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1. Introduction

We examine the (local) Minkowski content and the (local) fractal Euler charac-
teristic of limit sets of finite conformal graph directed systems (cGDS) that are
embedded in R, as introduced e. g. in [23]. The class of cGDS gives rise to a
rich collection of fractal sets including self-conformal sets, limit sets of Fuchsian
groups of Schottky type and limit sets of Markov interval maps. So far, the (local)
Minkowski content and the (local) fractal Euler characteristic have been investi-
gated only for restrictive subclasses of limit sets of cGDS such as self-similar sets
[6], [8], [12], [18], [19], [20], [21], [22], [32] and self-conformal sets [2], [11], [14],
[16]. New to this article is a general approach for the setting of cGDS which ex-
tends and recovers the previous results from the literature. In this way, we cane. g.
show that the Minkowski content of a limit set of a Fuchsian group of Schottky
type always exists (see Section 4.5), which proves a conjecture by M. L. Lapidus
from 1993 that is stated in [18].

A main motivation for studying the (local) Minkowski content and the (local)
fractal Euler characteristic arises from fractal geometry, where one aims to find
characteristics that describe the geometric structure of a fractal set. The (local)
Minkowski content and the (local) fractal Euler characteristic can be viewed as
such tools. They complement the notion of dimension and are capable of dis-
tinguishing between sets of the same Hausdorft- or Minkowski dimension. The
Minkowski content of a set ¥ C R is the limit as ¢ tends to zero of the re-scaled
length of the e-parallel neighbourhood of Y. Furthermore, for intervals, it coin-
cides with the length of the interval. Therefore, the Minkowski content can be
interpreted as “fractal length”. An interpretation of the fractal Euler character-
istic is given by its name (see [22]). The local Minkowski content and the local
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fractal Euler characteristic are defined as weak limits of measures. They are Borel-
measures which describe the “fractal length” and “fractal Euler characteristic” of
a given fractal inside a Borel set. When the weak limits exist, then their total
masses respectively coincide with the Minkowski content and the fractal Euler
characteristic.

In the literature, primarily the Minkowski content has received a lot of atten-
tion. Especially Minkowski measurability (i.e. the existence of the Minkowski
content in (0,00)) of self-similar subsets of R has been intensely studied.
One important result is given for non-degenerate self-similar subsets of R whose
associated iterated function system (IFS) consisting of similarities (sIFS) satisfies
the open set condition with connected feasible open set. Such a set is Minkowski
measurable if and only if the sIFS is non-lattice [8], [18], [19], [21]. We signifi-
cantly extend this important result and provide an alternative proof by showing
that the analogous statement is true also in the graph directed setting. To be
more precise, we obtain that a non-degenerate limit set of a cGDS that consists of
similarities (sGDS) is Minkowski measurable if and only if the sGDS is non-lattice
(Corollary 3.13). This convenient equivalence statement for systems consisting of
similarities unfortunately fails to hold for general conformal systems: in [14] it has
been shown that there exist non-degenerate self-conformal sets arising from lat-
tice conformal IFS (cIFS) for which the Minkowski content and the fractal Euler
characteristic exist. Since cIFS are special types of cGDS we cannot expect the
equivalence to be valid for general limit sets of cGDS either. Indeed, in Proposi-
tion 3.12 we provide a sufficient condition under which the Minkowski content and
the fractal Euler characteristic of a limit set of a lattice cGDS exist. However, one
direction of the equivalence remains true: In the non-lattice case, the Minkowski
content and the fractal Euler characteristic exist (see Remark 3.11). Moreover, in
Remark 3.11 we see that average versions of the Minkowski content and the fractal
Euler characteristic always exist and provide explicit formulae to determine their
values.

Let us now turn to the local quantities. These have been investigated in the
context of fractal curvature measures in [32]. If the ambient space is of dimension
one, then there are two fractal curvature measures: The 0-th fractal curvature mea-
sure (which is the local fractal Euler characteristic) and the 1-st fractal curvature
measure (which is the local Minkowski content). The term ‘“‘curvature” is appro-
priate for higher dimensional ambient spaces but strictly speaking not in R. There-
fore, we will exclusively use the terms local Minkowski content and local fractal
Euler characteristic in the present article. We obtain that the local Minkowski
content and the local fractal Euler characteristic exist for limit sets of non-lattice
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c¢GDS and are constant multiples of the associated §-conformal measure, where
8 denotes the Minkowski dimension of the limit set (see Theorem 3.7). For limit
sets of lattice sGDS we prove that these measures do not exist (see Theorem 3.8).
They neither exist for piecewise €' T*-diffeomorphic images of limit sets of lat-
tice sGDS (see Theorem 3.9). This latter statement is important, since there are
e!*+e_diffeomorphic images of limit sets of lattice sGDS for which the Minkowski
content and the fractal Euler characteristic do exist (see Example 4.4). Also for
limit sets of lattice cGDS consisting of analytic maps, the local Minkowski content
and the local fractal Euler characteristic do not exist (see Theorem 3.7). However,
we show that in the lattice situation average versions of the local Minkowski con-
tent and the local fractal Euler characteristic of a limit set of a cGDS always exist
and are again constant multiples of the associated §-conformal measure (see The-
orem 3.7).

From the above results we deduce the following. The limit set of a Fuchsian
group of Schottky type can be represented by a limit set of a non-lattice cGDS.
Thus, as a consequence of Remark 3.11, its limit set is Minkowski measurable. As
mentioned above, this result proves a conjecture by M. L. Lapidus from 1993 stated
in [18], which plays an important role in the context of the Weyl-Berry conjecture.
The Weyl-Berry conjecture for fractal drums is a conjecture on the distribution of
the eigenvalues of the Laplacian on a domain with a fractal boundary (see [8], [18],
[19], [21]). It addresses the problem of describing ‘the relationship between the
shape (geometry) of the drum and its sound (its spectrum)’ [19, p.1]. A more de-
tailed exposition on the results from the literature and on the above mentioned con-
jecture will be given in Remark 3.17. Besides the motivation from fractal geom-
etry, the Weyl-Berry conjecture is a main motivation for studying the Minkowski
content, see e. g. [15], [18], [19]. A third motivation arises from non-commutative
geometry: In Connes’ seminal book [4] the notion of a non-commutative fractal
geometry is developed. There, it is shown that the natural analogue of the volume
of a compact smooth Riemannian spin® manifold for a fractal set in R is that of
the Minkowski content. This idea is also reflected in [10], [13], [29].

For an overview of the relevant literature and more background on the (lo-
cal) Minkowski content and the (local) fractal Euler characteristic as well as an
overview of the recent development of this research area, we refer the reader to [14]
and the survey [15]. Moreover, there are several recent articles concerning higher
dimensional ambient spaces. In [12] it is shown that the Minkowski content of self-
similar sets arising from non-lattice sIFS that satisfy the OSC exists. Alternative
proofs of this result and further investigations on the lattice case are provided in
[6], [20], where tube formulas and zeta-functions are used. Such tube formulas
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have been extended to limit sets of sGDS in [5]. Minkowski measurability of
self-conformal sets in higher dimensional ambient spaces has been studied in [2],
[16]. There, it is shown that, under certain geometric conditions, a self-conformal
set arising from a non-lattice cIFS is Minkowski measurable. Moreover, fractal
curvature measures and their average versions are studied.

This article is organised as follows. In Section 2 we give the construction of
c¢GDS and their limit sets. In Section 3 we present our main results on the existence
of the Minkowski content, the fractal Euler characteristic and their local versions.
Section 4 is devoted to demonstrating how the new results can be applied to various
classes of examples of limit sets of cGDS. Section 5 to 7 deal with the proofs of
the main theorems. More precisely, in Section 5 we provide some background
and prove auxiliary results. With this preparation we provide the proofs of our
main results concerning limit sets of cGDS (Theorem 3.7 and Proposition 3.12)
in Section 6. Section 7 is devoted to the proofs of Theorems 3.8 to 3.10 dealing
with the special cases of sGDS as well as piecewise C!T*-diffeomorphic images
of limit sets of sGDS.

2. Conformal graph directed systems

A core text concerning conformal graph directed systems (cGDS) is [23]. The
class of cGDS generalises the notion of conformal iterated function systems and
gives rise to a much richer class of fractal sets such as limit sets of Fuchsian groups.
In Section 4 we give examples of classes of fractal sets which can be obtained via
a cGDS. In this section, we present the relevant definitions.

Definition 2.1 (directed multigraph). A directed multigraph (V, E, i, t) consists
of a finite set of vertices V/, a finite set of directed edges £ and functions

i t: E—V

which determine the initial and terminal vertex of an edge. The edge e € E goes
from i(e) to t(e). Thus, the initial and terminal vertices of e are i(e) and #(e)
respectively.

Definition 2.2 (incidence matrix). Given a directed multigraph (V, E,i,t), an
(#E)x(#E)-matrix A= (Ae¢,e’)e,e’cE Withentries in {0, 1}, which satisfies A, . =1
if and only if z(e) = i(e’) for edges e, e’ € E, is called an incidence matrix. The
incidence matrix A is called aperiodic and irreducible if there exists ann € IN
such that the entries of the n-folded product A" are all positive.
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Definition 2.3 (GDS). A graph directed system (GDS) consists of a directed
multigraph (V, E, i, t) with incidence matrix A, a family of non-empty compact
connected metric spaces (X ),ey and for each edge e € E an injective contraction

de: Xie) — Xi(e)

with Lipschitz constant less than or equal to r for some r € (0, 1). Briefly, the
family

D = (¢e: Xi(e) —> Xi(e))ecE
is called a GDS.
In this paper, we consider fractal subsets of the real line. Therefore, we restrict

the definition of a cGDS to the one-dimensional Euclidean space (R, |-|). For a
subset Y of (IR, |-|) we let int(Y') denote its interior, Y its closure and

Y := Y \ int(Y)
its boundary.

Definition 2.4 (cGDS). A GDS is called conformal (cGDS) if
(i) foreveryv € V, X, C R is a compact interval with non-empty interior,
(ii) the open set condition (OSC) is satisfied, in the sense that, for distinct

e,e’ € E we have

¢e(int(Xs(e))) N Per (int(X;(ery)) = @

and

(iii) for every vertex v € V there exists an open interval W, D X, such that for
every e € E with 7(e) = v the map ¢, extends to a C!*T¥-diffeomorphism
from W, into Wj(,), whose derivative ¢, is bounded away from zero on W,,,
where a € (0, 1].

We also consider the special case of cGDS where the contractions ¢, fore € E
are similarities:

Definition 2.5 (sGDS). A c¢cGDS, whose maps ¢, are similarities for e € E, is
referred to as sGDS.
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Remark 2.6. In the sequel, we will often refer to results from [23], where con-
formal graph directed Markov systems (cGDMS) are treated. Such systems differ
from ¢GDS in that an incidence matrix for a cGDMS only fulfills the property
that A, ., = 1 implies t(e¢) = i(e’). However, every cGDS is a cGDMS and
conversely, a cGDMS in R can always be represented by a cGDS, namely by sub-
stituting (¢pe (X (e)))eck in for the sets (X)yey and defining the edges accordingly.

