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Measure theoretic trigonometric functions

Peter Arzt

Abstract. We study the eigenvalues and eigenfunctions of the Laplacian �� D d
d�

d
dx

for

a Borel probability measure � on the interval Œ0; 1� by a technique that follows the treatment

of the classical eigenvalue equation f 00 D ��f with homogeneous Neumann or Dirichlet

boundary conditions. For this purpose we introduce generalized trigonometric functions

that depend on the measure �. In particular, we consider the special case where � is a self-

similar measure like e.g. the Cantor measure. We develop certain trigonometric identities

that generalize the addition theorems for the sine and cosine functions. In certain cases

we get information about the growth of the suprema of normalized eigenfunctions. For

several special examples of � we compute eigenvalues of �� and L1- and L2-norms of

eigenfunctions numerically by applying the formulas we developed.
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1. Introduction

Assume that � is a Borel probability measure on the interval Œ0; 1�. We consider

the Laplacian �� on Œ0; 1� for the measure � and study the eigenvalue problem

��f D ��f

with either homogeneous Dirichlet boundary conditions f .a/ D f .b/ D 0, or

homogeneous Neumann boundary conditions f 0.a/ D f 0.b/ D 0.

�e de�nition of �� involves the derivative with respect to the measure �.

If a function g W Œ0; 1� ! R allows the representation

g.x/ D g.a/ C
Z

Œa;x�

dg

d�
d� (1)

for all x 2 Œ0; 1�, then dg
d�

is unique in L2.�/ and is called the �-derivative of g.

In Freiberg [8] an analytic calculus of the concept of � derivatives is developed.

�e operator �� is then given by

��f D d

d�
f 0

for all f 2 L2.�/ for which f 0 and the �-derivative of f 0 exist.

It is well known that if � is a non-atomic Borel measure, �� has a pure point

spectrum consisting only of eigenvalues with multiplicity one, that accumulate

at in�nity, see Freiberg [8], Lemma 5.1 and Corollary 6.9, or Bird, Ngai and

Teplyaev [4], �eorem 2.5. Moreover, we have a pure point spectrum not only

in the non-atomic case, see Vladimirov and Sheipak [30].

�is operator and the resulting eigenvalue problem has been studied in nu-

merous papers, for example in Feller [7], McKean and Ray [23], Kac and Krein

[17], Fujita [14], Naimark and Solomyak [24], Freiberg and Zähle [13], Bird, Ngai

and Teplyaev [4], Freiberg [8, 10, 11, 9], Freiberg and Löbus [12], Hu, Lau and

Ngai [15], Chen and Ngai [5], and Arzt and Freiberg [2].

In this paper we give a new technique of determining the eigenvalues and

eigenfunctions of �� that involves a generalization of the sine and cosine func-

tions.

In this we follow the classical case, where � is the Lebesgue measure. �ere,

the Dirichlet eigenvalue problem reads f 00 D ��f , f .0/ D f .1/ D 0. �en,

for every non-negative �, f .x/ D sin.
p

�x/ satis�es the equation as well as the

boundary condition on the left-hand side. On the right-hand side, the boundary

condition is only met if
p

� is a zero point of the sine function, which are, indeed,

very well known.
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If we impose Neumann boundary conditions f 0.0/ D f 0.1/ D 0, we take

f .x/ D cos.
p

�x/, because this complies automatically with the left-hand side

condition. �e right-hand side condition again is satis�ed if
p

� is a zero point

of the sine function, which leads to the same eigenvalues as in the Dirichlet case

(supplemented by zero). But here sine appears as the derivative of cosine, which

will make a di�erence when we take more general measures.

Now let � be an arbitrary Borel probability measure on Œ0; 1�. We construct

functions s�;�.�; �/ and c�;�.�; �/ as a replacement for sin and cos by generalizing

the series

sin.zx/ D
1

X

nD0

.�1/n .zx/2nC1

.2n C 1/Š
and cos.zx/ D

1
X

nD0

.�1/n .zx/2n

.2n/Š
:

�ere we replace xn=nŠ by appropriate functions pn.x/ or qn.x/, depending on

whether we impose Neumann or Dirichlet boundary conditions. �ese functions

ful�ll the eigenvalue equation and meet the left-hand side Dirichlet and Neumann

boundary condition, respectively.

