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Scaling exponents of curvature measures

Dusan Pokorny and Steffen Winter!

Abstract. Fractal curvatures of a compact set F C R¥ are roughly defined as suitably rescaled
limits of the total curvatures of its parallel sets F as ¢ tends to 0 and have been studied in the last
years in particular for self-similar and self-conformal sets. This previous work was focused on
establishing the existence of (averaged) fractal curvatures and related fractal curvature measures
in the generic case when the k-th curvature measure Cy (Fg, -) scales like eK~2 where D is
the Minkowski dimension of F. In the present paper we study the nongeneric situation when
the scaling exponents are not determined by the dimension of F. We demonstrate that the
possibilities for nongeneric behaviour are rather limited and introduce the notion of local
flatness, which allows a geometric characterization of nongenericity in R and R?. We expect
local flatness to be characteristic also in higher dimensions. The results enlighten the geometric
meaning of the scaling exponents.
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1. Introduction

Curvature measures are important geometric tools in fields such as convex geometry,
differential geometry, integral geometry and geometric measure theory. They have
been defined and studied for various different set classes such as convex sets and their
unions, differentiable manifolds, sets with positive reach [5], subanalytic sets [8] etc.
In [30], a certain extension to fractal sets F C R? has been suggested by means of
the approximation of F by its parallel sets. For a bounded set ¥ C R? and ¢ > 0,
denote by
F, ={y e R?: dist(y, F) < &}

the e-parallel set of . Suppose the curvature measures Co(Fg, +), ..., Cqg(Fe, ) of F¢
are well defined for almost all & > 0, see more details below in Section 2. In this list
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of (in general signed) measures, the surface area Cy_1 (Fg, ) = %Jr’f d=1(9F,N-) and
the volume measure Cy(Fg, ) = Ag(Fs N -) are included. Denote the total masses
of these measures by Cy (F;) := Ci(Fs, [Rd), k =0,...,d. Then, for s > 0, the
(s-dimensional) k-th fractal curvature of F is defined by

€ (F) := esslim & *Cr(Fy), (1.1)
or, more generally, by
|
Ci(F) :=811£}) |ln8|/5 ST LCL(Fy)de, (1.2)

provided these limits exist (possibly being 400 or —oo). Itis clear that, if the essential
limit in (1.1) exists, then the limit in (1.2) exists as well and both values coincide,
justifying to speak of (1.2) as a generalization of (1.1). In the literature, also the term
average fractal curvatures is used for the limits in (1.2). The exponent s has to be
chosen appropriately. Typically s = D := dimys F is the right choice for all k and
therefore, up to now, fractal curvatures have mainly been studied with this choice for
the scaling exponents.

Indeed, the fractal curvatures ‘t’:’kD (K) have first been considered in [30] for self-
similar sets K C R? satisfying the open set condition (OSC) under the additional
assumption that the parallel sets K, are polyconvex. For nonlattice self-similar sets,
the existence of the limit (1.1) (in fact not only as an essential limit but as an ordinary
limit) was shown, while for lattice self-similar sets only the existence of the average
limit (1.2) has been established. This fundamental difference between lattice and
nonlattice self-similar sets had been observed before, in particular for Minkowski
contents in [15] and [3] (for d = 1) and [10] (for general d). The assumption of
polyconvexity has been replaced by different weaker (but more technical) curvature
bounds in [35], [28], [2], and [31]. It is not needed for the cases k = d, cf. [10], and
k = d — 1, see [24]. A rather general assumption for k < d — 2 — used in [28] —is
the following integrability condition: there are constants a, &9 > 0 such that

1 £ —k var de
sup e " sup C" (F, B(x,ag))— < o0. (1.3)
§<so |Ind| Js xeF &

This assumption does only ensure existence of average limits, but not of the limits
in (1.1), for which slightly stronger assumptions are required, e.g. the curvature
bounds used in [35] and [33], which are equivalent to the following condition, see [28],
Remark 3.1.3: there are constants @ > 1 and g9 > 0 such that

esssup s_kC,Z‘“(FE, B(y,ae)) < 0. (1.4)
£€(0,e0],yEF

The existence of associated fractal curvature measures is discussed in [30], [33],
and [28] and corresponding results for curvature-direction measures are obtained
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in [2], where an integrability assumption (on the curvature direction measures) is
used that is even weaker than (1.3). Generalizations to self-conformal sets are studied
in [14], [12], and [1].

As we have just outlined, previous work on fractal curvatures has concentrated
on the case s = D, leaving to the side the fact that D is not always the right choice
for the scaling exponents. Indeed, a simple class of examples are fulldimensional
cubes Q in [Rd, cf. [30], Example 2.3.5, which can be generated as self-similar sets
and for which the choice s = k is optimal for the k-th fractal curvature for all k, in
that ‘6,’; (Q) is positive and finite, while dimys Q = d for these cubes. Some further,
less trivial examples of self-similar sets for which some scaling exponent is different
from the dimension are presented in Section 3. They motivate the investigations in
this paper. It is one of our main objectives, to understand when such a nongeneric
behaviour occurs for self-similar sets.

For this purpose, we need a satisfactory definition of the k-th scaling exponent
of aset F C R?, which is not easy to give in general. Roughly, it is the number
t for which €/ (F) is nonzero and finite. There is not always such a 7, but if there
is, then €} (F) = O for all s > ¢ and €} (F) = oo for all s < 7. Additional
difficulties are that the curvature measures Cy (Fg,-) are signed and that therefore
Cy (F¢) may change its sign infinitely many times as ¢ tends to 0 or even vanish for
all ¢ > 0, and that the measures may not be defined for each ¢ > 0. This is partially
resolved by working with the total variation measure C;*"(Fy, -) of Cy (F, -). Denote
by C*(Fe) its total mass. Two possible definitions arise more or less naturally from
the limits in (1.1) and (1.2). As will become clear later, each has its advantages and
disadvantages and it is not clear which one is the best notion of scaling exponent. Let
F C R4 be a bounded set for which the k-th curvature measure of F, is defined for
almost all ¢ > 0. The first possibility is to define the k-th scaling exponent of F by

sk (F) :=inf{s > 0: esslim ss_kC,Z‘“(FE) =0}
e—>0

) i (1.5)
= sup{s > 0: esslimsup & C;*(F;) = oo}
e—0
which generalizes the definition suggested in [30] and [32]. The second possibility
is to use again some averaging and consider the number

1
ar(F) = inf{s >0: lim

1
s—k—1 /v var
C/"(Fg)de =0
8—>0|ln5|/3 ¢ k (Fe)de }

(1.6)

1 1
= sup{s > 0: lim sup / es_k_lclzar(Fg)de = oo}.
50 |Ind| Js

as the k-th scaling exponent. We will use the term average scaling exponent for
ar (F) in order to be able to distinguish both exponents. Regarding their relation, we

point out that in general one has the inequality a (F) < si (F), but both exponents
need not coincide, as the example of the Cantor dust C x C C R? (where C C R is
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the middle third Cantor set) illustrates, for which so(C x C) = oo while ao(C x C)
equals the dimension of this set, see [28], Example 4.2.

Note that both exponents si (F') and ai (F) are upper exponents. Corresponding
lower exponents can be defined by replacing the (upper) limits in the definitions by
lower limits. However, at present we see no application of these lower exponents.
Below our results will be formulated for the exponents s (F'), although most of them
hold equally for the exponents a (). This is due to the fact that most results are
derived from estimates for the curvature measures which hold for (almost) all £ > 0
allowing to draw conclusions for both exponents. Only in cases, where the curvature
conditions (1.3) or (1.4) are involved, the results for a; (K') and 5% (K) may differ. For
instance, for self-similar sets K the integrability condition (1.3) ensures the inequality
arx(K) < D, while only the stronger condition (1.4) ensures sz (K) < D. Condition
(1.3) is not sufficient for this conclusion as the above example of the Cantor dust
demonstrates. By definition, we also have 0 < a (F) < s¢(F) in general.

We point out that, for k = d and k = d — 1, the essential limits in (1.5) are
ordinary limits and thus, for k = d, we recover the upper Minkowski dimension:
sq(F) = dimy; F. The exponent s4_; (F) = dimgF is also known as the upper
S-dimension of F, cf. [24] and [25]. Since for self-similar sets K satisfying OSC,
Minkowski and S-dimension are known to exist, one even has s;(K) = dimys(K)
and s;_1(K) = dimg K in this case. Moreover, it is not difficult to see that a; (K) =
sg(K)fork =dandk =d — 1.

In this paper we study the situation when some of the scaling exponents do not
coincide with the dimension. In Section 4, we introduce the notion of local flatness
(see Definition 4.1) in order to characterize such nongeneric behaviour of the scaling
exponents. We conjecture that a self-similar set is locally flat if and only if some
of its scaling exponents differ from its dimension, see Conjecture 4.2. As a main
result of this paper, we resolve this conjecture for self-similar sets in R and R?, see
Corollary 4.9 and Theorem 6.1, respectively. Corollary 4.9 is essentially a special case
of Theorem 4.8, which resolves the conjecture for fulldimensional self-similar sets in
R<. One of the questions that arise on the way (and which is of independent interest)
is, whether scaling exponents are independent of the dimension of the ambient space
(in which the parallel sets are taken). Proposition 4.10 shows the independence in
the case required for the derivation of the main results.

In Section 5, we study the O-th scaling exponent for sets in R? and obtain some
sufficient conditions for this exponent to be equal to the dimension of the set. In
particular, the disconnectedness of the complement or the total disconnectedness of
the set itself are sufficient, cf. Theorem 5.3 and Corollary 5.5, respectively. More
precisely, we obtain these results for the directional variant 5o(F) of so(F), which
is introduced as follows. Let Ck (Fe,),k =0,1,...,d — 1, be the k-th curvature-
direction measure of F; (on the normal bundle nor(F,) C RY x §9-1 of F,); for
completeness let Cz(Fs, ) := Ag(F, N 71(-)), where 7; is the projection onto the
space component. Recall that Cy(Fs, A) = Ci(Fs, A x §971), for any Borel set
A C RY. Let G;M(FE, -) denote the total variation measure and G;M(FE) its total
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mass. Then §x (F') and ax (F) are introduced by replacing in (1.5) and (1.6) C;* (F)
by Cy*(F,), ie.,

§k(F) := inf{s > 0: esslim &> % C}™(F;) = 0}. (1.7)
e—>0

From the relation C}*"(Fe) < C L"(Fe) itis easily seen that the inequalities si (F) <
Sp(F) and ay (F) < ai(F) are true, whenever one of these scaling exponents (and
thus the others) are defined. Itis believed that one has in fact equality in these relations
in general, which is up to now only clear for the cases k = d and k = d — 1. For sets
in R2, we show equality of the scaling exponents in Corollary 6.3 below. The main
reason for switching to the directional exponents is that one can take advantage of
the integral representations derived by Zihle [34] for curvature-direction measures,
see e.g. Lemma 5.1.

Section 6 is devoted to the resolution of Conjecture 4.2 in dimension 2, for which
many of the results of Sections 4 and 5 are employed. Originally we have started
this investigation of the variability of the scaling exponents from a slightly different
point of view, which can be summarized in the following question: given a vector
(fo. . ... 17) € R2H1 does there exist a self-similar set K C R? such that s (K) = t«
for k = 0,...,d? That is, is it possible to prescribe the scaling exponents and
construct a set with exactly those exponents? Our results indicate that the family
of vectors, for which such self-similar sets exist is very sparse. We have added
some discussion of this in Section 7. However, we are still far from a complete
answer. The same question may be asked for arbitrary sets in R?. We demonstrate
in Example 7.1 that there is more freedom for the choice of the scaling exponents
when the self-similarity assumption is dropped. Furthermore, as a byproduct of the
proof of Theorem 5.3, we obtain in Theorem 7.2 that a self-similar sets possesses a
compatible self-similar tiling (in the sense of [21]) if and only if its complement is
disconnected, resolving thus an open question in [21].