In order to define the limit set of a cGDS, we fix a cGDS with the notation
from Definitions 2.3 and 2.4. The set of infinite admissible words given by the
incidence matrix A is defined to be

EP :={o=010:...€ EN| Ay, 0,,, = lforalln € N}. (2.1)

The set of sub-words of length n € IN is denoted by E’ and the set of all finite
sub-words including the empty word @ by E}. For a finite word @ € E} we let
n(w) denote its length, where n(2) := 0, define ¢z to be the identity map on
Upey Xv and for w € E} \ {@} set

P = Doy 0 0 Pyt Xit(@pwy) — Xiwr)

where we let w; denote the i-th letter of the word w for i € {1,...,n(w)}, i.e.
W = W] ...Wn(w) For two finite words u = uy...uy, 0 = w1 ...0m € E} with
Auyop = 1, we let

U = UL .. UpW] ... Om € E)

denote their concatenation. Likewise, we set
Uw = Uuyp... Uywi1y ...

foru =uy...uy € Ej and w = 0w, ... € EJ° with Ay, ,,, = 1. For an infinite
word w = w1y ... € EF° and n € N the initial word of length n is defined to be

®lp = w1 ...04.

For w € E° the sequence (¢, (X¢(w,)))nen is a descending sequence of non-
empty compact sets and therefore (), e Pwl, (Xt(w,)) # @. Recall from Defini-
tion 2.3 that r € (0, 1) denotes a common Lipschitz constant of ¢, for e € E.
Since diam(¢y|, (X;(w,))) < r"diam(X;,)) < r" max{diam(X,) | v € V} for
every n € IN, the intersection

ﬂ ¢a)|n (Xt(a)n))
nelN

is a singleton and we denote its only element by 7 (w). The code map is defined to
be the map 7: E® — (J, ey Xy given by o = ().
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Definition 2.7 (limit set of a cGDS). The limit set of the cGDS (¢¢).ck is defined
to be

F :=n(EY).

Limit sets of cGDS often have a fractal structure. They include invariant sets
of conformal iterated function systems, the so-called self-conformal sets, as well
as self-similar sets. These are defined as follows.

Definition 2.8 (cIFS, sIFS, self-conformal set, self-similar set). A conformal
iterated function system (cIFS) is a cGDS W := (Y1, ..., ¥n) whose set of ver-
tices V' is a singleton and whose set of edges contains at least two elements.
The unique limit set of a cIFS is called the self-conformal set associated with W.
In the case that the maps v, ..., ¥ are similarities, the limit set is called the
self-similar set associated with W and W is referred to as an s/F'S.

In order to show the significance of cGDS, Section 4 is devoted to examples
of important classes of such sets.

3. Main results

3.1. Notation, definitions and first results. Before stating our results, let us
begin with recalling the relevant notation and definitions, in particular the local
Minkowski content and the local fractal Euler characteristic. For further back-
ground we refer the reader to [14].

We let A% and A! respectively denote the counting measure and the one-dimen-
sional Lebesgue measure. For an arbitrary subset Y C R and ¢ > 0 we define

Ye i ={xeR|inf|x —y| < ¢}
yeyY

to be the e-parallel neighbourhood of Y. For the remainder of this section we
assume that Y is non-empty and compact. The 1-st and 0-th scaling exponents of
Y are respectively defined to be

s1(Y) :=inf{t e R | e'A'(Ys) — Oase — 0}
and

so(Y) :=inf{t € R | ¢'A°(3Y,) — O as e — 0}.
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Definition 3.1. Provided, that the weak limit

c/ .= w-lim eS1 MLy, Ny

of the finite Borel measures ') A1 (Y, N -) exists, we call le (Y, ) the local
Minkowski content of Y. Likewise, the weak limit

cl .= w-lim £002°(3%, n)/2

is called the local fractal Euler characteristic of Y , if it exists. Moreover, provided
that the weak limits exist, we respectively call

1
Cl .= w-1im|1nT|—1/ 1M1y, N )de
T\0 T
and

1
C/ (v, ) := w-lim|InT|! / g oM=120@Y, N )de/2
T\0 T
the average local Minkowski content of Y and the average local fractal Euler
characteristic of Y. Moreover, for a Borel set B C R we set

CJ (v, B) := limsup £°0P1°(3Y, N B)/2.

e—0

C{ (v. B) := limsup @A (Y, N B)

e—0

and
c/(v.B):= limi(r)lfeSO(Y))Lo(aYg N B)/2,
e—>

c/(v.B):= 11313&”“%(1/8 N B).

Notice, if Ckf (Y, -) exists, then also Ckf (Y, -) exists and the two Borel measures
coincide. However, we will see that Ckf (Y, -) does not always exist, whereas we
will prove that the average version Ckf (Y, -) always exists for limit sets of cGDS.

Remark 3.2. The (average) fractal Euler characteristic was investigated for self-
similar sets in [22]. In higher dimensional ambient spaces, the local Minkowski
content and the local fractal Euler characteristic belong to the class of fractal cur-
vature measures as introduced by S. Winter in [32]. However, the notion of cur-
vature is appropriate only in higher dimensional ambient spaces and therefore not
in the context of the present article.
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The first step towards determining the quantities from Definition 3.1 for limit
sets of cGDS is to evaluate the scaling exponents s; and so. Scaling exponents
have been intensely studied in [26]. For a limit set F of a ¢cGDS with aperi-
odic and irreducible incidence matrix, s; (F) and so(F) are strongly linked to the
Minkowski dimension dimys (F) of F which is proven to exist for such sets F (see
Proposition 5.3). For an arbitrary bounded set Z C R the Minkowski dimension
is defined by

dimp(Z) :=1—lim M (3.1

e\o0 Ineg
whenever this limit exists. When dimps(Z) exists then also the box-counting
dimension of Z exists and both quantities coincide (see [9, Proposition 3.2]). The
connection between the Minkowski dimension and the scaling exponents is pro-

vided in the next proposition.

Proposition 3.3. Let § denote the Minkowski dimension of the limit set F of a
c¢GDS ® with aperiodic and irreducible incidence matrix. Then either A (F) = 0,
in which case s1(F) = § — 1 and so(F) = 8, or F is a finite union of compact
intervals with non-empty interior. For any finite union Z C R of compact intervals
with non-empty interior we have s1(Z) = so(Z) = 0.

Proof. First, we show that either A!(F) = 0 or F is a finite union of compact
intervals with non-empty interior. For n € IN define

X = $0(Xiq@n)

n
w€eE]

X:=va.

veV

and set

If A'(int(X) \ X)) > 0, then A!(F) = 0 by [23, Proposition 4.5.9]. On the other
hand, if A!(int(X) \ X() = 0, then A'(X \ X)) = 0, since the cardinality of
dX is finite. It follows that X \ X = @, as both X and X are finite unions
of compact intervals. Clearly then X® = X foralln € N and F = X. Next,
we turn to the connection between § and the scaling exponents. If A1(F) = 0,
the equality s;(F) = § — 1 follows straight from the definitions of s; (F) and §.
Moreover, the relation so(F) = § is a consequence of s1(F) = § — 1 and [27,
Corollary 3.2]. If Z is a finite union of compact intervals with non-empty interior,
then A1(Z) > 0 and A°(dZ,) is positive and uniformly bounded in &, which imply
S1(Z)=S0(Z)=0. U
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In the setting of Proposition 3.3, if A!(F) = 0 then we call F non-degenerate;
otherwise we call F degenerate.

Remark 3.4. In the degenerate situation an immediate consequence of s1(Z) =
s0(Z) = 0 from the above proposition is that both the local Minkowski content
and the local fractal Euler characteristic of Z exist and satisfy

c/(z.y=2'zn) and cf(z.)=1°0zn"))2.

The more interesting case of Proposition 3.3 is the non-degenerate case. For
stating our results for such sets, we fix a cGDS (V, E, i, t, A) and assume that the
incidence matrix A is aperiodic and irreducible (see Definition 2.2). Let (Xy)yey
denote the associated compact intervals with non-empty interior and let

D= (pe: Xi(e) —> Xi(e))ecE

denote the family of injective r-Lipschitz maps for some r € (0, 1). Further, let F
denote the unique limit set and let

8 :=dimys (F)

be its Minkowski dimension. A central role with regard to our results is played by
the geometric potential function:

Definition 3.5 (geometric potential function, shift-map). The geometric potential
Jfunction
EEFX — R

is defined by
£(0) := —In|¢,, (r(ow))| forw =wiw;...€ EL.

Here
0: EUE? — EfUES

denotes the shift-map which is defined by
o(wwz...):=wws...€ EP forww, ... € EF,
o(wy...wp) ' =wy...05 € EZ‘I forw; ...w, € Ej, where n > 2,

and

o(w) =g forw € {@} U E}.
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We equip EN with the product topology of the discrete topologies on E and
equip the set of infinite admissible words E° C E N with the subspace topology.
This is the weakest topology with respect to which the canonical projections onto
the coordinates are continuous. The space of continuous real-valued functions on
E%° is denoted by C(E3°). Note that the geometric potential function & belongs
to C(E7°). A crucial property of § is whether it is lattice or non-lattice.

Definition 3.6 (co-homologous, lattice, non-lattice).

(i) Functions f1, f> € C(EY°) are called co-homologous, if there exists a func-
tion ¥ € C(E3°) such that

fi—fo=v—Yoo

A function f € C(EJ°) is said to be lattice, if f is co-homologous to a
function whose range is contained in a discrete subgroup of R. Otherwise,
we say that f is non-lattice.

(ii) If the geometric potential function & is non-lattice, then we call the cGDS ®
non-lattice. On the other hand, if £ is lattice, then we call ® lattice.

We let H (11_s¢) denote the measure theoretical entropy of the shift-map o with
respect to the unique o-invariant Gibbs measure j1_s¢ for the potential function
—3&& (see (5.4) for a definition). The unique probability measure v supported on
F, which for all distinct e, ¢’ € E satisfies

b (Pe(Xite)) N der(Xu@) =0 and  v(geB) = /B Sidy (32)

for all Borel sets B C X, () is called the §-conformal measure associated with ®.
Uniqueness and existence is provided in [23, Theorem 4.2.9] and goes back to the
work of [7], [25], [30].

For a vertex v € V' we denote the set of edges whose initial and respectively
terminal vertex is v by

Iy:={ecE|ile)=v} and T,:={ec E|t(e)=nv}.
Moreover, for n € IN we set

I ' ={weE}|i(wm) =0}, T):={wekE}]|t(w,) =0},

;= J I¥, =1t

kelN kelN

I :={w € ET | i(w1) = v}.
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For a finite word w € E} the w-cylinder set is defined to be
w]:={uecEY |ui=wfori e{l,....n(w)}}

in particular

(9] = EZ°.

Fundamentally important objects in our main statements are the primary gaps
of F and their images. These are certain intervals in the complement of the limit
set, which are defined in the following way. Set

LY = < U n[e]>\ L (zle)). (3.3)

eely eely

where v € V and (Y') denotes the convex hull of Y. We let n, denote the number
of connected components of L”. In Proposition 5.4 we show that |,y LY # @
if A\L(F) = 0, hence, Y_,cy ny > 1. If LY # &, we denote the connected com-
ponents of LV by LU/, where j ranges over {1,...,n,} and call the sets LY/ the
primary gaps of F. For every w € T, we define

Ly = g (L)

and call these sets the image gaps of F.

