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Abstract. We study the (local) Minkowski content and the (local) fractal Euler characteris-

tic of limit sets F � R of conformal graph directed systems (cGDS) ˆ. For the local quan-

tities we prove that the logarithmic Cesàro averages always exist and are constant multiples

of the ı-conformal measure. If ˆ is non-lattice, then also the non-average local quantities

exist and coincide with their respective average versions. When the conformal contractions

of ˆ are analytic, the local versions exist if and only if ˆ is non-lattice. For the non-local

quantities the above results in particular imply that limit sets of Fuchsian groups of Schot-

tky type are Minkowski measurable, proving a conjecture of Lapidus from 1993. Further,

when the contractions of the cGDS are similarities, we obtain that the Minkowski content

and the fractal Euler characteristic of F exist if and only if ˆ is non-lattice, generalising

earlier results by Falconer, Gatzouras, Lapidus and van Frankenhuijsen for non-degenerate

self-similar subsets of R that satisfy the open set condition.
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1. Introduction

We examine the (local) Minkowski content and the (local) fractal Euler charac-
teristic of limit sets of �nite conformal graph directed systems (cGDS) that are
embedded in R, as introduced e. g. in [23]. �e class of cGDS gives rise to a
rich collection of fractal sets including self-conformal sets, limit sets of Fuchsian
groups of Schottky type and limit sets of Markov interval maps. So far, the (local)
Minkowski content and the (local) fractal Euler characteristic have been investi-
gated only for restrictive subclasses of limit sets of cGDS such as self-similar sets
[6], [8], [12], [18], [19], [20], [21], [22], [32] and self-conformal sets [2], [11], [14],
[16]. New to this article is a general approach for the setting of cGDS which ex-
tends and recovers the previous results from the literature. In this way, we can e. g.
show that the Minkowski content of a limit set of a Fuchsian group of Schottky
type always exists (see Section 4.5), which proves a conjecture by M. L. Lapidus
from 1993 that is stated in [18].

A main motivation for studying the (local) Minkowski content and the (local)
fractal Euler characteristic arises from fractal geometry, where one aims to �nd
characteristics that describe the geometric structure of a fractal set. �e (local)
Minkowski content and the (local) fractal Euler characteristic can be viewed as
such tools. �ey complement the notion of dimension and are capable of dis-
tinguishing between sets of the same Hausdor�- or Minkowski dimension. �e
Minkowski content of a set Y � R is the limit as " tends to zero of the re-scaled
length of the "-parallel neighbourhood of Y . Furthermore, for intervals, it coin-
cides with the length of the interval. �erefore, the Minkowski content can be
interpreted as “fractal length”. An interpretation of the fractal Euler character-
istic is given by its name (see [22]). �e local Minkowski content and the local
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fractal Euler characteristic are de�ned as weak limits of measures. �ey are Borel-
measures which describe the “fractal length” and “fractal Euler characteristic” of
a given fractal inside a Borel set. When the weak limits exist, then their total
masses respectively coincide with the Minkowski content and the fractal Euler
characteristic.

In the literature, primarily the Minkowski content has received a lot of atten-
tion. Especially Minkowski measurability (i. e. the existence of the Minkowski
content in .0;1/) of self-similar subsets of R has been intensely studied.
One important result is given for non-degenerate self-similar subsets of R whose
associated iterated function system (IFS) consisting of similarities (sIFS) satis�es
the open set condition with connected feasible open set. Such a set is Minkowski
measurable if and only if the sIFS is non-lattice [8], [18], [19], [21]. We signi�-
cantly extend this important result and provide an alternative proof by showing
that the analogous statement is true also in the graph directed setting. To be
more precise, we obtain that a non-degenerate limit set of a cGDS that consists of
similarities (sGDS) is Minkowski measurable if and only if the sGDS is non-lattice
(Corollary 3.13). �is convenient equivalence statement for systems consisting of
similarities unfortunately fails to hold for general conformal systems: in [14] it has
been shown that there exist non-degenerate self-conformal sets arising from lat-
tice conformal IFS (cIFS) for which the Minkowski content and the fractal Euler
characteristic exist. Since cIFS are special types of cGDS we cannot expect the
equivalence to be valid for general limit sets of cGDS either. Indeed, in Proposi-
tion 3.12 we provide a su�cient condition under which the Minkowski content and
the fractal Euler characteristic of a limit set of a lattice cGDS exist. However, one
direction of the equivalence remains true: In the non-lattice case, the Minkowski
content and the fractal Euler characteristic exist (see Remark 3.11). Moreover, in
Remark 3.11 we see that average versions of the Minkowski content and the fractal
Euler characteristic always exist and provide explicit formulae to determine their
values.

Let us now turn to the local quantities. �ese have been investigated in the
context of fractal curvature measures in [32]. If the ambient space is of dimension
one, then there are two fractal curvature measures: �e 0-th fractal curvature mea-
sure (which is the local fractal Euler characteristic) and the 1-st fractal curvature
measure (which is the local Minkowski content). �e term “curvature” is appro-
priate for higher dimensional ambient spaces but strictly speaking not in R. �ere-
fore, we will exclusively use the terms local Minkowski content and local fractal
Euler characteristic in the present article. We obtain that the local Minkowski
content and the local fractal Euler characteristic exist for limit sets of non-lattice
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cGDS and are constant multiples of the associated ı-conformal measure, where
ı denotes the Minkowski dimension of the limit set (see �eorem 3.7). For limit
sets of lattice sGDS we prove that these measures do not exist (see �eorem 3.8).
�ey neither exist for piecewise C1C˛-di�eomorphic images of limit sets of lat-
tice sGDS (see �eorem 3.9). �is latter statement is important, since there are
C
1C˛-di�eomorphic images of limit sets of lattice sGDS for which the Minkowski

content and the fractal Euler characteristic do exist (see Example 4.4). Also for
limit sets of lattice cGDS consisting of analytic maps, the local Minkowski content
and the local fractal Euler characteristic do not exist (see �eorem 3.7). However,
we show that in the lattice situation average versions of the local Minkowski con-
tent and the local fractal Euler characteristic of a limit set of a cGDS always exist
and are again constant multiples of the associated ı-conformal measure (see �e-
orem 3.7).

From the above results we deduce the following. �e limit set of a Fuchsian
group of Schottky type can be represented by a limit set of a non-lattice cGDS.
�us, as a consequence of Remark 3.11, its limit set is Minkowski measurable. As
mentioned above, this result proves a conjecture by M. L. Lapidus from 1993 stated
in [18], which plays an important role in the context of the Weyl-Berry conjecture.
�e Weyl-Berry conjecture for fractal drums is a conjecture on the distribution of
the eigenvalues of the Laplacian on a domain with a fractal boundary (see [8], [18],
[19], [21]). It addresses the problem of describing ‘the relationship between the
shape (geometry) of the drum and its sound (its spectrum)’ [19, p. 1]. A more de-
tailed exposition on the results from the literature and on the above mentioned con-
jecture will be given in Remark 3.17. Besides the motivation from fractal geom-
etry, the Weyl-Berry conjecture is a main motivation for studying the Minkowski
content, see e. g. [15], [18], [19]. A third motivation arises from non-commutative
geometry: In Connes’ seminal book [4] the notion of a non-commutative fractal
geometry is developed. �ere, it is shown that the natural analogue of the volume
of a compact smooth Riemannian spinc manifold for a fractal set in R is that of
the Minkowski content. �is idea is also re�ected in [10], [13], [29].

For an overview of the relevant literature and more background on the (lo-
cal) Minkowski content and the (local) fractal Euler characteristic as well as an
overview of the recent development of this research area, we refer the reader to [14]
and the survey [15]. Moreover, there are several recent articles concerning higher
dimensional ambient spaces. In [12] it is shown that the Minkowski content of self-
similar sets arising from non-lattice sIFS that satisfy the OSC exists. Alternative
proofs of this result and further investigations on the lattice case are provided in
[6], [20], where tube formulas and zeta-functions are used. Such tube formulas
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have been extended to limit sets of sGDS in [5]. Minkowski measurability of
self-conformal sets in higher dimensional ambient spaces has been studied in [2],
[16]. �ere, it is shown that, under certain geometric conditions, a self-conformal
set arising from a non-lattice cIFS is Minkowski measurable. Moreover, fractal
curvature measures and their average versions are studied.

�is article is organised as follows. In Section 2 we give the construction of
cGDS and their limit sets. In Section 3 we present our main results on the existence
of the Minkowski content, the fractal Euler characteristic and their local versions.
Section 4 is devoted to demonstrating how the new results can be applied to various
classes of examples of limit sets of cGDS. Section 5 to 7 deal with the proofs of
the main theorems. More precisely, in Section 5 we provide some background
and prove auxiliary results. With this preparation we provide the proofs of our
main results concerning limit sets of cGDS (�eorem 3.7 and Proposition 3.12)
in Section 6. Section 7 is devoted to the proofs of �eorems 3.8 to 3.10 dealing
with the special cases of sGDS as well as piecewise C

1C˛-di�eomorphic images
of limit sets of sGDS.

2. Conformal graph directed systems

A core text concerning conformal graph directed systems (cGDS) is [23]. �e
class of cGDS generalises the notion of conformal iterated function systems and
gives rise to a much richer class of fractal sets such as limit sets of Fuchsian groups.
In Section 4 we give examples of classes of fractal sets which can be obtained via
a cGDS. In this section, we present the relevant de�nitions.

De�nition 2.1 (directed multigraph). A directed multigraph .V; E; i; t / consists
of a �nite set of vertices V , a �nite set of directed edges E and functions

i; t W E �! V

which determine the initial and terminal vertex of an edge. �e edge e 2 E goes
from i.e/ to t .e/. �us, the initial and terminal vertices of e are i.e/ and t .e/
respectively.

De�nition 2.2 (incidence matrix). Given a directed multigraph .V; E; i; t /, an
.#E/�.#E/-matrixAD .Ae;e0/e;e02E with entries in ¹0;1º, which satis�esAe;e0 D1

if and only if t .e/ D i.e0/ for edges e; e0 2 E, is called an incidence matrix. �e
incidence matrix A is called aperiodic and irreducible if there exists an n 2 N

such that the entries of the n-folded product An are all positive.
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De�nition 2.3 (GDS). A graph directed system (GDS) consists of a directed
multigraph .V; E; i; t / with incidence matrix A, a family of non-empty compact
connected metric spaces .Xv/v2V and for each edge e 2 E an injective contraction

�e W Xt.e/ �! Xi.e/

with Lipschitz constant less than or equal to r for some r 2 .0; 1/. Brie�y, the
family

ˆ WD .�e W Xt.e/ �! Xi.e//e2E

is called a GDS.

In this paper, we consider fractal subsets of the real line. �erefore, we restrict
the de�nition of a cGDS to the one-dimensional Euclidean space .R; j�j/. For a
subset Y of .R; j�j/ we let int.Y / denote its interior, xY its closure and

@Y WD xY n int.Y /

its boundary.

De�nition 2.4 (cGDS). A GDS is called conformal (cGDS) if

(i) for every v 2 V , Xv � R is a compact interval with non-empty interior,

(ii) the open set condition (OSC) is satis�ed, in the sense that, for distinct
e; e0 2 E we have

�e.int.Xt.e/// \ �e0.int.Xt.e0/// D ¿

and

(iii) for every vertex v 2 V there exists an open interval Wv � Xv such that for
every e 2 E with t .e/ D v the map �e extends to a C

1C˛-di�eomorphism
from Wv into Wi.e/, whose derivative �0

e is bounded away from zero on Wv,
where ˛ 2 .0; 1�.

We also consider the special case of cGDS where the contractions �e for e 2 E

are similarities:

De�nition 2.5 (sGDS). A cGDS, whose maps �e are similarities for e 2 E, is
referred to as sGDS.
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Remark 2.6. In the sequel, we will often refer to results from [23], where con-
formal graph directed Markov systems (cGDMS) are treated. Such systems di�er
from cGDS in that an incidence matrix for a cGDMS only ful�lls the property
that Ae;e0 D 1 implies t .e/ D i.e0/. However, every cGDS is a cGDMS and
conversely, a cGDMS in R can always be represented by a cGDS, namely by sub-
stituting .�e.Xt.e///e2E in for the sets .Xv/v2V and de�ning the edges accordingly.