Putting

pn WD pn.1/ and qn WD qn.1/;

we de�ne

sinD
� .z/ WD

1
X

nD0

.�1/nq2nC1z2nC1 and sinN
� .z/ WD

1
X

nD0

.�1/np2nC1z2nC1:

For s�;�.z; �/ and c�;�.z; �/ to also match the right-hand side conditions, z has to

be chosen as a zero point of sinD
� in the Dirichlet case and sinN

� in the Neumann

case. All this is described in Section 3.

In Section 4 we show how to compute the norms in L2.�/ of the eigenfunctions

by using the sequences pn and qn.

�e functions c�;�.z; �/ and s�;�.z; �/ satisfy an identity that generalizes the

classical trigonometric identity. �is is established in Section 5.

In Section 6 we consider symmetric measures and get some symmetry results.

�e main results are established in Section 7. We outline these brie�y here.

Since the functions pn.x/ and qn.x/ are determined in a process of iterative inte-

gration alternately with respect to � and the Lebesgue measure, the coe�cients

pn and qn are di�cult to compute in general. But if � is a self-similar measure

with respect to the mappings S1.x/ D r1x and S2.x/ D r2.x � 1/ C 1 as well as

the weight factors m1 and m2, we develop a recursion formula for pn and qn.
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To illustrate the structure of this recursion formula, we consider again the clas-

sical Lebesgue case. �ere we have pn D qn D 1
nŠ

which leads to sinN
� .z/ D

sinD
� .z/ D sin.z/. �e sequence pn D 1

nŠ
can be viewed as the solution of the

problem

2npn D
n

X

iD0

pi pn�i ; p0 D p1 D 1; (2)

which is derived from the equation 2n D
Pn

iD0

�

n
i

�

. Our recursion formula for self-

similar � looks a little more involved, as it distinguishes between the two di�erent

kinds of boundary conditions. Additionally it is di�erent for even and odd values

of n, and it involves the parameters r1; r2; m1; m2 of the measure. However, it has

the same basic structure as (2).

Moreover, we establish functional equations involving sinN
� and sinD

� that can

be viewed as generalizations of the classical addition theorems.

In Section 8 we consider the especially interesting case where r1m1 D r2m2.

�en the Neumann eigenvalues ful�ll a renormalization formula �2n D R �n;

where 1=R D r1m1. �is property has been established in a special case by Volk-

mer [31] and in our setting by Freiberg [11]. �is formula allows us to investigate

the growth of subsequences

.k Qfk2nk1/n2N; for odd k;

where Qfn denotes an eigenfunction to the nth Neumann eigenvalue that is normal-

ized to one in L2.�/.

We show in Section 9 that, if we assume r1 C r2 D 1 in addition to r1m1 D
r2m2, the Dirichlet and Neumann eigenvalues coincide.

Finally, by using the formulas we developed in the course of our investigations,

we compute approximations of eigenvalues for certain examples in Section 10.

Several remarks about possible further investigations are made in Section 11.

2. Derivatives and the Laplacian with respect to a measure

As in Freiberg [8, 10], we de�ne a derivative of a function with respect to a mea-

sure.

De�nition 2.1. Let � be a non-atomic Borel probability measure on Œ0; 1� and let

f W Œ0; 1� ! R. A function h 2 L2.Œ0; 1�; �/ is called the �-derivative of f , if

f .x/ D f .a/ C
Z x

a

h d� for all x 2 Œ0; 1�:
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As can be easily seen, the �-derivative in De�nition 2.1 is unique in L2.�/.

We denote the �-derivative of a function f by df
d�

. �e �-derivative df
d�

we denote

by f 0, where � denotes the Lebesgue measure on Œ0; 1�.

We de�ne H 1.Œ0; 1�; �/ D H 1.�/ to be the space of all L2.�/-functions whose

�-derivative exists. According to our de�nition, if it exists, the �-derivative is

always in L2.�/, and thus it is clear that, for every non-atomic measure �, all

functions in H 1.�/ are continuous. In case � D � is the Lebesgue measure,

the de�nition of H 1.�/ is equivalent to the usual de�nition of the Sobolev space

H 1 D W 1
2 .

�e following useful lemma is an analogue to integration by parts and can be

found in Freiberg [8], Proposition 3:1.

