œ0; 1� � R sending ˛ D P1
kD0 ˛kp

k 2 Zp to the corre-
sponding real number with base p radix expansion

�p.˛/
defD

1X
kD0

˛k

pkC1

is a continuous map. Under this map the image set K0
defD �p.Y / � Œ0; 1� is

a construction sub-object of a Mauldin–Williams graph-directed fractal whose
edge similarity maps are all contracting similarity maps of R with contraction
ratio 1=p:

(2) The Hausdorff dimensions of these sets are related by

dH .Y / D dH .K0/:

(3) The Hausdorff dimension

dH .Y / D dH .K0/ D logp ˛; (3.1)

where ˛ D �.A.G // is the spectral radius of the adjacency matrix A D A.G / of
the underlying directed graph G of G .

Remarks 3.2. (1) In Theorem 1.13 of [2] the topological entropy of a path set
X D XG .v/, with a right-resolving reachable presentation is given by

htop.X/ D log �.A.G //;

where �.A.G // is the spectral radius as above. We deduce from (3) above that
for any p-adic path set fractal Y constructed from X by an injective presentation
Y

defD . Nfp;G ; v/, its Hausdorff dimension is

dH .Y / D htop.X/

logp
:

This extends to path sets, a result that is well known in the shift-invariant case (Fursten-
berg [11], Proposition III.1).
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(2) The standard presentation assumption for Y above is needed to guarantee
equality of the Hausdorff dimension with logp ˛. For a general presentation Y

defD
. Nfp;G ; v0/ of X the adjacency matrix counts the growth rate of number of paths,
which upper bounds the number of distinct sequences of path labels. That is, one
always has

dH .Y / � htop.XG .v//

logp
� logp �.A.G //:

(3) The allowed values �.A.G // that may occur above are exactly the class of
positive real algebraic integers called Perron numbers, introduced by Lind [15].

Proof. (1) The map �p W Zp ! Œ0; 1� is surjective and one-to-one away from a count-
able set. It is continuous because the p-adic topology is strictly finer than the com-
parable topology on base p expansions of real numbers.

We are given a standard presentation of Y D .N{p;G ; v/, where without loss of
generality the alphabet A D f0; 1; : : : ; p � 1g: The graph G is right-resolving and
reachable, but this will not be sufficient to obtain a Mauldin–Williams construction
for the image of XG .v/ preserving symbol sequences. We need a standard presenta-
tion with extra properties. We call a presentation right-separating if the underlying
directed graph G of G has no multiple edges.

Claim. There exists a presentation Y D .N{p;G ; v/ in which G is both right-
resolving and right-separating.

To show the claim, given a right-resolving presentation .G 0; v0/, we show it may
be converted to a right-separating presentation by making use of a vertex-splitting
construction, as follows. Suppose that a vertex v of G 0 has k � 2 labeled edges from
a vertex w, which necessarily has distinct labels. We create a new labeled graph G 00
that retains all vertices of G except v and replaces v by k vertices v.i/, 1 � i � k.

Case 1: w ¤ v. In this case we assign a single new labeled edge from w to each
v.i/ such that as i varies, the corresponding edge labels exhaust the k labels of edges
from w to v. The exit edges assigned each v.i/ each duplicate the exit edges from v,
both in multiplicity and in labels, with self-loops of v corresponding to self-loops of
v.i/. The entering edges to v.1/ will all be the same in multiplicity and in labels as
for v, while for v.i/ with i � 2 there will be no entering edges from the rest of the
graph, with the exception of self-loops, assigned as above. Finally all edges between
any two vertices distinct from the v.i/ will be the same as in the original graph.

Case 2: w D v. In this case v has k self-loops, which have distinct labels since
the right-resolving property is assumed. We may identify the k loop labels with
f1; 2; : : : ; kg in some fixed fashion, and then assign a directed edge from v.i/ to v.j /

with edge label corresponding to i C j .mod k/, for 1 � i; j � k. The other exit
edges assigned each v.i/ will duplicate the exit edges of v, in multiplicity and labels
(excluding self-loops). The entering edges of v.1/ will be the same in multiplicity and
labels as for v (excluding self-loops). All other v.i/ have no entering edges coming
from any other vertices of the original graph v0 ¤ v.
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Now that G 00 is constructed, we assert that the path sets from all states .G 00; w0/ for
w0 ¤ v.i/ agree with those of .G 0; w0/, while all path sets .G 00; v.i// agree identically
with that of .G 0; v/. This assertion may be established by viewing G 0 as a covering of
G which preserves edge labels, which has the k vertices v.i/ lying above vertex v, and
all other vertices agreeing. One may check that each edge in G 0 from a given initial
vertex v0 lifts uniquely to a suitable vertex and edge above it in G 00 (here v0 D w is the
only interesting case), except that self-loops from v lift to a self-loop for any initial
vertex v.i/. After the first step, any path lifts uniquely to G 00. Conversely any labeled
path in the lifted graph projects to an allowable labeled path in G 0. The assertion
follows.

This construction has the feature that the new graph G 00 is still right-resolving. In
consequence the construction may be repeated. In doing so, we must eventually arrive
at a right-resolving presentation that is also right-separating. To see this, assign to
each vertex an integer invariant that is the product of the multiplicities of all entering
edges. When a vertex is split, this invariant decreases for all of the k descendants
v.i/, and remains the same for all other vertices of the graph. By the well-ordering
of N, the splitting procedure will eventually halt at a right-separating presentation.
This establishes the claim.