Acknowledgements. We are grateful to A. Kravchenko and D. Mekhontsev, the
authors of the software package IFS Builder 3d, which we have used for Figure 1,
and to Erin Pearse for Figure 2. We thank J. Rataj, M. Zihle and T. Bohl for helpful
comments and fruitful discussions.

2. Preliminaries

Curvature measures of parallel sets. A distance ¢ > 0 is called regular for a
closed set F C R9, if ¢ is a regular value of the distance function of F in the sense
of Morse theory, cf. Fu [7]. Fu has shown that, for compact F' C RY with d < 3,
this property is satisfied for Lebesgue almost all . For regular values ¢ > 0 of F,
curvature measures of the parallel sets F; are well defined. Denote the closure of the
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complement of a compact set A by A Ifeis regular for F, then the set Fe = @ has
positive reach in the sense of Federer [5] and F; has a Lipschitz boundary. Therefore,
the curvature measures of the sets 1?; (of positive reach) are well defined in the sense
of Federer [5] and the curvature measures of F, are determined via normal reflection:

Ci(Fe,...) = (=14 "*Cu(Fo, ), k=0,....d—1, 2.1

since both F, and 1?; are d-dimensional Lipschitz manifolds of bounded curvature,
see [26], and [27] or [35] for more details. (We point out that e.g. in [35] and [33],
a slightly weaker notion of regularity is used, namely ¢ is regular if F has positive
reach and F; has a Lipschitz boundary. However, while regularity in ¢ in the sense
of Fu implies weak continuity of the curvature measures, that is,

Cr(Feys,...) — Cr(Fg,...)

weaklyas§ — 0, seee.g.[23], Theorem 5.2, the weaker regularity notion ensures only
right continuity in general. For applying e.g. the Renewal Theorem the continuity
is needed, which means that in some of the results in [34], and [33], the stronger
regularity in the sense of Fu is required or, alternatively, the continuity has to be
assumed additionally.) For self-similar sets it is conjectured that almost all ¢ are
regular; some results on critical points of their distance functions have been obtained
in [20]. For k = d — 1, the surface area is included in the list of curvature measures.
It coincides for F, and 1?; For completeness, the volume measure Cy(Fe,...) :=
Ag(Fe N ...)is added to this list. Let

Ck(Fa) = Ck(F&‘! [Rd)

be the total mass of Cy (Fg, ).
We recall some of the basic properties of curvature measures. Let X, Y C R¥ be
sets with positive reach. Then

(1) Cr(X,A) = Cr(g(X), g(A)) for every Euclidean motion g (motion covari-
ance);

2) Cr(XUY,) =Cr(X, )+ Cr(Y,)—Cr(X NY,-),provided X UY has positive
reach (implying that also X N Y has positive reach, see [5], Theorem 5.16)
(additivity),

(3) Cr(AX, L) = AKCr(X, ) for every A > 0 (k-homogeneity);

@) IfXNU = Y NU forsome openset U, then Cr (X, -) |y = Cr (Y, )|v (locality);

(5) Co(X) = x(X), provided X is compact and y denotes the Euler characteristic
(Gauss—Bonnet theorem).

Beside curvature measures Cy (X, .), we will also consider their directional vari-
ants Cr (X, .). The curvature-direction measures (or generalized curvature measures)
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ék (X,.),k =1,...,d—1donotlive on the boundary of X, but on the normal bundle
of X, defined by

nor X := {(x,n) € X x $%7': n e Nor(X, x)},

where
Nor(X,x):={n € R?: (n,y) <Oforall y € Tan(X, x)}

is the normal cone and Tan(X, x) the tangent cone of X atapoint x € X, seee.g. [5],
§4.3, for more details. Let

T RY x §9-1 [Rd, (x,n) —x
and

Ty RY x §9-1 Sd_l, (x,n) —>n

be the projections onto the first and the second component, respectively. If X C R¢
is a full-dimensional set, then Cy(X,.) can be interpreted as the projection of the
measure Cy (X, .) with respect to 7, that is Cx(X,-) = C (X, x S971) = One of
the advantages of the measures Cy is the validity of the following integral formula due
to Zihle (see [34], Theorem 3): if X C R< has positive reachand k € {0, ...,d —1},
then for any Borel set B C RY x §4~1

d—1—k

2. [T «i0em

1<ij<-<ig—1—x<d—1 j=1

CelX B) =i [ a2
nor X H NARNACND
j=1

Here, «;(x, n) are the (generalized) principal curvatures corresponding to (x,n) €
nor X, 1p is the characteristic function of B, and ¢y = (d — k)a(d — k), with
a(j) being the volume of the j-dimensional unit ball. Curvature-direction measures
Cy have similar properties as the ones listed above for Cy. For more details and
background on curvature measures, we refer to [34] and [35] and the references
given therein.

HA(d(x, n)).

Self-similar sets. The main object of study are self-similar sets satisfying the open
set condition which we recall now briefly, introducing also some notation this way,
which will be used throughout.

Supposethat N e N, N > 2. Fori =1,...,N,letS;: R? — RY be a contract-
ing similarity with contraction ratio O < r; < 1. Then there is a unique nonempty
compact set K C R? invariant under the set mapping S(...) := U; Si(...). This
set is known as the self-similar set generated by the function system (shortly IFS)
{S1,..., SN}, cf. [11]. The set K (or, more precisely, the system {Sq,...,Sn})
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is said to satisfy the open set condition (OSC) if there exists a nonempty open set
O C R? such that

| JSioc o and S,0nS,0=0 fori#;.

1

Such a set O is sometimes called a feasible open set of the IFS {Si,..., Sy}, or
of K. The strong open set condition (SOSC) holds for K (or {S1, ..., Sy}), if there
exists a feasible open set O which additionally satisfies O N K # @. It was shown
by Schief [29], Theorem 2.2, that in R4 OSC and SOSC are equivalent, i.e., for K
satisfying OSC, there exists always a feasible open set O with O N K # @.

The unique solution s = D of the equation ElN=1 r? = 1is called the similarity
dimension of K. It is well known that for any self-similar set K satisfying OSC,
D coincides with both the Minkowski dimension dimp; K and the Hausdorff dimen-
sion dimg K of K, which in particular means that in this case dimys K = dimg K
holds, cf. e.g. [4], Theorem 9.2.

Let X% = {l1,..., N}™ be set of all words of length m over the alphabet
{1,..., N} and denote E*N = U}io Efv. Forw = w1...w, € E}‘v we denote
by |w| the length of w (i.e., |w| = n) and by w|k := w; ...wy the subword of the
first k < n letters. We often abbreviate 7 := 7', .. .7, OF S i = Sp, 0...0S,,
and similarly for other notions concerning self similar sets. Furthermore, let ry;, :=
min{r;:i =1,..., N}

Further notation. Throughout we use the following more or less standard notation
without further mention. For x € R¢ and ¢ > 0 we denote B(x, ¢) the closed ball
with centre x and radius e. For the topological boundary of a set A C R? we write
0A. A° and A€ are used for the interior and the complement of A, respectively.
The ;v—dimensional Hausdorff measure is denoted by #* and S¢~! is the unit sphere
in R4.

3. Basic examples

We start with a simple example of a class of self-similar sets for which the 0-th scaling
exponents are not equal to the dimension.

Example 3.1. There is a set N C [0, 1], dense in [0, 1], such that for each a € N
there exists a self-similar set F = F(a) C R? such that so(F) = a and s1(F) =
s2(F) =a+ 1.

Proof. Letn,m € N withm < n.Fork,l = 1,...,n, define g ;: R — R? by

1
Pr(x,y) = ;(x +k—1,y+1-1).
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Let K™ and F™™ be the self-similar sets generated by the mappings ¢x ;, kK =
I,...om,l =land gx;. k = 1,....m, [ = 1,...,n, respectively; see Figure 1
(left) for an illustration. (If K™ is viewed as a subset of R, then we have F""" =
K™™ x [0, 1], however, in the sequel, K™ is studied as a subset embedded in R2.)

FAigure 1. Left. The set F*3 = K*3 x [0, 1] from Example 3.1. Right. The set F43 =
K*3 4 ({0} x [0, 1]) from Example 4.5 with t; = 0,7, = 1/6and 13 = —1/6.

Since both K™ and F™™ satisfy OSC, we have dimys K" = logm and

logn
dimpy Fm™m = 1 4 287 | et

logn *
1
N = { Ogm:n,m e N,m <n}.
logn
Using the inequality
logm +1 logm _log"’T+1 2
logn logn |  logn ~ logn

and observing that mT_l /" 1and logn — oo as n — 00, it is easily seen that N is
dense in [0, 1].

Choose a = ll‘;gg': € N and consider the set F = F(a) := F™™. First observe

that Cy* ((K™"™)g) = Cy*((F™™),) for every ¢ > 0 and therefore so(K""™) =

so(F™™). Let U = (—%, 1— %) x R. Then U is a feasible open set for K.
Put g9 = % and B = B(0,e9) C U_g,. Then, for every r € (0,&0] we have

the arc S(r) := dB(0,r) N (—o0, 0] x (—o0, 0] contained in B N d(K"™™),. Note
that Co((K™™),, S;) = %. Now it is sufficient to use Proposition 5.2 (or [30],
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Theorem 2.3.8) for B, g as above and 8 = i. We obtain

logm

So(F™™) = 50(K™™) = dimys (K™™) = ] .
ogn

Finally, since F™" has empty interior, we use [24], Corollary 3.4, to obtain

s (F™™) = so(F™™) = dimpy (F™™).

. loem .
Summing up, we proved that for a = 1Zgg . € N the vector of scaling exponents

of the set F(a) isequal to (a, 1 +a, 1 + a). O

The next class of examples in the plane deals with the difference between the
Minkowski dimension of a self-similar set and the Minkowski dimension of its bound-
ary (resulting in a difference between s, (K) and s1 (K)). Obviously, such a difference
can only occur if the set has interior points, that is, if the set has the dimension of the
ambient space.

Example 3.2. There is a dense subset M of [1, 2] such that for each a € M there
exists a self-similar set F = F(a) C R? with dimy; F = 2 and dimy; F = a.

Proof. The basic idea is to subdivide the square W := [0, 1]? into 22¥ sub-squares
each of side length 27%. Some of them are kept in their position and the others are
rotated to the outside of W in such a way that the OSC is not violated; see Figure 2 for
anillustration. This procedure can be described by an IFS consisting of 4% similarities
each with ratio 2F and such that each square is the image of W under one of these
mappings. While the dimension of the generated self-similar set is always 2, the
number of rotated squares will determine the dimension of its boundary.

Let fi(x,y) = 5(x = 5.7 = 3), o(x.y) = 3(x + 3.9 = 3), fr(x.y) =
%(x — % v+ %), f4(x, y) = %(x + % v+ %) andlet g;,i = 0,...3 be the rotation
around the point S’ (%, 0) by 7, where § is the rotation around the point (0, 0) by 7.

For k > 2, we define an equivalence relation ~ onthe set {1, ..., 4}k as follows:

w0 = fo(W)=S"0 f(W)forsomei € N.

Note that each equivalence class of & consists of 4 words each corresponding to a
square (of side length 27%) in a different image f;(W)of W,i =1,...,4.

Let (Q;{ denote the system of equivalence classes of &~ . Forawordw € {1, ..., 4},
we write Q(w) for the class in @) containing w. Let the subsystem @} of O} be
defined by

4
Q= {Q €@ | foW)nN U af; (W) = @ for some w € Q}. 3.1

i=1
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Figure 2. Two realizations of the self-similar sets K%~ discussed in Example 3.2 for k = 4,
m =7 (left) and for k = 3, m = 1 (right).