In order to de�ne the limit set of a cGDS, we �x a cGDS with the notation
from De�nitions 2.3 and 2.4. �e set of in�nite admissible words given by the
incidence matrix A is de�ned to be

E1
A WD ¹! D !1!2 : : : 2 EN j A!n;!nC1 D 1 for all n 2 Nº: (2.1)

�e set of sub-words of length n 2 N is denoted by EnA and the set of all �nite
sub-words including the empty word ¿ by E�

A . For a �nite word ! 2 E�
A we let

n.!/ denote its length, where n.¿/ WD 0, de�ne �¿ to be the identity map on
S

v2V Xv and for ! 2 E�
A n ¹¿º set

�! WD �!1 ı � � � ı �!n.!/ W Xt.!n.!// �! Xi.!1/;

where we let !i denote the i-th letter of the word ! for i 2 ¹1; : : : ; n.!/º, i. e.
! D !1 : : : !n.!/. For two �nite words u D u1 : : : un, ! D !1 : : : !m 2 E�

A with
Aun;!1 D 1, we let

u! WD u1 : : : un!1 : : : !m 2 E�
A

denote their concatenation. Likewise, we set

u! WD u1 : : : un!1!2 : : :

for u D u1 : : : un 2 E�
A and ! D !1!2 : : : 2 E1

A with Aun;!1 D 1. For an in�nite
word ! D !1!2 : : : 2 E1

A and n 2 N the initial word of length n is de�ned to be

!jn WD !1 : : : !n:

For ! 2 E1
A the sequence .�!jn.Xt.!n///n2N is a descending sequence of non-

empty compact sets and therefore
T

n2N �!jn.Xt.!n// ¤ ¿. Recall from De�ni-
tion 2.3 that r 2 .0; 1/ denotes a common Lipschitz constant of �e for e 2 E.
Since diam.�!jn.Xt.!n/// � rndiam.Xt.!n// � rn max¹diam.Xv/ j v 2 V º for
every n 2 N, the intersection

\

n2N

�!jn.Xt.!n//

is a singleton and we denote its only element by �.!/. �e code map is de�ned to
be the map � W E1

A !
S

v2V Xv given by ! 7! �.!/.
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De�nition 2.7 (limit set of a cGDS). �e limit set of the cGDS .�e/e2E is de�ned
to be

F WD �.E1
A /:

Limit sets of cGDS often have a fractal structure. �ey include invariant sets
of conformal iterated function systems, the so-called self-conformal sets, as well
as self-similar sets. �ese are de�ned as follows.

De�nition 2.8 (cIFS, sIFS, self-conformal set, self-similar set). A conformal
iterated function system (cIFS) is a cGDS ‰ WD . 1; : : : ;  N / whose set of ver-
tices V is a singleton and whose set of edges contains at least two elements.
�e unique limit set of a cIFS is called the self-conformal set associated with ‰.
In the case that the maps  1; : : : ;  N are similarities, the limit set is called the
self-similar set associated with ‰ and ‰ is referred to as an sIFS.

In order to show the signi�cance of cGDS, Section 4 is devoted to examples
of important classes of such sets.

3. Main results

3.1. Notation, de�nitions and �rst results. Before stating our results, let us
begin with recalling the relevant notation and de�nitions, in particular the local
Minkowski content and the local fractal Euler characteristic. For further back-
ground we refer the reader to [14].

We let �0 and �1 respectively denote the counting measure and the one-dimen-
sional Lebesgue measure. For an arbitrary subset Y � R and " > 0 we de�ne

Y" WD ¹x 2 R j inf
y2Y

jx � yj � "º

to be the "-parallel neighbourhood of Y . For the remainder of this section we
assume that Y is non-empty and compact. �e 1-st and 0-th scaling exponents of
Y are respectively de�ned to be

s1.Y / WD inf¹t 2 R j "t�1.Y"/ �! 0 as " ! 0º

and

s0.Y / WD inf¹t 2 R j "t�0.@Y"/ �! 0 as " ! 0º:
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De�nition 3.1. Provided, that the weak limit

C
f
1 .Y; �/ WD w-lim

"!0
"s1.Y /�1.Y" \ �/

of the �nite Borel measures "s1.Y /�1.Y" \ �/ exists, we call C f1 .Y; �/ the local
Minkowski content of Y . Likewise, the weak limit

C
f
0 .Y; �/ WD w-lim

"!0
"s0.Y /�0.@Y" \ �/=2

is called the local fractal Euler characteristic of Y , if it exists. Moreover, provided
that the weak limits exist, we respectively call

zC
f
1 .Y; �/ WD w-lim

T&0
jln T j�1

Z 1

T

"s1.Y /�1�1.Y" \ �/d"

and

zC
f
0 .Y; �/ WD w-lim

T&0
jln T j�1

Z 1

T

"s0.Y /�1�0.@Y" \ �/d"=2

the average local Minkowski content of Y and the average local fractal Euler
characteristic of Y . Moreover, for a Borel set B � R we set

xC
f
0 .Y; B/ WD lim sup

"!0

"s0.Y /�0.@Y" \ B/=2;

xC
f
1 .Y; B/ WD lim sup

"!0

"s1.Y /�1.Y" \ B/

and

x
C
f
0 .Y; B/ WD lim inf

"!0
"s0.Y /�0.@Y" \ B/=2;

x
C
f
1 .Y; B/ WD lim inf

"!0
"s1.Y /�1.Y" \ B/:

Notice, if C f
k
.Y; �/ exists, then also zC

f

k
.Y; �/ exists and the two Borel measures

coincide. However, we will see that C f
k
.Y; �/ does not always exist, whereas we

will prove that the average version zC
f

k
.Y; �/ always exists for limit sets of cGDS.

Remark 3.2. �e (average) fractal Euler characteristic was investigated for self-
similar sets in [22]. In higher dimensional ambient spaces, the local Minkowski
content and the local fractal Euler characteristic belong to the class of fractal cur-
vature measures as introduced by S. Winter in [32]. However, the notion of cur-
vature is appropriate only in higher dimensional ambient spaces and therefore not
in the context of the present article.
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�e �rst step towards determining the quantities from De�nition 3.1 for limit
sets of cGDS is to evaluate the scaling exponents s1 and s0. Scaling exponents
have been intensely studied in [26]. For a limit set F of a cGDS with aperi-
odic and irreducible incidence matrix, s1.F / and s0.F / are strongly linked to the
Minkowski dimension dimM .F / of F which is proven to exist for such sets F (see
Proposition 5.3). For an arbitrary bounded set Z � R the Minkowski dimension
is de�ned by

dimM .Z/ WD 1� lim
"&0

ln�1.Z"/

ln "
; (3.1)

whenever this limit exists. When dimM .Z/ exists then also the box-counting
dimension of Z exists and both quantities coincide (see [9, Proposition 3.2]). �e
connection between the Minkowski dimension and the scaling exponents is pro-
vided in the next proposition.

Proposition 3.3. Let ı denote the Minkowski dimension of the limit set F of a
cGDSˆ with aperiodic and irreducible incidence matrix. �en either �1.F / D 0,
in which case s1.F / D ı � 1 and s0.F / D ı, or F is a �nite union of compact
intervals with non-empty interior. For any �nite unionZ � R of compact intervals
with non-empty interior we have s1.Z/ D s0.Z/ D 0.

Proof. First, we show that either �1.F / D 0 or F is a �nite union of compact
intervals with non-empty interior. For n 2 N de�ne

X .n/ WD
[

!2En
A

�!.Xt.!n//

and set

X WD
[

v2V

Xv:

If �1.int.X/ nX .1// > 0, then �1.F / D 0 by [23, Proposition 4.5.9]. On the other
hand, if �1.int.X/ n X .1// D 0, then �1.X n X .1// D 0, since the cardinality of
@X is �nite. It follows that X n X .1/ D ¿, as both X and X .1/ are �nite unions
of compact intervals. Clearly then X .n/ D X for all n 2 N and F D X . Next,
we turn to the connection between ı and the scaling exponents. If �1.F / D 0,
the equality s1.F / D ı � 1 follows straight from the de�nitions of s1.F / and ı.
Moreover, the relation s0.F / D ı is a consequence of s1.F / D ı � 1 and [27,
Corollary 3.2]. IfZ is a �nite union of compact intervals with non-empty interior,
then �1.Z/ > 0 and �0.@Z"/ is positive and uniformly bounded in ", which imply
s1.Z/ D s0.Z/ D 0.
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In the setting of Proposition 3.3, if �1.F / D 0 then we call F non-degenerate;
otherwise we call F degenerate.

Remark 3.4. In the degenerate situation an immediate consequence of s1.Z/ D

s0.Z/ D 0 from the above proposition is that both the local Minkowski content
and the local fractal Euler characteristic of Z exist and satisfy

C
f
1 .Z; �/ D �1.Z \ �/ and C

f
0 .Z; �/ D �0.@Z \ �/=2:

�e more interesting case of Proposition 3.3 is the non-degenerate case. For
stating our results for such sets, we �x a cGDS .V; E; i; t; A/ and assume that the
incidence matrix A is aperiodic and irreducible (see De�nition 2.2). Let .Xv/v2V

denote the associated compact intervals with non-empty interior and let

ˆ WD .�e W Xt.e/ �! Xi.e//e2E

denote the family of injective r-Lipschitz maps for some r 2 .0; 1/. Further, let F
denote the unique limit set and let

ı WD dimM .F /

be its Minkowski dimension. A central role with regard to our results is played by
the geometric potential function:

De�nition 3.5 (geometric potential function, shift-map). �e geometric potential
function

� W E1
A �! R

is de�ned by

�.!/ WD � lnj�0
!1
.�.�!//j for ! D !1!2 : : : 2 E1

A .

Here

� W E�
A [E1

A �! E�
A [E1

A

denotes the shift-map which is de�ned by

�.!1!2 : : : / WD !2!3 : : : 2 E1
A for !1!2 : : : 2 E1

A ,

�.!1 : : : !n/ WD !2 : : : !n 2 En�1
A for !1 : : : !n 2 EnA , where n � 2,

and

�.!/ WD ¿ for ! 2 ¹¿º [E1A.
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We equip EN with the product topology of the discrete topologies on E and
equip the set of in�nite admissible words E1

A � EN with the subspace topology.
�is is the weakest topology with respect to which the canonical projections onto
the coordinates are continuous. �e space of continuous real-valued functions on
E1
A is denoted by C.E1

A /. Note that the geometric potential function � belongs
to C.E1

A /. A crucial property of � is whether it is lattice or non-lattice.

De�nition 3.6 (co-homologous, lattice, non-lattice).

(i) Functions f1; f2 2 C.E1
A / are called co-homologous, if there exists a func-

tion  2 C.E1
A / such that

f1 � f2 D  �  ı �:

A function f 2 C.E1
A / is said to be lattice, if f is co-homologous to a

function whose range is contained in a discrete subgroup of R. Otherwise,
we say that f is non-lattice.

(ii) If the geometric potential function � is non-lattice, then we call the cGDS ˆ
non-lattice. On the other hand, if � is lattice, then we call ˆ lattice.

We letH.��ı�/ denote the measure theoretical entropy of the shift-map � with
respect to the unique �-invariant Gibbs measure ��ı� for the potential function
�ı� (see (5.4) for a de�nition). �e unique probability measure � supported on
F , which for all distinct e; e0 2 E satis�es

�.�e.Xt.e// \ �e0.Xt.e0/// D 0 and �.�eB/ D

Z

B

j�0
ej
ıd� (3.2)

for all Borel sets B � Xt.e/ is called the ı-conformal measure associated with ˆ.
Uniqueness and existence is provided in [23, �eorem 4.2.9] and goes back to the
work of [7], [25], [30].

For a vertex v 2 V we denote the set of edges whose initial and respectively
terminal vertex is v by

Iv WD ¹e 2 E j i.e/ D vº and Tv WD ¹e 2 E j t .e/ D vº:

Moreover, for n 2 N we set

I nv WD ¹! 2 EnA j i.!1/ D vº; T nv WD ¹! 2 EnA j t .!n/ D vº;

I�
v WD

[

k2N

I kv ; T �
v WD

[

k2N

T kv ;

I1
v WD ¹! 2 E1

A j i.!1/ D vº:
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For a �nite word ! 2 E�
A the !-cylinder set is de�ned to be

Œ!� WD ¹u 2 E1
A j ui D !i for i 2 ¹1; : : : ; n.!/ººI

in particular

Œ¿� D E1
A :

Fundamentally important objects in our main statements are the primary gaps
of F and their images. �ese are certain intervals in the complement of the limit
set, which are de�ned in the following way. Set

Lv WD

*
[

e2Iv

�Œe�

+

n
[

e2Iv

h�Œe�i ; (3.3)

where v 2 V and hY i denotes the convex hull of Y . We let nv denote the number
of connected components of Lv. In Proposition 5.4 we show that

S

v2V L
v ¤ ¿

if �1.F / D 0, hence,
P

v2V nv � 1. If Lv ¤ ¿, we denote the connected com-
ponents of Lv by Lv;j , where j ranges over ¹1; : : : ; nvº and call the sets Lv;j the
primary gaps of F . For every ! 2 T �

v we de�ne

Lv;j! WD �!.L
v;j /

and call these sets the image gaps of F .

3.2. Exposition of the main results. Now, we are able to present our main re-
sults and for this purpose �x the notation from Section 3.1. In particular, let

ˆ WD .�e/e2E

denote a cGDS with aperiodic and irreducible incidence matrix and let F denote
its limit set. Set

ı WD dimM .F /

and let � denote the geometric potential function associated with ˆ. Further, de-
note by H.��ı�/ the measure theoretical entropy of the shift-map � with respect
to the unique shift-invariant Gibbs measure ��ı� for the potential function �ı�

(see Section 5.1). �e proofs of the theorems of this subsection are presented in
Sections 6 and 7.
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�eorem 3.7. Assume that �1.F / D 0. �en the following hold.

(i) �e average local Minkowski content and the average local fractal Euler
characteristic ofF always exist and are constant multiples of the ı-conformal
measure � associated with ˆ, i. e.

zC
f
1 .F; �/ D

21�ıc

.1 � ı/H.��ı�/
� �.�/

and

zC
f
0 .F; �/ D

2�ıc

H.��ı�/
� �.�/;

where the constant c is given by the well-de�ned positive and �nite limit

c WD lim
m!1

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı : (3.4)

(ii) If � is non-lattice, then both the local Minkowski content and the local fractal
Euler characteristic of F exist and satisfy

C
f

k
.F; �/ D zC

f

k
.F; �/

for k 2 ¹0; 1º.