We have now obtained a standard presentation that is also a right-separating pre-
sentation .N{p;G ; v/ of Y . By pruning vertices with no exit edges (repeating the
operation finitely many times, as necessary), we may obtain such a presentation in
which additionally each vertex has at least one exit edge. Associated to G are jV.G /j
path sets XG .w/, w 2 V.G /, and corresponding Yw

defD ip.XG .w// 2 C.Zp/.
We now proceed to map these sets to real image sets which are corresponding

graph-directed constructions. For convenience we re-number the vertices of G , 0 �
i � n, where n D jV.G /j � 1, with vertex 0 corresponding to the original v. We map
the individual sets Yj under the map �p C 2j to the image sets

Kj
defD �p.Yj /C 2j � Œ2j; 2j C 1�:

The integer shifts by 2j make all sets Kj disjoint in R; Thus K0 D �.Y /:

We show below that the sets .K0; K1; : : : ; Kn/ are the complete set of construc-
tion sub-objects of a particular Mauldin–Williams graph-directed construction. The
integer shifts made above enforce the non-overlapping condition needed in that con-
struction.

We set up a Mauldin–Williams geometric graph-directed construction in R, which
has construction object K contained in the compact set Œ0; 2n�, for which the sets
.K0; K1; : : : ; Kn/ will form the construction sub-objects. The initial sets will be
Jj D Œ2j; 2j C 1� for 0 � j � n; they satisfy the non-overlapping property (G1).
It uses the same directed graph G as that of G . The graph G has all the correct
properties (G2) to be a graph in the Mauldin–Williams construction: it is connected,
has at most one directed edge between any ordered pair of vertices (by the right-
separating property), and each vertex has at least one exit edge. To each directed
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labeled edge e D Œi1; i2� of G with label je and map �e we associate the real-valued
map

Te.x/ D Ti1;i2.x/
defD 1

p
..x � 2i2/C j /C 2i1:

This map is a similarity with contraction ratio 1=p, and note that

Ti1;i2.Ji2/ � Ji1 : (3.2)

Now condition (G3)(a), that the sets fTi;j .Jj / W e D .i; j /g are non-overlapping for
each i , holds as a consequence of the right-resolving property of G . The second
condition

Ji �
[

fTi;j .Jj / j .i; j / 2 G�g
follows from (3.2). Finally condition (G3)(b) holds since every map Te.x/ is a strict
contraction.

By the basic theorem of Hutchinson [12], Theorem 3.1, this construction has a
unique compact attractorK consisting of a collection of disjoint compact sub-objects
fKj W 0 � j � ng, and it remains to verify that

K0 D �p.Y /:

The sets Kj are obtained by the Mauldin–Williams (iterative) geometric graph-
directed construction using [20], Theorem 1, starting with the (disjoint) initial sets
Jj

defD Œ2j; 2j C 1�. After m-iterations, we have sets J .k/
j which for fixed j form

nested sequences of compact sets, each having nonempty interior. We then obtain
the limit sub-objects Kj

defD T
k J

.k/
j . The Mauldin–Williams construction object is

K D [0�j �nKj : One can prove by induction on k that

J
.k/
i D 2j C

[ �˛0

p
C ˛1

p2
C � � � C ˛k�1

pk
C 1

pk
Œ0; 1�

�
;

where the set union runs over all symbol sequences of length k on the labeled directed
graph G starting from vertex i . From this construction one sees that K0 D �p.Y /

since K0 � Œ0; 1� and the underlying symbol sequences of Y and of K0 agree.
Moreover one sees thatKj � Œ2j; 2j C1� and all the construction sub-objects satisfy
Kj D �p.Yj /C 2j , 0 � j � n.

(2) The definition of p-adic Hausdorff dimension is quite similar to Hausdorff
dimension for real numbers on the interval Œ0; 1�, cf. Abercrombie [1]. An �-covering
of Y � Zp is a covering of Y by a countable collection of p-adic open balls all
having diameter at most �. Now consider the quantities

mˇ .Y /
defD lim

�!0
. inf
�-cover

.Vol.B.xi ; �i ///
ˇ /;

in which the data f.xi ; �i / W i � 1g describes the covering, specifying center xi and
radius �i of p-adic disks, with all 0 < �i � �, and Vol.S/ denotes the usual p-adic
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measure of S � Zp . There is a cutoff value ˇ0 such that mˇ .Y / D 0 for ˇ > ˇ0

and mˇ .Y / D 1 for ˇ < ˇ0; this is the Hausdorff dimension of Y . We use the
following basic fact, following [13], Section 3.2.

Claim. The mapping �p W Zp ! Œ0; 1� which sends a p-adic number � D
.: : : ˛2˛1˛0/p to the real number with base p expansion ˛0˛1˛2 : : : is continuous
and one-to-one off a countable set. This mapping preserves Hausdorff dimension, i.e
dH .Y / D dH .�p.Y //:

To verify the claim, note that one can expand each set in a p-adic covering of a
set Y to a closed-open disk

B.m; pj / D fx 2 Zp W x � m .mod pj /g
(which has diameter 1

pj ), with at most a factor ofp increase in diameter, and similarly

one can inflate any real covering to a covering with ternary intervals Œ m

pj ;
mC1

pj � with
at most a factor of p increase in diameter. But these special intervals are assigned
the same diameter under their respective metrics, and this can be used to show the
Hausdorff dimensions of Y and �p.Y / coincide. (The Hausdorff measures of the
resulting sets are not proved to coincide by this argument.)

The truth of the claim immediately yields dH .K0/ � dH .�p.Y // D dH .Y /, as
asserted.

(3) We are given a standard presentation Y D .N{p;G ; v0/ of the p-adic path set
fractal Y .