3.2. Exposition of the main results. Now, we are able to present our main re-
sults and for this purpose fix the notation from Section 3.1. In particular, let

D = (Pe)ecE

denote a cGDS with aperiodic and irreducible incidence matrix and let F' denote
its limit set. Set

8 :=dimys (F)

and let £ denote the geometric potential function associated with ®. Further, de-
note by H(uu_s¢) the measure theoretical entropy of the shift-map o with respect
to the unique shift-invariant Gibbs measure p_s¢ for the potential function —§§
(see Section 5.1). The proofs of the theorems of this subsection are presented in
Sections 6 and 7.
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Theorem 3.7. Assume that A\'(F) = 0. Then the following hold.

(i) The average local Minkowski content and the average local fractal Euler
characteristic of F always exist and are constant multiples of the §-conformal
measure v associated with ®, i. e.

=f ooy 2% ol

= TG Y
and

Mf g 2

CO (F’ ) - H(H_SS) 1)()1

where the constant c is given by the well-defined positive and finite limit

ny
¢ = r}}gnmz SO Ly (3.4)

veV j=1 weT}

(ii) If& is non-lattice, then both the local Minkowski content and the local fractal
Euler characteristic of F exist and satisfy

c/(F,)y=C/(F.
fork € {0,1}.
(iii) If & is lattice, then there exists a constant ¢ € R such that
0<C/(F.R) <C/(F.R)<¢

for k € {0, 1}. If additionally the system ® consists of analytic maps, then
neither the local Minkowski content nor the local fractal Euler characteristic
of F exists.

Theorem 3.7(ii) and (iii) in particular show that the scaling exponents of F' can
alternatively be characterised by
s1(F) =sup{t e R| 'A'(F;) — oo as e — 0}
and

so(F) = sup{t € R | 'A°(0F,) — oo as ¢ — 0}.

Since Ckf (F,-) is monotonically increasing as a set function in the second com-
ponent, Theorem 3.7(iii) also shows that Ckf (F, B) < ¢ for all Borel sets B C R.
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Theorem 3.8 (sGDS). Suppose that ® is an sGDS. Assume that L' (F) = 0 and
let h_gg denote the unique strictly positive eigenfunction with eigenvalue one of
the Perron—Frobenius operator for the potential function —§& (see Section 5.1).
Then, additionally to the statements of Theorem 3.7, the following hold.

(i) The constant c from (3.4) simplifies to the finite sum

c=) Y hose(@)IL™ P,

veV j=1
which is independent of the choice of ¥ € I5°.

(ii) If€ is lattice, then the following holds. For k € {0, 1} and for every Borel set
B C R for which F N B is a non-empty finite union of sets of the form m|w],
where w € E}, and for which F; N B = (F N B), for all sufficiently small
e > 0 we have that

0<C/(F,B)<C/(F,B) < oc.

Consequently neither the local Minkowski content nor the local fractal Euler
characteristic of F exists.

An interesting subclass of limit sets of ¢cGDS is the class of piecewise C1T%-
diffeomorphic images of limit sets of sGDS, where o € (0, 1] and €' ** denotes the
class of real-valued functions which are differentiable with «-Holder continuous
derivative. A nice relationship between the (average) local Minkowski content
and the (average) local fractal Euler characteristic of the limit set of the sGDS
and of its piecewise C!*T¥-diffeomorphic image is provided in the next theorem.
The analogue statements of Theorem 3.9(i) and (ii) have been obtained in [11] for
conformal @!'*¥-diffeomorphic images of self-similar sets in higher dimensional
ambient spaces.

Theorem 3.9 (Piecewise C! T*-diffeomorphic images of limit sets of sGDS). Let
R denote an sGDS with aperiodic and irreducible incidence matrix, with associ-
ated directed multigraph (V, E,i,t) and with associated compact non-empty in-
tervals (Yy)vey. Let K C R denote the limit set of R and assume that A1 (K) = 0.
Foreachv €V let g,: W, — R denote a C'+%(W,)-diffeomorphism which is de-
fined on a connected open neighbourhood W, C R of Yy, such that |g},| is bounded
away from zero on W, and such that the interiors of X, ‘= g,(Yy) are pairwise
disjoint and o € (0, 1]. Set F := |J, ey gv(K NYy). Then we have the following.
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(i) The average local Minkowski content and the average local fractal Euler
characteristic of both K and F exist. Moreover, Ckf (F,-) is absolutely con-

tinuous with respect to the push-forward measure 5kf (K, Uper g510)) for
k € {0, 1}. Their Radon-Nikodym derivative is, for v € V and k € {0, 1},
given by
dc{ (F.")
dCY (K. Uyer g5 ()

where § := dimps (K) denotes the Minkowski dimension of K.

—15
=g, 08, |

’

Xy

Xy

(ii) If R is non-lattice, then the local Minkowski content and the local fractal
Euler characteristic of both K and F exist and coincide with the respective
average versions.

(iii) If R is lattice, then neither the local Minkowski content nor the local fractal
Euler characteristic of K and F exist.

Piecewise C!*¥-diffeomorphic images of limit sets of sGDS play an important
role in the theory of general lattice cGDS. Namely, if a lattice cGDS consists of
analytic maps, then its limit set F' is an image of a limit set of an sGDS under a
piecewise C!1¥-diffeomorphism:

Theorem 3.10 (rigidity). Let ® be a lattice cGDS consisting of analytic maps
and let F C R denote its limit set. Then there exists a limit set K C R of a lattice
sGDS, with associated compact intervals (Yy)yey and analytic maps

g Wy — R

with |g, | bounded away from zero, where W, is an open neighbourhood of Yy,
such that

F={]g(KnY).
veV

Theorem 3.10 is a generalisation of [14, Theorem 2.2], which addresses cIFS.

3.3. Results on the Minkowski content. The theorems from the preceding sub-
section immediately imply results on the existence and value of the (average)
Minkowski content of limit sets of cGDS. The (average) Minkowski content is
defined as follows. Let ¥ C R denote a set whose Minkowski dimension

dimys (Y) =: 6
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exists. The upper Minkowski content M(Y) and the lower Minkowski content
M(Y) of Y are respectively defined to be

M) := limsupe® 'A'(Y,) and M(Y):=lim inf SN, (3.5
e—>0 &>

If the upper and lower Minkowski contents coincide, then we denote the com-

mon value by M(Y) and call it the Minkowski content of Y. In the case that the

Minkowski content exists, is positive and finite, we call Y Minkowski measurable.

The average Minkowski content of Y is defined to be the following limit, provided

it exists

1
M(Y) := lim[InT|™! / 2201 (Y,)de. (3.6)
T\0 T
Analogously, one defines the fractal Euler characteristic of Y by
¢ (¥) ;= lim e°P1°(3F,) /2, (3.7)
e—>0

whenever this limit exists.

We use the notation from the beginning of Section 3.2 for stating the implica-
tions of Theorems 3.7 to 3.9 regarding the existence and the value of the Minkowski
content.

Remark 3.11. Suppose that A!(F) = 0. Immediate consequences of Proposi-
tion 3.3 and Theorem 3.7 are that
218

with ¢ as in (3.4), and if £ is non-latice that M(F') exists and satisfies

M(F) = ¢{ (F.R) = C{ (F.R) = M(F). (3.9)

In the above remark we addressed the average Minkowski content and the non-
lattice case. The remaining lattice case is delicate with regard to Minkowski mea-
surability, namely both existence and non-existence of the Minkowski content is
possible. A sufficient condition under which the Minkowski content exists is given
in the following proposition, which will be proved in Section 6. Here, for an
a-Holder continuous function f € F,(ES°) (see Section 5.1) we let vy denote
the unique eigenmeasure with eigenvalue 1 of the dual of the Perron—Frobenius
operator for the potential function f (see Section 5.1).



188 M. Kessebohmer and S. Kombrink
Proposition 3.12. Assume that M'(F) = 0 and that £ is lattice. Then we have
0 <M(F) <M(F) < oco. (3.10)

Further, equality in (3.10) can be attained. More precisely, let {, ¢ € C(E)
denote two functions satisfying £ —{ = W —r oo, where the range of { is contained
in a discrete subgroup of R and a € R is maximal such that {(ES) C a’Z. If, for
everyt € [0, a), we have that

> e sp oy ((na,na + 1))
nez

(3.11)

etgt _ 1 _ _
s ¢ g oy (na. (n + Da)).
e - nez
then B
M(F) = M(F),

where the sums occurring in (3.11) are finite sums.

Condition (3.11) was obtained in [14, (2.3)] as a condition implying M(F) =
M(F) for self-conformal sets F arising from a lattice cIFS. Thus, the above propo-
sition states that exactly the same condition implies Minkowski measurability for
limit sets of cGDS. The necessary adaptations of the proof of [14] are outlined in
Section 6. An example of a lattice limit set of a cGDS, which satisfies (3.11) and
thus is Minkowski measurable, is given in Example 4.4. However, in the special
case, when the maps ¢, of the lattice cGDS are similarities, (3.11) cannot be satis-
fied which follows from Theorem 3.8(ii). Indeed, a consequence of Theorems 3.7
and 3.8 is the following.

Corollary 3.13. Suppose that ® is an sGDS and that A\'(F) = 0. Then F is
Minkowski measurable if and only if the sGDS ® is non-lattice.

This corollary provides an important extension of the result for sIFS given in
[8], [18], [19], [21] (see Remark 3.17((i))).

Remark 3.14. Combining (3.8) with Theorem 3.8(i) one obtains an explicit ex-
pression for M(F'), when @ is an sGDS.

We can now turn to the class of piecewise €' T*-diffeomorphic images of limit
sets arising from sGDS. Also here, the lattice case is delicate and so we first treat
the average and non-lattice situations.
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Remark 3.15. Suppose that we are in the situation of Theorem 3.9 of piecewise
e!*+e_diffeomorphic images of limit sets of sGDS. Let v denote the §-conformal
measure associated with R. Then direct consequences of Theorems 3.7 and 3.9
are: The average Minkowski content of both K and F exist and they are related by

Y — M X ’ Sd )
M(F) = (K ZV /K iy

If R is non-lattice, then the Minkowski contents of both K and F exist and coincide
with the respective average Minkowski contents.

Remark 3.16. From the result of Proposition 3.12 we can explicitly construct
C!*+e_diffeomorphisms which map limit sets of lattice sGDS to Minkowski mea-
surable limit sets of lattice cGDS. In fact, for every limit set K of a lattice sGDS
R there exists a family of C!**-diffeomorphisms {g, | n € N} such that g,(K)
is Minkowski measurable for each n € IN: Assume that K C [0, 1] and that the
geometric potential function ¢ associated with R is lattice. Let @ > 0 be maximal
such that the range of ¢ is contained in aZ. Let v denote the §-conformal measure
associated with R. Define

g:R— R, gx):=v((—o0,x])
to be the distribution function of v. For n € IN define the function
gn:[-1,00) — R
by
P
g0 i= [ @OE -1+ )
-1

and set
F" = g,(K).

Then for every n € IN we have
M(F") = M(F") and CJ(F".R)=C{ (F".R).