Lemma 2.2. For c; d 2 Œ0; 1� with c < d and functions f 2 H 1.�/ and g 2
H 1.�/ we have

Z d

c

df

d�
.t/ g.t/ d�.t/ D f g

ˇ

ˇ

ˇ

d

c
�

Z d

c

f .t/ g0.t / dt:

Let � be another non-atomic Borel probability measure on Œ0; 1�. �en the

space H 2.�; �/ is de�ned to be the collection of all functions in H 1.�/ whose

�-derivative belongs to H 1.�/. Now we de�ne the operator �� for all f 2
H 2.�; �/ as

��f WD d

d�
f 0:

Remark 2.3. In Freiberg [8], Corollary 6.4, is shown that H 2.�; �/ is dense in

L2.�/. Furthermore, it is well known (see e.g. [8], Corollary 3.2) that �� is a

negative symmetric operator on L2.�/.

3. Generalized trigonometric functions

Let � be an atomless Borel probability measure on Œ0; 1�. We construct sequences

of functions pn.x/ and qn.x/ depending on �.

De�nition 3.1. For x 2 Œ0; 1� we set p0.x/ D q0.x/ D 1 and, for n 2 N,

pn.x/ WD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Z x

0

pn�1.t / d�.t/; if n is odd,

Z x

0

pn�1.t / dt; if n is even,
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and

qn.x/ WD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Z x

0

qn�1.t / dt; if n is odd,

Z x

0

qn�1.t / d�.t/; if n is even.

�en, for n 2 N0, we have by de�nition p2n; q2nC1 2 H 1.�/, p2nC1; q2n 2
H 1.�/ and

d

d�
p2nC1 D p2n; q0

2nC1 D q2n; p0

2n D p2n�1;
d

d�
q2n D q2n�1:

Remark 3.2. (i) If we take � to be the Lebesgue measure, then pn.x/ D qn.x/ D
xn

nŠ
. In the following, we will transfer classical concepts and techniques to a general

measure � by replacing xn

nŠ
by pn.x/ or qn.x/. In this sense, we can look at pn.x/

or qn.x/ as a kind of generalized monomials.

(ii) It is easy to see that for n 2 N and x 2 Œ0; 1�, qnC1.x/ � pn.x/ and

pnC1.x/ � qn.x/.

To prove convergence of the series de�ned below, we will need the following

lemma.

Lemma 3.3. For all x 2 Œ0; 1�, z 2 R and n 2 N0,

p2nC1.x/ � 1

nŠ
q2.x/n;

q2nC1.x/ � 1

nŠ
p2.x/n;

and

p2n.x/ � 1

nŠ
p2.x/n;

q2n.x/ � 1

nŠ
q2.x/n:

Proof. �e estimates for q2nC1.x/ and q2n.x/ are proved in Lemma 2.3 in Freiberg

and Löbus [12], with complete induction. �e proof of the other estimates works

analogously.
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De�nition 3.4. Using pn.x/ and qn.x/ we now de�ne for x 2 Œ0; 1� and z 2 R:

s�;�.z; x/ WD
1

X

nD0

.�1/n z2nC1p2nC1.x/;

s�;�.z; x/ WD
1

X

nD0

.�1/n z2nC1q2nC1.x/;

and

c�;�.z; x/ WD
1

X

nD0

.�1/n z2np2n.x/;

c�;�.z; x/ WD
1

X

nD0

.�1/n z2nq2n.x/:

Note that for every z 2 R,

c�;�.z; �/; s�;�.z; �/ 2 H 2.�; �/ and s�;�.z; �/; c�;�.z; �/ 2 H 2.�; �/:

Remark 3.5. (i) If � is the Lebesgue measure, then

s�;�.z; x/ D s�;�.z; x/ D sin.zx/

and

c�;�.z; x/ D c�;�.z; x/ D cos.zx/:

(ii) Functions corresponding to s�;�.z; �/ and c�;�.z; �/ have also been con-

structed in Freiberg and Löbus [12], where they are used to determine the number

of zeros of Dirichlet eigenfunctions.