Assume first that this presentation is right-separating. In that case we can directly
apply the formulas of Mauldin–Williams to the construction made in (1). The setKv0

is connected by directed paths to every vertex of the graph G , so that the vertex set
C1 D SC.G / consists of all strongly connected components of G . By Proposition 2.4
the Hausdorff dimension of the sub-object Kv0

is then the same as that of the full
construction object K D S

v Kv:

The Hausdorff dimension of the full objectK can now be computed using Propo-
sition 2.3. In our case all nonzero maps forG are similarities with constant ratio 1=p,
which yields the formula for the scaled construction matrix

Aˇ D Œt
ˇ
i;j �1�i;j �n D

� 1
p

�ˇ
AG ;

in which AG is the adjacency matrix of the directed graph G, given by

AG D Œmi;j �1�i;j �n

wheremi;j counts the number of directed edges from vertex v to vertex w. Now set

ˆ.ˇ/
defD Spectral radius of Aˇ ;

and the special form of Aˇ yields

ˆ.ˇ/ D �0p
�ˇ ;
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in which �0 is the spectral radius �.AG/. By Proposition 2.3 the full construction
object has Hausdorff dimension

dH .K/ D ˛

where ˆ.˛/ D 1. This requires

˛ D logp �0 D logp �.AG/;

the desired formula.
It remains to treat the general case, in which the initial standard presentation

Y D .N{p;G ; v0/ is not necessarily right-separating. We show that the formula for
Hausdorff dimension continues to hold. To handle this case, we study the effect of the
state-splitting construction introduced earlier to convert a right-resolving presentation
.G 0; v0/ of a path set to a presentation .G ; v0/ that is also right-separating. It suffices
to show that every step of this procedure yielding a graph .G 00; v0/ preserves the value
of the spectral radius (Perron eigenvalue) of the associated nonnegative integer matrix
AG 00 . If this is shown, then the already proved formula for the Hausdorff dimension
for the p-adic path set associated to .G ; v0/ will carry over to that for .G 0; v0/.

To check that the spectral radius is preserved under this operation, we use the
known fact that the spectral radius of a nonnegative matrix A is given by

�.A/ D lim
k!1

.Nk.A//
1=k;

in which Nk.A/ D eTAke, where e D Œ1; 1; ::; 1�T is a column vector. Here Nk.A/

counts the number of directed paths of length k between all pairs of vertices of A.
(The existence of the limit is part of the assertion.) We use the fact that G 00 is a
covering of G 0 and that all (labeled) paths of G 0 lift uniquely to paths of G 00, with the
exception of paths that have starting vertex v, which have s distinct lifts, where s was
the number of vertices of G that were split. From this we conclude that

Nk.AG0/ � Nk.AG00/ � sNk.AG0/:

Since s is constant, we conclude that

�.AG0/ � �.AG00/ � lim
k!1

s1=kNk.AG0/1=k D �.AG0/;

giving the result.

Proof of Theorem 1.1. This result is immediate from Theorem 3.1, combining (2)
and (3).

4. p-adic addition and path set fractals

We analyze the effect on p-adic path set fractals of addition of p-integral rational
numbers r 2 Q, viewing Q as a subfield of Qp . We describe algorithms which when
given a presentation .G ; v0/ of a path set Y , will produce a presentation of Y C r .
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4.1. Sum of a path set and a p-integral rational number. Theorem 1.2 is an
immediate corollary of the following stronger result. Recall that a p-integral rational
number r is any r 2 Q \ Zp .

Theorem 4.1. Let Y belong to C.Zp/, and suppose it has a standard presentation
Y

defD .N{p;G ; v0/ having V vertices. Suppose also that r is a p-integral rational
number, which has a p-adic expansion with pre-periodic part of length Q0 and a
periodic part of periodQ. Then the additively shifted set Y

0 defD Y C r 2 C.Zp/, and
it has a right-resolving presentation having at most 2p.Q0 CQ/V vertices.

Proof. We give an explicit construction of a presentation for Y C r which certifies it
is a p-adic path set fractal, starting from a given standard presentation.

Suppose first that we are in the special case where r has a purely periodic p-adic
expansion .: : : c2c1c0/p , of period Q, with cj CQ D cj , and write

r D
1X

j D0

cjp
j D

� Q�1X
j D0

cjp
j
�� 1X

kD0

pkQ
�
:

We aim to construct a standard presentation Y 0 D .N{p;G 0;w0/ and show that
Y 0 D Y C r . (At the level of symbols we may identify Y 0 with the underlying path
set P 0 D .G 0;w0/ since the identity map matches them.) The vertex states of G 0 will
be labeled w D .v; f; e; a/, in which:

(i) v denotes a vertex of G ;

(ii) f denotes a place-marker in the periodic portion of the p-adic expansion of r ,
and satisfies 0 � f � Q � 1;

(iii) e keeps track of the current amount of carry-digit information not yet incorpo-
rated in the sum-set p-adic expansion;

(iv) a with 0 � a � p � 1 denotes an edge label value.