The proof of this statement has been given in [14, Corollary 2.18(iii)] for self-
conformal sets. For limit sets of cGDS the proof follows through by using Propo-
sition 3.12 and thus, we are not going to repeat it here. Notably, the sets F” do
not only provide examples of Minkowski measurable limit sets of lattice cGDS
but they also provide examples of sets for which M(F") and Cof (F™) exist but
le(F”, -) and COf(F", -) do not exist (see Theorem 3.9).
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We end this section with addressing conjectures from [18].

Remark 3.17 (on two conjectures by M. L. Lapidus from 1993).

@)

(ii)

Conjecture 3 in [18] states that under the OSC a non-degenerate self-similar
setin R¥ is Minkowski measurable if and only if the associated sIFS is non-
lattice. This conjecture was proven to be correct in space dimension d = 1
in [8], [18], [19], [21] under the assumption that the feasible open set is con-
nected. In higher dimensional ambient spaces it was proven in [12] that a self-
similar set arising from a non-lattice sIFS is Minkowski measurable, without
any further assumptions on the feasible open set. Thus, the results from [12]
fully prove one direction of the conjectured equivalence. The other direction,
namely that one has Minkowski non-measurability in the lattice situation, is
still an open problem in higher dimensional ambient spaces.

With Corollary 3.13 we have seen that the Minkowski content of a limit set
of an sGDS in R exists if and only if the sGDS is non-lattice. Thus, Corol-
lary 3.13 shows that [18, Conjecture 3] is also valid for the more general class
of limit sets of sGDS in R and in this way provides an important extension
to the result of [8], [18], [19], [21]. Moreover, Corollary 3.13 also allows to
consider self-similar systems where the OSC is satisfied with disconnected
feasible open sets and hence provides a new result in the lattice situation for
self-similar sets (see Section 4.2).

In the same paper, [18], a similar conjecture is posed for so-called ‘approxi-
mately’ self-similar sets, namely [18, Conjecture 4]. A precise definition of
an ‘approximately’ self-similar set is not given, however, limit sets of Fuch-
sian groups of Schottky type are mentioned as examples. These can be rep-
resented as limit sets of cGDS (see Section 4.5). It is well known that such
systems are always non-lattice (see e.g. [17, Part II]). Combined with [21,
Corollary 2.3], Equation (3.9) thus verifies [18, Conjecture 4] for limit sets
of Fuchsian groups of Schottky type. This situation will be investigated in
more detail in Section 4.5.

In this spirit we view limit sets of cGDS in general as being ‘approximately’
self-similar since conformal maps locally behave like similarities. Its sub-
class of self-conformal sets has already been treated in [14]. The results of
[14] combined with [21, Corollary 2.3] provide a negative answer to [18, Con-
jecture 4] for such sets (see also [14, Example 2.20]). Note that [14, Theo-
rem 2.12] combined with [21, Corollary 2.3] in particular shows that there
exist fractal strings with lattice self-conformal boundary for which the
asymptotic second term of the eigenvalue counting function N(A) of the
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Laplacian (in the sense of [21]) is monotonic. As self-conformal sets are
special types of limit sets of cGDS, the results from [14] already imply that
Minkowski measurability of the limit set of a cGDS is not equivalent to the
c¢GDS being non-lattice. However, (3.9) shows the validity of one implica-
tion, namely that limit sets of non-lattice cGDS are Minkowski measurable.

4. Examples of limit sets of cGDS

We now present classes of systems which can be represented by a cGDS and
illustrate our results for such systems. We especially focus on sets which cannot
be treated with the previously known results from the literature.

4.1. cGDS derived from a cIFS. A cIFS V¥ := (yq,...,¥n) has got the prop-
erty that every function ; can be concatenated with any other function v; for
i,j € {l,...,N}. Here we define a cGDS in that we additionally put transition
rules on W. This is done by defining an N x N matrix A’ := (Ag,j)i,je{l ,,,,,
entries 0, 1 which determines which functions may follow a given function, i. e.
A} ; = lif and only if y; o y; is allowed. The system (¥, A’) then gives rise to a
cGDS by setting

Vi={l,....N}, E:={l,....M}.

where

N
o 2 : ’
M . — Ai,j
i,j=1
/ —
v, T

and where for all v,v’ € V with 4
i(e) =vandt(e) =v'.

1 there exists an edge e € E such that

Example 4.1. Fori € {1, 2, 3} define

¥t [0,1] — [0, 1]

by setting
Yi(x) := %
%@y:§+%
Y3(x) := % + %
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and set
101
A:=1001
111
A corresponding sGDS is given by
Vi={1,2,3},
E:={l1,...,6},
I, ee{l,2},
i(e):=12, e=3,
3, eec{4,56},
1, ee{l, 4},
tle):=142, e=>5,
3, ee€{2,3,6},
110000
000111
4 000111 ’
110000
001000
000111

Xy = vy([0,1]) forvelV,

and

b1 X1 5 X1 63 X3 B Xy st Xo D X,

b X3 25 X1 dat X1 D Xa, e X3 > X,

Here, r = 1/4. For determining the average (local) Minkowski content of the
limit set F of the sGDS, we apply Theorem 3.8 and (3.8) and thus need to find the
primary gaps. Observe that

{z[1]) = [0, 1/16], {z[2]) = [3/16,1/4], {(z[3]) = [9/16,5/8],
(w[4]) = [3/4.13/16]. (x[5]) = [57/64.29/32]. (=[6]) = [15/16,1].
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Thus,
1 3
L'=(—, =
(16’ 16)’
——
=:L1.1
L? =g,
and

L3_<13 57)U(29 15>
- \16’ 64 32’16/ °
—— ——

=:L3.1 =:13.2

The primary gaps L'!, L3! and L2 are illustrated in Figure 1.

0 1

X1 Xz X3

e

(=[1]) (m[2]) (=[3]) (m[4]) (s txlen)
Figure 1. Primary gaps of the cGDS from Example 4.1.

Another quantity in the formula of Theorem 3.8 is the eigenfunction 4_s¢ of the
Perron—Frobenius operator £ _s¢ (see Section 5.1), where 6 denotes the Minkowski
dimension of F and £ is the geometric potential function associated with ®. In or-
der to determine /1_s¢, we first determine the measure v_ge. This is done by solving
the linear system of equations which arises by combining the following three facts.
For e € E the defining equation for v_s¢ implies that v_s¢ ([ee’]) = 478 -v_s¢([e])
for every ¢’ € Ty, vse(le]) = Loer, v-se(lee) and Yoep vose(le]) = 1.
The resulting measure v_s¢ satisfies

vose([1]) = vse([4) = 3-4° —47)7",

vose(12]) = v_se(13]) = v_sz ([6]) = (4° — 1) - vse([1]),

v-se(15]) = (1 —47%) - v_ge([1]).
To determine /_s¢, we use the approximation argument from (5.3). We let1denote
the constant one-function on EZ°. Since L7 s 1(u) = >, ern rd forallu e I

and v € V, it follows that /_s¢ is constant on one-cylinders. Now combining the
fact that the eigenvalue y_s¢ is equal to one, that £_seh_s¢ = y_seh_s¢ and that
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[ h_sgdv_gz = 1, we obtain

3472
—2-475 46— 48

h_se(@?) = (1 —47%)  h_ge(w') for 2 € I

h-se(w') = forw' € I{°,

h_se(@3) = (4° —1)-h_se(w')  for 0> € 1.

From the above evaluations we additionally infer that the Minkowski dimension §
is the unique positive root of the function

X > 475 — 472 40 4%,

With H(u—s¢) = 6 In4 we altogether obtain from Theorem 3.8 and (3.8) that

~ =8 . (3 _ 428
M= 5)281(6 R 2—18)1114(8_8 P -n((g) +27))

From Theorem 3.7 we conclude that
&/ (F.) = F(F)-v()
and

~ 1—-68 ~
Cf (F.) = —=3U(F) - v,

where v denotes the §-conformal measure associated with ®. Since £ =1n4-1is
lattice, Corollary 3.13 moreover implies that the Minkowski content of F* does not
exist.

4.2. Conformaliterated function systems with disconnected feasible open set.
By definition, a cIFS acting on X needs to satisfy the OSC with int(X) as a feasible
open set. If we allow the OSC to be satisfied with a different feasible open set,
then often the system can still be represented by a cGDS.

Example 4.2. Fori € {1,2, 3} define
¥i:[0,1] — [0.1]
by
Yi1(x) 1= x/3,
Ya(x) == x/3+2/3,

Yi(x) :=x/9+1/9,
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and set
V= (V1. Y2, ¥3).

Then W is not a cIFS in our sense since the open set condition is not satisfied with
(0, 1) as the feasible open set. (Even though the OSC is satisfied for (0,1/3) U
(2/3,1).) However, ¥ can be represented by an sGDS as follows. Set

V={1,2},
E:={1,...,6),
1, e{l,..., 4},
i(e) = ¢ed }
2, e€l{5,6)
1, e {l,3,5},
t(e):= ¢ed }
2, ee€{2,4,6},
111100
000011
A= 111100 ’
000011
111100
000011

Xy =Y ([0,1]) forv € {1,2},

and
b X1 U5 X0 e X1 B Xy st Xy B Xo,
62 Xo U5 X1 da Xo X1 get Xo 2 X

Here, r = 1/3, L' = (4/27,5/27) and L>! = (7/9,8/9). See Figure 2 for an
illustration for this example.

0 1
X] X2
(z[1])  (=[3]) (=[4]) (=[2]) (x[5]) (r[6])
Fas 72

Figure 2. Primary gaps of the limit set of the cGDS from Example 4.2.
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That the eigenfunction /_s¢ of the Perron—Frobenius operator £ _s¢ with eigen-
value 1 is equal to the constant one-function 1 on E3° can be seen as follows.
Firstly, £_sel =2/ 3% +1/9% and secondly, 1 = 2/3% + 1/9% which can be con-
cluded from the fact that 0 = P(—§&), where P denotes the topological pressure
function (see (5.2)). Thus, by Theorem 3.8 and (3.8), we have

2176 (2778 + 979)
(1 —8) H (p1—s¢)

M(F) =

As in the previous example élf (F,-) and 50f (F,-) can be determined from the
above equation by using Theorem 3.7. Corollary 3.13 implies that the Minkowski
content of F does not exist, since the range of £ is contained in In3 - Z.
Alternatively, one can determine the average Minkowski content of this example
by using the results of [12]. However, if /1, ¥ and 3 were non-linear but confor-
mal, then Theorems 3.7 and 3.12 could be applied, whereas this case is not covered
in [12].

4.3. Markov interval maps. For closed intervals X1, ..., Xy in [0, 1] with dis-
joint interior, N > 2, and X := UzN=1 X; we callamap g: X — [0, 1] a Markov
interval map if

(i) glx, is expanding and there exists a C ' **-continuation to a neighbourhood
of X; and

(ii) if g(X;) N X; # @ then X; C g(X;) fori,j e {1,....N}.
For a representation by a cGDS, set V :={1,..., N} and for v € V define

Gy :={ eV | Xy Cg(Xy)}.

For every pair (v, v’), where v € V and v’ € G, introduce an edge ¢ = e(v, v’)
with i (e) = v and t(e) = v’. Set

E :={e(w,V)|veV,v G,
and define
Ge: Xie) — Xi(e)
by
¢e = (g|Xi(e))_1|Xt(e) fore €E.