That is, in (Q;{’ we exclude all squares touching the boundary of one of the sets f; (W).
For reasons of symmetry this is consistent with the equivalence relation in the sense
that O € (,‘ZZ implies that for each w € Q, the square f,, (W) does not intersect the set
U?=1 df; (W). We will also need to avoid diagonals and so we consider the system
@"" which is equal to Q" without the squares that have the centre on both diagonals
{x = y}and {x = —y}. The cardinality of @}" is |@Q}"| = 4k=1 _2k+1 1 2 Finally,
we place a chessboard pattern over the remaining squares and exclude all the black
squares. This can be done in a ~;-consistent way as follows. Let @ the subsystem
of all O € @} such that for each v = w11 ...wr € Q the number w; + wy is
even. Note that |@Qy| = %l(&}c” | = 2.4k=2 _2k 1 1. Moreover, @y has the following
“chessboard” property: for any P,Q € @, o € P, 0 € Q the white squares
fo(W) and f; (W) have no common side.

Fix some integers k > 2 and 0 < m < |@Qg|. Choose an arbitrary subsystem
QY of @ with Q"] = m. This can be interpreted as a coloring the corresponding
amount of white chess-tiles with a third color. First define

H :={(x,y) € (0,00) x R: x < |y|}
and put H; := S'(H),i = 0,...,3. Then define a mapping
W {l,...,4F —{0,...,3}
such that ¥(w) =i if and only in f,,((0,0)) € H;. Define a mapping

kam . p2 2
hy™: R — R



188 D. Pokorny and S. Winter

fora)e{l,...,4}kby

v ° Jo if Q(w) € @QF,

fo otherwise.

k.m .__
hem =

Let K5 be the self-similar set generated by the IFS {hf;m cwe{l,..., 4%} First,
itis easy to see that K% satisfies the open set condition (using e.g. the finite clustering
property in [29]), Theorem 2.2(v), and, since K% is generated by 4¥ mappings each
with similarity ratio 27k we obtain dimy, K¥™ = 2.

Moreover, one can see that dK*™ is a union of four mutually isometric self-
similar sets (each of them naturally corresponding to one side of W). Each of them,
say Bj is a similar copy on a self similar set generated by the similarities

1
Fiey) = (2% 41— 2.27%y) =021,
2
Gl :=T,027%s o To— 1) Q(w) € @ W(w) =3,i =0,...,3,
H! :=g30T,027%8"0o To-1) Q@) €@ ¥(w) =3.i=0,...3,

where T, _ 1 is a translation by the vector (0, —%) and 7, is a translation by vector

h](f,’m((O, 0)) — (0, —%). In this IFS there are 2X mappings Fj, 4m mappings G! and

4m mappings H all of them with similarity ratio 2% Note that the IFS satisfies
OSC with

0 = conv{ + (% O), :I:(O, %)}O
being a feasible open set, which implies that

log(2% + 8m)

dimys 0K*™ =
Hmm log(2k)

Finally observe that, similarly as in the previous example, the set

k
‘={M:k>2,0<m<2-4k_2—2k+1}
log(2k) - - -

is dense in the interval [1, 2]. O

Note that the possible values of scaling exponents in the examples above are fairly
restricted by the OSC and it is not clear whether there exist self-similar sets (satisfying
OSC) for each value in the intervals [0, 1] or [1, 2] instead of just the dense sets N
and M, respectively.
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4. Local flatness
The above examples motivate the following definition and conjecture.

Definition 4.1. Let K € R? andm € {1,...,d}. We say that K is locally m-flat if
for every x € K and ¢ > 0 there is a closed cube C C B(x, ¢) such that C° N K is
nonempty (where C° denotes the interior of C) and C N K is similar to [0, 1] x P for
some set P C R~ (For m = d this should be interpreted as C N K being similar
to [0, 1]4.) We say that K is locally flat, if it is locally m-flat for some 1 <m < d.

In contrast to this local notion, we call the set K (globally) m-flat if there exists a
set O C RY™ such that K itself is similar to [0, 1] x Q. That is, a set is globally
flat if it is a product set with one factor being a cube (of some dimension).

Note that all sets in Example 3.1 are locally 1-flat, while all sets in Example 3.2
are locally 2-flat. It is clear that global k-flatness implies local k-flatness, but the
converse is not necessarily true (see Example 4.5 below). Note that we do not require
the cube C in the definition of local flatness to contain the point x. Moreover, for
any m > 1, local m + 1-flatness implies local m-flatness. We consider this notion
important for self-similar sets, because we conjecture local flatness to be characteristic
for the occurrence of scaling exponents that are strictly smaller than the dimension.
More precisely, we believe the following conjecture is true.

Conjecture 4.2. Let K be a self-similar set in R? satisfying OSC. Then si(K) >
dimys K forevery k € {0,1,...,d} if and only if K is not locally flat. If K satisfies
additionally the integrability conditions (1.3), then the assertion holds with s; (K) >
dimps K replaced by s; (K) = dimys K.

In the sequel we will confirm this conjecture for sets in R and R? and we will give
some support of this conjecture in higher dimensions.

Our first goal is to get a better understanding of the notion of local flatness in
connection with self-similarity. The first statement shows that to decide the local
flatness of a self-similar set it is enough to look at a single point x of the set (and at a
fixed ball B(x, €)). Local flatness “at one point” (and at a fixed scale) implies local
flatness everywhere in the set (and at all scales).

Proposition 4.3. Assuming OSC the following assertions are equivalent for a self-
similar set K C RY.

(1) K is locally k-flat.

(ii) There are x € K, ¢ > 0 and a cube C C B(x, &) such that C° N K is nonempty
and C N K is similar to [0, 1] x P for some P C R4k,

Proof. The implication (i) = (ii) is trivial. To prove the reverse implication, let
{91,...,on} be similarities generating K, let O be a strong feasible open set for K
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(i.e., a feasible open set such that K N O # @) and let z be a point in K N O. Since
the iterates ¢5(z), 0 € X7 of z are dense in K and since they are all contained in
K N O, we can find some iterate z’ of z contained in C N O and thus some cube
C’ € C N O (containing z’) such that (C’)° N K is again nonempty and C' N K
is similar to [0, 1]¥ x P’ for some set P’ € R¢7%. Nowlety € K and § > 0
be arbitrary. Then there is some iterate ¢, (C’) with @ € X% of C’ contained in
B(y,8). Clearly, ¢, (C’) is a closed cube. Moreover, C’ C O implies ¢, (C’')NK =
0o (C') N @u(K) = ¢u(C' N K). But the latter set is obviously similar to C’' N K
and thus to [0, 1]97% x P’. This shows the local k-flatness of K. O

The following simple observation indicates that a locally flat self-similar set sat-
isfying OSC is almost globally flat in the sense that it is contained in a nontrivial
product set.

Proposition 4.4. Ler K C RY be a self-similar set satisfying OSC which is locally
k-flat. Let C be any cube as guaranteed by the local k-flatness of K. Then there is a
similarity W such that K C ¥ (C N K), that is, K is contained in a k-flat set.

Proof. We fix a strong feasible open set O for K and assume without loss of generality
that C C O. (If this is not satisfied, one can work with a subcube C’ C C such that
C’ C 0, as in the proof of Proposition 4.3. If there is a ¥ such that K C ¥ (C’' N K),
then obviously the same 1 also works for C.)

Choose x € C° N K and put D := dist(x, C€). Let ¢1, ..., @x be similarities
generating K with ratios ry, ..., ry. If we put rp, = max;—;,. y7; < 1 we can
find m € N such that v}, diam K < D. Let ® € X'y such that x € ¢,(K),

then ¢, (K) C C°. Hence for the similarity ¥ := <pa_)1 the desired implication is
satisfied. O

Note that the Proposition above only shows that a locally k-flat self-similar set is
contained in a (globally) k-flat set. It is not necessarily (globally) k-flat itself, as the
following example illustrates.

Example 4.5. We start with the same mappings ¢ ;: R? — R? as in Example 3.1.
Letty,....t, € Rand define fork,/ =1,...,n

Qi (x,y) 1= @ (x,y + tr).

Fix 0 < m < n and let K™ and F"™ be the self-similar sets generated by the map-
pings ¢,k =1,....,m, I =land ¢ ;. k =1,...,m, [ =1,..., n, respectively;
see Figure 1 (right) for an illustration. Then, similarly as in Example 3.1, one has
the relation F-"m = K™ g ({0} x [0, 1]), where @ means Minkowski addition, and
therefore F"™ is globally 1-flatif and only if t; =t = --- = t,,,. Since K"™™ lies on
the graph of some continuous function f: [0, 1] — R with variable x, Frm s locally
1-flat. (This is seen as follows. Fix some point x € gnm. By the continuity of f at
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x there is some § > 0 such that | f(x) — f(y)| < 1/3 forevery y € [x —§,x + §].
Then the set

K™ @ ({10} x [0, 1)) N ([x — 8, x + 8] x [£(x) + 1/3, f(x) +2/3])

is (globally) 1-flat. Therefore we can choose a subsquare C of [x — 8, x + §] X
[f(x)+41/3, f(x)+2/3] such that condition (ii) of Proposition 4.3 holds for the set
K™™ @ ({0} x [0, 1]) = F"™. Since F™™ is self-similar, its local flatness follows
from Proposition 4.3.)

The property of locally k-flat sets of being contained in a (globally) k-flat set
implies that the flat cubes C in the definition of local flatness are all aligned. We
make this observation precise only in the case d = 2, since we need it only for this
case later on and since in higher dimensions the corresponding statement would be
more technical.

Corollary 4.6. Let K C R? be a self-similar set satisfying OSC which is locally 1-flat
but not locally 2-flat. Let Cy and Cy be two different cubes obtained from the local
flatness and let L and L, be non-degenerate line segments in C;y N K and C, N K,
respectively. Then L1 and Ly are parallel.

Proof. The local 1-flatness means that C; N K is a union of translates of L;, fori =
1, 2. Now, by Proposition 4.4, there is a similarity 1 such that K C ¢ (Cq N K). This
means that C; N K, C, N K C ¥ (Cy N K) and so in particular L1, L, C ¥ (C; N K).
Hence L and L, must be parallel, because otherwise K would be 2-flat. O

We add another simple observation concerning the relation between local flatness
of different orders.

Lemma 4.7. Let K C R? be a locally k-flat self-similar set and suppose that C is
a cube as in the definition of the local k-flatness with corresponding set P. If P is
locally 1-flat, then K is locally (k + 1)-flat.

Proof. Supposethat P is 1-flat. Choose x € CN KN O where O is some feasible open
set for K. By Proposition 4.3, it is sufficient to find ¢ > 0 and a cube C’ C B(x, ¢)
such that (C")° N K is nonempty and C’ N K is similar to [0, 1]¥*! x Q for some
0 C RE—k—1

Without loss of generality, we can assume that C N K = [0, 1]¥ x P. Let 7 be
the orthogonal projection onto the last d — k coordinates. Then xo := 7 (x) € P
and, since P is locally 1-flat, we can find ¢ > 0 and a cube D C B(xg, &) C RI—k
such that xo € D° and D N P is similar to [0, 1] x Q for some Q C R¢~¥~1 Now,
the desired cube C’ can be found around any pointin R¥ x D N B(x,e) N K. [

The following statement resolves the situation for full-dimensional sets.
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Theorem 4.8. Let K be a self-similar set in R? satisfying OSC. Then the following
assertions are equivalent:

(i) dimy K =d;
(i) s4—1(K) < dimpys K;
(iii) K is locally d-flat.