The initial vertex will be w0 D .v0; 0; 0; 0/:We will establish the upper bound e � 2

on the maximum size of a carry-digit in the analysis below.
The exit edges of G 0 map a vertex w to w0 D .v0; f 0; e0; a0/ in which there is a

directed labeled edge .v; v0/ 2 G , with label `1 satisfying `1 D a0, and the value
f 0 � f C1 .modQ/. The edge label `0 assigned to this edge will be 0 � `0 � p�1
with

`0 � e C `1 C cf .modp/; (4.1)

and the value e0 is required to satisfy

e0 D 1

p
.e C `1 C cf � `0/: (4.2)

Finally we define the graph G 0 to consist of all states reachable from the initial vertex
w0, and all edges constructed between these states.
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We first show that all reachable vertices satisfy the carry-digit bound e � 2; this
shows that the graph G 0 is finite and also bounds its size. The carry-digit bound is
proved by induction on the number of steps n along a directed path. The base case
n D 0 has e D 0. For the induction step, using the rule above, we get

e0 D 1

p
.e C `1 C cf � `0/ � 1

p
.2C .p � 1/C .p � 1// � 2;

completing the induction step. Therefore in this case G 0 has at most 2p.Q � 1/V

vertices.
We next show that the presentation Y 0 D .N{p;G 0;w0/ is a standard presentation.

We first check that G 0 is right-resolving. To see this, note that the exit edges from
a vertex w correspond to exit edges from vertex v in the right-resolving graph G ,
whence any two edges have different values of `1. Now the exit edge label `0 is an
invertible linear function of `1 by (4.1), since the values e and cf are fixed by w, so
all exit edges have distinct labels, as asserted. This graph G 0 is reachable from vertex
w0 by construction, so we have a standard presentation.

We next observe that a lifted path in G 0 uniquely determines the path in G it lies
over. This follows since the path label value `1 is uniquely recoverable from the path
label `0 and the vertex data on G , using (4.2), since e0 is known and cf is known from
the vertex label f . The underlying path on G determines the quantity

yn D
n�1X
kD0

akp
k; i D 1; 2;

corresponding to the initial part of the p-adic expansion of a value y 2 Y being
determined by the G -path. (The values ak are the successive labels `1 along the
G -path.) Conversely, each path in G with initial vertex v0 lifts to a unique path in
G 0 with initial vertex w0. Given a vertex w, a labeled edge .v; v0/ with label `1

determines the values a0 D `1, e0, and a unique vertex w0 that w connects to.
We now show that for an infinite path in G determining y 2 Y , the labels of the

lifted path in G 0 suffice to compute the associated value y0 2 Y 0. We prove this by
induction on n, for the n-step initial path. The successive edge labels f`0

i W 0 � i �
n� 1g of the lifted path in G 0 with the end vertex data e0 D en determine the quantity

y
0

n

defD
n�1X
kD0

`
0

kp
k C enp

n:

We establish by induction on n that

y
0

n�1 D yn�1 C rn�1; (4.3)

in which

rm
defD

m�1X
kD0

ckp
k
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is a truncated version of the p-adic expansion of r . The base case n D 1 is clear. By
the induction hypothesis, we have

yn C rn D .yn�1 C rn�1/C an�1p
n�1 C cn�1p

n�1

D
� n�2X

kD0

`
0

kp
k C en�1p

n�1
�

C an�1p
n�1 C cn�1p

n�1

D
� n�1X

kD0

`
0

kp
k
�

C enp
n;

where the last equality holds by virtue of (4.2), using cf D cn�1 and `1 D an. This
completes the induction step, proving (4.3).

Now the lifted path data yields the p-adic limit

lim
n!1

n�1X
kD0

`
0

kp
k D lim

n!1.yn C rn/ � lim
n!1 enp

n D y C r:

We conclude that the lifted path of G 0 corresponding to y 2 Y determines the point
y0 defD y C r 2 Y 0. It follows that Y 0 D Y C r , as asserted. This completes the
argument in the case that r has a purely periodic p-adic expansion.

It remains to treat the general case where r has a preperiodic part, say lengthQ0.
We must extend the construction above and upper bound the number of states in
the constructed presentation .G ;w/. The extension is routine: we add extra vertices
w

defD .v; dj ; e; a/ to G , in which v denotes a vertex of G , dj marks the j -th preperiodic
digit of r , 1 � j � Q0. The exit edges of G 0 map a vertex to w0 D .v0; dj C1; e

0; a0/
in which there is a directed labeled edge .v; v0/ 2 G , with label `1 satisfying `1 D a0.
The edge label `0 assigned to this edge will be 0 � ` � p � 1 with

`0 � e C `1 C dj .modp/; (4.4)

and the value e0 is required to satisfy

e0 D 1

p

�
e C `1 C dj � `0/: (4.5)

The final preperiodic digit exit edges go to vertices w
defD .v0; f0; e

0; a0/ in the earlier
set.

It is straightforward to check that the underlying labeled graph has the right-
resolving property. Next one must check that this extension preserves the lifting
property of paths, we omit the details.

Finally we must upper bound the total number of vertices in the graph .G ;w/. One
finds that the preperiodic part contributes at most 2Q0Vp vertices, and the periodic
part contributes at most 2QVp vertices.
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Remark 4.2. The key features in this proof are: (i) the p-adic carry digits propagate
to higher powers of p and do not disturb earlier p-adic digits; (ii) the size of the carry
digits is bounded above. Property (i) fails in real number arithmetic, and there is no
real number analogue of this result.

4.2. Minkowski sum of two p-adic path sets. We show that the Minkowski sum
of two p-adic path set fractals is itself a path set, establishing Theorem 1.3. This
proof is constructive, but it no longer produces a right-resolving presentation.

Proof of Theorem 1.3. We suppose that Y1
defD .N{p;G1; v1/ and Y2

defD .N{p;G2; v2/

come with standard presentations. We use these presentations to directly construct
a presentation Y 0 defD .N{p;G1;2;w0/, which is not necessarily standard, and show that
Y 0 D Y1 C Y2, the Minkowski sum, certifying membership in C.Zp/.