Then the repeller of the Markov interval map coincides with the limit set of the
corresponding cGDS.
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Example 4.3. Set
X1:=100,1/4], X,:=[1/4,1/2], Xs3:=1[2/3,1]

and let the Markov interval map

3
g: | Jxi—10.1]
i=1
be given by
X 1

gl (0) =55, (0 =3v =5, gly(x)=3x-2.

The graph of the Markov interval map g is presented in Figure 3.
g(x)

1

X3

2 X 1 X
5 3
Figure 3. Graph of the Markov interval map from Example 4.3.

A corresponding sGDS is given by

V:={1,2,3},
E:={1,...,7},
, ee{l,2},
i(e):=142, ec{3,4},
3, e€{5,6,7},
1, ee{l,5},
tle):==42, ec{2,3,6},
, ec{4,7},

197
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1100000
0011000
0011000
A=]100001111],
1100000
0011000
0000111
and
(glx,) ™" glx)™!
$1: X1 —— X1, ¢ Xo —— X,
(glxy) ™! (glxy) !
¢3Z X2 —_— X2, ¢4: X3 —_— X2,
(glx5)~" (glx5) " (glx5)~"
¢52X1 —>X3, ¢6:X2—>X3, ¢7:X3—>X3.
Here, r = 3/4.

For this example, we limit ourselves to determining and illustrating the primary
gaps, since presenting the complete calculations would not provide any further
insights. The convex hulls of the projections of the cylinder sets are given by

{z[1]) = [0,2/25], ([2]) = [1/10,1/5],
(z[3]) = [1/4.1/3],  (=[4]) = [7/18,1/2],
(z[5]) = [2/3,11/15], (=[6]) = [3/4.5/6], (x[7]) = [8/9.1].
Thus, the primary gaps are
LY = (2/25,1/10), L>! = (1/3,7/18),
L3> = (11/15,3/4), L3*? = (5/6,8/9).

They are illustrated in Figure 4. This cGDS indeed is a non-lattice cGDS and
hence le (F,-), Cof (F,-) and the Minkowski content of F exist by Theorem 3.8
and (3.9).

0 1
Xl X2 X3
(m[1]) (7[2]) ([3]) ([4]) (7[5]) ([6]) (= [7])
s 121 131 132

Figure 4. Primary gaps for the limit set of Example 4.3.
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4.4. Lattice cGDS whose limit set is Minkowski measurable. An example of
a lattice self-conformal set which is Minkowski measurable is given in [14, Exam-
ple 2.20]. In the following, we present an example of a Minkowski measurable
limit set of a lattice cGDS which cannot be obtained via a cIFS. This adds to the
observations concerning [18, Conjecture 4] that we discussed in Remark 3.17((ii)).
To be more precise, the following example in conjunction with [21, Corollary 2.3]
shows the existence of fractal strings, that have a limit set of a lattice cGDS for
boundary, for which the asymptotic second term of the eigenvalue counting func-
tion N(A) of the Laplacian (in the sense of [21]) is monotonic. This shows that the
statement of [18, Conjecture 4] is not valid for limit sets of cGDS in R.

Example 4.4. Let K C [0, 1] denote the limit set of the sGDS given in Exam-
ple 4.1. Let § denote its Minkowski dimension and let v denote the associated
§-conformal measure. Let
g:R—R
denote the distribution function of v, i.e.
g(x) :=v((—o0,x]) forx € R.

For n € IN define the function

gn:[-1,00) — R
by

X
g = [ @OE =1+ 7 ar
-1

and set
F" = g,(K).

Then we have M(F") = M(F™), although M(K) < M(K). This is a consequence
of Corollary 3.13 and Remark 3.16.

4.5. Limit sets of Fuchsian groups of Schottky type. Here, we give a very brief
introduction to limit sets of Fuchsian groups of Schottky type. For background and
proofs of the statements below, we refer the reader to [1], [24].

Welet H := {z € C | J(z) > 0} denote the upper half plane in C, where
3J(z) denotes the imaginary part of z € C. We fix n € IN with n > 2 and set
V= {#£1,...,£n}. Welet (By)yey denote a family of pairwise disjoint closed
Euclidean unit balls in C intersecting the real line R orthogonally and let g, denote
the unique hyperbolic conformal orientation preserving automorphism of H which
maps the side s_, := HNJB_, to the side s, := HNJB,. (Note that g, is a Mobius
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transformation which is obtained on concatenating the inversion at the circle 0B_,,
with the reflection at the line % (z) = d,, where d,, = (¢, +c—_,)/2 is the midpoint
of the line segment joining the centres c_, and ¢, of the balls B_, and B, and %(z)
denotes the real part of z € C.) Then {g, | v € V'} is a symmetric set of generators
of the Fuchsian group G := ({g, | v € V'}) and G will be referred to as a Fuchsian
group of Schottky type. Associated to G is alimit set L(G) C RN J, ¢y By Which
is defined to be the set of all accumulation points (with respect to the Euclidean
metric on H := H U R U {o0}) of the G-orbit G(z) := {g(z) | g € G} for an
arbitrary z € H.

Such a limit set can be represented as a limit set of a cGDS in the following
way. For defining the directed multigraph we set the set of vertices to be V/, define

E :={v,v)eV?|v # —v}

to be the set of edges,

t((v,v):=v and i((v,v)):=v".

The incidence matrix A is given by A, = 1if t(e) = i(e’) and A, = Oelse. It
is aperiodic and irreducible, which can be seen as follows. Let e, e¢”” € E denote
two arbitrary edges. The condition that n > 2 implies that there exist at least two
vertices v € V \ {—t(e), —i(e”")}. Fix v as such. Since v # —t(e) there exists an
edge ¢/ € E with i(e’) = t(e) and t(e’) = v and likewise, there exists an edge
e¢” € E with i(e”) = v and t(e”) = i(e’”). Thus, ASZ,,, > 0. Forv € V we set
Xy, := By N R and note that the maps g, can be continuously extended to H. We
denote this extension also by g,. For each e = (¢(e),i(e)) € E we set

&i(e)
Ge: Xie) — Xi(e)-
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Since each g, is a Mobius transformation with singularity in X_,, the map ¢,
extends to an analytic @' T*-diffeomorphism on an open connected neighbour-
hood W;(e) of X;(e), for some o € (0, 1]. Moreover, the maps ¢, are strict con-
tractions by construction. That the limit set L (G) of the Fuchsian group coincides
with the limit set of the above constructed cGDS is shown in [23, Theorem 5.1.6].
By [17, Part II] the associated geometric potential function is non-lattice. There-
fore, we obtain the following corollary from Theorem 3.7:

Corollary 4.5. The local Minkowski content and the local fractal Euler character-
istic of a limit set of a Fuchsian group of Schottky type always exist. In particular,
a limit set of a Fuchsian group of Schottky type is always Minkowski measurable.

Note that the above corollary proves [18, Conjecture 4] for limit sets of Fuch-
sian groups of Schottky type.

Example 4.6. In this example we want to show how a typical limit set of a Fuch-
sian group of Schottky type can be represented as a cGDS. We set V := {£1, +2}
and define B_,, B_1, By and B, to be the closed unit balls with respective centres
—5,—2,2 and 5. Then the maps

gy H—H
are given by
g2 = 2
i) = 2
=21
82(2) = Sj I §4,

and G := ({gy | v € V}) is the Fuchsian group of Schottky type. For a represen-
tation by a cGDS we set

X_2 = [—6, —4], X_l = [—3, —1],

X, :=1[1,3] X, = [4,6].
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The set of edges is given by
E:={wv)eV?|v # v}, t((v.v)=0,i((v,v)) =1

and the family of maps ¢, for e € E is given by

g g g
G(—2,-2): X2 =2 X, G—2,-1): X2 LaiNG ‘@) G—2,1): X2 =5 Xy,

g g g
G(—1,-2): X-1 =2 X, G—1,-1): X-1 == X, G(-1,2): X1 = X,

g g g

ba,-2) X1 =2 X, b, X1 LLENS b, X1 2 Xs,
g g g

b@2,-1): X2 =5 X, b1 X2 LLENS P22 X2 = X,.

The incidence matrix A4 is a 12 x 12 matrix which contains exactly three ones in
every row and every column.

5. Preliminaries

We now provide some background information and auxiliary results for proving
our main theorems, which we presented in Section 3.2.

5.1. Perron—Frobenius theory and the geometric potential function. In order
to provide the necessary background to define the constants in our main statements
and also to set up the tools needed in the proofs we now recall some facts from the
Perron—Frobenius theory. For this, we are going to make use of results from [23]
which were obtained for conformal graph directed Markov systems (cGDMS), see
Remark 2.6, which are finitely primitive. A cGDMS is called finitely primitive, it
there exists an n € IN such that for all e, e’ € E there exists an w € E’f for which
ewe' € E}.

Remark 5.1. A cGDS with aperiodic and irreducible incidence matrix is a finitely
primitive cGDMS.

In this subsection we always assume that the incidence matrix A is aperiodic
and irreducible. Recall from Section 3.1 that we equip E3° as defined in (2.1)
with the sub-topology of the product topology of the discrete topologies of E
and let C(E3°) denote the set of real-valued continuous functions on E3°. For
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f €CEP),a€(0,1)and n € N U {0} we define
var, (f) == sup{| f(®) — f(w)| | w,u € E° and w; = u; fori € {1,...,n}},

e = sup Y22

n>0

and
Fu(EF°) :={f € C(EL) | | fla < 00}

Elements of F, (ES°) are called a-Holder continuous functions on E3°. The space
Fa(EZ°) endowed with the norm

Il =1 e 41

where || - | denotes the supremum norm, is a Banach space.

Remark 5.2. The geometric potential function £ associated with a cGDS
® = {Pe}eck satisfies § € Fz(ET) for some & € (0,1). To see this, we let
r € (0, 1) denote a common Lipschitz constant of ¢, for e € E. Because of the a-
Holder continuity of ¢, we obtain that there exists a constant ¢ € R such that for
every n € IN we have var, (§) < cr®®~D and varg(£) < oo. Thus, £ € Fa(EL),
where @ :=r% € (0, 1).

For f € C(EJ°) define the Perron—Frobenius operator
Lr: C(EF) — C(EY)

by

Ley():= Y /My (5.1)

UoCU=w

for v € EZ° and let L;; be the dual of £ acting on the set of Borel probability
measures on E3°. By [31, Theorem 2.16 and Corollary 2.17] and [3, Theorem 1.7],
for each real-valued Holder continuous f € Fy(E3°), some o € (0, 1), there
exists a unique Borel probability measure vy on EZ° such that Live = yrvy for
some yr > 0. Moreover, yy is uniquely determined by this equation and satisfies

yr = exp(P(f)). Here
P:CES) — R

denotes the topological pressure function, which for ¥ € C(Eg°) is defined by

o1
Py):= nll)rglozln Z exp sup Sy (u), (5.2)

w€E] u€lw]
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(see [3, Lemma 1.20]), where we recall that
w]:={uecEP |u =w forl <i<n(w)}

denotes the w-cylinder set and where the n-th ergodic sumof amap f: E3° — R
and n € N is defined to be

n—1

S,,f::Zfoak and Sof :=0.

k=0

Further, there exists a unique strictly positive eigenfunction hy € C(E°) of
Ly satisfying

Lrhy =yrhy and /hdef = 1.