(iii) If � is lattice, then there exists a constant Nc 2 R such that

0 <
x
C
f

k
.F;R/ � xC

f

k
.F;R/ � Nc

for k 2 ¹0; 1º. If additionally the system ˆ consists of analytic maps, then
neither the local Minkowski content nor the local fractal Euler characteristic
of F exists.

�eorem 3.7(ii) and (iii) in particular show that the scaling exponents of F can
alternatively be characterised by

s1.F / D sup¹t 2 R j "t�1.F"/ ! 1 as " ! 0º

and

s0.F / D sup¹t 2 R j "t�0.@F"/ ! 1 as " ! 0º:

Since xC
f

k
.F; �/ is monotonically increasing as a set function in the second com-

ponent, �eorem 3.7(iii) also shows that xC
f

k
.F; B/ � Nc for all Borel sets B � R.
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�eorem 3.8 (sGDS). Suppose that ˆ is an sGDS. Assume that �1.F / D 0 and
let h�ı� denote the unique strictly positive eigenfunction with eigenvalue one of
the Perron–Frobenius operator for the potential function �ı� (see Section 5.1).
�en, additionally to the statements of �eorem 3.7, the following hold.

(i) �e constant c from (3.4) simpli�es to the �nite sum

c D
X

v2V

nvX

jD1

h�ı�.!
v/jLv;j jı ;

which is independent of the choice of !v 2 I1
v .

(ii) If � is lattice, then the following holds. For k 2 ¹0; 1º and for every Borel set
B � R for which F \B is a non-empty �nite union of sets of the form �Œ!�,
where ! 2 E�

A , and for which F" \ B D .F \ B/" for all su�ciently small
" > 0 we have that

0 <
x
C
f

k
.F; B/ < xC

f

k
.F; B/ < 1:

Consequently neither the local Minkowski content nor the local fractal Euler
characteristic of F exists.

An interesting subclass of limit sets of cGDS is the class of piecewise C
1C˛-

di�eomorphic images of limit sets of sGDS, where ˛ 2 .0; 1� andC1C˛ denotes the
class of real-valued functions which are di�erentiable with ˛-Hölder continuous
derivative. A nice relationship between the (average) local Minkowski content
and the (average) local fractal Euler characteristic of the limit set of the sGDS
and of its piecewise C1C˛-di�eomorphic image is provided in the next theorem.
�e analogue statements of �eorem 3.9(i) and (ii) have been obtained in [11] for
conformal C1C˛-di�eomorphic images of self-similar sets in higher dimensional
ambient spaces.

�eorem 3.9 (Piecewise C
1C˛-di�eomorphic images of limit sets of sGDS). Let

R denote an sGDS with aperiodic and irreducible incidence matrix, with associ-
ated directed multigraph .V; E; i; t / and with associated compact non-empty in-
tervals .Yv/v2V . LetK � R denote the limit set of R and assume that �1.K/ D 0.
For each v 2 V let gv W Wv ! R denote a C1C˛.Wv/-di�eomorphism which is de-
�ned on a connected open neighbourhoodWv � R of Yv such that jg0

vj is bounded
away from zero on Wv and such that the interiors of Xv WD gv.Yv/ are pairwise
disjoint and ˛ 2 .0; 1�. Set F WD

S

v2V gv.K \ Yv/. �en we have the following.
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(i) �e average local Minkowski content and the average local fractal Euler
characteristic of both K and F exist. Moreover, zC

f

k
.F; �/ is absolutely con-

tinuous with respect to the push-forward measure zC
f

k
.K;

S

v2V g
�1
v .�// for

k 2 ¹0; 1º. �eir Radon-Nikodym derivative is, for v 2 V and k 2 ¹0; 1º,
given by

d zC
f

k
.F; �/

d zC
f

k
.K;

S

v02V g
�1
v0 .�//

ˇ
ˇ
ˇ
ˇ
ˇ
Xv

D jg0
v ı g�1

v jı

ˇ
ˇ
ˇ
ˇ
ˇ
Xv

;

where ı WD dimM .K/ denotes the Minkowski dimension of K.

(ii) If R is non-lattice, then the local Minkowski content and the local fractal
Euler characteristic of both K and F exist and coincide with the respective
average versions.

(iii) If R is lattice, then neither the local Minkowski content nor the local fractal
Euler characteristic of K and F exist.

Piecewise C1C˛-di�eomorphic images of limit sets of sGDS play an important
role in the theory of general lattice cGDS. Namely, if a lattice cGDS consists of
analytic maps, then its limit set F is an image of a limit set of an sGDS under a
piecewise C

1C˛-di�eomorphism:

�eorem 3.10 (rigidity). Let ˆ be a lattice cGDS consisting of analytic maps
and let F � R denote its limit set. �en there exists a limit set K � R of a lattice
sGDS, with associated compact intervals .Yv/v2V and analytic maps

gv W Wv �! R

with jg0
vj bounded away from zero, where Wv is an open neighbourhood of Yv,

such that

F D
[

v2V

gv.K \ Yv/:

�eorem 3.10 is a generalisation of [14, �eorem 2.2], which addresses cIFS.

3.3. Results on the Minkowski content. �e theorems from the preceding sub-
section immediately imply results on the existence and value of the (average)
Minkowski content of limit sets of cGDS. �e (average) Minkowski content is
de�ned as follows. Let Y � R denote a set whose Minkowski dimension

dimM .Y / DW ı
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exists. �e upper Minkowski content SM.Y / and the lower Minkowski content

S
M.Y / of Y are respectively de�ned to be

SM.Y / WD lim sup
"!0

"ı�1�1.Y"/ and
S
M.Y / WD lim inf

"!0
"ı�1�1.Y"/: (3.5)

If the upper and lower Minkowski contents coincide, then we denote the com-
mon value by M.Y / and call it the Minkowski content of Y . In the case that the
Minkowski content exists, is positive and �nite, we call Y Minkowski measurable.
�e average Minkowski content of Y is de�ned to be the following limit, provided
it exists

zM.Y / WD lim
T&0

jln T j�1
Z 1

T

"ı�2�1.Y"/d": (3.6)

Analogously, one de�nes the fractal Euler characteristic of Y by

C
f
0 .Y / WD lim

"!0
"s0.Y /�0.@F"/=2; (3.7)

whenever this limit exists.

We use the notation from the beginning of Section 3.2 for stating the implica-
tions of �eorems 3.7 to 3.9 regarding the existence and the value of the Minkowski
content.

Remark 3.11. Suppose that �1.F / D 0. Immediate consequences of Proposi-
tion 3.3 and �eorem 3.7 are that

zM.F / D zC
f
1 .F;R/ D

21�ıc

.1� ı/H.��ı�/
(3.8)

with c as in (3.4), and if � is non-latice that M.F / exists and satis�es

M.F / D C
f
1 .F;R/ D zC

f
1 .F;R/ D zM.F /: (3.9)

In the above remark we addressed the average Minkowski content and the non-
lattice case. �e remaining lattice case is delicate with regard to Minkowski mea-
surability, namely both existence and non-existence of the Minkowski content is
possible. A su�cient condition under which the Minkowski content exists is given
in the following proposition, which will be proved in Section 6. Here, for an
˛-Hölder continuous function f 2 F˛.E

1
A / (see Section 5.1) we let �f denote

the unique eigenmeasure with eigenvalue 1 of the dual of the Perron–Frobenius
operator for the potential function f (see Section 5.1).
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Proposition 3.12. Assume that �1.F / D 0 and that � is lattice. �en we have

0 <
S
M.F / � SM.F / < 1: (3.10)

Further, equality in (3.10) can be attained. More precisely, let �;  2 C.E1
A /

denote two functions satisfying ��� D  � ı� , where the range of � is contained
in a discrete subgroup of R and a 2 R is maximal such that �.E1

A / � aZ. If, for
every t 2 Œ0; a/, we have that

X

n2Z

e�ıan��ı� ı  �1.Œna; naC t //

D
eıt � 1

eıa � 1

X

n2Z

e�ıan��ı� ı  �1.Œna; .nC 1/a//;

(3.11)

then

S
M.F / D SM.F /;

where the sums occurring in (3.11) are �nite sums.

Condition (3.11) was obtained in [14, (2.3)] as a condition implying
S
M.F / D

SM.F / for self-conformal sets F arising from a lattice cIFS. �us, the above propo-
sition states that exactly the same condition implies Minkowski measurability for
limit sets of cGDS. �e necessary adaptations of the proof of [14] are outlined in
Section 6. An example of a lattice limit set of a cGDS, which satis�es (3.11) and
thus is Minkowski measurable, is given in Example 4.4. However, in the special
case, when the maps �e of the lattice cGDS are similarities, (3.11) cannot be satis-
�ed which follows from �eorem 3.8(ii). Indeed, a consequence of �eorems 3.7
and 3.8 is the following.

Corollary 3.13. Suppose that ˆ is an sGDS and that �1.F / D 0. �en F is
Minkowski measurable if and only if the sGDS ˆ is non-lattice.

�is corollary provides an important extension of the result for sIFS given in
[8], [18], [19], [21] (see Remark 3.17((i))).

Remark 3.14. Combining (3.8) with �eorem 3.8(i) one obtains an explicit ex-
pression for zM.F /, when ˆ is an sGDS.

We can now turn to the class of piecewise C1C˛-di�eomorphic images of limit
sets arising from sGDS. Also here, the lattice case is delicate and so we �rst treat
the average and non-lattice situations.
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Remark 3.15. Suppose that we are in the situation of �eorem 3.9 of piecewise
C
1C˛-di�eomorphic images of limit sets of sGDS. Let � denote the ı-conformal

measure associated with R. �en direct consequences of �eorems 3.7 and 3.9
are: �e average Minkowski content of bothK and F exist and they are related by

zM.F / D zM.K/ �
X

v2V

Z

K\Yv

jg0
vj
ıd�:

IfR is non-lattice, then the Minkowski contents of bothK andF exist and coincide
with the respective average Minkowski contents.

Remark 3.16. From the result of Proposition 3.12 we can explicitly construct
C
1C˛-di�eomorphisms which map limit sets of lattice sGDS to Minkowski mea-

surable limit sets of lattice cGDS. In fact, for every limit set K of a lattice sGDS
R there exists a family of C1C˛-di�eomorphisms ¹gn j n 2 Nº such that gn.K/
is Minkowski measurable for each n 2 N: Assume that K � Œ0; 1� and that the
geometric potential function � associated with R is lattice. Let a > 0 be maximal
such that the range of � is contained in aZ. Let � denote the ı-conformal measure
associated with R. De�ne

Qg W R �! R; Qg.x/ WD �..�1; x�/

to be the distribution function of �. For n 2 N de�ne the function

gn W Œ�1;1/ �! R

by

gn.x/ WD

Z x

�1

. Qg.r/.eıan � 1/C 1/�1=ıdr

and set
F n WD gn.K/:

�en for every n 2 N we have

S
M.F n/ D SM.F n/ and

x
C
f
0 .F

n;R/ D xC
f
0 .F

n;R/:

�e proof of this statement has been given in [14, Corollary 2.18(iii)] for self-
conformal sets. For limit sets of cGDS the proof follows through by using Propo-
sition 3.12 and thus, we are not going to repeat it here. Notably, the sets F n do
not only provide examples of Minkowski measurable limit sets of lattice cGDS
but they also provide examples of sets for which M.F n/ and C f0 .F

n/ exist but
C
f
1 .F

n; �/ and C f0 .F
n; �/ do not exist (see �eorem 3.9).
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We end this section with addressing conjectures from [18].

Remark 3.17 (on two conjectures by M. L. Lapidus from 1993).

(i) Conjecture 3 in [18] states that under the OSC a non-degenerate self-similar
set in R

d is Minkowski measurable if and only if the associated sIFS is non-
lattice. �is conjecture was proven to be correct in space dimension d D 1

in [8], [18], [19], [21] under the assumption that the feasible open set is con-
nected. In higher dimensional ambient spaces it was proven in [12] that a self-
similar set arising from a non-lattice sIFS is Minkowski measurable, without
any further assumptions on the feasible open set. �us, the results from [12]
fully prove one direction of the conjectured equivalence. �e other direction,
namely that one has Minkowski non-measurability in the lattice situation, is
still an open problem in higher dimensional ambient spaces.

With Corollary 3.13 we have seen that the Minkowski content of a limit set
of an sGDS in R exists if and only if the sGDS is non-lattice. �us, Corol-
lary 3.13 shows that [18, Conjecture 3] is also valid for the more general class
of limit sets of sGDS in R and in this way provides an important extension
to the result of [8], [18], [19], [21]. Moreover, Corollary 3.13 also allows to
consider self-similar systems where the OSC is satis�ed with disconnected
feasible open sets and hence provides a new result in the lattice situation for
self-similar sets (see Section 4.2).

(ii) In the same paper, [18], a similar conjecture is posed for so-called ‘approxi-
mately’ self-similar sets, namely [18, Conjecture 4]. A precise de�nition of
an ‘approximately’ self-similar set is not given, however, limit sets of Fuch-
sian groups of Schottky type are mentioned as examples. �ese can be rep-
resented as limit sets of cGDS (see Section 4.5). It is well known that such
systems are always non-lattice (see e. g. [17, Part II]). Combined with [21,
Corollary 2.3], Equation (3.9) thus veri�es [18, Conjecture 4] for limit sets
of Fuchsian groups of Schottky type. �is situation will be investigated in
more detail in Section 4.5.