To begin the construction, G1;2 will have vertices labeled w
defD .vj;1; vk;2; e; a/

where vj;1 2 V.G1/; vk;2 2 V.G2/, e � 0 is an integer encoding carry-digit informa-
tion, and 0 � a � p � 1 specifies an allowed edge entry label in G C

1;2.
The exit edges from a given vertex w go to a new vertex w0 D .vj 0;1; vk0;2; e

0; a0/
in which

(a) there is a directed edge of G1 from vj;1 to vj 0;1 having label `1 satisfying `1 D a0;
(b) a directed edge of G2 from vk;2 to vk0;2 with label `2;

(c) the constructed edge is assigned the label `, 0 � ` � p � 1, determined by

` � e C `1 C `2.modp/; 0 � ` � p � 1I

(d) the new carry-digit is

e0 D 1

p
.e C `1 C `2 � `/ � 0:

The initial pointed vertex of the graph G1;2 is w0
defD .v0;1; v0;2; 0; 0/: We now

define G1;2 to consist of all vertices above reachable from w0 by some directed
path. We show this is a finite graph by establishing that that the “carry-digit” in any
reachable vertex satisfies e � 2. This follows by induction on the length of the path.
The base case is n D 0 where e D 0. For the induction step, we upper bound the
new value of e via

e0 D 1

p
.e C `1 C `2 � `/ � 1

p
.2C .p � 1/C .p � 1// � 2;

completing the induction step. We then insert all edges between these vertices pro-
duced in the construction above.

To see that Y
0

1 D Y1 C Y2, we prove by induction on n � 0 that being at a vertex
w at step n, having gotten a specified series of edge labels, following a given lifted
path implies that
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(1) the steps and vertices of the lifted path have sufficient information to reconstruct
two paths of input y1 and y2 producing that path;

(2) the first n p-adic digit symbols of y1 C y2 have been correctly computed by
symbols of the steps of the path so far, namely that if

yi;n D
n�1X
kD0

ak;ip
k; i D 1; 2;

then

y1;n C y2;n D
n�1X
kD0

bkp
k C epn;

where e D en is the current carry-digit, and the bi are the edge labels produced
so far in the graph G C

1;2.

Suppose that the next directed edge moves to a vertex w0 D wnC1, with data
.e0; a0/. Then we have a0 D `1 D an;1 and

e0 D 1

p
.`1 C `2 � `C e/ D 1

p
.aC `2 � `C e/

Since e; a; ` are known, this equation uniquely determines the label `2 D an;2.
Since both G1 and G2 are right-resolving, the edges .j; j 0/ and .k; k0/ with the labels
an1

; an;2 are legal steps which uniquely determine the edges updating y1;n; y2;n to
y1;nC1; y2;nC1. Now the definition of edge labels in G1;2 assigns the label bn

defD ` to
the edge of G1;2 and e0 D enC1 in

y1;nC1 C y2;nC1 D
nX

kD0

bkp
k C e0pn;

completing the induction step.

Remark 4.3. The presentation Y1 C Y2 D .N{p ;G C
1;2;w0/ in this construction is

generally far from right-resolving. This occurs because some values y D y1 C y2 2
Y1 CY2 may have more than one representation .y1; y2/. This construction produces
a separate path for each pair .y1; y2/, so more than one path can yield the same
sequence of labels.

5. p-adic multiplication and path set fractals

5.1. Multiplication by p-integral rational numbers. We give constructive proof
for multiplication by rational numbers of specific types.
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Theorem 5.1. Let Y belong to C.Zp/ and suppose it has a standard presentation
.N{p;G ; v0/ having V vertices. LetM � 2 be a positive integer with gcd.p;M/ D 1:

(1) For r D M the multiplicatively shifted set Y
0 defD MY 2 C.Zp/. It has a

right-resolving presentation having at most .M C 1/V vertices.

(2) For r D 1
M

the multiplicatively shifted set Y
0 defD 1

M
Y 2 C.Zp/. It has a

right-resolving presentation having at most .M C 1/V vertices.

(3) For r D �1 the multiplicatively shifted set Y
0 defD �Y 2 C.Zp/. It has a right-

resolving presentation having at most 2V vertices.

(4) For r D pk , k � 0, the multiplicatively shifted set Y
0 defD pkY 2 C.Zp/. It has

a right-resolving presentation having at most k C V vertices.

Proof. We are given Y 2 C.Zp/, with a standard presentation Y D .N{p;G ; v0/,
in which G has V vertices. For each given r we give an explicit construction of a
standard presentation Y 0 defD .N{p;G 0;w0/ and establish that Y 0 D rY in each case.
The constructions in cases (1)–(3) are similar.

(1) Here r D M with p − M , and we construct a presentation Y 0 of a p-adic path
set fractal and show Y 0 D MY . We start with an (infinite) graph G 00 whose vertices
will be pairs w D .v; e/, in which v is a vertex of G , and e � 0 is a carry-digit. The
initial vertex is w0

defD .v0; 0/. The exit edges from a vertex w to a vertex w
0 D .v0; e0/

will occur only if there is at least one edge from v to v0. Given such an edge of G

with label `, we assign a corresponding edge of G 0with label `0 given by

`0 D M`C e .modp/; 0 � `0 � p � 1; (5.1)

which is well-defined since .p;M/ D 1. We require that the new carry digit be

e0 defD 1

p
.e CM` � `0/: (5.2)

We define .G 0;w0/ to be the graph obtained by taking all vertices reachable from
w0 in the above construction. We prove that all reachable vertices have carry-digit
0 � e � M by induction on the number of steps n on a minimal path to such a vertex.
The base case n D 0 is true, since e D 0, and the induction step follows by observing
from (5.2) that

e0 � 1

p
.M CM.p � 1// � M:

We conclude that the graph G 0 has at most .M C 1/V vertices.
We now set Y 0 defD .N{p;G 0;w0/, and first show this presentation is standard. We

first claim that G 0 is right-resolving. We argue by contradiction. If not, there would be
two exit edges of some vertex w D .v; e/ of G having the same value of `0. But then
by (5.1) the underlying edges of .G ; v0/would have the same value of `, contradicting
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the right-resolving property of .G ; v0/. By construction .G 0;w0/ is reachable, hence
this presentation of Y 0 is standard.