Proof. Since a self-similar set K C R? of dimension d has interior points (see [29],
Corollary 2.3) and since the interior points are dense in K, it is locally d-flat. On the
other hand, any locally d -flat set contains an open set and has thus obviously dimen-
sion d. This proves (i)<(iii). The implication (ii) = (i) follows by contraposition
from the fact that dimy; K < d implies sq_;(K) = dimgK = dimps K for any
bounded set K C R4, cf. [24], Corollary 3.6, or [25], Theorem 1.1.

Itremains to prove the implication (i) = (ii), which will follow at once if we show
that dimy; 0K < d. Indeed, if this strict inequality holds, then, by [24], Corollary 3.6,
we have

d > MME)K = MSE)K > ﬁsK =s54-1(K),

where the second inequality is due to the set inclusion d(K,) = d((dK),) N K¢ C
d((0K),), which holds for each r > 0.

For a proof of the inequality dimys 0K < d, observe that dimy; K = d, implies
the interior of K is nonempty and we can choose x € K°. Set D = dist(x, 0K) > 0.

Let ¢1,..., N be similarities generating K with ratios pq, ..., py. Putting p :=
max;—1,... n pi <1, wecan findm € N such that p” diam K < D. Let Y, ..., ¥k
be all mappings of the form ¢, with w € {1, ..., N} ordered in such a way that x €

Y (K). Then the IFS {y1, ..., ¥} also generates K, satisfies OSC and moreover,
Yr(K) C K°.

Suppose that r; is the contraction ratio of ;. Since dimys K = d, we have
Zle rl.‘i = 1. Let L be the self-similar set generated by the mappings V1, ..., Yx_1.
Since U := K° is a feasible open set for K (with U = K, see e.g. [21], Proposi-
tion 5.4, and thus U = dK) and by the choice of ¥ we have

k—1
oU c | vi o).

i=1

Similarly, for any n € N

U c |J ve@U) c | v(@) =: Ln.

|w|=n |w|=n

where the unions are over all words I € {1, 2, ...,k — 1}". Therefore, using the fact
that L, — L in the Hausdorff metricasn — oo, we obtain that 0K = dU C L. Since

Z::ll rd < 1 we have dimp L < d and therefore dimp 0K < d as claimed. O
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Theorem 4.8 is sufficient to resolve Conjecture 4.2 for sets in R.

Corollary 4.9. Let K C R be a self-similar set satisfying OSC. Then so(K) <
dimys K if and only if K is locally flat. In this case, dimps K = 1.

We conjecture that Theorem 4.8 can be generalized to sets in RY that are full-
dimensional with respect to their affine hull. That is, for any set K C R? whose
affine hull has dimension n € {l1,...,d}, assertions (i)—(iii) in Theorem 4.8 are
equivalent if d is replaced with n. In fact, it is rather obvious that (i) and (iii) are
equivalent, as the concept of local k-flatness is independent of the dimension of the
ambient space as is the notion of Minkowski dimension (see (4.1) below). To show
the equivalence of (ii) with (i) (and (iii)), it seems however necessary to prove that
scaling exponents of a set are independent of the dimension of the ambient space. We
discuss this independence now for the case n = 1, which is the only case we need to
resolve Conjecture 4.2 in the plane. The case of a general n seems more difficult.

In order to formulate the problem precisely, it is necessary to extend the notation
to be able to distinguish different ambient space dimensions. Recall from (1.5) that
the definition of scaling exponents of a set F' is based on parallel sets which depend on
the choice of the ambient space. For instance, for a subset F' of R, the parallel set in
R is a finite union of segments, while the parallel set of F in R? is a two-dimensional
set. Up to now, we have not emphasized this dependence. For a subset F C R?, we
always considered the full parallel set in R?.

We will now use an extra upper index to indicate the dimension of the parallel
set. Foraset F C RY with dimaff F = n > land/ € {n,...,d}, we write FEI
for the e-parallel set of F in R, (Note that Fal is independent of the choice of the
embedding space. Any /-dimensional subspace of R? containing F (and thus aff F)
provides the same parallel set up to isometry.) We write s,lC (F) for the k-th scaling
exponent of F based on the /-dimensional parallel sets of /. Note that this notation
makes only sense forn </ < d and k < [. Similarly, we use dimﬁu F and dimf9 F
to indicate the dimension dependence. In this notation, we have, by definition, the
relations

s/(F) = @imy, F and s'_, (F) = dimg F

forany/ € {n, ..., d}, whenever the scaling exponents are defined. The well-known
independence of the (upper) Minkowski dimension on the dimension of the ambient
space is then described by the relation

SU(F) = s'TH(F) = - = s3(F). (4.1)

By application of [24], Corollary 3.6, to different ambient space dimensions, it follows
immediately that

st_(F) = sl(F) (4.2)
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forl € {n +1,...,d}. Equation (4.2) also holds for / = n, provided #"(F) = 0
(or provided the upper Minkowski dimension s}, (F') is replaced by the upper outer
Minkowski dimension, see [24], paragraph before Corollary 3.4).

In general (that is, for any bounded set F' C RY with dimaff F = n > 1), we
conjecture that the relation

sp(F) = sitH(F) (4.3)

holds for any k € {0,...,d}and any [ € {n,...,d — 1} such that [ > k, provided
the exponents are well defined. The first interesting case is d = 2 and n = 1 (for
d = 1 there are no such relations), for which the two relations s§ (F) = s2(F) and
s{(F) = s?(F) are conjectured. This case is resolved in Proposition 4.10 below,
which is another important step towards the resolution of Conjecture 4.2 in R%. In
general, we note that, by combining the relations (4.1) and (4.2) above, one gets
immediately foreach k € {n,...,d — 1},

SK(F) = sgTH(F) = sftH(F) (4.4)
(and these exponents are always well defined) — resolving the case k = [ of (4.3).

Proposition 4.10. Let FF C R¥ be a bounded set with dim aff F = 1. Then
so(F) = s§(F) = - = 5§ (F).

Proof. Since it makes no difference whether the parallel set Fsk is studied in R¥ or
in R™ with m > k, it suffices to prove that s} (F) = sg (F) in R¢ for any d > 2.
First we will show the inequality s} (F) < sg (F), for which we employ the
fractal string £ = (I;);en associated to F, that is, the sequence of the lengths /;
of the complementary intervals /; of F ordered in a non-increasing way. Note

that s (F) = M; F and that the corresponding curvature measure is the counting
measure on d(F,}) (recall, F,' is the e-parallel set in R), i.e., Cy*(F}) = Co(F}) =
1H°((F})). The latter is given in terms of £ by

FHOO(F ) =2+ 2#{j: I; > 26}

Observe that to each point x € d(F,') there is a unique nearest point y € F (with
d(x,y) = e) either to the left or to the right of x,ie. y = x +eory = x —¢.
Moreover, to each such x there corresponds a unique (d — 1)-dimensional half-sphere
Ay in 8(F8d ) with radius ¢ and centre y. (In the case d = 2, Ay is a half-circle,
cf. Figure 3 (left).) Obviously, C(‘)’ar(FEd, Ax) = % for each x € d(F}) and in any
dimension d > 2. Therefore,

1 1
CoM(F) =3 H°OF) = Y 5= D GU(F!. A = G (F).
x€d(F) x€d(F)
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from which the inequality s§(F) < sg (F) follows immediately. (For each ¢t >
s& (F), one has limg_q &' C{*(FZ) = 0 and thus lim,_ &' Cy*(F}) = 0 by the
above inequality, implying 5§ (F) < t.)

The reverse inequality is now first proved for the case d = 2, for which we split
the parallel set 2 as follows. Denoting by I the smallest closed interval containing
F, we have the disjoint composition

R*=(FxR)UUI xR U|JU xR
j=1

and thus

o
Co™(F2) < Co*(F2. F x R) + Gy (F2,1° x R) + Y Cy*(F2. I; x R). (4.5)
—

It is not difficult to see that the first term in this sum is zero and the second term is
1 (curvature of two half circles). For the terms in the remaining sum, we distinguish
between those j for which /; > 2¢ and those for which /; < 2¢ holds. In the first
case, d(F2) N (I; x R) consists of two disjoint half-circles of radius ¢ (see Figure 3
(left)) such that Cj*" (F, 82, I; x R) = 1. In the second case, one has

var 4 : l
C, (Faz, I; xR) = ;arcsm (2—;)

which is easily seen from Figure 3 (right). Indeed, we have positive curvature o/ (27)
on each of the 4 arcs B; and negative curvature 8/(27) at the points x’ and x” where
the arcs meet. Since 8 = 2a, we thus obtain Cy* (F2, I; xR) = 42 +2. % = 2q.
Now the claim follows by noting that the angle « is determined by the relation

sina = % Using that arcsin(t) < 5t for ¢ € [0, 1], we infer that
var 2 lj
CO (Fgalj X[R) S R}
e

for each j such that /; < 2e. Plugging all this into equation (4.5), we get

Co"(FH) <1+ Y 1+e! Y

Jjilj>2¢ Jjilj<2e
§8_1(28+ Z 2e + Z lj).
Jjilj>2e Jjilj<2e

Now observe that the expression in parentheses is exactly the length of the parallel
set F,!. Therefore,
C(;IHI(Fsz) = g_l/ll(Fa1 \ F)
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Now lets > s (F). Sincesgy(F) = ﬁ}g F coincides with the upper outer Minkowski
dimension, see equation (4.2), we have lim,_,¢ &’ -1 (FE1 \ F) = 0, which implies
limg—o &' Cy™(F2) = 0 and thus s3(F) > ¢. This shows s}(F) > s3(F) and the
proof forthe case d = 2iscomplete. If d is arbitrary, for the proof of s§ (F) > s(‘f (F),
one can decompose R¥ similarly as R? above and obtain an estimate for Cg‘“(Fsd)
similar to equation (4.5):

Co™(F) < Cy(F2, F x R*™)
+ C(;/ar(FEZ, I¢ % [Rd—l)

o
+ Y CT(F2 L x RO,
j=1

It is easy to see that also in this general situation the first term vanishes while the
second term is equal to 1. In the remaining sum, for all indices j such that2e < [;, we
still have Cy* (F4, I; x R?~1) = 1 since this set has the curvature of a d -dimensional
ball. For all j such that 2e > /;, we claim that

l.
CyU(FE, I; x RI™Y) < ¢y L, (4.6)
&

for some constant ¢z independent of j and €. Then all the remaining arguments carry
over from the case d = 2 discussed above.
For a proof of (4.6), let y and z denote the endpoints of /;. Note that

Co"(FE. I x R¥™Y) = Gy (B4 (y, &) U BY(z. ). I; x R™"),

i.e., we have to compute the curvature of two intersecting e-balls. Recalling that a
ball as well as the union of two intersecting balls have total curvature 1, the additivity
and symmetry yield that

Com(FA 1y x R = 4. Co(BY (3. o). [ . %) x R471)

4. Co(Bd(O, ), [0, %) X [Rd—l).

Now observe that, by symmetry, the curvature of any subset S of the boundary of
B?(0, ) is given by the normalized volume of the associated cone

K(S):= | J{[0.s]: s € S},
that is,

Va(B(0.6) N K(S)) _ Va(B?(0.) N K(S))

ColB*(0.0)-5) = =5 BT 0 o) aaed
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Here «;, denotes the volume of the n-dimensional unit ball. Since for
S :=3B9(0,£) N ([0,1;/2) x RI~1)

the cone K(S) is contained in the cylinder Z = [0, %] x B471(0, €), whose volume

d—1

. 1;
is given by Jag—16977, we get

Va(B4(0,8) N K(S))
Va(B2(0,¢))

_4Va(2)

T aged

Co™(FA, I; xRI™Y = 4

l; _
B 4L og_q677!

N aged
20[d_1 lj

o &

This proves the estimate in (4.6) for the constant ¢; := 241 /g and completes the

proof of the inequality sg (F) < s}(F). O
B> B
: b
Ax VAR
€ e B e
€ o
y X y z
& l]
& e
x//
B3 B4

Figure 3. The set F2 N (I; x R) in the case [; > 2¢ (left) and in the case /; < 2¢ (right).