By 1y we denote the o-invariant probability measure defined by

duys/dvy = hy.

This is the unique o-invariant Gibbs measure for the potential function f. Un-
der some normalisation assumptions the iterates of the Perron—Frobenius opera-
tor converge to the projection onto the one-dimensional subspace generated by its
eigenfunction /. To be more precise we have

mlgnOO ly; " LF Y — [Ydvg -he| =0 forally € C(EP), (5.3)
where || - || denotes the supremum norm on C(£3°). The results on the Perron—

Frobenius operator quoted above originate mainly from the work of Ruelle, see
e.g. [28].

For the geometric potential function § € C(E£7°) it can be shown that the mea-
sure theoretical entropy H (pi—s¢) of the shift-map o with respect to p1_s¢ is given
by

Hieo0) =5 [ 6duse, (5.4)

where § denotes the Minkowski dimension of F. This observation follows e. g.
from the variational principle (see [3, Theorem 1.22]) and the following result,
which follows by combining [23, Theorems 4.2.9, 4.2.11 and 4.2.13].

Proposition 5.3. The Minkowski as well as the Hausdor[f dimension of F is equal
to the unique real number t > 0 for which P(—t£) = 0, where P denotes the
topological pressure function.
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5.2. Properties of cGDS

Proposition 5.4. Let F denote the limit set of a cGDS with aperiodic and
irreducible incidence matrix (see Definition 2.2). If F satisfies A (F) = 0, then

UL #e,

veV

where LV is defined in (3.3).

Proof. Assume that A!'(F) = 0 and |, L® = &. Then

U (U 7let) = U U e

veV eely veV eely

This implies

o(J(U lel)) = U U ge{ U lel)

veV eely veV e’eTy eely

= U U < U n[eﬁe])

veV e’eT, ecly
[ —
=nle’]

= J U xlel)

veV eely

= U{U 7))

veV e€ly,

where the second to last equality is due to the fact that the incidence matrix is ape-
riodic and irreducible. Thus, the set |, ¢y (U,ez, 7[e]) is invariant under ® and
hence F = (Jyey (U,er, lel). Since we assume that A'(F) = 0 and since the
sets ez, 7le]) are compact non-empty intervals, it follows that ((J,e;, 7[e])
is a singleton for every v € V. Therefore, the cardinality of F is finite which
contradicts the fact that the Minkowski dimension of F is positive (see Proposi-
tion 5.3). O

One key property of a cGDS is the bounded distortion property. The following
bounded distortion lemma has been obtained in [14, Lemma 3.2] in the setting
of cIFS. The proof follows along the same lines for cGDS giving the following
lemma.
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Lemma 5.5 (Bounded Distortion). There exists a sequence (pp)nen With py > 0
foralln € N and lim, o pp = 1 such that for all w,u € E} with uw € E} and
X,V € ¢ (Xt(wn(w)) We have that

]
n@ = (g ()] = P

6. Proofs of Theorem 3.7 and Proposition 3.12

Theorem 3.7 and Proposition 3.12 are generalisations of Theorems 2.11 and 2.12
in [14] respectively. In the following, we recall the important steps from [14] and
point out the necessary modifications. The key idea is to prove the statements of
Theorem 3.7 and Proposition 3.12 for the local fractal Euler characteristic and then
to apply statements from [27] to deduce the respective results concerning the local
Minkowski content.

Without loss of generality we may assume that {0, 1} C F C [0, 1] as other-
wise the result follows by rescaling. Fix an ¢ > 0 and consider the expression
A2 (0F,; N (—oc0,b])/2 for some b € R. As in [14] we express A°(0F, N (—oc0,b])/2
in terms of the image gaps but obtain a different representation because of the
non-allowed transitions

X0(3F, N (—o00, b))
2

ny
= ZZ#{a) eT)| LY C(—o0,b], |ILY| > 28}4_%1’

veV j=1

(6.1)
where ¢; € {1, 2,3} depends on the value of b. For finding appropriate bounds
on E (&), we choose an m € IN U {0} such that all image gaps

(LY |veV,jell,....ny},0 € T™}
of level m are greater than 2¢. Forv e V, j € {1,...,ny} and w € T." define

B2 (e) 1= #u € Tjf, ) | LY € (—00.b). Y]] > 2¢).

l(wl

We have the connection

ZZ > ”’(s)<u(s)<22 > "”’(s)+2nv2(#E)'

veV j=1weT]" veV j=1weT" veV j=0
(6.2)
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Fix b € R\ F. Then F N (—o0o, b] can be expressed as a finite union of sets of
the form 7[«], where k € E. More precisely, there exists a minimal / € IN and
kD, kD e EX satisfying

(i) Fn(-00,b] =i, n[k®]and
(i) 7[k¥D] N x[kY)] contains at most one point for all i # j € {1,...,1}.

Then for
l
K= U[K(j )]
Jj=1
the function 1, is Holder continuous. Fix w € E'. Using the bounded distor-
tion constant p, () of @ on ¢y (X;(w, ) (see Lemma 5.5), we can provide upper
bounds for E,;7 (¢), namely for an arbitrary »® € I1>° we have

o0
=v,j v . = v
Bl =) ) oo L5t rww) omoy I LL 1526y T E2(@076)

n=0 uETi'fwl)

o0
_ (6.3)
=D D OOy )iyt 226 T ).

n=0 ueTi”(wl)

= A (w?, & k)

where the constant ¢, (w?, k) is needed, since LY < (—o0, b ] does not necessarily
imply uww? € k for anarbitrary 0 € I7°. However, if n(u) > max;—;
either [uw] € « or [uw] Nk = @. Hence, there are only finitely many u € T
for which LY < (—o0, b] does not imply uww” € k for all w’ € I°. Letting
c2(w?, k) € R denote this finite number shows (6.3) for all ¢ > 0. Likewise, there
exists a constant ¢;(w?, k) € R such that for all ¢ > 0

o0
—~v,j v . v
= g) > E E 1,(uww”)1 _ —cr(w’, k).
B’ (e) = i ) {I¢1 (rw@®) -0, L, | Loy’ |>2¢} e )
n=0u€Ti'zwl)

It follows that for all 8 > 1 we have that

o0
B @ =) Y Lo )L, —c2 (0¥, k). (6.4)

n=0 uETi'fwl)

LYY 12268}

—1
n(w)

=: A% (0, 6B, k)
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For every v € V fix an 0¥ € I5°. Combining (6.1) to (6.4) implies for all m € IN
and all 8 > 1 that

COf(F, (—00,b]) <lim S(l)lp &l Z Z Z A% (Y, &, k) (6.5)

veV j=1weT}"

and

CJ (F.(=00.b)) = liminf ¢’ Zi > A% (@V.eB.k).  (6.6)

veV j=1weT{"

The next step in the proofs is to apply renewal theorems by Lalley [17] and slight
extensions by the authors [14], in order to obtain asymptotics for both expressions
Ay’ (w?, e, k) and Ay’ (wV, eB, k). For applying the renewal theorems, note that

v .
2 Belwow) Ly gyt 15 1220

" n(w)
“ETi(wl)

= Te(u)-1, 5
> () { 5 —Inlgl, (myku)ls—lnﬁ} (6.7)
p

coly= v .
u:ocu=ww k=1 | Ly

e }
187 105,

n(w)

u: c"u=ww? Spé(u)<—In

= Z ]lk(u)']l{

Moreover, note that the hypotheses and Remark 5.2 imply that the geometric po-
tential function ¢ is Holder continuous and strictly positive. The unique s > 0 for
which y_s¢ = 11is precisely the Minkowski dimension ¢ of F, which results by
combining the fact that y_g¢ = exp(P(—s§)) for each s > 0 and Proposition 5.3.
We will insert the asymptotics for f?},;j (0¥, &,k) and A},’;j (w?, g, k), that the re-
newal theorems yield, into (6.5) and (6.6). In this way we will obtain an upper
bound for COf (F, (—o0, b]) and a lower bound for Qof (F, (=00, b]). For deducing
statements on Eof (F,(—o00,b]) and Qof (F, (—o0, b]) from these bounds we need
the following lemma, which is an adaptation of [14, Lemma 4.1].

Lemma 6.1. Foreveryv € V fixan o' € I3°. Then for an arbitrary Y € R,
@ if )
T= Z Zv Z h_se(@@®) (L% | pm)®  forallm € N,
veV j=1weT
then

ny
T <liminf %" 3" [L/[;

veV j=1weT{"
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i) if
ny
Tz Z Z Z h_se(ww®)(IL% o) forallm € NN,
veV j=1weT{"

then
ny
S U

M= eV j=1weTl"

Proof. First, we approximate the eigenfunction /_s¢ of the Perron—Frobenius op-
erator £_s¢. By induction it follows that

@) = Y (g erw)
ueT-”( )
i(wq
for each w € EZ° and n € IN, where 1 is the constant one-function on E$°. £” 51
converges uniformly to the eigenfunction s_s¢ when taking n — oo by (5.3).
Thus, for all # > 0 there exists M € IN such that

> g mo) —h_sg(@)| <t foralln > M.w e EF.

n
“ETi(wl)

Furthermore, the important bounded distortion lemma (Lemma 5.5) states that for
all ¢/ > 0 there exists M’ € IN such that

lom — 1] <t forallm > M'.

Thus, foralln > M and m > M’,

T DY hose(@o”)(ILY |pm)’

veV j=1weT{"

=22 X (X Wimoo) o)Ly Pa )

veVj=lweTy" ueTf(,

ny .
<O DT P+ i+ N YLy
veV j=1weT]" ueTl.”(wl) veV j=1weT]"

= Amn.
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Hence, for all ¢, > 0,

T <liminfliminf A, ,
m—o00 n—>oo

ny
< (1+¢) timinfliminf >3 5™ 3 Ly

veV j=1 weT{" ueT/’

i(wy)
ny
+1(1+ ) limsup Y~ Y LGP

M= yeV j=1weTl

We have that

SIS =Y n Y 16,1 = am.

veV j=1weT]" veV weTl"

where | - || denotes the supremum norm. The assertion follows by letting ¢ and
t' tend to zero, since the sequence (@, )men is bounded by [23, Lemma 4.2.12]
together with Remark 5.1. Analogously, the lower bound in the second case can
be proved. O

6.1. The non-lattice case

Proof of Theorem 3.7(ii). Let us fix the notation from the beginning of Section 6.