Lemma 3.6. For every z 2 R the series in De�nition 3.4 converge uniformly

absolutely on Œ0; 1� and the following di�erentiation rules hold:

d

d�
s�;�.z; �/ D z c�;�.z; �/; s0

�;�.z; �/ D z c�;�.z; �/;

c0

�;�.z; �/ D �z s�;�.z; �/; d

d�
c�;�.z; �/ D �z s�;�.z; �/:
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Proof. Let z 2 R. Since q2.x/ � 1 for x 2 Œ0; 1�, we get by Lemma 3.3 for N 2 N

sup
x2Œ0;1�

1
X

nDN

jzj2nC1p2nC1.x/ � sup
x2Œ0;1�

1
X

nDN

jzj2nC1 q2.x/n

nŠ
�

1
X

nDN

jzj2nC1

nŠ
:

Hence, for every z 2 R the series
P

1

nD0jzj2nC1p2nC1.x/ converges uniformly

in x. �e proof for the other series works analogously with the estimates in

Lemma 3.3. �us, we can di�erentiate term by term and get the above rules.

Now we show the relation between c�;�.z; �/ and s�;�.z; �/ to the eigenvalue

problem for ��. Consider the Neumann problem

d

d�
f 0 D ��f; f 0.0/ D f 0.1/ D 0

and the Dirichlet problem

d

d�
f 0 D ��f; f .0/ D f .1/ D 0:

It is well known that the Neumann eigenvalues can be sorted according to size

such that

�N;0 < �N;1 < �N;2 < � � � ;

where �N;0 D 0 and lim
m!1

�N;m D 1. �e same holds for the Dirichlet eigenval-

ues, we denote them such that

�D;1 < �D;2 < �D;3 < � � �

where �D;1 > 0 and lim
n!1

�D;n D 1.

Proposition 3.7. (i) �e Neumann eigenvalues �N;m, m 2 N0, are the squares of

the non-negative zeros of the function sinN
� given by

sinN
� .z/ WD s�;�.z; 1/ D

1
X

nD0

.�1/np2nC1z2nC1; for z 2 R;

where we write pn instead of pn.1/ for simplicity. �e corresponding eigenfunc-

tions fN;m are given by

fN;m.x/ WD c�;�.
p

�N;m; x/ D
1

X

nD0

.�1/n �n
N;m p2n.x/; x 2 Œ0; 1�:
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(ii) �e Dirichlet eigenvalues �D;m, m 2 N, are the squares of the positive

zeros of the function sinD
� given by

sinD
� .z/ WD s�;�.z; 1/ D

1
X

nD0

.�1/nq2nC1z2nC1; for z 2 R

where, as above, qn stands for qn.1/. �e corresponding eigenfunctions fD;m are

given by

fD;m.x/ D s�;�.
p

�D;m; x/ D
p

�D;m

1
X

nD0

.�1/n �n
D;m q2nC1.x/; x 2 Œ0; 1�:

Proof. Using the di�erentiation rules from Lemma 3.6 it is easy to see that

c�;�.z; �/ satis�es the eigenvalue equation if � D z2, while it also ful�lls the

left boundary condition c0

�;�
.z; 0/ D �z s�;�.z; 0/ D 0. Here, the dash refers to

the second argument of c�;�. In order that c�;�.z; �/ satis�es the right boundary

condition, too, z has to be zero itself or it must be chosen such that s�;�.z; 1/ D 0.

It is known (see Freiberg [8] p. 40) that the solution of the above problem is unique

up to a multiplicative constant. So z is a zero point of sinN
� if and only if z2 is a

Neumann eigenvalue of � d
d�

d
dx

.

�us, for m 2 N0, fN;m D c�;�.
p

�N;m; x/ is an eigenfunction to the mth

Neumann eigenvalue �N;m.

To show the second part of the proposition, note that s�;�.z; �/ satis�es the

equation if � D z2 and also the left boundary condition s�;�.z; 0/ D 0 . �e

right boundary condition gives s�;�.z; 1/ D 0. So z2 is a Dirichlet eigenvalue of

� d
d�

d
dx

if and only if z is a zero point of sinD
� and z ¤ 0.

�us, for m 2 N, the function fD;m D s�;�.
p

�D;m; x/ is an eigenfunction to

the mth Dirichlet eigenvalue �D;m.

So if we only know the sequences .pn.1//n and .qn.1//n, we can determine

the Neumann and Dirichlet eigenvalues by means of the functions sinN
� and sinD

� .

Remark 3.8. (i) As was pointed out to me only recently by V. Kravchenko, a con-

struction analogous to that in De�nitions 3.1 and 3.4 has also been done in [18]

for Sturm–Liouville equations of the form .pu0/0 C qu D z2 u: �ere, the corre-

sponding spectral problem is also transformed to the problem of �nding zeros of

a power series as in Proposition 3.7. See also Kravchenko and Porter [19].