In this spirit we view limit sets of cGDS in general as being ‘approximately’
self-similar since conformal maps locally behave like similarities. Its sub-
class of self-conformal sets has already been treated in [14]. �e results of
[14] combined with [21, Corollary 2.3] provide a negative answer to [18, Con-
jecture 4] for such sets (see also [14, Example 2.20]). Note that [14, �eo-
rem 2.12] combined with [21, Corollary 2.3] in particular shows that there
exist fractal strings with lattice self-conformal boundary for which the
asymptotic second term of the eigenvalue counting function N.�/ of the
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Laplacian (in the sense of [21]) is monotonic. As self-conformal sets are
special types of limit sets of cGDS, the results from [14] already imply that
Minkowski measurability of the limit set of a cGDS is not equivalent to the
cGDS being non-lattice. However, (3.9) shows the validity of one implica-
tion, namely that limit sets of non-lattice cGDS are Minkowski measurable.

4. Examples of limit sets of cGDS

We now present classes of systems which can be represented by a cGDS and
illustrate our results for such systems. We especially focus on sets which cannot
be treated with the previously known results from the literature.

4.1. cGDS derived from a cIFS. A cIFS ‰ WD . 1; : : : ;  N / has got the prop-
erty that every function  i can be concatenated with any other function  j for
i; j 2 ¹1; : : : ; N º. Here we de�ne a cGDS in that we additionally put transition
rules on‰. �is is done by de�ning anN �N matrix A0 WD .A0

i;j /i;j2¹1;:::;N º with
entries 0; 1 which determines which functions may follow a given function, i. e.
A0
i;j D 1 if and only if  i ı  j is allowed. �e system .‰; A0/ then gives rise to a

cGDS by setting

V WD ¹1; : : : ; N º; E WD ¹1; : : : ;M º;

where

M WD

N
X

i;jD1

A0
i;j

and where for all v; v0 2 V with A0
v;v0 D 1 there exists an edge e 2 E such that

i.e/ D v and t .e/ D v0.

Example 4.1. For i 2 ¹1; 2; 3º de�ne

 i W Œ0; 1� �! Œ0; 1�

by setting

 1.x/ WD
x

4
;

 2.x/ WD
x

4
C
3

8
;

 3.x/ WD
x

4
C
3

4
;
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and set

A0 WD

0

@

1 0 1

0 0 1

1 1 1

1

A :

A corresponding sGDS is given by

V WD ¹1; 2; 3º;

E WD ¹1; : : : ; 6º;

i.e/ WD

8

ˆ
<̂

ˆ̂
:

1; e 2 ¹1; 2º;

2; e D 3;

3; e 2 ¹4; 5; 6º;

t .e/ WD

8

ˆ
<̂

ˆ̂
:

1; e 2 ¹1; 4º;

2; e D 5;

3; e 2 ¹2; 3; 6º;

A WD

0

B
B
B
B
B
B
B
@

1 1 0 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

1

C
C
C
C
C
C
C
A

;

Xv WD  v.Œ0; 1�/ for v 2 V ,

and

�1 W X1
 1

�! X1; �3 W X3
 2

�! X2; �5 W X2
 3

�! X3;

�2 W X3
 1

�! X1; �4 W X1
 3

�! X3; �6 W X3
 3

�! X3:

Here, r D 1=4. For determining the average (local) Minkowski content of the
limit set F of the sGDS, we apply �eorem 3.8 and (3.8) and thus need to �nd the
primary gaps. Observe that

h�Œ1�i D Œ0; 1=16�; h�Œ2�i D Œ3=16; 1=4�; h�Œ3�i D Œ9=16; 5=8�;

h�Œ4�i D Œ3=4; 13=16�; h�Œ5�i D Œ57=64; 29=32�; h�Œ6�i D Œ15=16; 1�:
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�us,

L1 D
� 1

16
;
3

16

�

„ ƒ‚ …

DWL1;1

;

L2 D ¿;

and

L3 D
�13

16
;
57

64

�

„ ƒ‚ …

DWL3;1

[
�29

32
;
15

16

�

„ ƒ‚ …

DWL3;2

:

�e primary gaps L1;1; L3;1 and L3;2 are illustrated in Figure 1.

0 1

X1 X2 X3

h�Œ1�i h�Œ2�i h�Œ3�i h�Œ4�i h�Œ5�i h�Œ6�i
„ ƒ‚ … „ ƒ‚ … °

L1;1 L3;1 L3;2

Figure 1. Primary gaps of the cGDS from Example 4.1.

Another quantity in the formula of �eorem 3.8 is the eigenfunction h�ı� of the
Perron–Frobenius operatorL�ı� (see Section 5.1), where ı denotes the Minkowski
dimension of F and � is the geometric potential function associated withˆ. In or-
der to determine h�ı� , we �rst determine the measure ��ı� . �is is done by solving
the linear system of equations which arises by combining the following three facts.
For e 2 E the de�ning equation for ��ı� implies that ��ı�.Œee

0�/ D 4�ı ���ı�.Œe
0�/

for every e0 2 Ti.e/, ��ı�.Œe�/ D
P

e02Ti.e/
��ı�.Œee

0�/ and
P

e2E ��ı�.Œe�/ D 1.
�e resulting measure ��ı� satis�es

��ı�.Œ1�/ D ��ı�.Œ4�/ D .3 � 4ı � 4�ı/�1;

��ı�.Œ2�/ D ��ı�.Œ3�/ D ��ı�.Œ6�/ D .4ı � 1/ � ��ı�.Œ1�/;

��ı�.Œ5�/ D .1 � 4�ı/ � ��ı�.Œ1�/:

To determine h�ı� , we use the approximation argument from (5.3). We let 1 denote
the constant one-function on E1

A . Since L
n
�ı�

1.u/ D
P

!2T nv
rı! for all u 2 I1

v

and v 2 V , it follows that h�ı� is constant on one-cylinders. Now combining the
fact that the eigenvalue �ı� is equal to one, that L�ı�h�ı� D �ı�h�ı� and that
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R

h�ı�d��ı� D 1, we obtain

h�ı�.!
1/ D

3� 4�2ı

�2 � 4�ı C 6 � 4ı
for !1 2 I1

1 ;

h�ı�.!
2/ D .1� 4�ı/ � h�ı�.!

1/ for !2 2 I1
2

h�ı�.!
3/ D .4ı � 1/ � h�ı�.!

1/ for !3 2 I1
3 :

From the above evaluations we additionally infer that the Minkowski dimension ı
is the unique positive root of the function

x 7! 4�x � 4�2x C 2� 4x:

With H.��ı�/ D ı ln 4 we altogether obtain from �eorem 3.8 and (3.8) that

zM.F / D
21�ı � .3� 4�2ı/

.1� ı/ı.6� 2 � 4�ı � 4ı/ ln 4

�

8�ı C .4ı � 1/
�� 5

64

�ı

C 32�ı
��

:

From �eorem 3.7 we conclude that

zC
f
1 .F; �/ D zM.F / � �.�/

and

zC
f
0 .F; �/ D

1� ı

2
zM.F / � �.�/;

where � denotes the ı-conformal measure associated with ˆ. Since � D ln 4 � 1 is
lattice, Corollary 3.13 moreover implies that the Minkowski content of F does not
exist.

4.2. Conformal iterated function systems with disconnected feasible open set.

By de�nition, a cIFS acting onX needs to satisfy the OSC with int.X/ as a feasible
open set. If we allow the OSC to be satis�ed with a di�erent feasible open set,
then often the system can still be represented by a cGDS.

Example 4.2. For i 2 ¹1; 2; 3º de�ne

 i W Œ0; 1� �! Œ0; 1�

by

 1.x/ WD x=3;

 2.x/ WD x=3C 2=3;

 3.x/ WD x=9C 1=9;
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and set

‰ WD . 1;  2;  3/:

�en ‰ is not a cIFS in our sense since the open set condition is not satis�ed with
.0; 1/ as the feasible open set. (Even though the OSC is satis�ed for .0; 1=3/ [

.2=3; 1/.) However, ‰ can be represented by an sGDS as follows. Set

V WD ¹1; 2º;

E WD ¹1; : : : ; 6º;

i.e/ WD

´

1; e 2 ¹1; : : : ; 4º;

2; e 2 ¹5; 6º;

t .e/ WD

´

1; e 2 ¹1; 3; 5º;

2; e 2 ¹2; 4; 6º;

A WD

0

B
B
B
B
B
B
B
@

1 1 1 1 0 0

0 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 1 1

1

C
C
C
C
C
C
C
A

;

Xv WD  v.Œ0; 1�/ for v 2 ¹1; 2º,

and

�1 W X1
 1

�! X1; �3 W X1
 3

�! X1; �5 W X1
 2

�! X2;

�2 W X2
 1

�! X1; �4 W X2
 3

�! X1; �6 W X2
 2

�! X2:

Here, r D 1=3, L1;1 D .4=27; 5=27/ and L2;1 D .7=9; 8=9/. See Figure 2 for an
illustration for this example.

0 1

X1 X2

h�Œ1�i h�Œ2�ih�Œ3�i h�Œ4�i h�Œ5�i h�Œ6�i

° „ ƒ‚ …

L1;1 L2;1

Figure 2. Primary gaps of the limit set of the cGDS from Example 4.2.
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�at the eigenfunction h�ı� of the Perron–Frobenius operatorL�ı� with eigen-
value 1 is equal to the constant one-function 1 on E1

A can be seen as follows.
Firstly, L�ı�1 D 2=3ı C 1=9ı and secondly, 1 D 2=3ı C 1=9ı which can be con-
cluded from the fact that 0 D P.�ı�/, where P denotes the topological pressure
function (see (5.2)). �us, by �eorem 3.8 and (3.8), we have

zM.F / D
21�ı � .27�ı C 9�ı/

.1� ı/H.��ı�/
:

As in the previous example zC
f
1 .F; �/ and zC

f
0 .F; �/ can be determined from the

above equation by using �eorem 3.7. Corollary 3.13 implies that the Minkowski
content of F does not exist, since the range of � is contained in ln 3 � Z.
Alternatively, one can determine the average Minkowski content of this example
by using the results of [12]. However, if 1;  2 and 3 were non-linear but confor-
mal, then �eorems 3.7 and 3.12 could be applied, whereas this case is not covered
in [12].

4.3. Markov interval maps. For closed intervals X1; : : : ; XN in Œ0; 1� with dis-
joint interior, N � 2, and X WD

SN
iD1Xi we call a map g W X ! Œ0; 1� a Markov

interval map if

(i) gjXi is expanding and there exists a C 1C˛-continuation to a neighbourhood
of Xi and

(ii) if g.Xi / \ Xj ¤ ¿ then Xj � g.Xi / for i; j 2 ¹1; : : : ; N º.

For a representation by a cGDS, set V WD ¹1; : : : ; N º and for v 2 V de�ne

Gv WD ¹v0 2 V j Xv0 � g.Xv/º:

For every pair .v; v0/, where v 2 V and v0 2 Gv introduce an edge e D e.v; v0/

with i.e/ D v and t .e/ D v0. Set

E WD ¹e.v; v0/ j v 2 V; v0 2 Gvº

and de�ne

�e W Xt.e/ �! Xi.e/

by

�e WD .gjXi.e/ /
�1jXt.e/ for e 2 E.

�en the repeller of the Markov interval map coincides with the limit set of the
corresponding cGDS.
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Example 4.3. Set

X1 WD Œ0; 1=4�; X2 WD Œ1=4; 1=2�; X3 WD Œ2=3; 1�

and let the Markov interval map

g W

3
[

iD1

Xi �! Œ0; 1�

be given by

gjX1.x/ WD 5
x

2
; gjX2.x/ WD 3x �

1

2
; gjX3.x/ WD 3x � 2:

�e graph of the Markov interval map g is presented in Figure 3.

✲
x

✻
g.x/

1
4

1
2

2
3

1X1 X2 X3

1

X1

X2

X3

☞
☞
☞
☞
☞
☞
☞
☞
☞

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂

Figure 3. Graph of the Markov interval map from Example 4.3.

A corresponding sGDS is given by

V WD ¹1; 2; 3º;

E WD ¹1; : : : ; 7º;

i.e/ WD

8

ˆ
<̂

ˆ
:̂

1; e 2 ¹1; 2º;

2; e 2 ¹3; 4º;

3; e 2 ¹5; 6; 7º;

t .e/ WD

8

ˆ̂
<

ˆ
:̂

1; e 2 ¹1; 5º;

2; e 2 ¹2; 3; 6º;

3; e 2 ¹4; 7º;
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A WD

0

B
B
B
B
B
B
B
B
B
@

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

1

C
C
C
C
C
C
C
C
C
A

;

and

�1 W X1

.gjX1 /
�1

����! X1; �2 W X2

.gjX1/
�1

����! X1;

�3 W X2

.gjX2 /
�1

����! X2; �4 W X3

.gjX2/
�1

����! X2;

�5 W X1

.gjX3 /
�1

����! X3; �6 W X2

.gjX3/
�1

����! X3; �7 W X3

.gjX3 /
�1

����! X3:

Here, r D 3=4.
For this example, we limit ourselves to determining and illustrating the primary

gaps, since presenting the complete calculations would not provide any further
insights. �e convex hulls of the projections of the cylinder sets are given by

h�Œ1�i D Œ0; 2=25�; h�Œ2�i D Œ1=10; 1=5�;

h�Œ3�i D Œ1=4; 1=3�; h�Œ4�i D Œ7=18; 1=2�;

h�Œ5�i D Œ2=3; 11=15�; h�Œ6�i D Œ3=4; 5=6�; h�Œ7�i D Œ8=9; 1�:

�us, the primary gaps are

L1;1 D .2=25; 1=10/; L2;1 D .1=3; 7=18/;

L3;1 D .11=15; 3=4/; L3;2 D .5=6; 8=9/:

�ey are illustrated in Figure 4. �is cGDS indeed is a non-lattice cGDS and
hence C f1 .F; �/, C

f
0 .F; �/ and the Minkowski content of F exist by �eorem 3.8

and (3.9).