If 1, is identically zero, then COf(F, (—00,b]) =0 =v(F N (—00,b]). If 1,
is not identically zero then combining (6.3), (6.4) and (6.7) with the fact that 1,
is Holder continuous allows us to apply Lalley’s renewal theorem [17, Theorem 1]

(see also [14, Proposition 3.8], where the theorem is stated using our notation, but
for the case that E° = EN =: £%°) to Ay’ (w?, &,k) and Ay’ (w?, ef, k), where

veV,jell,....,ny},weT), 0w’ eI and B > 1. This gives the asymptotics
i v_sg (k) v —8 (17 v.j 8
A (@°, 6,0 ~ =25 g0y - 29) (1L Ipnw)’. (6.8)
T Edu g ( @)
; V_sg (k) _ 5
AV (0, 8B, k) ~ ———— - h_gz(ww?) - (2¢ L“J o (6.9)
(@ ef0) ~ g a0 eB) (L3 1)

as ¢ — 0 uniformly for ¥ € I$°. On combining (6.5), (6.8) (resp. (6.6), (6.9))
with Lemma 6.1 we obtain in a similar way to [14, proof of Theorem 2.11(ii)] that
CJ (F.(—00,b)) = CJ (F.(—00.b]) and thus that

CJ (F. (—00,b)) = m Y50 S L w(F A (o)

H(M 5¢) e ooV 121 weTt
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holds forevery » € R\ F. As R\ F is dense in R the assertion concerning the local
fractal Euler characteristic follows. The result on the local Minkowski content now
follows by applying [27, Corollary 3.2] (see also [14, Theorem 3.13]), as for every
b € R\ F we have that F; N (—o0,b] = (F N (—o0, b]), for sufficiently small
e>0. U

6.2. The lattice case. This subsection addresses Theorem 3.7(iii) and Proposi-
tion 3.12.

Proof of Theorem 3.7(iii). The statement that neither the local Minkowski content
nor the local fractal Euler characteristic exists if the maps ¢, are all analytic, is
a direct consequence of Theorem 3.9(iii) together with Theorem 3.10, which will
both be proven in Section 7. Therefore, we now focus on the boundedness and
positivity. For this, we proceed as in the proof of [14, Theorem 2.11(iii)]. We fix the
notation from the beginning of Section 6. As £ is lattice, there are {, ¥ € C(EY)
such that

§—¢=v Yoo,

where the range of ¢ is contained in a discrete subgroup of R. Let a > 0 be
the maximal real number for which {(E$°) € aZ. Recall from the beginning of
Section 6 that the hypotheses and Remark 5.2 imply that & is Holder continuous
and strictly positive and that the unique s > 0 for which y_s¢ = 11is the Minkowski
dimension § of F (see Proposition 5.3). Note that 1, is Holder continuous and that
we can assume that 1, is not identically zero. Combining (6.3), (6.4) and (6.7),
we see that we can apply the extended version of Lalley’s renewal theorem [17,
Theorem 3] given in [14, Theorem 3.9] to Ez)’j (0", &, k) and A},’;j (w?, eB, k). This
yields a symptotics

[W(y)—g(ww”)_f_%ln . jzs —‘
Loy |,0n(a)) dV—Sé’(y)y

(6.10)

—_ . —8a
AY (0, 8, k) ~ Uw(a)”)/e
K

YW=y (@aw¥) | 1 28BPn(w)
’7 a +E In -

AV (07, 8B, k) ~ Up (") / ¢ Lo de—sc(y) (6.11)

as & — 0 uniformly for w” € I3°, where

ah_se(ww")

Uw(a)v) = .
(1= [ tducss

(6.12)
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Consecutively applying (6.5) and (6.10) and using thate~1*] < e forany x € R
we obtain with Lemma 6.1 (as in [14, p. 2498]) that

ny —§
=f . . v,j |6 a? .
Cy (F.R) < I}nrgloréf E E E [L7| y =:Cp.
veV j=1 weT!" (I—e°%) [ ¢dp—s¢

The number ¢y is positive and finite because

NS P <Y S U610 = am.

veV j=1weT}" veV j=1weT}"

where | - || denotes the supremum norm, and the sequence (d,)men is bounded
by [23, Lemma 4.2.12].

That Qof (F, R) is positive can be concluded from (6.6), (6.11) and Lemma 6.1
in the same way (see also [14, p. 2499]).

The results on Qlf (F, B) and le (F, B) are now straightforward applications
of [27, Corollary 3.2] (see also [14, Theorem 3.13]). |

Proof of Proposition 3.12. Equation (3.10) follows from Theorem 3.7(iii). For the
second statement, we use [14, Lemma 3.12], which in [14] was proven for the case
that E° = EN =: £, but the same proof works in the present more gen-
eral situation. The hypotheses and [14, Lemma 3.12] together imply that for every
veV,jell,....np},o’ € [Pandw e T

2¢e

_ga’:/f(y)—ttllf(ww”)_l_%ln 2 —‘
_ . -J
U := lim 88/6 L™ lom dV—b’;()’)'(

e—>0

)

w

and

_Salrll/(y)_lg(wwv)-l—%ln 28;)”«! —‘ D) 5
U := lim 88/6 1Ly | dV—SC(J’)'( ﬁ"; )
e>0 Lo |

are independent of @, v and j and are equal,i.e. U = U =: U. Combining (6.5)
with (6.10) and (6.6) with (6.11) and applying Lemma 6.1 gives C_’Of(F, R) =
QOf(F, R). These steps are carried out in the case E3° = EN in [14, p.2499 f]
in detail. An application of [27, Corollary 3.2] (see also [14, Theorem 3.13]) then
completes the proof. O
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6.3. Average quantities

Proof of Theorem 3.7(i). This statement follows in direct analogy to the proof of
[14, Theorem 2.11(i)]. Slight modifications to match the present setting are the
following. For m € IN set

M :=min{|[L% | |veV,je{l,. ..  n} oecTm 2

Note that the analogues of [14, (4.1)—(4.3)] are (6.1)—(6.3) and that

needs to be replaced by

Z ”Zv Z Xf)’j(w”, £, K).

veV j=1weT{"

The analogue of [14, (4.7)] is (6.7), the analogue of [14, Lemma 4.1] is Lemma 6.1
and the analogue of [14, Theorem 2.11(iii)] is Theorem 3.7(iii). O

7. Proofs of Theorems 3.8-3.10

Here, we provide the proofs of the results concerning limit sets of sGDS (Theo-
rem 3.8) and piecewise C!*¥-diffeomorphic images of limit sets of sGDS (Theo-
rems 3.9, 3.10).

7.1. sGDS

Proof of Theorem 3.8. Throughout the proof let ® := (¢¢).cg denote an sGDS,
meaning that ¢, is a similarity for every e € E. Let r, € (0, 1) denote a Lipschitz
constant of ¢, for e € E. Further, set

To '=Tg; - T,

for a finite word ® = w1 ...w, € EJ. Part (i) follows from Theorem 3.7(i) with
the following considerations. For v € V' and w? € I$°, (5.3) implies
lim Y rd = lim_ L7 1(0") = h_ge(”) (7.1)

m—>00
weT
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with 1 denoting the constant one-function on E°. Moreover, since ¢, are simi-
larities, |Ly’| = rp|LV/|forallv € V,w € T} and j € {1,...,ny}. Thus, ¢
from (3.4) simplifies to

c=3 Y hose(@)L™P, (7.2)

veV j=1

showing the assertion of (i).

In order to prove (ii) we proceed as in the proof of [14, Theorem 2.14], where
the statement is shown for self-similar sets. A crucial discrepancy to [14] is that
here h_s¢ = 1is not necessarily satisfied. With the same arguments as in the proof
of [14, Theorem 2.14] (replacing E and R, E in [14] by F and n[w] respectively)
we see that for fixed v € V' and arbitrary " € I2° there exists a constant ¢ > 0,
which depends on the number of sets 7 [w] whose union is F N B, such that

ny
A@F B2 Y Y Mo e Ty LY S B, LY > 20T} 4@

veV j=1

ny o0
=2 22 > L@o) g uyprvisacTy + €

veV j=1n=0gpeT}

Ry o0
= Z Z Z Z Le@)Lyg cyemin 2Ty €

. v,
veV j=1n=0u:c"u=w? 1LY/

(7.3)

< ah_sg(w’)v_se (k) —Sa[a_l In ZLev_jT —‘ <
NZZ(I—e—S“)fgd e LT 4 g
veV j=1 H-s¢
as T — oo, where the last asymptotic is obtained by applying [14, Theorem 3.9
and Remark 3.10], a slight extension of [17, Theorem 3]. As in [14] we introduce
the function f: R™ — R™ which here is given by

—-T

T av(B) ST _aa{gm%]
f(T):=e (1—6_8“)H(u—55)1§,‘; se(w?)e

By the asymptotic given in (7.3), we know that for all # > 0 there existsan M € IN
such that for all T > M we have

(1 —=0)8f(T) <e3TA%OF.—r N B)/2 < (1 + 1)§f(T) + ce 7.
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Clearly, f is a strictly positive, bounded and periodic function with period a.
Moreover, f is piecewise continuous with a finite number of discontinuities in an
interval of length a. Additionally, on every interval, where f is continuous, f
is strictly decreasing. Therefore f is not equal to an almost everywhere constant
function. Thus, all conditions of [14, Lemma 5.1] (whose proof works in exactly the
same way for cGDS instead of cIFS) are satisfied which shows the statement. [

7.2. Piecewise C!1*-diffeomorphic images of limit sets of sGDS. Here, we
consider the case that F is the image of the limit set K of an sGDS under a piece-
wise C!T®_diffeomorphism. Throughout, we fix the notation from Theorem 3.9.
By definition, each g, is bi-Lipschitz. Therefore, the Minkowski dimensions of K
and F coincide (see e. g. [9, Corollary 2.4 and Section 3.2]) and are both denoted
by §.

The similarities (R.).cr generating K and the mappings (¢.).cg generating
F are connected through the equations

Pe = &i(e) © R0 gt_((lg)

for each e € E. We denote by 7 and 7 the natural code maps from E§° to K and
F respectively. If we further let (r.).cr denote the respective similarity ratios of
(Re)ecE, 1. €. re := || R, ||, we have the following list of observations.

(A) Eachmap ¢.: X;() — Xij() is differentiable with derivative

—1
o = 8ite) ° Re 0 810y
e -1
g;(e) ©&se)

e-

(B) The geometric potential function ¢ associated with K is given by

{(w) = —Inry,;

the geometric potential function £ associated with F is given by

§(w) = —ln|g;(wl)(gt_(201)(7rw))| + ln|g;(w2)(gt_((102)(naw))| —Inrg,.

where = wiw; ... € EZ°. Thus { is non-lattice, if and only if & is non-
lattice.

(C) The unique o-invariant Gibbs measure for the potential function —3§§ coin-
cides with the unique o-invariant Gibbs measure for the potential function
—8¢,1.e. p_gg = pu_g¢ (seee.g. [23, Theorem 2.2.7]).
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(D) From (B) and (C) we obtain that

Hise) = [ edpse = [ cdose = Huso)

.....

the image gaps of F.

(E) The §-conformal measure v associated with (¢.)ecg and the push-forward
measure of the §-conformal measure v associated with (R.).cg are abso-
lutely continuous with Radon-Nikodym derivative

() U/|g;/|‘*dﬁ)_l.

Xy v'eV

dV , —18
e — —_— o
Tog |y 18y 08y |

(F) LY = giw)(Ly?) forv e V,j € {l,....,n,} and w € T*. Define a
function
[ EP —R

by
(@) =g} 0 (@)

Since |LY7 | = re| L/ |, we have

ny
SLDIPIPILT

veV j=1weT}

ny
. v, j §
= Jim 300 D el I gy )

veV j=1weT}}!