The following statement is a generalization of Theorem 4.8 to sets in R with a
1-dimensional affine hull. We will apply it later in particular in the case d = 2.
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Proposition 4.11. Let K be a self-similar set in R4 satisfying OSC and assume that
the affine hull of K has dimension 1. Then the following assertions are equivalent:

(1) dimys K = 1;
(i) so(K) < dimys K;
(i) K is locally 1-flat.

Proof. It is easy to see that K viewed as a set in R is locally 1-flat if and only if K
is locally 1-flat as a set in R4, (Indeed, if C C R is a flat cube for K in R¥ for
some x € K and & > 0, then its projection C’ onto R x {0}¢~! is a flat cube for
K and vice versa.) Therefore the equivalence of (i) and (iii) follows immediately
from Theorem 4.8 and the fact that die Minkowski dimension is independent of the
dimension of the ambient space (see (4.1)). The equivalence of (ii) and (iii) is also
direct consequence of Theorem 4.8 taking into account the relation sg (K) = sd(K)
derived in Proposition 4.10. O

5. Results for self-similar sets in R¢

Now we discuss some simple geometric conditions for self-similar sets in R? which
ensure that their O-th scaling exponents are equal to their dimension. More precisely,
we will show that this is true for all self-similar sets whose complement is disconnected
(see Theorem 5.3) and for all sets that are totally disconnected (see Corollary 5.5).
Throughout we assume that K C R¢ is a regular self-similar set, by which we mean
that almost all ¢ > 0 are regular for K, cf. Section 2.

The following observation is essential for the results in this section. Foraset A C
RY with positive reach, we denote by nor A its normal bundle and for (x,n) € nor A,
Tan(nor A4, (x, n)) is the tangent cone of nor 4 at (x,n). Let

wg = (s
be the surface area of the unit sphere S%~! in R¥, and let
Ty RY x §4-1 Sd_l, (x,n) —n

be the projection onto the second component.
Lemma 5.1. Let A be a set with positive reach, B C A and S C S¢~'. Define

B* :={(x,n) €enor A: x € B}
and assume that 15(B*) D S. Then

Co™(A, B*) > w7 H71(S). (5.1)

In particular, if A is compact, then 63‘“(14) > 1. Similarly, if the closed complement
A of A is bounded (and still, A has positive reach), then Cj*(A) > 1.
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Proof. Due to [34], for Je41 almost all (x,n) € nor A, Tan(nor 4, (x,n)) is a
(d — 1)-dimensional linear space and orthonormal principal directions a;(x, n), ...,
ag—1(x,n) € R? as well as the corresponding (generalized) principal curvatures
ki(x,n),...,kg—1(x,n) € (—oo, o] are well defined. The vectors

( ai(x,n) /ci(x,n)a;(x,n)) o d -1
\/l—i—/ciz(x,n) \/l—i—Kiz(x,n)

form an orthonormal basis of Tan(nor(A), (x, n)).

Therefore
d—1
H ki(x,n)
Vdet(Dma(x, n) - (Dra(x, n))*) = d_1i=1 (5.2)

1_[ V1+«F(x.n)

i=1

for #¢~!-almost every (x,n) € nor A. On the one hand, using Federer’s coarea
formula [6], §3.2.22, we get

/ Vdet(Dmy(x,n) - (Dma(x,n))*) dI(x,n)
B*

= HOB* Ny (1) dH4(y)
§d—1 (5.3)
= [ raxii)
S
= H471(S).
On the other hand, by [34], Theorem 3, we have
d—1

H ki(x,n)
Co™(A.B*) = w;I/ '

B+ |d-1

i=1
H 1+ K(x,n)

i=1

dJH4(x, n).

Now it suffices to combine this with (5.2) and (5.3) to obtain (5.1).

If A is compact, choose B = 0A and observe that 7,(B*) = S d=1 (since for
every direction n € S~ there is a hyperplane with normal vector 7 supporting A in
at least one point x and (x,n) € nor A). Hence one can choose S = S¢~! and the
second assertion follows from (5.1). If A is bounded, we can argue similarly. For
n € S971, there is a hyperplane H, with normal direction 7 touching A in (at least)
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one point x € 34 = dA. Since A has positive reach and x € 94, there is at least one
direction n’ € S9! such that (x,n’) € nor A. Because of the touching hyperplane
H,, which belongs to the tangent cone of A at x, this normal direction n’ is unique
and equal to —n. Since n € 41 was arbitrary, we infer that 7, ((04)*) = §d-1,
Hence we can again apply (5.1) with § = S¢~! and conclude that 50““ 4) > 1.
This completes the proof. O

The following statement is a general scheme to show that the (similarity) dimen-
sion of a self-similar set is a lower bound for its scaling exponents. It is a modi-
fication and generalization of [30], Theorem 2.3.8. We have formulated a version
for curvature direction measures; a corresponding statement holds for the curvature
measures i.e., if in the hypothesis as well as in the conclusion c (K, -) is replaced
by C/*(K¢,-). Compared to Theorem 2.3.8 in [30], the polyconvexity assumption
is weakened to regularity. Moreover, alternative to the assumption B C O_¢, (with
O_; := ((0°)¢)° being the inner e-parallel set of O), also the assumption dB C K
allows the same conclusion. We point out that no integrability assumptions for the
curvature measures are required for this statement.

Proposition 5.2. Let K C RY be a regular self-similar set satisfying OSC, O some
feasible open set of K, D := dimy; K and k € {0,...,d}. Suppose there exist
some constants €g, B > 0 and some open set B C O, satisfying at least one of the
conditions 0B C K or B C O—_q,, such that, for almost all € € (rmin€o, €0),

Cy"(Ke, Bx 8771 = B.
Then, for almost all € < &y,
eD_kégar(KE) >c,

where ¢ 1= ﬁe(?_krlﬁn > 0. In particular, it follows 5 (K) > dimys K.

Proof. Due to the new hypothesis, the proof of Theorem 2.38 in [30] needs some
adaptations, although the essential argument carries over. Let S,..., Sy be sim-
ilarities generating K. Since for each r > 0 the sets S,0, v € X(r) := {0 €
SN Te <1 < rgrph}, are pairwise disjoint, the same holds for their subsets S, B

and so, for regular ¢ > 0,

Ci"(Ko) = Y C™(Ke. SwB x S471).
weX(r)

1,.-1

Fix some regular ¢ < g¢ and set r := r_; &, &. First, we claim that for each

min
w € X(r),

KN SuB = (SyK)e N S, B. (5.4)
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For a proof in the case when dB C K, let x € K, N S, B. Then there exists a
point y € K such that d(x, y) = d(x, K) < ¢. Since dB C K, one has either y €
SwdB C SyK ory € S,B N K. The latter also implies y € S, K, since otherwise
one would have y € S; K for some 0 € X(r), 0 # w and so Se K N S, 0 # @,
which violates OSC. Thus in both cases y € S, K, which implies x € (Sy,K),,
proving one inclusion in (5.4) in the case when dB C K. The reverse inclusion
is obvious, since S,K C K. Incase B C O_g,, equation (5.4) follows from the
relation K, N (S40)—s = (SpK)e N (Sp O)—¢ for each ¢ < gy. Equation (5.4)
allows to use the locality property, which together with the scaling property of C P
yields

Gy (Ke. SwB x S471) = C" (Suw(Ky=1), SwB x S971)
= rg G (K -1, Bx S471).

Since, by the choice of r, we have er,) U e (rmin€o. 0], the hypothesis implies that
G (K1, B x §4=1) > B and therefore,

Cl(Ke) = Y rkCr(K,-1.B xS
weX(r)

= ) (o) B

weX(r)

= ﬂso_ksk card X (r).

Recalling that card X (r) > r~P =D soDs_D, see e.g. [30], eq. (5.1.5), we obtain

min

élzlar(Ka) > ,BVD sg—kg—D-i-k — Csk_D

as claimed, completing the proof of Proposition 5.2. O

As an application of Proposition 5.2, we will now formulate two simple geometric
conditions each of which ensures generic behaviour of the 0-th scaling exponent.

Theorem 5.3. Let K C R? be a regular self-similar set satisfying OSC such that
dimps K < d. Suppose that the complement K¢ of K has a bounded connected
component. Then 5o(K) > dimys K.

Proof of Theorem 5.3. Let ¢1, ..., pxN be similarities generating K. Fix a feasible
open set O for the SOSC. First we claim that the existence of a bounded connected
component B of K¢ implies the existence of such a component B’ with B’ C O.
To see this, let x € K N 0. Choose w € X% such that conv(g,(K)) C O. Since
B C conv(K), we have ¢,(B) C O and d¢y(B) = ¢,(0B) C ¢,(K) C K.
Hence ¢, (B) is open and has its boundary contained in K, but it is not necessarily
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a connected component of K¢. However, since K cannot fill the whole open set B,
there must be at least one connected component B’ of K¢ contained in ¢, (B) and
thus in O proving the claim.

By the above claim it is justified to assume that B C O in the sequel. The OSC
implies that ¢; (B) N ¢;(B) = @ fori # j. Let p = p(B) be the inradius of the set
B and let ¢ € (0, p) be aregular value for K. Then the closed complement F of K,
has positive reach. It is easy to see that the set A := B \ K, = = K, N B is a subset of
K that is well separated from the rest of K (with distance at least 2¢). Hence A has
positive reach. Since BN K = @ and 0B C K, we have K, N B = (dB), N B and
thus, by the locality property, Cj* (K, Bx S¢~1) = 53‘“((8B)8, Bx S?1). By the
reflection principle, the latter expression equals (7(‘,’ (A, BxSiY = 63 ¥(A). Since
A is a compact set with positive reach, we can apply the second part of Lemma 5.1
to infer éga‘ (A) > 1. Fixing some &g < p, we have therefore

Cy"(Ke, B x S971) > 1

forall regular values & € (0, £9]. Hence, the hypotheses of Proposition 5.2 are satisfied
and we conclude 5¢(K) > dimps K, which completes the proof of Theorem 5.3. [

Lemma 5.4. Let K be a regular self-similar set in R? satisfying OSC such that
50(K) < dimys K. Then there isan opensetU C R? and § > 0 suchthatUNK # @
and every connected component of K that intersects U has diameter at least §.
Moreover, U can be chosen as a subset of some feasible open set for K.

Proof. Let K be generated by ¢4, ..., pn.Foreveryn € N, we define an equivalence
relation &2, on 2’1’\, as follows: forw, o € Z’I’v, w =&, o if and only if there are p € N
and words @ = w1, w2, ...,wp, = 0 € T% such that ¢y, (K) N ¢u, ., (K) # @ for
l=1,...,p—1.

LetI'",i =1,...,1, be the equivalence classes of ~, . We will refer to the union
sets
= | ¢(¥)
wEFl."

as the clusters of level n. Set
.
&p = 3 min dist(C;*, C!") > 0.
Then, by Lemma 5.1, we have, for each regular 0 < ¢ < ¢, and each i,
Cy¥(Ke, (CM)e x S471) > 1. (5.5)

Now, by SOSC, there is a feasible open set O, x € K and § > 0 such that
B(x,38) C O. Define U = B(x,6). Suppose for contradiction that there is a
connected component C of K such that diamC < 6 and C N U # @. Then
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C C B(x,35) C O. Let C"(C) denote the cluster of level n containing the set
C. (It is clear that any connected subset of K must be entirely contained in one clus-
ter.) The clusters C"(C),n € N form a monotone decreasing sequence of sets. Let
L :=(), C"(C) be the limit set. Since C < C"(C) for every n, we have C C L.