0 1

X1 X2 X3

h�Œ1�i h�Œ2�i h�Œ3�i h�Œ4�i h�Œ5�i h�Œ6�i h�Œ7�i
„ƒ‚… „ ƒ‚ … „ƒ‚… „ ƒ‚ …

L1;1 L2;1 L3;1 L3;2

Figure 4. Primary gaps for the limit set of Example 4.3.
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4.4. Lattice cGDS whose limit set is Minkowski measurable. An example of
a lattice self-conformal set which is Minkowski measurable is given in [14, Exam-
ple 2.20]. In the following, we present an example of a Minkowski measurable
limit set of a lattice cGDS which cannot be obtained via a cIFS. �is adds to the
observations concerning [18, Conjecture 4] that we discussed in Remark 3.17((ii)).
To be more precise, the following example in conjunction with [21, Corollary 2.3]
shows the existence of fractal strings, that have a limit set of a lattice cGDS for
boundary, for which the asymptotic second term of the eigenvalue counting func-
tion N.�/ of the Laplacian (in the sense of [21]) is monotonic. �is shows that the
statement of [18, Conjecture 4] is not valid for limit sets of cGDS in R.

Example 4.4. Let K � Œ0; 1� denote the limit set of the sGDS given in Exam-
ple 4.1. Let ı denote its Minkowski dimension and let � denote the associated
ı-conformal measure. Let

Qg W R �! R

denote the distribution function of �, i. e.

Qg.x/ WD �..�1; x�/ for x 2 R.

For n 2 N de�ne the function

gn W Œ�1;1/ �! R

by

gn.x/ WD

Z x

�1

. Qg.r/.3nı � 1/C 1/�1=ıdr

and set
F n WD gn.K/:

�en we have
S
M.F n/ D SM.F n/, although

S
M.K/ < SM.K/. �is is a consequence

of Corollary 3.13 and Remark 3.16.

4.5. Limit sets of Fuchsian groups of Schottky type. Here, we give a very brief
introduction to limit sets of Fuchsian groups of Schottky type. For background and
proofs of the statements below, we refer the reader to [1], [24].

We let H WD ¹z 2 C j =.z/ > 0º denote the upper half plane in C, where
=.z/ denotes the imaginary part of z 2 C. We �x n 2 N with n � 2 and set
V WD ¹˙1; : : : ;˙nº. We let .Bv/v2V denote a family of pairwise disjoint closed
Euclidean unit balls inC intersecting the real line R orthogonally and let gv denote
the unique hyperbolic conformal orientation preserving automorphism ofHwhich
maps the side s�v WD H\@B�v to the side sv WD H\@Bv. (Note that gv is a Möbius
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transformation which is obtained on concatenating the inversion at the circle @B�v

with the re�ection at the line <.z/ D dv , where dv D .cvCc�v/=2 is the midpoint
of the line segment joining the centres c�v and cv of the ballsB�v andBv and <.z/

denotes the real part of z 2 C.) �en ¹gv j v 2 V º is a symmetric set of generators
of the Fuchsian groupG WD h¹gv j v 2 V ºi andG will be referred to as a Fuchsian
group of Schottky type. Associated toG is a limit setL.G/ � R\

S

v2V Bv which
is de�ned to be the set of all accumulation points (with respect to the Euclidean
metric on xH WD H [ R [ ¹1º) of the G-orbit G.z/ WD ¹g.z/ j g 2 Gº for an
arbitrary z 2 H.

Such a limit set can be represented as a limit set of a cGDS in the following
way. For de�ning the directed multigraph we set the set of vertices to be V , de�ne

E WD ¹.v; v0/ 2 V 2 j v0 ¤ �vº

to be the set of edges,

t ..v; v0// WD v and i..v; v0// WD v0:

�e incidence matrix A is given by Ae;e0 D 1 if t .e/ D i.e0/ and Ae;e0 D 0 else. It
is aperiodic and irreducible, which can be seen as follows. Let e; e000 2 E denote
two arbitrary edges. �e condition that n � 2 implies that there exist at least two
vertices v 2 V n ¹�t .e/;�i.e000/º. Fix v as such. Since v ¤ �t .e/ there exists an
edge e0 2 E with i.e0/ D t .e/ and t .e0/ D v and likewise, there exists an edge
e00 2 E with i.e00/ D v and t .e00/ D i.e000/. �us, A.3/e;e000 > 0. For v 2 V we set
Xv WD Bv \ R and note that the maps gv can be continuously extended to xH. We
denote this extension also by gv . For each e D .t .e/; i.e// 2 E we set

�e W Xt.e/
gi.e/
���! Xi.e/:
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Since each gv is a Möbius transformation with singularity in X�v , the map �e
extends to an analytic C

1C˛-di�eomorphism on an open connected neighbour-
hood Wt.e/ of Xt.e/, for some ˛ 2 .0; 1�. Moreover, the maps �e are strict con-
tractions by construction. �at the limit setL.G/ of the Fuchsian group coincides
with the limit set of the above constructed cGDS is shown in [23, �eorem 5.1.6].
By [17, Part II] the associated geometric potential function is non-lattice. �ere-
fore, we obtain the following corollary from �eorem 3.7:

Corollary 4.5. �e local Minkowski content and the local fractal Euler character-
istic of a limit set of a Fuchsian group of Schottky type always exist. In particular,
a limit set of a Fuchsian group of Schottky type is always Minkowski measurable.

Note that the above corollary proves [18, Conjecture 4] for limit sets of Fuch-
sian groups of Schottky type.

Example 4.6. In this example we want to show how a typical limit set of a Fuch-
sian group of Schottky type can be represented as a cGDS. We set V WD ¹˙1;˙2º

and de�ne B�2; B�1; B1 and B2 to be the closed unit balls with respective centres
�5;�2; 2 and 5. �en the maps

gv W H �! H

are given by

g�2.z/ D
�5z C 24

z � 5
;

g�1.z/ D
�2z C 3

z � 2
;

g1.z/ D
2z C 3

z C 2
;

g2.z/ D
5z C 24

z C 5
;

and G WD h¹gv j v 2 V ºi is the Fuchsian group of Schottky type. For a represen-
tation by a cGDS we set

X�2 WD Œ�6;�4�; X�1 WD Œ�3;�1�;

X1 WD Œ1; 3� X2 WD Œ4; 6�:
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�e set of edges is given by

E WD ¹.v; v0/ 2 V 2 j v0 ¤ �vº; t ..v; v0// D v, i..v; v0// D v0

and the family of maps �e for e 2 E is given by

�.�2;�2/ W X�2

g�2
��! X�2; �.�2;�1/ W X�2

g�1
��! X�1; �.�2;1/ W X�2

g1
�! X1;

�.�1;�2/ W X�1

g�2
��! X�2; �.�1;�1/ W X�1

g�1
��! X�1; �.�1;2/ W X�1

g2
�! X2;

�.1;�2/ W X1
g�2
��! X�2; �.1;1/ W X1

g1
��! X1 ; �.1;2/ W X1

g2
�! X2;

�.2;�1/ W X2
g�1
��! X�1; �.2;1/ W X2

g1
��! X1 ; �.2;2/ W X2

g2
�! X2:

�e incidence matrix A is a 12 � 12 matrix which contains exactly three ones in
every row and every column.

5. Preliminaries

We now provide some background information and auxiliary results for proving
our main theorems, which we presented in Section 3.2.

5.1. Perron–Frobenius theory and the geometric potential function. In order
to provide the necessary background to de�ne the constants in our main statements
and also to set up the tools needed in the proofs we now recall some facts from the
Perron–Frobenius theory. For this, we are going to make use of results from [23]
which were obtained for conformal graph directed Markov systems (cGDMS), see
Remark 2.6, which are �nitely primitive. A cGDMS is called �nitely primitive, if
there exists an n 2 N such that for all e; e0 2 E there exists an ! 2 EnA for which
e!e0 2 E�

A .

Remark 5.1. A cGDS with aperiodic and irreducible incidence matrix is a �nitely
primitive cGDMS.

In this subsection we always assume that the incidence matrix A is aperiodic
and irreducible. Recall from Section 3.1 that we equip E1

A as de�ned in (2.1)

with the sub-topology of the product topology of the discrete topologies of E
and let C.E1

A / denote the set of real-valued continuous functions on E1
A . For
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f 2 C.E1
A /, ˛ 2 .0; 1/ and n 2 N [ ¹0º we de�ne

varn.f / WD sup¹jf .!/ � f .u/j j !; u 2 E1
A and !i D ui for i 2 ¹1; : : : ; nºº;

jf j˛ WD sup
n�0

varn.f /

˛n

and

F˛.E
1
A / WD ¹f 2 C.E1

A / j jf j˛ < 1º:

Elements of F˛.E1
A / are called ˛-Hölder continuous functions onE1

A . �e space
F˛.E

1
A / endowed with the norm

k � k˛ WD j � j˛ C k � k;

where k � k denotes the supremum norm, is a Banach space.

Remark 5.2. �e geometric potential function � associated with a cGDS
ˆ WD ¹�eºe2E satis�es � 2 F Q̨ .E

1
A / for some Q̨ 2 .0; 1/. To see this, we let

r 2 .0; 1/ denote a common Lipschitz constant of �e for e 2 E. Because of the ˛-
Hölder continuity of �0

e, we obtain that there exists a constant c 2 R such that for
every n 2 N we have varn.�/ � cr˛.n�1/ and var0.�/ < 1. �us, � 2 F Q̨ .E

1
A /,

where Q̨ WD r˛ 2 .0; 1/.

For f 2 C.E1
A / de�ne the Perron–Frobenius operator

Lf W C.E1
A / �! C.E1

A /

by
Lf .!/ WD

X

uW�uD!

ef .u/ .u/ (5.1)

for ! 2 E1
A and let L�

f
be the dual of Lf acting on the set of Borel probability

measures on E1
A . By [31, �eorem 2.16 and Corollary 2.17] and [3, �eorem 1.7],

for each real-valued Hölder continuous f 2 F˛.E
1
A /, some ˛ 2 .0; 1/, there

exists a unique Borel probability measure �f on E1
A such that L�

f
�f D f �f for

some f > 0. Moreover, f is uniquely determined by this equation and satis�es
f D exp.P.f //. Here

P W C.E1
A / �! R

denotes the topological pressure function, which for  2 C.E1
A / is de�ned by

P. / WD lim
n!1

1

n
ln

X

!2En
A

exp sup
u2Œ!�

Sn .u/; (5.2)
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(see [3, Lemma 1.20]), where we recall that

Œ!� WD ¹u 2 E1
A j ui D !i for 1 � i � n.!/º

denotes the !-cylinder set and where the n-th ergodic sum of a map f W E1
A ! R

and n 2 N is de�ned to be

Snf WD

n�1
X

kD0

f ı �k and S0f WD 0:

Further, there exists a unique strictly positive eigenfunction hf 2 C.E1
A / of

Lf satisfying

Lf hf D f hf and
Z

hf d�f D 1:

By �f we denote the �-invariant probability measure de�ned by

d�f =d�f D hf :

�is is the unique �-invariant Gibbs measure for the potential function f . Un-
der some normalisation assumptions the iterates of the Perron–Frobenius opera-
tor converge to the projection onto the one-dimensional subspace generated by its
eigenfunction hf . To be more precise we have

lim
m!1

k�m
f L

m
f  �

R

 d�f � hf k D 0 for all  2 C.E1
A /; (5.3)

where k � k denotes the supremum norm on C.E1
A /. �e results on the Perron–

Frobenius operator quoted above originate mainly from the work of Ruelle, see
e. g. [28].

For the geometric potential function � 2 C.E1
A / it can be shown that the mea-

sure theoretical entropyH.��ı�/ of the shift-map � with respect to ��ı� is given
by

H.��ı�/ D ı

Z

�d��ı� ; (5.4)

where ı denotes the Minkowski dimension of F . �is observation follows e. g.
from the variational principle (see [3, �eorem 1.22]) and the following result,
which follows by combining [23, �eorems 4.2.9, 4.2.11 and 4.2.13].

Proposition 5.3. �e Minkowski as well as the Hausdor� dimension of F is equal
to the unique real number t > 0 for which P.�t�/ D 0, where P denotes the
topological pressure function.
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5.2. Properties of cGDS

Proposition 5.4. Let F denote the limit set of a cGDS with aperiodic and
irreducible incidence matrix (see De�nition 2.2). If F satis�es �1.F / D 0, then

[

v2V

Lv ¤ ¿;

where Lv is de�ned in (3.3).