It remains to show that Y
0 D MY . Consider an infinite path in G , with image

y1 D
1X

j D0

j̀p
j 2 Y:

We assert that the corresponding output path

y
0

1 D
1X

j D1

`
0

jp
j 2 Y 0

has

y
0

1 D 1

M
y1:

We verify this by induction on the length of a finite path approximating y1: Let
v0; v1; : : : ; vn be states on a path in sG with edge labels `0; `1; : : : ; `n�1. Associated
to this path is

yn D `0 C `1p C � � � C `n�1p
n�1:

By construction we obtain

y
0

n D
n�1X
j D0

`
0

jp
j :

Now we prove by induction on n � 1 that

y
0

n D Myn C enp
n;

where en D e0, where e0 is the carry value at the final vertex vn. The base case n D 1

is clear, and for the induction step (en D e; enC1 D e0) we get, using (5.2),

MynC1 D M.yn C `np
n/ D y

0

n C .en CM`n/p
n D y

0

n C enC1p
nC1:

Now we use jenp
njp ! 0 as n ! 1, whence My

0

1 D y1, establishing the result.

(2) Here r D 1
M

with p − M , and we construct a presentation Y D .N{p;G 0

;w0/

of 1
M
Y . We start with an infinite graph GM , whose vertices will be pairs w D .v; e/,

in which v is a vertex of G , and e � 0 is a carry digit, initially unbounded. The
initial vertex is w0

defD .v0; 0/. The exit edges from a vertex w D .v; e/ to a vertex
w D .v0; e0/will occur only if there is at least one edge in G from v to v0. Given such
an edge of G with label `, we assign a corresponding edge of G 0with label `0 given
by

M`0 D ` � e .modp/; 0 � `0 � p � 1; (5.3)
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which is well-defined since .p;M/ D 1. We require that the new carry digit be

e0 defD 1

p
.e CM`0 � `/: (5.4)

We now define .G 0;w0/ to be the graph obtained by including only the vertices
reachable from w0 in the above construction. We now show all reachable vertices
have carry-digit 0 � e � M , by induction on the number of steps n on a minimal
path to such a vertex. The base case n D 0 holds since e D 0, and the induction step
follows by observing from (5.4) that

e0 � 1

p
.M CM.p � 1// � M:

We conclude that the graph G 0 has at most .M C 1/V vertices.
We now define the p-adic path set fractal Y 0 defD .N{p;G 0;w0/, and first show this

presentation is standard. To show G 0 is right-resolving, we argue by contradiction. If
not, there would be two exit edges of some vertex w D .v; e/ of G having the same
value of `0. But then by (5.3) the underlying edges of .G ; v0/ would have the same
value of `, contradicting the right-resolving property of .G ; v0/. It is reachable by
construction, so it is a standard presentation.

It remains to establish that Y 0 D 1
M
Y , still supposing .p;M/ D 1. Consider an

infinite path in G , with image

y1 D
1X

j D0

j̀p
j 2 Y:

We assert that the corresponding output path

y
0

1 D
1X

j D1

`
0

jp
j 2 Y 0

has

y
0

1 D 1

M
y1:

We verify this by induction on the length of a path starting from the initial vertex. Let
v0; v1; : : : ; vn be vertices on a path in G with edge labels `0; `1; : : : ; `n�1. Associated
to this path is

yn D `0 C `1p C � � � C `n�1p
n�1:

By construction we obtain

y
0

n D
n�1X
j D0

`
0

jp
j :
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Now we prove by induction that

My
0

n D yn C enp
n

where en D e0 is the carry value at the final vertex vn. For the induction step
(en D e; enC1 D e0/ we get, using (5.4)

My
0

nC1 D M.y
0

n C `
0

np
n/ D yn C .en CM`

0

n/p
n D ynC1 C enC1p

nC1:

Now we use jenp
njp ! 0 as n ! 1, whence My

0

1 D y1 establishing the result.

(3) Given a standard presentation of Y
defD .N{p;G ; v0/, we construct a standard

presentation Y 0 defD .N{p;G 00;w0/ which has Y 0 defD �Y , as follows.
The vertices of G 0 will be pairs w D .v; e/, in which v is a vertex of G , and e is a

carry digit, which may take values 0 or �1. The initial vertex will be w0
defD .v0; 0/.

The exit edges from a vertex w to a vertex w
0 D .v0; e0/ will occur only if there is at

least one edge in G from v to v0. Given such an edge of G with label `, we assign to
it a corresponding edge of G 0 from w to w0 with label `0 given by

`0 D �`C e .modp/; 0 � `0 � p � 1; (5.5)

If the current vertex has e D 0 and ` D 0, then the new vertex has `0 D 0 and is
assigned carry digit e0 D 0. If either e D �1 or e D 0 and ` > 0, then the new
carry digit e0 D �1. Once a path in G 0 reaches a vertex with carry digit e0 D �1, all
subsequent vertices reached have carry digit �1. Note that when e D �1 we have
�p � �` � 1 � �1 and `0 D p � ` � 1:

We now let G 0 denote the part of the graph above reachable from the initial vertex
w0. This graph has at most 2V vertices. We then insert all edges between reachable
vertices produced in the construction above.