We claim that L is connected, which implies at once that L = C, since C is a
connected component of K. For a proof of the claim, let y,z € L and ¢ > 0. Then
we can find a level n = n(e) such that the cylinder sets ¢, (K) of level n contained
in the cluster C”(C) have diameters less than . By definition of the cluster, there
are points y = Xo,X1,...,Xp@n) = z € C"(C) such that d(x;, x;+1) < ¢ for
i=0,...,p(n)—1. Since ¢ > 0 and y, z € L were arbitrary, L is connected.

We conclude that, as n — oo, the sets C"(C) converge to C in the Haus-
dorff metric. Hence there exists some level m such that C™(C) C B(x,34).
Put &9 := min{e,,, %dist(C’"(C), d0)}. Then, applying Proposition 5.2 to B :=
(C™(C))2eo C U, B =1and gg as above, we obtain that 5o(K) > dimps K, which
contradicts the assumptions. O

Corollary 5.5. Let K be a regular self-similar set in R? satisfying OSC. If K is totally
disconnected, then 5o(K) > dimys K.

Remark 5.6. Under additional assumptions on the self-similar set K such as poly-
convexity of the parallel sets or the curvature bound condition (1.4) one has s (K) <
dimps K and §x (K) < dimys K. Thus, under any of those assumptions, one gets the
equality 5o (K) = dimys K in Corollary 5.5 as well as in Theorem 5.3.

Note further that both of these results hold equally with 5o (K) replaced by do(K),
and assuming additionally the integrability condition (1.3) to hold, one has a; (K) <
dimps, K which implies again equality in the corresponding statements for d (K).

6. Self-similar sets in the plane

In this section we will prove the following result which characterizes completely
degenerate behaviour of the scaling exponents of self-similar sets in R? in terms of
local flatness, resolving thus Conjecture 4.2 in dimension 2.

Theorem 6.1. Let K C R? be a self-similar set satisfying OSC. Then s;(K) <
dimys K for some i € {0, 1} if and only if K is locally flat. More precisely,

(1) s1(K) < dimys K if and only if K is locally 2-flat (and this happens if and only
if dimys K = 2).

(i) Ifdimpy K < 2, then (s1(K) = dimys K and) so(K) < dimys K if and only if
K is locally 1-flat.
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Statement (i) is a special case of Theorem 4.8. Moreover, (i) and (ii) together imply
the first assertion in Theorem 6.1. Therefore, it remains to provide a proof of (ii),
which is the primary aim of the remainder of this section. For this purpose we focus
our attention to self-similar sets K with dimys K < 2. The assertion in parentheses is
the special case d = [ = 2 of (4.2) and holds more generally than just for self-similar
sets, cf. also [24], Corollary 3.6. The structure of the remaining section (and hence of
the proof of the remaining assertion in (ii)) is as follows. First we show that for sets
in R2, the scaling exponents coincide with their directed versions, see Corollary 6.3.
This will enable us in particular to use the results of the previous section. Then
we concentrate on the if part and show in Proposition 6.6 (employing Lemma 6.4
and Lemma 6.5) that local 1-flatness implies so(K) to be strictly smaller than the
dimension of K. The reverse implication is established in a sequence of statements
starting from Lemma 6.7. Then assertion (ii) follows by combining Propositions 6.6
and 6.12. We emphasize that for the results in this section, and in particular for
Theorem 6.1, no integrability or curvature bound condition is required. However, for
sets not satisfying an assumption of this type, a different “degenerate” behaviour is
possible, namely so(K) can be strictly larger than the dimensions, cf. the Cantor dust
example discussed in the introduction.

Our first step is to prove that the scaling exponents coincide with their directed
versions. For the cases k = 1 and k = 2, this is immediate from the definitions, since
the involved measures essentially coincide with their directed versions. For the 0-th
curvature measure and its directed version, we use the following statement. Recall
that Nor(4, x) denotes the normal cone of a set A C R? at a point x € JA.

Lemma 6.2. Let A C R? be a set with positive reach such that dA is bounded and
such that, for any x € A, n € Nor(A4, x) \ {0} implies —n ¢ Nor(A, x). Then, the
variation measures of the curvature measures and the curvature-direction measures
coincide, i.e., for e € {+, —, var} and any Borel set B C R2,

CJ(A, B x SY) = CJ(A, B).

Note that for the curvature measures with index k = 1 and k = 2 the correspond-
ing statement is trivial.

Proof. Recall that for a set A C R? with positive reach, the generalized principal
curvature « (x, ) (in the plane there is only one) is well defined for almost all (x, n) €
nor A. We claim that for all (x, n) € nor A such that k(x, n) is defined and negative,
n is the unique unit normal of A at x. Indeed, assuming that n is not the unique
unit normal of A at x, there is another normal direction n’ € Nor(4, x) N S! with
n’ # —n, and, since Nor(4, x) is a convex cone, any convex combination of n and
n’ is also a normal direction. Hence, we have a two-dimensional cone of normal
directions. Now note that for inner normal directions in this cone, the generalized
principal curvature is +o00, while in the two extremal normal directions, either « (x, 1)
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is not defined or 400 as well by continuity. Hence, if «(x, n) exists and is negative
then 7 is the unique unit normal of A4 at x as claimed.
Let

B = {x € R?|Nor(4,x) N S' = {n} for some n and k(x,n) < 0},

BT :=R*\B~,
B~ =B xS,
BT =BT xS

Then obviously U B~ = R*>x S'and B+ N B~ = @. Moreover, from the integral
representation of Co(A4, -) (cf. [34], Theorem 3) one gets for each Borel set § C S,

oA B) = 2n)"! / 1 o) —— et (d(x.n)) <.

nor A \/1 +K2(X,l’l)

since the integrand is negative for each (x,n) € B N nor A and vanishes otherwise.
Similarly, for each Borel set 8 C BT, we have

Go(A. ) = (2m)"! / 15 (e - et () = 0

nor A V1+Kk2(x,n)

since the integrand is nonnegative for each (x,n) € B+ N nor A except for a set of
measure zero. Therefore, the pair (81, 7) is a Hahn decomposition of the signed
measure Co(A, -). Now recall that £ = B* x S, which implies immediately that
(B, B™) is a Hahn decomposition of the measure Co(A4, -), since B¥T U B~ = R?,
BT N B~ =@, Cyo(A, B) < 0 for each Borel set B C B~ and Cy(A4, B) > 0 for
each Borel set B C B™. Since éoi(A,,B) = +Co(A, B N %) and COi(A, B) =
+Co(A, BN Bi), we conclude

CEA, BxSY) =+Co(A, (BxSHnp™
= +Co(4, (BN BT)x S
= +Co(A, BN BT) = CE (A, B)

for each Borel set B C R2, as asserted in the lemma. The corresponding claim for
the total variation measures follows now immediately by adding the positive and the
negative variations in the above equation, completing the proof. O

Corollary 6.3. Suppose that F C R? is compact. Then for each k € {0,1,2}
the scaling exponents Sy (F) and si.(F) are well defined and coincide. Similarly,

ag(F) = ar(F).
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Proof. We just prove the case k = 0. Since by [7], almost all ¢ > 0 are regular for
F and since the the curvature direction measures 50 (Fs,-) of F, are well defined
for those ¢, also the scaling exponents so(F) and 5o(F) (given by (1.5) and (1.7),
respectively) are well defined (possibly co). Moreover, for regular ¢, F; has a Lips-
chitz boundary. Note that in a Lipschitz boundary no two vectors n and —n can be
normals at the same boundary point. Hence Lemma 6.2 can be applied and we have
in particular Cj*(F;) = égm(Fa) for each regular ¢ > 0 from which the equality
So(F) = so(F) is easily seen. The relation do(F) = ao(F) follows similarly from
Lemma 6.2. O

Now we will establish that for self-similar sets K local 1-flatness implies that
s0(K) is strictly smaller than dim s K. For this, we require the following two lemmas.
The first one is a rather simple geometric observation. We will use the following
notation: for x € R? and a, b > 0 put

R(x,a,b) :=x+[—a,a]l x[-b,b] and Q(x,a,b) :=x + [—a,a] x{—b, b}.
Lemma 6.4. LetO <a <1, x;,i =1,...,N be pointsin R> andr;,i = 1,...,n

be positive real numbers. Put

P = R(x;, 10r;,r;)°,

-

Il
_

0= U O (xi, 1074, 1),

i=1

n
R = U R(xi,ari,ar;),
i=1

and
S:=0\R.
Then for every x € P¢ we have

dist(x, R) > dist(x, S).

Proof. Let x € P€, since R is compact there is some z € R such that |[x — z| =
dist(x, R). Therefore there is some x; such that

dist(x, R) = dist(x, R(x;, ar;, ari)).

Since we know that x € R(x;, 10r;, r;)° there is some w € Q(x;, 10r;, r;) such
that |[x — w| < |x — z|. Now, we have either w € S which would would lead to
dist(x, S) < |x — w| < |x — z| = dist(x, R) which is what we want to prove, or
w ¢ S which means that w € R and |x — w| < |x — z| which is a contradiction with
the choice of z. Ol
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Lemma 6.5. Let K be a self-similar set in R? satisfying OSC that is not contained
in a line segment. Suppose K is locally 1-flat. Then there is a system of contracting
similarities @1, . . ., 1 generating K such that for the self-similar set L, generated by
the mappings @1, . .., |—1, thereisanumber0 < o < 1 andsequences{x;}{2, C R?
and{r;}?2, C Ry such that in some coordinate system in R? the following properties
are satisfied:

(1) O(x;,10r;,ri) C K, foreveryi € N;
() K\ LcUZ, R(xi,ar;,ar;);

(3) for everyi € N, there is a nonempty set A; C R such that K N R(x;, 10r;, r;)
is a translated and scaled copy of [—1, 1] X A;.

Proof. We argue similarly as in the proof of Theorem 4.8. First we fix some feasible
open set O for the SOSC and find a cube C C O as guaranteed by the assumption of
local 1-flatness. Then we choose a coordinate system such that C N K = 5[0, 1] x 4
for some s > 0 and some compact set A C R. Since K is not contained in a line
segment, A must be infinite. Therefore, there is some set of the form

T:=0(x,10rnr)cCNK

for some x € R? and r > 0. Choose « €]0, 1[ such that R(x, ar,ar)° N K # @ and
choose y € R(x,ar,ar)°NK.Put D := dist(y, R(x,ar,ar)¢). Letyrq,..., ¥ be

similarities generating K with ratios py, ..., pn. If we put p = max;—;,.. ny p; > 0,
we can find n € N such that p” diam K < D.
Let @1, ..., ¢k be all mappings of the form ¥, for v € X} ordered in such a way

that y € ¢ (K). Let #; denote the contraction ratio of ¢;. Then the IFS {¢1, ..., ¢r}
also generates K, satisfies OSC (with the feasible open set O from above) and,
moreover, g (K) C R(x,ar,ar)°. Now let (x;);en be the sequence of all points of
the form ¢, (x) and (r;);en the sequence of all numbers rt,, where o runs through
7.

g It remains to show that the conditions (1) to (3) hold. For a proof of (1) and (3), fix
some i € N and let o be the word such that r; = rt, and x; = ¢ (x). The inclusion
T C K implies Q(¢q(x), 10rts,rts) = ¢5(T) C ¢o(K) C K from which (1) is
transparent. Furthermore, since, by construction, R(x, 10r,r) C C, we have

K N R(x;, 107, r;) = K Ngs(R(x, 107, 1)) C K Ngs(C) = ¢5(C N K),

where for the last equality we also used that C C O. Since, by assumption and the
choice of the coordinate system, C N K is a product set, it is obvious that ¢, (C N K)
is similar to a product set. Observing now that the cube ¢, (C) is a valid cube for the
condition of local flatness, we can apply Corollary 4.6 to infer that line segments in
K N @y (C) must be parallel to the first coordinate axis. Hence the same holds for any
restriction of this set to a rectangle with sides parallel to the coordinate axes which
implies (3). To prove condition (2), let x € K \ L. Since x € K, there is a sequence
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w = wwwsz--- €4{1,.. .,k}IN such that lim, 0 @y(» (K) = x and, since x € L€,
there exists an index m € N such that w,, = k. Hence, putting 0 = w|m — 1 and
letting i € N be the index such that x; = ¢, (x) and r; = rt,, we have

X € 95 (i (K)) C @o(R(x,ar,ar)) = R(x;,ar;,ar;).
This shows (2). O

Now we have all ingredients to prove one direction of part (ii) of Theorem 6.1.