Proof. Assume that �1.F / D 0 and
S

v2V L
v D ¿. �en

[

v2V

D [

e2Iv

�Œe�
E

D
[

v2V

[

e2Iv

h�Œe�i:

�is implies

ˆ
� [

v2V

D [

e2Iv

�Œe�
E�

D
[

v2V

[

e02Tv

�e0

D [

e2Iv

�Œe�
E

D
[

v2V

[

e02Tv

D [

e2Iv

�Œe0e�

„ ƒ‚ …

D�Œe0�

E

D
[

v2V

[

e2Iv

h�Œe�i

D
[

v2V

D [

e2Iv

�Œe�
E

;

where the second to last equality is due to the fact that the incidence matrix is ape-
riodic and irreducible. �us, the set

S

v2V

˝ S

e2Iv
�Œe�

˛

is invariant under ˆ and
hence F D

S

v2V

˝ S

e2Iv
�Œe�

˛

. Since we assume that �1.F / D 0 and since the
sets

˝S

e2Iv
�Œe�

˛

are compact non-empty intervals, it follows that
˝S

e2Iv
�Œe�

˛

is a singleton for every v 2 V . �erefore, the cardinality of F is �nite which
contradicts the fact that the Minkowski dimension of F is positive (see Proposi-
tion 5.3).

One key property of a cGDS is the bounded distortion property. �e following
bounded distortion lemma has been obtained in [14, Lemma 3.2] in the setting
of cIFS. �e proof follows along the same lines for cGDS giving the following
lemma.
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Lemma 5.5 (Bounded Distortion). �ere exists a sequence .�n/n2N with �n > 0

for all n 2 N and limn!1 �n D 1 such that for all !; u 2 E�
A with u! 2 E�

A and
x; y 2 �!.Xt.!n.!/// we have that

��1
n.!/ �

j�0
u.x/j

j�0
u.y/j

� �n.!/:

6. Proofs of �eorem 3.7 and Proposition 3.12

�eorem 3.7 and Proposition 3.12 are generalisations of �eorems 2.11 and 2.12
in [14] respectively. In the following, we recall the important steps from [14] and
point out the necessary modi�cations. �e key idea is to prove the statements of
�eorem 3.7 and Proposition 3.12 for the local fractal Euler characteristic and then
to apply statements from [27] to deduce the respective results concerning the local
Minkowski content.

Without loss of generality we may assume that ¹0; 1º � F � Œ0; 1� as other-
wise the result follows by rescaling. Fix an " > 0 and consider the expression
�0.@F"\ .�1; b �/=2 for some b 2 R. As in [14] we express �0.@F"\ .�1; b �/=2

in terms of the image gaps but obtain a di�erent representation because of the
non-allowed transitions

�0
�

@F" \ .�1; b �
�

2
D

X

v2V

nvX

jD1

#¹! 2 T �
v j Lv;j! � .�1; b �; jLv;j! j > 2"º

„ ƒ‚ …

DW „."/

C
c1

2
;

(6.1)

where c1 2 ¹1; 2; 3º depends on the value of b . For �nding appropriate bounds
on „."/, we choose an m 2 N [ ¹0º such that all image gaps

¹Lv;j! j v 2 V; j 2 ¹1; : : : ; nvº; ! 2 Tmv º

of level m are greater than 2". For v 2 V , j 2 ¹1; : : : ; nvº and ! 2 Tmv de�ne

„v;j! ."/ WD #¹u 2 T �
i.!1/

j Lv;ju! � .�1; b �; jLv;ju! j > 2"º:

We have the connection

X

v2V

nvX

jD1

X

!2Tmv

„v;j! ."/ � „."/ �
X

v2V

nvX

jD1

X

!2Tmv

„v;j! ."/C
X

v2V

nv

m�1
X

jD0

.#E/j :

(6.2)
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Fix b 2 R n F . �en F \ .�1; b � can be expressed as a �nite union of sets of
the form �Œ��, where � 2 E�

A . More precisely, there exists a minimal l 2 N and
�.1/; : : : ; �.l/ 2 E�

A satisfying

(i) F \ .�1; b � D
Sl
jD1 �Œ�

.j /� and

(ii) �Œ�.i/�\ �Œ�.j /� contains at most one point for all i ¤ j 2 ¹1; : : : ; lº.

�en for

� WD

l
[

jD1

Œ�.j /�

the function 1� is Hölder continuous. Fix ! 2 EmA . Using the bounded distor-
tion constant �n.!/ of ˆ on �!.Xt.!n.!/// (see Lemma 5.5), we can provide upper

bounds for „v;j! ."/, namely for an arbitrary !v 2 I1
v we have

„v;j! ."/ �

1
X

nD0

X

u2T n
i.!1/

1�.u!!
v/1

¹j�0
u.�!!

v/j��n.!/�jL
v;j
! j>2"º

C Nc2.!
v; �/

�

1
X

nD0

X

u2T n
i.!1/

1�.u!!
v/1

¹j�0
u.�!!

v/j��n.!/�jL
v;j
! j�2"º

„ ƒ‚ …

DW xA
v;j
! .!v; "; �/

C Nc2.!
v; �/;

(6.3)

where the constant Nc2.!
v; �/ is needed, sinceLv;ju! � .�1; b � does not necessarily

imply u!!v 2 � for an arbitrary!v 2 I1
v . However, if n.u/ � maxjD1;:::;l n.�

.j //,
either Œu!� � � or Œu!� \ � D ¿. Hence, there are only �nitely many u 2 T �

i.!1/

for which Lv;ju! � .�1; b � does not imply u!!v 2 � for all !v 2 I1
v . Letting

Nc2.!
v; �/ 2 R denote this �nite number shows (6.3) for all " > 0. Likewise, there

exists a constant
N
c2.!

v; �/ 2 R such that for all " > 0

„v;j! ."/ �

1
X

nD0

X

u2T n
i.!1/

1�.u!!
v/1

¹j�0
u.�!!

v/j���1
n.!/

�jL
v;j
! j>2"º

�
N
c2.!

v; �/:

It follows that for all ˇ > 1 we have that

„v;j! ."/ �

1
X

nD0

X

u2T n
i.!1/

1�.u!!
v/1

¹j�0
u.�!!

v/j���1
n.!/

�jL
v;j
! j�2"ˇº

„ ƒ‚ …

DW
x
A
v;j
! .!v; "ˇ; �/

�
N
c2.!

v; �/: (6.4)
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For every v 2 V �x an !v 2 I1
v . Combining (6.1) to (6.4) implies for all m 2 N

and all ˇ > 1 that

xC
f
0 .F; .�1; b �/ � lim sup

"!0

"ı
X

v2V

nvX

jD1

X

!2Tmv

xAv;j! .!v; "; �/ (6.5)

and

x
C
f
0 .F; .�1; b �/ � lim inf

"!0
"ı

X

v2V

nvX

jD1

X

!2Tmv
x
Av;j! .!v; "ˇ; �/: (6.6)

�e next step in the proofs is to apply renewal theorems by Lalley [17] and slight
extensions by the authors [14], in order to obtain asymptotics for both expressions
xA
v;j
! .!v; "; �/ and

x
A
v;j
! .!v; "ˇ; �/. For applying the renewal theorems, note that

X

u2T n
i.!1/

1�.u!!
v/ � 1

¹j�0
u.�!!

v/j��˙1
n.!/

�jL
v;j
! j�2"º

D
X

u W �nuD!!v

1�.u/ � 1°
nP

kD1
�lnj�0

uk
.��ku/j�� ln 2"

jL
v;j
! j�˙1

n.!/

±

D
X

u W �nuD!!v

1�.u/ � 1°

Sn�.u/�� ln 2"

jL
v;j
! j�˙1

n.!/

±:

(6.7)

Moreover, note that the hypotheses and Remark 5.2 imply that the geometric po-
tential function � is Hölder continuous and strictly positive. �e unique s > 0 for
which �s� D 1 is precisely the Minkowski dimension ı of F , which results by
combining the fact that �s� D exp.P.�s�// for each s > 0 and Proposition 5.3.
We will insert the asymptotics for xA

v;j
! .!v; "; �/ and

x
A
v;j
! .!v; "ˇ; �/, that the re-

newal theorems yield, into (6.5) and (6.6). In this way we will obtain an upper
bound for xC

f
0 .F; .�1; b �/ and a lower bound for

x
C
f
0 .F; .�1; b �/. For deducing

statements on xC
f
0 .F; .�1; b �/ and

x
C
f
0 .F; .�1; b �/ from these bounds we need

the following lemma, which is an adaptation of [14, Lemma 4.1].

Lemma 6.1. For every v 2 V �x an !v 2 I1
v . �en for an arbitrary ‡ 2 R,

(i) if

‡ �
X

v2V

nvX

jD1

X

!2Tmv

h�ı�.!!
v/.jLv;j! j�m/

ı for all m 2 N;

then

‡ � lim inf
m!1

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı I
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(ii) if

‡ �
X

v2V

nvX

jD1

X

!2Tmv

h�ı�.!!
v/.jLv;j! j��1

m /ı for all m 2 N,

then

‡ � lim sup
m!1

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı :

Proof. First, we approximate the eigenfunction h�ı� of the Perron–Frobenius op-
erator L�ı� . By induction it follows that

L
n
�ı�1.!/ D

X

u2T n
i.!1/

j�0
u.�!/j

ı

for each ! 2 E1
A and n 2 N, where 1 is the constant one-function on E1

A . Ln
�ı�

1

converges uniformly to the eigenfunction h�ı� when taking n ! 1 by (5.3).
�us, for all t > 0 there exists M 2 N such that

ˇ
ˇ
ˇ
ˇ

X

u2T n
i.!1/

j�0
u.�!/j

ı � h�ı�.!/

ˇ
ˇ
ˇ
ˇ
< t; for all n � M;! 2 E1

A :

Furthermore, the important bounded distortion lemma (Lemma 5.5) states that for
all t 0 > 0 there exists M 0 2 N such that

j�m � 1j < t 0 for all m � M 0.

�us, for all n � M and m � M 0,

‡ �
X

v2V

nvX

jD1

X

!2Tmv

h�ı�.!!
v/.jLv;j! j�m/

ı

�
X

v2V

nvX

jD1

X

!2Tmv

� X

u2T n
i.!1/

j�0
u.�!!

v/jı C t
�

jLv;j! jı.1C t 0/ı

�
X

v2V

nvX

jD1

X

!2Tmv

X

u2T n
i.!1/

jLv;ju! jı.1C t 0/2ı C t .1C t 0/ı
X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı

DW Am;n:
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Hence, for all t; t 0 > 0,

‡ � lim inf
m!1

lim inf
n!1

Am;n

�
�

1C t 0
�2ı

lim inf
m!1

lim inf
n!1

X

v2V

nvX

jD1

X

!2Tmv

X

u2T n
i.!1/

jLv;ju! jı

C t .1C t 0/ı lim sup
m!1

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı :

We have that

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı �
X

v2V

nv �
X

!2Tmv

k�0
!kı DW am;

where k � k denotes the supremum norm. �e assertion follows by letting t and
t 0 tend to zero, since the sequence .am/m2N is bounded by [23, Lemma 4.2.12]
together with Remark 5.1. Analogously, the lower bound in the second case can
be proved.

6.1. �e non-lattice case

Proof of �eorem 3.7(ii). Let us �x the notation from the beginning of Section 6.

If 1� is identically zero, then C f0 .F; .�1; b �/ D 0 D �.F \ .�1; b �/. If 1�
is not identically zero then combining (6.3), (6.4) and (6.7) with the fact that 1�
is Hölder continuous allows us to apply Lalley’s renewal theorem [17, �eorem 1]
(see also [14, Proposition 3.8], where the theorem is stated using our notation, but
for the case that E1

A D EN DW †1) to xA
v;j
! .!v; "; �/ and

x
A
v;j
! .!v; "ˇ; �/, where

v 2 V , j 2 ¹1; : : : ; nvº, ! 2 T �
v , !v 2 I1

v and ˇ > 1. �is gives the asymptotics

xAv;j! .!v; "; �/ �
��ı�.�/

ı
R

�d��ı�

� h�ı�.!!
v/ � .2"/�ı

�

jLv;j! j�n.!/
�ı
; (6.8)

x
Av;j! .!v; "ˇ; �/ �

��ı�.�/

ı
R

�d��ı�

� h�ı�.!!
v/ � .2"ˇ/�ı

�

jLv;j! j��1
n.!/

�ı
(6.9)

as " ! 0 uniformly for !v 2 I1
v . On combining (6.5), (6.8) (resp. (6.6), (6.9))

with Lemma 6.1 we obtain in a similar way to [14, proof of �eorem 2.11(ii)] that
xC
f
0 .F; .�1; b�/ D

x
C
f
0 .F; .�1; b�/ and thus that

C
f
0 .F; .�1; b �/ D

2�ı

H.��ı�/
lim
m!1

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı � �.F \ .�1; b �/
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holds for every b 2 RnF . AsRnF is dense inR the assertion concerning the local
fractal Euler characteristic follows. �e result on the local Minkowski content now
follows by applying [27, Corollary 3.2] (see also [14, �eorem 3.13]), as for every
b 2 R n F we have that F" \ .�1; b � D .F \ .�1; b �/" for su�ciently small
" > 0.

6.2. �e lattice case. �is subsection addresses �eorem 3.7(iii) and Proposi-
tion 3.12.