= lim Y 3 ILYPL 5 () @)

veV j=1
ny
DY YL@ (X [ lsulan).
veV j=1 vev Y

where x¢ € 7[w] for each w € E} and 0¥ € I$° for v € V. Note that the
above equation can be rigorously proven by using the Bounded Distortion
Lemma (Lemma 5.5).
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(G) From the fact that (R.).ecf are contractions and each g is Holder continu-
ous and bounded away from zero, one can deduce that there exists a cGDS
consisting of iterates of ® := (¢.)ecg Which all are contractions. As this
iterate also generates F, it follows that F is a limit set of a cGDS.

Proof of Theorem 3.9. Using (A)—(G) an application of Theorem 3.7(i) and (ii) to
F and of Theorem 3.8 to K proves Theorem 3.9(i) and (ii).

The structure of the proof of (iii) is taken from the proof of [14, Theorem 2.17].
Here, the definitions of A and (B(k), fi) are slightly different to the ones in [14].
We just provide the steps which require modification and refer the reader to [14]
for detailed justifications.

Write

R =: (Re)ecE
andletr, € (0, 1) denote a Lipschitz constant of R, fore € E. Note that g, : Y, —
X, is bijective for every v € V. For e € E define
Ge = 8i(e) © R0 gt_(é)
and set
P = (¢e)e€E-

As is justified in [14, p. 2506] we can assume without loss of generality that ¢, are
contractions. Then & is a cGDS and F is the associated limit set. The code space
associated with @ is also E3°. We let 7 and 7 respectively denote the code maps
from EZ° to K and F. They satisfy

() = giw) © 7(w) forw e E.

For a fixed n € IN U {0} define

~

l
{U O] ‘K(i)eE”,le{l,...,#EZ} (& 1€®]) is an interval,
=t I i=1

U #k1n #lui = o orevry o € B\ ...}

(If the strong separation condition was satisfied, then A, = {[w] | € E}}.) Note
that A, # @ for all n € IN because of the OSC and set

U A

nelNU{0}
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Now, fix ann € INU {0} and a

LIJ (t)

and choose 8 > 0 such that

1
Un[/c Dag N Tw] = @ foreverya)eEZ\{K(l),...,/c(l)}.

Then
1

B() := | J(#D])

i=1
is a non-empty Borel subset of R satisfying

F; N B(k) = (F N B(k)), foralle <§.

Let {L"/ },e. jet1.....nyy denote the primary gaps of F and {Ly” }yev. jeq1.....ny)
the associated image gaps. For constructing the function f, fix an m € IN and
choose M € NN so that

(i) e ™ < @ and

(ii) |LZ;:"| > 2eM holds forallv € V, j € {1,...,n,} and @ € T™ for which
Ly’ C B(k).

Then for all T > M we have

ny
A (OF-r NB(K) /2= > #oe Ty | LY S Bk). LY|>2e7T} +1

veV j=1
ny m—1
S5 3D SEUCUED WA SRt
veV j=1 weT{" veV j=1
=Cm
(7.4)
where
gyl ) i=#ueTy, | L) € Bk), |Ly]| >2e7"}.

Likewise

A (OF -7 N B(Kk)) /2= Z > BN ET).

veV j=1weT"
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For providing bounds on E bJ (e=T), we let £ and ¢ denote the geometric potential
functions associated with ® and R. For o € EZ° we have

§(@) = —In|g,, (mow)|
= —1n|gl{(w1)(Rw1gt_((lul)7mw)|
~In| Ry, (8774, 70®)
+ ln|g;(wl)(gt_((lul)now)|
= —In|gj(, (@) + {(®) + In|g}, (Tow)|.
Therefore,
Vv:EP — R
given by
¥ (0) := —1n|gj(,,)(7Tw)]

defines a function lying in C(E£3°) which satisfies
§—{=9y—-vyoo

Let ¢ be the common Holder constant of g, for v € V and let k > 0 be such that
for each v € V we have that |g/| > k on W,. Then for all x,y € (7[w]), where
w € I} forn € Nand v € V we have that

gy (X)
g,(»)

<

’ o

gv(X)/ gv(y)‘ 41
gy (»)

clx —yl*

IA

1
k * (7.5)

a
= e D
well

=: Dn.
Clearly, p, — 1 asn — oo. We let ¥ € I° be arbitrary and w € T,*. Then
|LZ’(£| = |gi(u1)ZZ’a{| = |g1{(u1)(Rua)7~va)|Pm : |R1/4(Ra)ﬁwv)| : |ZZ)’J|
= |(gi(u1) S Ru)/(wavaN : pm|Zz)]|
|61, (BT @)+ |8} () (RoFO")| - Pm - To| L]

eXP(=Spé ") = Y (@0") + In(pm - ro] L))
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Therefore, for such w” € I°, T > max{M, A7I} and w € T)" we have that
—=v,j (T
By ()

< #{u € T, | Lid S B),
Pmrw|Lv’j|

SpawEmww®) < T + ln( >

) - vi@o)}.
Applying [14, Theorem 3.9 and Remark 3.10] yields

A OF,—r N B(k))/2 — cm

ny 00
=D DD DD DI PIC) R RSN Iy

veV j=1 weT/" n=0u: c"u=ww?

_ Z i Z ah_se(ww®)I(v, j, )
veV j=1 wer" (1 — e_‘g")/é‘d,u_lg;

(7.6)

where

. _Sa[wm)—wmqull 2= +w(ww">—‘
I, j,w) = /e ¢ a pmrw\LU 7 a dV—S{'(u)
K

Define »
U:=a(l —6_8“)_1(/§du_5;) .

Using that Inr, € aZ for every w € E7, the right hand side of (7.6) can be
rewritten as

Zi Z Ur‘gh (gg(a)a)”)/ —8a 1/x(u)+ In pm|LvJ|—‘dv sc ().

veV j=1weT]"

Defining the function
fo: RT — RT

by

Je(T) _C_STZZ Z Uh_ gg(a)a)v)r / L{ “

veV j=1weT]"
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we thus have that for all 7 > 0 there exists a M € R such that
e_ST)LO(BFe_r N B(x))
2
forall T > M and likewise,
o7 A"(aFe-Tz NBW) |

Clearly, f, is periodic with period a. Thus, [14, Lemma 5.1 (ii)] is satisfied for
B = B(x) and f = f,. For showing validity of [14, Lemma 5.1 (i)], we set

< (1 4+0)p f(T +1n pp) + cme™T.

(1= 1) pyd fe(T —1n py).

B :=min{{a ' In|L" [} v e V.je{l.....n}}
and
B :=max{{a ' In|L% |} |veV,je{l, ..  n).

We first assume that ,_B > 0 and consider the following four cases, where we let
q* € N U {0} be maximal such that

B+q*(1-p)<B.
Case . D :={we€ EP [{a" 'Y (0)} < B} # @.
Case 2. D :={wec EP | {a W(0)} > B} # @.
Case 3. There exists a g € {0, ...,¢*} such that
Dyi={we EX [ f+q(1-P) <{a'Y(@)} <p+(q+D1—-p)}# 2
Cask 4. {w € EP [{a™'Y(@)} S{B+q(1-B) |q €{0,....q*}}} = EJ.

Note that Case 4 obtains if neither of the cases 1-3 obtains. With the same
methods as in [14, p. 2508 f.], in particular using the same functions 7}, one can
deduce that f is not equal to an almost everywhere constant function in all four
cases. The conclusion of the proof is the same as in [14, proof of Theorem 2.17].

O

Proof of Theorem 3.10. We define an operator
Z: €(R) — C(R)

by setting B
L(2)(x) == Y [0 (x)°-g 0 e (x)

eeTy
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for x € X, and v € V. Letting £ denote the geometric potential function associ-
ated with @ and letting 7= denote the code map from the code space E° to F, we
see that £(g)(mw) = L_s¢(g o m)(w), where § denotes the Minkowski dimension
of F.

Since the maps ¢, are analytic, there exist open neighbourhoods W, O X, of
X, in C on which the maps ¢, are analytic for e € T,,. By [23, Lemma 4.2.12] the
functions £"1] w, are uniformly bounded and the bound is independent of n € IN.
Thus, for v € V, £"1: W, — C form a normal family in the sense of Montel.
Here, 1 denotes the constant one-function on E3°. By (5.3) we have that L"on
converges uniformly to 4_sg on EZ°. Therefore, Z”1|WU converges to an analytic
extension of 1_sg on W,,. We denote this analytic extension by 4" and set

Yy =8 Inh.
Since £ is lattice, there exist {, ¥ € C(E3°) such that
E-{=y-Voo

and such that the range of ¢ is contained in a discrete subgroup of R. We leta > 0
denote the maximal real number such that {(E5°) C aZ. Note that v, satisfies

Yyorlr, =¥, + 8 Inh_sz,,

as hV satisfies

hYomlr, =eVh_glr,.
where we used that

Lose@Vh_so)(x) = Y SV OOn_g(y)
yioy=x

= e VO L s (h_se)(x)

= e h_g¢(x)
which implies r_ss = e*¥ h_s;. We define

Xy =:lay,by] forveV
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and introduce the functions
gv : [av, bv] —> R

given by
X
Fo(x) 1= / P O)dy/ Dy + 20,
a

v

where y
D, = / eI gy,
ay

Note that g, ([ay, by]) = [2v,2v + 1]. As ¥ is analytic by definition, the funda-
mental theorem of calculus implies that

g,(x) =e""W/D,,
giving
Ing, = vy, —In D,,.

Furthermore, the analyticity of 1}0 implies that 1}1, is bounded on X,. Therefore,
g, is bounded away from both 0 and oo and hence g, is invertible. Set

gv: [21),21) + 1] — [av’bv]’ gU = gv_l

and extend g, to an analytic function on an open neighbourhood U, of the interval
[2v,2v + 1] such that |g] | > 0 on U,. For e € E we define

Re := gj5) © be © &i(e)

and introduce the code map 7 given by

T, = g;lon

forv € V. For v € EZ° we then have

—In R, (Tow) = —1n g}, \(Bw &1(w)TO®) — IN@,, (8:(w))TOW)
+ lng;(wl)(gt(a)l)ﬁaw)
= Vi) (10) + £(©) + V(@) (10®) + 1 Di)) = Dio)
=~y (0) =8 In(h_s¢(0)/ h_st (00)) + Y (00) + £(@)
+In(Di@))/ D))

h_s¢(w) In Di(w)

={(w)—6"'In .
(@) h_s¢(ow) D)
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Since the range of { is contained in the group aZ and & and v are bounded on
EZ°, ¢ in fact takes a finite number of values. The continuity of ¢ implies that
there exists an M € IN such that { is constant on each cylinder set [w] forw € E 131” .
This clearly implies that £” Zl is constant on [w] for all w € E Ifi” and all n € IN.
Thus, equation (5.3) implies that also s_s¢ is constant on cylinder sets of length
M. This can be seen by considering |h_s¢ (w) — h_g¢ (u)| for u, @ lying in the
same cylinder set of length M and applying the triangle inequality. Therefore,
o + —In|R;, (Tow)|is constant on cylinder sets of length M + 1. Since for each
w € E j” *1 the set {7u | u € [w]} has accumulation points and is compact and
the map R, is analytic by construction, it follows that R/, is constant on its domain
of definition. Therefore, the maps R, are similarities. From the fact that ¢, are
contractions and each of the g, is differentiable and bounded away from zero, one
can deduce that there exists an iterate R of R := (Re)ece Which solely consists
of contractions and thus is an sGDS. O
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