Proposition 6.6. Let K be a self-similar set in R? satisfying OSC with dimy; K < 2.
If K is locally 1-flat then so(K) < dimps K.

Proof. If K is contained in a line segment, we are done due to Proposition 4.11. In the
other cases let L, {x;}?2, C R? and {r;}2, C R4 be as guaranteed by Lemma 6.5.
In the sequel, we also work in the coordinate system we get from this statement. Note
that dimys L < dimys K, since Zk Lpdimy K LetM = K \ L, and let

i=1 1

J J
P; = U R(x;,8ri,r;) and M;:=MnN U R(x;,ari, ar;).
i=1 i=1

Then we have
o0

M=) M,
i=1
and, by (2) of Lemma 6.5, K \ M converges to L in the Hausdorff metric as j — oo.
Fix some regular ¢ > 0 such that Co(K,,-) and Co(L,,-) are well defined. Let
R; := R(x;,8r;, r;). First we claim that, for every i € N,

supp Cg* (K¢, -) N R} = 0, (6.1)

which implies in particular that Cg* (K, R7) = 0. For a proof of (6.1), let us take
y € 0K N R;. (Note that supp Cj*(Ke,-) C 0K,.) It suffices to show that y ¢
supp Cy* (K, -). The assumption implies that r; > ¢, since otherwise 0K, N R; = 0.
Taking into account property (3) of Lemma 6.5, we infer that y = (yq, y2) has
a unique nearest point x in K. Moreover, x lies in R; and has coordinates x =
(y1,y2 + &) or x = (y1,y2 — €). Moreover, dist(y, K \ R;) > & and so there
is some r > 0 such that X := 0K, N B(y,r) is a line segment (parallel to the
x1-axis) which obviously does not carry any curvature (formally, by locality, we
have Cy* (K¢, B°(y,r)) = Cy*(X + [0,x — y], B°(y,r)) = 0). This implies
y & supp Cy* (K, -) proving the claim.
Put

oo

T=ak.n (| JR)"

i=1
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Note that 7" is compact. Moreover, from (6.1), we observe that

o0

o0
Co"(Ke. | JR)) =) Cy™(Ke. R)) =0

i=1 i=1

and thus Cy*(K;) = Cy* (K¢, T'). From Lemma 6.4 and property (3) of Lemma 6.5
we infer that, for every y € T and every j € N,

dist(y, M;) > dist(y, P; N K) > dist(y, K) = ¢,

and using the fact that 7" is compact, we obtain dist(7, M;) > e. This means that
there is an open set U D T such that K, N U = (K \ M;), N U. By the locality
property of the curvature measures, we conclude

Co"(Ke) = Cy"(Ke, T) = Cy" (K \ M), T).

Using [23], Theorem 5.2, and the fact that (K \ M) converges to L in the Hausdorff
metric as j — oo, we obtain

Co™(Kg) = Cp™(Le, T) < Cy™(Ly).

Therefore
s0(K) < so(L) <dimys L < dimys K.

O

To complete the proof of Theorem 6.1 (ii), it remains to show that the inequality
s0(K) < dimys K implies that K is locally 1-flat, provided that dimps K < 2. The
argument is split into several pieces.

Lemma 6.7. Let K C R? be a self-similar set satisfying OSC such that so(K) <
dimpys K < 2. Suppose that O is a feasible open set and that C is a connected
component of O N K containing at least two points. Then C is a line segment.

Proof. First recall that every connected component of O N K is also path connected
(seee.g.[13], Theorem 1.6.2). Suppose for acontradiction that C is as in the statement
of Lemma 6.7 but not a line segment. Then there is a simple curve y C C N O with
endpoints x and y, and a third point z on y with z ¢ [x, y] such that B(z,§) Ny is
not a line segment for any § > 0. Let E be the open set enclosed by y U [x, y]. We
can assume that there is some ¢ > 0 such that E C O_,. (If this is not satisfied, there
is some &’ > 0 such that B(z,2¢’) C O. Since B(z,&’) N y is not a line segment,
one can choose new points x’ and y” on y such that the subcurve y’ of y from x’
to y’ contains z and is contained in B(z,¢&’) C O_,. One can use y’ as the new y,
which obviously satisfies the desired inclusion E C O_, for ¢ = ¢'.) Let L denote
the line through x and y and set D := %dist(z, L) > 0. Since dimys K < 2, the
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interior of K is empty and we can choose &g € (0, &) such that for every 0 < o < &g
there is some point uy € 0Ky N B°(z, D) N E. (g0 and points u, can be found as
follows. Let u be a point in K¢ N B?(z, D) N E, which exists since B°(z, D) N E
has positive area, while K N B?(z, D) N E is a null set. Let U be the connected
component of K¢ N E containing u. U is obviously open. Now & can be chosen
to be the inradius of U and for 0 < o < g¢ one can take any point of dU, N U as
Ug.) Let A% be the connected component of dK,, containing u,. We want to estimate
Co(Ky, A% N O—¢) from below independently of «. It is enough to consider « that
are regular for K.

Note that, as part of the boundary of a parallel set, A% is a (not necessarily simple
but closed) C! Jordan curve. There are two cases to consider. Either there is a simple
curve I'* C A% containing u, with endpoints ay, b, € [x, y], or there is a loop
L* C A* N E with ug € L*. In the second case, we have Cy* (Ky, A* N O—;) >
Co"(Ky. L¥) > 1, by Lemma 5.1.

In the first case, the set enclosed by the loop 'y, U [aq, by ] has positive reach, since
o was assumed to be regular for K, and we have that for every unit vector v between
Vg and vy, the (outward) unit normals of the segments [ay, Ug] and [uy, by] in the
triangle aqUq by, there must be a point p = p(v) in the relative interior of I'y, such
that v € Nor(I'y, p). Using again Lemma 5.1, we get Cy*(Ky, I'* N O—¢) > Bq.
where B is the angle between v, and v (or equally, the exterior angle at u, of the
triangle ayuqby). Observe that B is bounded from below by some positive constant
B independent of . Since aq and by, are points on the segment [x, y], B4 is certainly
larger than the corresponding angle in the triangle xu,y. Since o < g9 < D, this
angle cannot be smaller than the corresponding angle 8 of an equilateral triangle with
base [x, y] and height D (which minimizes this angle among the triangles with base
[x, y] with height D). We obtain

D
>0
VIx = y|*+4D?

Applying Theorem 5.2 to K with B = E C O_, and B and ¢ as above, we obtain
that so(K) = dimps K which contradicts assumptions of the lemma. Ol

Co(Kas AN 0—y) = Cy™ (Ko T*NO_e) = fo = B =

Corollary 6.8. Let K C R? be a self-similar set satisfying OSC such that so(K) <
dimys K < 2. Then any connected component of K is a (possibly degenerated) line
segment.

Proof. Let C be aconnected component of K. We can suppose that C contains at least
two points since otherwise the assertion is obvious. Choose O to be some feasible
open set for the SOSC and let x € K N O. Let ¢ = dist(x, d0). Let ¢q, ..., ¢k be
similarities generating K with ratios ry,...,r¢. If we put r 1= min;—;,_xr; > 0,
we can find n € N such that " diam K < &. Choose w € X} such that x € ¢, (K)
and let C’ = ¢, (C). By construction, we have C’ C ¢,(K) C O N K. Let A be
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the connected component of K N O such that C’ C A. Then, by Lemma 6.7, A is a
line segment and therefore the same is true for C’ and C. O

As a byproduct we obtain the following result which complements the results
in Theorem 5.3 and Corollary 5.5 in providing another simple geometric condition
which ensures the 0-th scaling exponent to coincide with the dimension. Again, under
the curvature bound condition (1.4) or polyconvexity, the inequality in Corollary 6.9
becomes an equality, cf. Remark 5.6.

Corollary 6.9. Suppose that K is a connected self-similar set in R? satisfying OSC
with 1 < dimys K < 2. Then so(K) > dimps K.

Proof. Suppose for a contradiction that so(K) < dimps K. Then, by Corollary 6.8
and the connectedness of K, K must be a line segment. But this implies dimys K = 1
in contradiction with the assumption 1 < dimys K. O

In Corollary 6.8, it is stated that all connected components of K are line segments.
The next step towards to proof of local 1-flatness is to show that all the segments in
K are parallel to each other. This follows immediately from the following statement.

Lemma 6.10. Let K C R? be a self-similar set satisfying OSC such that so(K) <
dimy K < 2. Let @1, ..., @k be similarities generating K. Then no ¢; can include a
rotation by an angle different to 7.

Proof. Suppose for a contradiction that one of the mappings, say ¢, includes a ro-
tation by angle o ¢ {0, 7}. Combining Corollary 6.8 and Lemma 5.4 there exists
some z € K and § > 0 such that every connected component of K that intersects
B(z,8) is a line segment with length bigger than §. Let " be the system of all con-
nected components of K intersecting B(z,§). Then I' is infinite since otherwise
KNB(z,y) = AN B(z, y),forsome y > 0, where A is the connected component of
K containing z. But this would mean that K contains a line segment and is contained
in aline segment which is not possible due to the existence of ¢ . Moreover I" is closed
in the Hausdorff metric. Therefore I" has an accumulation point, which means in par-

ticular that there are pairwise disjoint line segments L; = [x;, y;], L = [x, y] C K,
with |x; — y;| = |x — y| = § and such that L; — L in the Hausdorff metric.
Putc¢; = % Without loss of generality we can suppose that x = (—%, 0) and

y = (£,0). Then ¢; — (0,0) as i — co. Choose p, ¢ in a way that lepl. leq| < 3‘3—0.

We can suppose that ¢; € conv(L U L,). Define p := dist(cy, L U L), let r; be the
similarity ratio of ¢; and r := max; r;. Choose n € IN such that r” diam K < p and
findw € EZ inaway that |w| > n and suchthatc, € ¢, (K). Inparticular, this means
that ¢, (L) C conv(L U L,). Now, on the one hand, for some k > 0, the direction

of the line segment ¢, © (pl’f (L) is contained in [7, %” . Let M be the connected
component of K containing ¢, (L) o (p’b‘ (L). By Corollary 6.8, M is a line segment
T 3m
44

(with direction in [ 1), and, by Lemma 5.4, the length of M is bigger than 6 (since
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Yo (L) o <p{bc (L) N B(z,8) # @). On the other hand, ¢, o (p]b‘ (L) C conv(L U Lp).
But this is not possible since in this case M would intersect L or L. O

Corollary 6.11. Let K C R? be a self-similar set satisfying OSC such that so(K) <
dimpys K < 2. Then all components of K are mutually parallel line segments or
singletons.

The following statement provides the last missing piece of the proof of Theo-
rem 6.1.

Proposition 6.12. Let K C R? be a self-similar set satisfying OSC such that so(K) <
dimpys K < 2. Then K is locally 1-flat.

Proof. Fix some feasible open set O for K and find U C O and § > 0 as in
Lemma 5.4. By Corollary 6.11, all components of K intersecting U are mutually
parallel line segments. Letv be a unit vector parallel to the direction of the components
of K and v be a unit vector orthogonal to v. Choose some x € K N U and some
0 < & < § such that

C :=[x,x +evt] x[x,x +ev] C U_, C O_,.