Proof of �eorem 3.7(iii). �e statement that neither the local Minkowski content
nor the local fractal Euler characteristic exists if the maps �e are all analytic, is
a direct consequence of �eorem 3.9(iii) together with �eorem 3.10, which will
both be proven in Section 7. �erefore, we now focus on the boundedness and
positivity. For this, we proceed as in the proof of [14, �eorem 2.11(iii)]. We �x the
notation from the beginning of Section 6. As � is lattice, there are �;  2 C.E1

A /

such that

� � � D  �  ı �;

where the range of � is contained in a discrete subgroup of R. Let a > 0 be
the maximal real number for which �.E1

A / � aZ. Recall from the beginning of
Section 6 that the hypotheses and Remark 5.2 imply that � is Hölder continuous
and strictly positive and that the unique s > 0 for which �s� D 1 is the Minkowski
dimension ı ofF (see Proposition 5.3). Note that 1� is Hölder continuous and that
we can assume that 1� is not identically zero. Combining (6.3), (6.4) and (6.7),
we see that we can apply the extended version of Lalley’s renewal theorem [17,
�eorem 3] given in [14, �eorem 3.9] to xA

v;j
! .!v; "; �/ and

x
A
v;j
! .!v; "ˇ; �/. �is

yields a symptotics

xAv;j! .!v; "; �/ � U!.!
v/

Z

�

e
�ıa

&

 .y/� .!!v/
a

C 1
a

ln 2"

jL
v;j
! j�n.!/

'

d��ı� .y/;

(6.10)

x
Av;j! .!v; "ˇ; �/ � U!.!

v/

Z

�

e
�ıa

&

 .y/� .!!v/
a C 1

a ln
2"ˇ�n.!/

jL
v;j
! j

'

d��ı� .y/ (6.11)

as " ! 0 uniformly for !v 2 I1
v , where

U!.!
v/ WD

ah�ı�.!!
v/

.1� e�ıa/

Z

�d��ı�

: (6.12)
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Consecutively applying (6.5) and (6.10) and using that e�bxc � e�x for any x 2 R

we obtain with Lemma 6.1 (as in [14, p. 2498]) that

xC
f
0 .F;R/ � lim inf

m!1

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı
a2�ı

.1� e�ıa/

Z

�d��ı�

DW c0:

�e number c0 is positive and �nite because

X

v2V

nvX

jD1

X

!2Tmv

jLv;j! jı �
X

v2V

nvX

jD1

X

!2Tmv

k�0
!kı DW am;

where k � k denotes the supremum norm, and the sequence .am/m2N is bounded
by [23, Lemma 4.2.12].

�at
x
C
f
0 .F;R/ is positive can be concluded from (6.6), (6.11) and Lemma 6.1

in the same way (see also [14, p. 2499]).

�e results on
x
C
f
1 .F; B/ and xC

f
1 .F; B/ are now straightforward applications

of [27, Corollary 3.2] (see also [14, �eorem 3.13]).

Proof of Proposition 3.12. Equation (3.10) follows from �eorem 3.7(iii). For the
second statement, we use [14, Lemma 3.12], which in [14] was proven for the case
that E1

A D EN DW †1, but the same proof works in the present more gen-
eral situation. �e hypotheses and [14, Lemma 3.12] together imply that for every
v 2 V , j 2 ¹1; : : : ; nvº, !v 2 I1

v and ! 2 Tmv

xU WD lim
"!0

"ı
Z

e
�ıa

&

 .y/� .!!v/
a

C 1
a

ln 2"

jL
v;j
! j�m

'

d��ı� .y/ �
� 2

jL
v;j
! j�m

�ı

and

x
U WD lim

"!0
"ı

Z

e
�ıa

&

 .y/� .!!v/
a

C 1
a

ln 2"�m

jL
v;j
! j

'

d��ı� .y/ �
� 2�m

jL
v;j
! j

�ı

are independent of !, v and j and are equal, i. e. xU D
x
U DW U . Combining (6.5)

with (6.10) and (6.6) with (6.11) and applying Lemma 6.1 gives xC
f
0 .F;R/ D

x
C
f
0 .F;R/. �ese steps are carried out in the case E1

A D EN in [14, p. 2499 f.]
in detail. An application of [27, Corollary 3.2] (see also [14, �eorem 3.13]) then
completes the proof.
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6.3. Average quantities

Proof of �eorem 3.7(i). �is statement follows in direct analogy to the proof of
[14, �eorem 2.11(i)]. Slight modi�cations to match the present setting are the
following. For m 2 N set

M WD min¹jLv;j! j j v 2 V; j 2 ¹1; : : : ; nvº; ! 2 Tmv º=2:

Note that the analogues of [14, (4.1) – (4.3)] are (6.1)–(6.3) and that

L
X

iD1

X

!2†m

xA i!.x; "; �/

needs to be replaced by

X

v2V

nvX

jD1

X

!2Tmv

xAv;j! .!v; "; �/:

�e analogue of [14, (4.7)] is (6.7), the analogue of [14, Lemma 4.1] is Lemma 6.1
and the analogue of [14, �eorem 2.11(iii)] is �eorem 3.7(iii).

7. Proofs of �eorems 3.8–3.10

Here, we provide the proofs of the results concerning limit sets of sGDS (�eo-
rem 3.8) and piecewise C

1C˛-di�eomorphic images of limit sets of sGDS (�eo-
rems 3.9, 3.10).

7.1. sGDS

Proof of �eorem 3.8. �roughout the proof let ˆ WD .�e/e2E denote an sGDS,
meaning that �e is a similarity for every e 2 E. Let re 2 .0; 1/ denote a Lipschitz
constant of �e for e 2 E. Further, set

r! WD r!1 : : : r!n

for a �nite word ! D !1 : : : !n 2 EnA . Part (i) follows from �eorem 3.7(i) with
the following considerations. For v 2 V and !v 2 I1

v , (5.3) implies

lim
m!1

X

!2Tmv

rı! D lim
m!1

L
m
�ı�1.!

v/ D h�ı�.!
v/ (7.1)
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with 1 denoting the constant one-function on E1
A . Moreover, since �e are simi-

larities, jL
v;j
! j D r!jLv;j j for all v 2 V , ! 2 T �

v and j 2 ¹1; : : : ; nvº. �us, c
from (3.4) simpli�es to

c D
X

v2V

nvX

jD1

h�ı�.!
v/jLv;j jı ; (7.2)

showing the assertion of (i).

In order to prove (ii) we proceed as in the proof of [14, �eorem 2.14], where
the statement is shown for self-similar sets. A crucial discrepancy to [14] is that
here h�ı� � 1 is not necessarily satis�ed. With the same arguments as in the proof
of [14, �eorem 2.14] (replacing E and R!E in [14] by F and �Œ!� respectively)
we see that for �xed v 2 V and arbitrary !v 2 I1

v there exists a constant Qc � 0,
which depends on the number of sets �Œ!� whose union is F \ B , such that

�0.@Fe�T \ B/=2
(6.1)
D

X

v2V

nvX

jD1

#¹! 2 T �
v j Lv;j! � B; jLv;j! j > 2e�T º C Qc

D
X

v2V

nvX

jD1

1
X

nD0

X

!2T nv

1�.!!
v/1¹j�0

!.!
v/j�jLv;j j>2e�T º C Qc

D
X

v2V

nvX

jD1

1
X

nD0

X

uW�nuD!v

1�.u/1¹Sn�.u/<� ln 2e�T

jLv;j j
º

C Qc

�
X

v2V

nvX

jD1

ah�ı�.!
v/��ı�.�/

.1 � e�ıa/
R

�d��ı�

� e
�ıa

�

a�1 ln 2e�T

jLv;j j

�

C Qc

(7.3)

as T ! 1, where the last asymptotic is obtained by applying [14, �eorem 3.9
and Remark 3.10], a slight extension of [17, �eorem 3]. As in [14] we introduce
the function f W RC ! R

C which here is given by

f .T / WD e�ıT a�.B/

.1 � e�ıa/H.��ı�/

X

v2V

nvX

jD1

h�ı�.!
v/e

�ıa

�

1
a

ln 2e�T

jLv;j j

�

:

By the asymptotic given in (7.3), we know that for all t > 0 there exists anM 2 N

such that for all T � M we have

.1 � t /ıf .T / � e�ıT �0.@Fe�T \ B/=2 � .1C t /ıf .T /C ce�ıT :
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Clearly, f is a strictly positive, bounded and periodic function with period a.
Moreover, f is piecewise continuous with a �nite number of discontinuities in an
interval of length a. Additionally, on every interval, where f is continuous, f
is strictly decreasing. �erefore f is not equal to an almost everywhere constant
function. �us, all conditions of [14, Lemma 5.1] (whose proof works in exactly the
same way for cGDS instead of cIFS) are satis�ed which shows the statement.

7.2. Piecewise C
1C˛-di�eomorphic images of limit sets of sGDS. Here, we

consider the case that F is the image of the limit setK of an sGDS under a piece-
wise C

1C˛-di�eomorphism. �roughout, we �x the notation from �eorem 3.9.
By de�nition, each gv is bi-Lipschitz. �erefore, the Minkowski dimensions ofK
and F coincide (see e. g. [9, Corollary 2.4 and Section 3.2]) and are both denoted
by ı.

�e similarities .Re/e2E generating K and the mappings .�e/e2E generating
F are connected through the equations

�e D gi.e/ ıRe ı g�1
t.e/

for each e 2 E. We denote by Q� and � the natural code maps from E1
A to K and

F respectively. If we further let .re/e2E denote the respective similarity ratios of
.Re/e2E , i. e. re WD kR0

ek, we have the following list of observations.

(A) Each map �e W Xt.e/ ! Xi.e/ is di�erentiable with derivative

�0
e D

g0
i.e/

ı Re ı g�1
t.e/

g0
t.e/

ı g�1
t.e/

� re:

(B) �e geometric potential function � associated with K is given by

�.!/ D � ln r!1I

the geometric potential function � associated with F is given by

�.!/ D � lnjg0
t.!1/

.g�1
t.!1/

.�!//j C lnjg0
t.!2/

.g�1
t.!2/

.��!//j � ln r!1 ;

where ! D !1!2 : : : 2 E1
A . �us � is non-lattice, if and only if � is non-

lattice.

(C) �e unique �-invariant Gibbs measure for the potential function �ı� coin-
cides with the unique �-invariant Gibbs measure for the potential function
�ı�, i. e. ��ı� D ��ı� (see e. g. [23, �eorem 2.2.7]).



216 M. Kesseböhmer and S. Kombrink

(D) From (B) and (C) we obtain that

H.��ı�/ D

Z

�d��ı� D

Z

�d��ı� D H.��ı�/:

Further, let ¹ zLv;j ºv2V;j2¹1;:::;nvº denote the primary gaps of K and denote by
¹ zL

v;j
! ºv2V;j2¹1;:::;nvº the image gaps of K for each ! 2 E�

A . Likewise we let
¹Lv;j ºv2V;j2¹1;:::;nvº and ¹L

v;j
! ºv2V;j2¹1;:::;nvº respectively denote the primary and

the image gaps of F .

(E) �e ı-conformal measure � associated with .�e/e2E and the push-forward
measure of the ı-conformal measure Q� associated with .Re/e2E are abso-
lutely continuous with Radon-Nikodym derivative

d�

d Q� ı g�1
v

ˇ
ˇ
ˇ
ˇ
Xv

D jg0
v ı g�1

v jı
ˇ
ˇ
ˇ
ˇ
Xv

�
� X

v02V

Z

Yv0

jg0
v0 j
ıd Q�

��1

:

(F) Lv;j! D gi.!1/.
zL
v;j
! / for v 2 V , j 2 ¹1; : : : ; nvº and ! 2 T �

v . De�ne a
function

f W E1
A �! R

by
f .!/ WD jg0

i.!1/
ı Q�.!/jı :

Since j zL
v;j
! j D r! j zLv;j j, we have

lim
n!1

X

v2V

nvX

jD1

X

!2T nv

jLv;j! jı

D lim
n!1

X

v2V

nvX

jD1

X

!2Tnv

.r!j zLv;j j � jg0
i.!1/

.x!/j/ı

D lim
n!1

X

v2V

nvX

jD1

j zLv;j jıLn�ı� .f /.!
v/

(5.3)
D

X

v2V

nvX

jD1

j zLv;j jıh�ı� .!
v/ �

� X

v02V

Z

Yv0

jg0
v0 j
ıd Q�

�

;

where x! 2 Q�Œ!� for each ! 2 E�
A and !v 2 I1

v for v 2 V . Note that the
above equation can be rigorously proven by using the Bounded Distortion
Lemma (Lemma 5.5).
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(G) From the fact that .Re/e2E are contractions and each g0
v is Hölder continu-

ous and bounded away from zero, one can deduce that there exists a cGDS
consisting of iterates of ˆ WD .�e/e2E which all are contractions. As this
iterate also generates F , it follows that F is a limit set of a cGDS.

Proof of �eorem 3.9. Using (A)–(G) an application of �eorem 3.7(i) and (ii) to
F and of �eorem 3.8 to K proves �eorem 3.9(i) and (ii).

�e structure of the proof of (iii) is taken from the proof of [14, �eorem 2.17].
Here, the de�nitions of � and .B.�/; f�/ are slightly di�erent to the ones in [14].
We just provide the steps which require modi�cation and refer the reader to [14]
for detailed justi�cations.

Write

R DW .Re/e2E

and let re 2 .0; 1/ denote a Lipschitz constant ofRe for e 2 E. Note that gv W Yv !