We now set Y 0 defD .N{p;G 0;w0/, and as before check that this is a standard presen-
tation. We claim that G 0 is right-resolving. This is clear since the label `0 on exit
edges from a vertex w are in one-one correspondence with labels on exit edges in G

from the associated vertex v, via (5.5). The graph G 0 is reachable by construction.
It remains to show that Y 0 D �Y . We let yn D Pn�1

j D0 j̀p
j and

y
0

n D
n�1X
j D0

j̀p
j :

We have y
0

n D yn D 0 as long as the carry digit e D 0. Let `r �1 be the first nonzero
digit on the path, where the carry digit switches to �1. From then on switches to
e D �1, we have
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y
0

n D .p � `r�1/p
r�1 C

n�1X
j Dr

.p � j̀ � 1/pj D �yn C pn:

Letting n ! 1 we obtain y
0

1 D �y1, establishing the result.

(4) Let r D pk with n � 1. For k � 0 the set pkY consists of modifying all
symbol sequences in Y by adding k initial zeros. A standard presentation Y 0 D
.N{p;G 0;w/ for this set is easily obtained. Let G 0 consist of G with the addition of k
new vertices wj .0 � j � k � 1/. Each of the new vertices has a single exit edge
from wj to wj C1 assigned label 0, for 0 � j � k� 2, and a similar exit edge labeled
0 from wk�1 to v0. The start vertex of G 0 is w0, and G 0 has k C V vertices.

Remark 5.2. Theorem 5.1 excluded the case “multiplication by pk with k < 0,”
since these maps do not have range in Zp.

5.2. Proof of Theorem 1.4. Theorem 1.4 follows immediately from Theorem 5.1.

Proof of Theorem 1.4. Let r be a p-integral rational number, i.e. ordp.r/ � 0. We
may factor r D .�1/apk M1

M2
, in which a 2 f0; 1g; k � 0 and gcd.p;M1M2/ D 1.

Now we successively apply the constructions in Theorem 5.1 to multiply Y by 1
M1

,
next multiply the resulting set by M2, next multiply the resulting set by .�1/a, and
finally multiply the resulting set by pk .

6. Examples

In the following examples, we let †p.D/ denote the p-adic integer Cantor set
consisting of all p-adic integers whose digits are drawn from a given set D 

f0; 1; : : : ; p � 1g. All †p.D/ 2 C.Zp/, and have Hausdorff dimensions

dH .†p.D// D logp jDj D log jDj
logp

:

Example 6.1. This example concerns adding a p-integral rational number r to the
3-adic Cantor set Y01

defD †3.f0; 1g/, whose 3-adic expansions omit the digit 2. It has
a right-resolving presentation as a 3-adic path set by the pointed labeled graph .G ; 0/
pictured in Figure 1.

Figure 1. Presentation .G ; 0/ of †3.f0; 1g/.
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This graph has adjacency matrix

A D .2/;

whose Perron–Frobenius eigenvalue is 2, hence the Cantor set †3.f0; 1g/ has Haus-
dorff dimension dH .†3.f0; 1g// D log3 2, as stated above.

Now we consider the effect of additively shifting by r D 2. The construction
of Section 4.1 applied to the presentation above yields the p-adic path set fractal
presentation of Y01 C 2 D †3.f0; 1g/C 2; given in Figure 2, denoted by

Y01 C 2 D i3.XG 0.0200//:

Figure 2. Presentation .G 0; 0200/ of Y01 C 2.

Under one ordering of the vertices of G 0, the adjacency matrix of the underlying
(undirected) graph of G 0 is

A0 D

0
BB@
0 1 1 0

0 0 1 1

0 0 1 1

0 0 1 1

1
CCA :

The eigenvalues of A0 are 2 and 0 (multiplicity 3), so we see the Perron eigenvalue
is 2. Thus the Hausdorff dimension is

dH .Y01 C 2/ D log 3

log 2
D dH .Y01/

Here Y01 C˛ for any ˛ 2 Z3 must have the same Hausdorff dimension, because they
are bi-Lipschitz equivalent, hence their adjacency matrices must have the same Perron
eigenvalue. Note that only a countable set of values of ˛ can give Y01 C ˛ 2 C.Z3/,
since C.Z3/ is a countable set.
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Example 6.2. We consider the effect of set addition on 5-adic Cantor sets †5.D/

for certain subsets of digits D. For all sets of two digits, we have dH .†5.fa; bg/ D
log5 2: Set

Yi;j
defD †5.f0; ig/C†5.f0; j g/; 1 � i; j � 4:

One can show that
log5 3 � dH .Xi;j / � log5 4: (6.1)

We find by inspection that the sums of certain Cantor sets are themselves Cantor sets:

Y1;1
defD †5.f0; 1g/C†5.f0; 1g/ D †5.f0; 1; 2g/

and

Y1;2
defD †5.f0; 1g/C†5.f0; 2g/ D †5.f0; 1; 2; 3g/:

These examples have Hausdorff dimensions dH .Y1;1/ D log5 3 and dH .Y1;2/ D
log5 4, respectively, and they show that the bounds in (6.1) are sharp. Much more
interesting are the sets Y2;3 and Y1;4, which are not Cantor sets; here the p-adic carry
operations occurring during addition in the set sum destroy the Cantor set property.
To compute their Hausdorff dimension, we first find p-adic path set presentations for
them by the construction of Theorem 1.3. These presentations are not right-resolving,
but we then apply the subset construction method in [2], Section 2, to obtain a right-
resolving presentation. We omit the details, noting only that for Y1;4 we find the
resulting graph has five vertices and adjacency matrix

A14 D

0
BBBB@

1 1 1 0 0

1 1 1 0 0

1 1 0 1 1

1 1 0 1 1

1 1 0 1 1

1
CCCCA :

Its Perron eigenvalue is 2C p
2. Computing its Hausdorff dimension by the formula

of Theorem 3.1, we obtain

dH .Y1;4/ D log5.2C p
2/ 
 log5.3:41412/:

A similar construction for Y2;3 leads to

dH .Y2;3/ D log5.2C p
3/ 
 log5.3:73205/:

Example 6.3. We consider the effect on the 3-adic Cantor set Y01
defD †3.f0; 1g/ of a

multiplicative translation by r D 1
4
:The set 1

4
Y01 has a presentation .H ; 00/ obtained

from that of †3.f0; 1g/ given by .G ; 0/, using the construction given in Section 5.1.
This presentation is shown in Figure 3.
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Figure 3. Presentation .H ; 00/ of 1
4
†3.f0; 1g/.

The adjacency matrix B of the underlying graph of H is

B D

0
BB@
1 1 0 0

1 0 0 1

0 0 1 1

1 0 1 0

1
CCA :

This matrix has Perron eigenvalue 2, and it has three other smaller nonzero eigenval-
ues, one real and two conjugate complex. Using the formula in Theorem 3.1(3) we
obtain dH .

1
4
Y01/ D log3 2.

Example 6.4. In this example we consider the effect of intersecting multiplicatively
translated Cantor sets taken from Example 6.3. Let

Y
defD 1

4
Y01 \ Y01 D †3.f0; 1g/\ 1

4
†3.f0; 1g/:

We obtain by the method of [2], Section 4, applied to the presentations above the
presentation of .H 0; 000/ shown in Figure 4, where H 0 is the label product H 0 D
G ?H , as defined in [2], Section 4.

Figure 4. Presentation .H 0; 000/ of †3.f0; 1g/ \ 1
4
†3.f0; 1g/.

The adjacency matrix of the underlying graph of H 0 is

B 0 D
�
1 1

1 0

�
;
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whose Perron eigenvalue is 1Cp
5

2
. We conclude that

dH .Y / D dH .†3.f0; 1g/\ 1

4
†3.f0; 1g// D log3

�1C p
5

2

�
:

Remark 6.5. In [3] we will study intersections of multiplicative translates of 3-adic
Cantor sets in much more detail.

7. Concluding remarks

The constructions of this paper may prove interesting from the viewpoint of nonnega-
tive integer matrices and their eigenvalues. By Theorem 1.1 the Hausdorff dimension
is given by the base p logarithm of the spectral radius of the underlying adjacency
matrix of a standard path set presentation graph, which is a nonnegative integer ma-
trix. As noted in Section 1.2, for nonzero r 2 Q \ Zp the maps X 7! X C r and
X 7! rX preserve Hausdorff dimension. On the level of path set presentations these
constructions therefore produce infinitely many different integer matrices, of varying
dimensions, all having the same spectral radius, plus various eigenvalues of smaller
modulus whose cardinality and size will change under these operations. The allowed
dimension of these matrices as the parameter r varies will be unbounded.

The spectral radius of a nonnegative matrix is always attained by a nonnegative
real eigenvalue, according to the Perron–Frobenius theory. In the special case of
nonnegative integer matrices A this maximal eigenvalue is a real algebraic integer ˇ,
and if A is not nilpotent, then ˇ � 1. It is termed the Perron eigenvalue in Lind and
Marcus [17], Definition 4.4.2. This eigenvalue is necessarily a weak Perron number,
which is defined to be any positive n-th root of some Perron number ([16]) for some
n � 1; a Perron number is any real algebraic integer ˇ � 1 which is strictly larger
in absolute value than all of its conjugates. Lind [15], Theorem 1, showed that the
Perron eigenvalue of any aperiodic nonnegative integer matrix is a Perron number,
and that conversely every Perron number occurs as the Perron eigenvalue of some
aperiodic nonnegative integer matrix. More generally the Perron eigenvalue of any
non-nilpotent nonnegative integer matrix is a weak Perron number, and conversely
every weak Perron number occurs as the Perron eigenvalue of at least one such matrix.
Perron numbers appear as the topological entropies of Axiom A diffeomorphisms via
a result of Bowen [4]; see [15], p. 288.

The constructions in this paper could be of interest in investigating and produc-
ing examples of graphs with a fixed Perron eigenvalue, particularly in case where
this eigenvalue is very close to 1. In order to produce nonnegative matrices that
have a given Perron number ˇ as spectral radius, it is sometimes necessary to take a
nonnegative matrix of dimension strictly larger than the degree of the minimal poly-
nomial of 	 , see an example given in Lind [14] and [15], Section 3. In such cases
the characteristic polynomial of this matrix must contain extraneous eigenvalues.
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The constructions of this paper offer a method to generate interesting examples of
this kind. Such graph constructions might also conceivably be useful in investigating
conjectures on the smallest Perron number of each degree, a topic studied in Boyd [5]
and Wu [24]. A more speculative direction would be to investigate the structure
of such graphs in connection with Lehmer’s conjecture on the Mahler measure of
irreducible polynomials.
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