Without loss of generality, we can suppose ¢ = 1, v = (0, 1) and x = (0, 0). Then
C =10,1] x [0, 1]. Define Py := K N ([0, 1] x{0}), P1 := K N ([0, 1] x {1}) and let
P C R be the projection of Py U P; onto the first coordinate. Note that P is compact
and totally disconnected since both Py and P; are (which is due to Lemma 6.11). We
are done if we prove that C N K = P x [0, 1], since in this case the local 1-flatness
of K follows from Proposition 4.3.

Suppose that this is not true. Then there is some p € P such that the segment
S, :={p} x [0, 1] is not completely contained in K. Since, by construction, S, N K
is closed and nonempty, there are 0 < @ < b < 1 such that

S, N K C {p} x ([0.a] U [, 1]).

Fix some 0 < 7 < 222 Since K is closed, there is some y > 0 (with y < t) such

that ’
SN K C{g}x([0,a+7]U[b—r11])

foreveryg € [p—y, p +y] N0, 1].

Since P is compact and totally disconnected, we canfind c,d € [p—y, p +y] N
[0, 1] N P such that the open interval (c, d) is disjoint from P. Because ¢ € P and
by Lemma 5.4, the set ({c} x [0, 1]) N K is of the form {c} x ([0, a.] U [b,, 1]) (or with
possibly one of the intervals [0, a.] or [b., 1] missing). Sincec € [p—y, p+y]N[0, 1],
we also have b, — a. > t. Now, for every r < g9 := min{|c — d|/3, t/3}, the set
dK, contains a quarter of a circle centered either at (¢, a.) or (¢, b:). To complete
the proof, observe that Proposition 5.2 (applied to B = C, 8 = i and &g as just
defined) together with Corollary 6.3 implies so(K) > dimys K, a contradiction to
the assumptions of Proposition 6.12. O
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7. Final remarks

Summing up, we have shown that, although generically all the curvature scaling
exponents of a self-similar set coincide, there are nontrivial sets which do not show
such generic behaviour. We have demonstrated that nongeneric behaviour is closely
connected with the notion of local flatness — it is characteristic at least in dimensions
1 and 2.

Possible combinations of scaling exponents. In the introduction we have raised
the question, for which vectors (¢g,...,t7) € R+ there exists a self-similar set
K C R? with sp(K) =ty for k = 0,...,d, which we will briefly address now.
First of all it should be noted that 0 < dimys F < d for any bounded set F' C R,
implying that only for vectors with 0 < f; < d such a set can exist. The same
constraints apply to 77_;, as is transparent from the results in [24]. In fact, we
get a much stronger constraint from the fact (proved in [24]) that for any bounded
set F C RY either sg_1(F) = s4(F) or A¢(F) > 0 (implying s4(F) = d and
sq—1(F) > d — 1). Effectively, this reduces the problem by one dimension leaving
(subsets of) two hyperplanes of possible parameter vectors. Since, by definition,
sr > 0 for all k, we have also the constraint z;z > 0. Imposing additionally the
curvature bound condition (1.4), leads to the constraint #; < t; for the parameter
vectors, cf. [33], Theorem 2.2. In R, for instance, all vectors of scaling exponents
must either be of the form (f9, D, D) with 0 < t9 < D and D € [0, 2] or of the
form (t,t1,2) with 0 < 19 < 2 and #; € [1,2]. Figure 4 illustrates, for self-similar
sets in R?, which combinations of scaling exponents may be possible and for which
combinations of scaling exponents some self-similar sets are known.

Note that for the sets in Example 3.1, the scaling vectors are of the form (o,
to + 1,19 + 1) with ¢y € [0, 1] (that is they are all on one line in the above mentioned
triangle), while the sets in Example 3.2 are of the form (¢g, ¢, 2) with ¢y € [1, 2] (that
is, they are all on one line in the rectangle).

If the same questions are asked for the average scaling exponents ay(K), the
answers are exactly the same, if the (weaker) integrability condition (1.3) is imposed
instead of CBC (1.4).

It is an open question, for which vectors within the spotted regions there exist self-
similar sets with those scaling exponents. It would in particular be good to know,
whether the relation 59 < s; < --- < 541 holds in general. More specifically, is it
true that all locally 1-flat self-similar sets in R? satisfy the equation s; (K) = so(K)+1
that we found for the sets in Example 3.1? We hope that further investigations will
provide answers to these questions.

Scaling exponents of general sets. The following example shows that for general
sets in the plane we can expect a much wider behaviour than in the self-similar setting.
We prescribe the scaling exponents so and s; (within a certain range) and construct a
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51 Example 3.2 generic case 51 Example 3.1 generic case
g 2 / /
terra . . / -
incognita —| impossible
¢ under CBC L
" possible?
1 e
i i impossible
bl
lmpos'SI 'e under CBC
combinations
S0 s
0 1 > 0 1 .

Figure 4. Possible and impossible combinations of scaling exponents sg, s1 for self-similar
sets in R? in the case s» = 2 (Left) and in the case 51 = s (Right). Grey shaded regions
refer to combinations confirmed to be impossible, white regions to combinations that are still
possible. The dotted lines refer to pairs of scaling exponents for which sets are known.

set with exactly these exponents. This is much more than we were able to do in the
self-similar setting; in Example 3.1 we only constructed sets with s; —so = 1.

Example 7.1. Suppose that2 > b > a > b — 1 > 0. Then there is a compact set
K = K(a,b) C R? such that 59(K) = a and 51(K) = b(= s2(K)).
Proof. Fix a, b as above. Then there is ¢ with 0 < g < % such that 2¢®~! = 1. For
n € Ng and eachi € N such that 2" <i < 2**t! define
(b—a—1)n
q
e n _ L e—
ri:=q"(1—-2¢q) and ¢ := [—1 —y J

where | x | denotes the integer part of a number x > 0. Thenr; > rjyq, Zfil ri =1

and 1 <1 < L. Set
13

i
pi = Z Tk
k=1

and define the set K = K(a,b) C R? by

K = U (et <1010 0 U ([ p) % (E1) U1y x 0. 1),
1=0 !

ieN

Geometrically, the set K is obtained by dividing the unit square into rectangles by
vertical line segments with distances r; (to control s;(K)) and then dividing each
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of these rectangles into #; similar rectangles by adding horizontal line segments (to
control s¢(K)).
Lete, = %q”(l —2¢) = %. Then, for g, 41 < & < ¢,

2ntl—y

Co"(K) =1+ > & (7.1)
k=1

and, since C;*(K;) = C(Kp) is half the boundary length of K¢,

n+1_q n+1_1q
CY™(Ko) =2+me+ Y (L+urm)—4e Y i (7.2)
k=1 k=1

Due to the definition of 7; and by the summation formula for geometric series, there
are constants ¢y, ¢ > 0 and ¢3, where ¢z = 0 when a = b, such that

2ntl—y

agb Yy > 14 Z ti > 22" — ¢52n.
k=1

Combining this with (7.1) and multiplying &, we infer that there are constants
c1. ¢, > 0and ¢}, where ¢§ = 0 when a = b, such that

Ciqan(qu—a—l)n > gacgar(Ks) > céqan(qu—a—l)n _ cg(zqa)n‘

Since 2¢®~' = 1 and either 0 < 2¢% < 1 or c5 = 0, we conclude that, for n
sufficiently large,
L/
¢} = &Gy (Ke) = 2 (7.3)

and therefore so(K) = a. Similarly, using (7.1) and (7.2), there are constants c4, c5 >
0 such that
42" > C{™(Kg) > 52" —4eCy™ (Kp).

Using (7.3), we infer that there are ¢, c%, ¢ > 0 such that
C‘/‘q(b—l)nzn > gb—lclvar(Ka) > C;q(b—l)nzn - Cng—a'
Since 2¢*~! = 1 and b — a > 0, we conclude that, for n sufficiently large,
C/
cy = PO (K) = 55
and therefore s1(K) = b. O

It is not difficult to see that in the example, the exponents sx can be replaced by
ar. It remains an interesting open question, whether there exist sets F C R? such
that ag(F) > a;(F). We believe this is not possible, however, up to now we have
not been able to prove this.
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Compatible self-similar tilings. Given a self-similar IFS {¢1, ..., ¢n}in R? sat-
isfying the OSC and a feasible open set O, in [21] atiling T = T (O) of the set O is
defined by setting G := O \ ®(0) (where ®(A) := Ujvzl @j(A) for A C R?) and

T :={¢s(G): 0 € T},

that is, the tiles of 7 are the iterates of the (open) set G, which is called the generator
of 7. Whenever the set G is nonempty (which happens if and only if the associated
self-similar set F has no interior points, i.e., if dimps F = d), the family 7 is a tiling
of O in the sense that the tiles ¢, (G) of T are pairwise disjoint and the closure of
their union equals the closure of O, i.e.

0=JR.
ReT
see [21], Theorem 5.7. Let F' be the self-similar set associated to {¢1, ..., ¢nx}. The

self-similar tiling 7 is called compatible, if and only if 0 C F. Compatibility is
equivalently characterized by the condition dG C F or by the equation

(FE\F):T—aU(Oa\O) (7.4)

for any (and thus all) ¢ > 0, see [21], Theorem 6.2. Self-similar tilings have been
used as a tool to study the geometric properties of self-similar sets, in particular, to
obtain fractal tube formulas and to introduce complex dimensions for self-similar sets
in R?, see e.g. [19], [16], and [17]. These results have for instance been used in the
characterization of Minkowski measurability, see e.g. [18]. In view of equation (7.4),
compatibility allows to transfer results from tilings to the associated sets, and hence to
replace the study of self-similar sets by the study of self-similar tilings, which turned
out to be much easier in certain cases.

It is therefore an interesting question, to characterize those self-similar sets which
possess a compatible self-similar tiling. That is, given a self-similar set I (satisfying
OSC and dimys F < d), does there exist a feasible set O such that 7(O) is a
compatible self-similar tiling? It is known from [21] that there exist self-similar sets
(e.g. the Koch curve) which do not possess a compatible tiling. Infact, itisnotdifficult
to see that a self-similar set I possesses no compatible tiling if the complement of
the set F is connected, see [21], Proposition 6.3. Using an argument from the proof
of Theorem 5.3, we can strengthen this observation to an if-and-only-if statement.
A self-similar set F' has a compatible tiling if and only if its complement is not
connected.

Theorem 7.2. Let F be a self-similar set in R¢ satisfying OSC and dimy F < d.
Then the set F possesses a compatible self-similar tiling T (of some suitable feasible
set Q) if and only if F€ is disconnected.
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Proof. If F has a compatible tiling 7 (of some feasible set O), then its generator G
satisfies G C F. Since F cannot cover the whole open set G, there must be
a connected component of F¢ contained in G which is bounded and thus not the
unbounded connected component of F¢. Hence F€ is disconnected, proving one
direction.

For the reverse implication, assume that F¢ is disconnected or, which is the same,
that ¢ has a bounded connected component B C F¢. Let {¢1,...,¢n} be an IFS
generating I and let O be an arbitrary strong feasible open set for . By the first part
of the proof of Theorem 5.3, we can assume without loss of generality that B C O.
Using B we construct a new feasible open set U for F by setting

U .= U 0w (B).

*
oeX

Indeed, it is easily seen that ¢; (U) C U fori = 1,..., N. Moreover, since B C O
and thus ¢;(B) C ¢s(0) C O for any 0 € X}, we have U C O from which
0i(U)Ng@;(U) =@ fori # j is transparent. Hence U is a feasible open set for F.
The generator of the associated tiling 7(U) is U \ ®(U) = B. Since dB C F, we
conclude that 7 (U) is compatible. Hence we have constructed a compatible tiling
for F', which completes the proof. O
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