Xv is bijective for every v 2 V . For e 2 E de�ne

�e WD gi.e/ ıRe ı g�1
t.e/

and set

ˆ WD .�e/e2E :

As is justi�ed in [14, p. 2506] we can assume without loss of generality that �e are
contractions. �en ˆ is a cGDS and F is the associated limit set. �e code space
associated with ˆ is also E1

A . We let Q� and � respectively denote the code maps
from E1

A to K and F . �ey satisfy

�.!/ D gi.!1/ ı Q�.!/ for ! 2 E1
A .

For a �xed n 2 N [ ¹0º de�ne

�n WD
° l

[

iD1

Œ�.i/�
ˇ
ˇ
ˇ �.i/ 2 EnA; l 2 ¹1; : : : ; #EnAº;

l
[

iD1

h Q�Œ�.i/�i is an interval;

l
[

iD1

Q�Œ�.i/� \ Q�Œ!� D ¿ for every ! 2 EnA n ¹�.1/; : : : ; �.l/º
±

:

(If the strong separation condition was satis�ed, then�n D ¹Œ!� j ! 2 EnAº.) Note
that �n ¤ ¿ for all n 2 N because of the OSC and set

� WD
[

n2N[¹0º

�n:
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Now, �x an n 2 N [ ¹0º and a

� D

l
[

iD1

Œ�.i/� 2 �n

and choose � > 0 such that

l
[

iD1

h Q�Œ�.i/�i2� \ Q�Œ!� D ¿ for every ! 2 EnA n ¹�.1/; : : : ; �.l/º.

�en

B.�/ WD

l
[

iD1

h Q�Œ�.i/�i�

is a non-empty Borel subset of R satisfying

F" \ B.�/ D .F \ B.�//" for all " < � .

Let ¹Lv;j ºv2V; j2¹1;:::;nvº denote the primary gaps ofF and ¹L
v;j
! ºv2V;j2¹1;:::;nvº

the associated image gaps. For constructing the function f� �x an m 2 N and
chooseM 2 N so that

(i) e�M < � and

(ii) jL
v;j
! j > 2e�M holds for all v 2 V , j 2 ¹1; : : : ; nvº and ! 2 Tmv for which

L
v;j
! � B.�/.

�en for all T � M we have

�0 .@Fe�T \ B.�// =2 D
X

v2V

nvX

jD1

#¹! 2 T �
v j Lv;j! � B.�/; jLv;j! j > 2e�T º C 1

�
X

v2V

nvX

jD1

X

!2Tmv

„v;j! .e�T /C
X

v2V

nv

m�1
X

jD1

.#E/j�1 C 1

„ ƒ‚ …

DW cm

;

(7.4)

where

„v;j! .e�T / WD #¹u 2 T �
i.!1/

j Lv;ju! � B.�/; jLv;ju! j > 2e�T º:

Likewise

�0 .@Fe�T \ B.�// =2 �
X

v2V

nvX

jD1

X

!2Tmv

„v;j! .e�T /:
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For providing bounds on„v;j! .e�T /, we let � and � denote the geometric potential
functions associated with ˆ and R. For ! 2 E1

A we have

�.!/ D � lnj�0
!1
.��!/j

D � lnjg0
i.!1/

.R!1g
�1
t.!1/

��!/j

� lnjR0
!1
.g�1
t.!1/

��!/j

C lnjg0
t.!1/

.g�1
t.!1/

��!/j

D � lnjg0
i.!1/

. Q�!/j C �.!/C lnjg0
t.!1/

. Q��!/j:

�erefore,

 W E1
A �! R

given by

 .!/ WD � lnjg0
i.!1/

. Q�!/j

de�nes a function lying in C.E1
A / which satis�es

� � � D  �  ı �:

Let c be the common Hölder constant of gv for v 2 V and let k > 0 be such that
for each v 2 V we have that jg0

vj � k on Wv . �en for all x; y 2 h Q�Œ!�i, where
! 2 I nv for n 2 N and v 2 V we have that

ˇ
ˇ
ˇ
ˇ

g0
v.x/

g0
v.y/

ˇ
ˇ
ˇ
ˇ

�

ˇ
ˇ
ˇ
ˇ

g0
v.x/ � g0

v.y/

g0
v.y/

ˇ
ˇ
ˇ
ˇ
C 1

�
cjx � yj˛

k
C 1

� max
!2Inv

cjh�Œ!�ij˛

k
C 1

DW pn:

(7.5)

Clearly, pn ! 1 as n ! 1. We let !v 2 I1
v be arbitrary and ! 2 Tmv . �en

jLv;ju! j D jgi.u1/
zLv;ju! j � jg0

i.u1/
.Ru! Q�!v/jpm � jR0

u.R! Q�!v/j � j zLv;j! j

D j.gi.u1/ ı Ru/
0.R! Q�!v/j � pmj zLv;j! j

D j�0
u.�!�!

v/j � jg0
i.!1/

.R! Q�!v/j � pm � r!j zLv;j j

D exp.�Sn.u/�.u!!
v/ �  .!!v/C ln.pm � r!j zLv;j j//:
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�erefore, for such !v 2 I1
v , T � max¹M; zM º and ! 2 Tmv we have that

„v;j! .e�T /

� #
°

u 2 T �
i.!1/

j Lv;ju! � B.�/;

Sn.u/�.u!!
v/ < T C ln

�pmr! j zLv;j j

2

�

�  .!!v/
±

:

Applying [14, �eorem 3.9 and Remark 3.10] yields

�0.@Fe�T \ B.�//=2� cm

�
X

v2V

nvX

jD1

X

!2Tmv

1
X

nD0

X

u W �nuD!!v

1�.u/ � 1
¹Sn�.u/<TCln.pmr! j zLv;j j=2/� .!!v/º

�
X

v2V

nvX

jD1

X

!2Tmv

ah�ı�.!!
v/I.v; j; !/

.1� e�ıa/

Z

�d��ı�

;

(7.6)

where

I.v; j; !/ WD

Z

�

e
�ıa

�

 .u/� .!!v/
a

C 1
a

ln 2e�T

pmr! j zLv;j j
C .!!v/

a

�

d��ı� .u/

De�ne

U WD a.1 � e�ıa/�1
� Z

�d��ı�

��1

:

Using that ln r! 2 aZ for every ! 2 E�
A , the right hand side of (7.6) can be

rewritten as

X

v2V

nvX

jD1

X

!2Tmv

Urı!h�ı�.!!
v/

Z

�

e
�ıa

�

 .u/
a

C 1
a

ln 2e�T

pm j zLv;j j

�

d��ı� .u/:

De�ning the function

f� W RC �! R
C

by

f�.T / WD e�ıT
X

v2V

nvX

jD1

X

!2Tmv

Uh�ı� .!!
v/rı!

Z

�

e
�ıa

�

 .u/
a

C 1
a

ln 2e�T

j zLv;j j

�

d��ı� .u/
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we thus have that for all t > 0 there exists a zM 2 R such that

e�ıT �
0.@Fe�T \ B.�//

2
� .1C t /pımf�.T C lnpm/C cme�ıT :

for all T � zM and likewise,

e�ıT �
0.@Fe�T \ B.�//

2
� .1 � t /p�ı

m f�.T � lnpm/:

Clearly, f� is periodic with period a. �us, [14, Lemma 5.1 (ii)] is satis�ed for
B D B.�/ and f D f� . For showing validity of [14, Lemma 5.1 (i)], we set

N
ˇ WD min¹¹a�1 lnj zLv;j jº j v 2 V; j 2 ¹1; : : : ; nvºº

and
Ň WD max¹¹a�1 lnj zLv;j jº j v 2 V; j 2 ¹1; : : : ; nvºº:

We �rst assume that
N
ˇ > 0 and consider the following four cases, where we let

q� 2 N [ ¹0º be maximal such that

ˇ C q�.1 � Ň/ � Ň:

Case 1 .
x
D WD ¹! 2 E1

A j ¹a�1 .!/º <
N
ˇº 6D ¿.

Case 2. xD WD ¹! 2 E1
A j ¹a�1 .!/º > Ňº 6D ¿.

Case 3. �ere exists a q 2 ¹0; : : : ; q�º such that

Dq WD ¹! 2 E1
A j

N
ˇ C q.1 � Ň/ < ¹a�1 .!/º <

N
ˇ C .q C 1/.1� Ň/º ¤ ¿:

Case 4. ¹! 2 E1
A j ¹a�1 .!/º � ¹

N
ˇ C q.1� Ň/ j q 2 ¹0; : : : ; q�ººº D E1

A .

Note that Case 4 obtains if neither of the cases 1-3 obtains. With the same
methods as in [14, p. 2508 f.], in particular using the same functions Tn, one can
deduce that f� is not equal to an almost everywhere constant function in all four
cases. �e conclusion of the proof is the same as in [14, proof of �eorem 2.17].

Proof of �eorem 3.10. We de�ne an operator

zL W C.R/ �! C.R/

by setting
zL.g/.x/ WD

X

e2Tv

j�0
e.x/j

ı �g ı �e.x/
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for x 2 Xv and v 2 V . Letting � denote the geometric potential function associ-
ated with ˆ and letting � denote the code map from the code space E1

A to F , we
see that zL.g/.�!/ D L�ı�.g ı�/.!/, where ı denotes the Minkowski dimension
of F .

Since the maps �e are analytic, there exist open neighbourhoods Wv � Xv of
Xv in C on which the maps �e are analytic for e 2 Tv . By [23, Lemma 4.2.12] the
functions zLn1jWv are uniformly bounded and the bound is independent of n 2 N.
�us, for v 2 V , zLn1 W Wv ! C form a normal family in the sense of Montel.
Here, 1 denotes the constant one-function on E1

A . By (5.3) we have that zLn1 ı �

converges uniformly to h�ı� on E1
A . �erefore, zLn1jWv converges to an analytic

extension of h�ı� on Wv. We denote this analytic extension by hv and set

Q v WD ı�1 ln hv:

Since � is lattice, there exist �;  2 C.E1
A / such that

� � � D  �  ı �

and such that the range of � is contained in a discrete subgroup of R. We let a > 0
denote the maximal real number such that �.E1

A / � aZ. Note that Q v satis�es

Q v ı �jIv D  jIv C ı�1 ln h�ı� jIv ;

as hv satis�es

hv ı �jIv D eı h�ı� jIv ;

where we used that

L�ı�.e
ı h�ı�/.x/ D

X

yW�yDx

eı. ��/.y/h�ı� .y/

D eı .x/L�ı� .h�ı�/.x/

D eı h�ı� .x/

which implies h�ı� D eı h�ı� . We de�ne

Xv DW Œav; bv� for v 2 V
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and introduce the functions

Qgv W Œav; bv� �! R

given by

Qgv.x/ WD

Z x

av

e
Q v.y/dy=Dv C 2v;

where

Dv WD

Z bv

av

e
Q v.y/dy:

Note that Qgv.Œav; bv�/ D Œ2v; 2v C 1�. As Q v is analytic by de�nition, the funda-
mental theorem of calculus implies that

Qg0
v.x/ D e

Q v.x/=Dv;

giving
ln Qg0

v D Q v � lnDv:

Furthermore, the analyticity of Q v implies that Q v is bounded on Xv . �erefore,
Qg0
v is bounded away from both 0 and 1 and hence Qgv is invertible. Set

gv W Œ2v; 2vC 1� �! Œav; bv�; gv WD Qg�1
v

and extend gv to an analytic function on an open neighbourhoodUv of the interval
Œ2v; 2v C 1� such that jg0

vj > 0 on Uv . For e 2 E we de�ne

Re WD g�1
i.e/ ı �e ı gt.e/

and introduce the code map Q� given by

Q�jIv WD g�1
v ı �

for v 2 V . For ! 2 E1
A we then have

� lnR0
!1
. Q��!/ D � ln Qg0

i.!1/
.�!1gt.!1/ Q��!/� ln �0

!1
.gt.!1/ Q��!/

C ln Qg0
t.!1/

.gt.!1/ Q��!/

D � Q i.!1/.�!/C �.!/C Q t.!1/.��!/C lnDi.!1/ � lnDt.!1/

D � .!/ � ı�1 ln.h�ı�.!/=h�ı�.�!//C  .�!/C �.!/

C ln.Di.!1/=Dt.!1//

D �.!/ � ı�1 ln
h�ı�.!/

h�ı�.�!/
C ln

Di.!1/

Dt.!1/

:
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Since the range of � is contained in the group aZ and � and  are bounded on
E1
A , � in fact takes a �nite number of values. �e continuity of � implies that

there exists anM 2 N such that � is constant on each cylinder set Œ!� for ! 2 EMA .
�is clearly implies that Ln

�ı�
1 is constant on Œ!� for all ! 2 EMA and all n 2 N.

�us, equation (5.3) implies that also h�ı� is constant on cylinder sets of length
M . �is can be seen by considering jh�ı� .!/ � h�ı�.u/j for u; ! lying in the
same cylinder set of length M and applying the triangle inequality. �erefore,
! 7! � lnjR0

!1
. Q��!/j is constant on cylinder sets of lengthM C1. Since for each

! 2 EMC1
A the set ¹ Q�u j u 2 Œ!�º has accumulation points and is compact and

the mapR0
e is analytic by construction, it follows thatR0

e is constant on its domain
of de�nition. �erefore, the maps Re are similarities. From the fact that �e are
contractions and each of the g0

v is di�erentiable and bounded away from zero, one
can deduce that there exists an iterate zR of R WD .Re/e2E which solely consists
of contractions and thus is an sGDS.
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