(ii) An eigenfunction is only unique up to a multiplicative constant. �rough-

out the chapter we will use the notations fN;m and fD;m for the eigenfunctions as

constructed above. One would also get these by imposing the additional conditions

fN;m.0/ D 1 and f 0

D;m.0/ D
p

�D;m.
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Analogously to sinN
� and sinD

� we de�ne for z 2 R

cosN
� .z/ WD c�;�.z; 1/ D

1
X

nD0

.�1/np2nz2n

and

cosD
� .z/ WD c�;�.z; 1/ D

1
X

nD0

.�1/nq2nz2n

�ese functions are linked with the eigenvalue problems with mixed boundary

conditions

f 0.0/ D 0; f .1/ D 0; (ND)

and

f .0/ D 0; f 0.1/ D 0: (DN)

We treat these problems as the problems in the above Proposition 3.7. If � > 0 is

chosen such that cosN
� .

p
�/ D 0, the solutions to (ND) are multiples of c�;�.

p
�; �/,

because

c0

�;�.
p

�; 0/ D �
p

� s�;�.
p

�; 0/ D 0

and

c�;�.
p

�; 1/ D cosN
� .

p
�/:

Similarly, if � > 0 satis�es cosD
�

�
p

�
�

D 0, the solutions to (DN) are multiples

of s�;�.
p

�; �/, because

s�;�.
p

�; 0/ D 0

and

s0

�;�.
p

�; 1/ D
p

� c�;�.
p

�; 1/ D
p

� cosD
� .

p
�/;

where the derivative refers to the second argument of s�;�. �erefore, the (ND)

eigenvalues are the squares of the zeros of cosN
� and the (DN) eigenvalues are the

squares of the zeros of cosD
� .

4. Calculation of L2-norms

It turns out that by knowing the sequences .pn/n and .qn/n we can not only de-

termine the Neumann and Dirichlet eigenvalues, but also the L2.�/-norms of the

eigenfunctions fN;m and fD;m. We will need the following lemma to achieve that.
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Lemma 4.1. For k; n 2 N0 with k � n and for all x 2 Œ0; 1� we have

Z x

0

p2k.t / p2n�2k.t / d�.t/ D
2k
X

j D0

.�1/j pj .x/ p2nC1�j .x/ (3)

and

Z x

0

q2kC1.t / q2nC1�2k.t / d�.t/ D
2kC1
X

j D0

.�1/j C1qj .x/ q2nC3�j .x/: (4)

Proof. We prove (3) by induction on k. If k D 0 and n � 0, we have

Z x

0

p0.t / p2n.t / d�.t/ D p2nC1.x/

and so the assertion holds. Now, take k 2 N0 and assume that the assertion holds

for k and all n � k. �en, for all n � k C 1,

Z x

0

p2kC2.t / p2n�2k�2.t / d�.t/

D p2kC2.x/ p2n�2k�1.x/ �
Z x

0

p2kC1.t / p2n�2k�1.t / dt

D p2kC2.x/ p2n�2k�1.x/ � p2kC1.x/ p2n�2k.x/

C
Z x

0

p2k.t / p2n�2k.t / d�.t/;

by Lemma 2.2. �us, by the induction hypothesis, we have for all n � k C 1

Z x

0

p2kC2.t / p2n�2k�2.t / d�.t/ D
2kC2
X

j D0

.�1/j pj .x/ p2nC1�j .x/;

which proves (3). �e proof of (4) works the same way.

Proposition 4.2. Let z 2 R and pj WD pj .1/ and qj WD qj .1/. �en

kc�;�.z; �/k2
L2.�/ D

1
X

nD0

.�1/nz2n

n
X

kD0

.n C 1 � 2k/ p2k p2nC1�2k ; (5)

and

ks�;�.z; �/k2
L2.�/ D

1
X

nD0

.�1/nz2nC2

nC1
X

kD0

.n C 1 � 2k/ q2kC1 q2nC2�2k : (6)
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Proof. First we prove (5). It holds for all x 2 Œ0; 1� and z 2 R that

c�;�.z; x/2 D
1

X

nD0

.�1/n z2n

n
X

kD0

p2k.x/ p2n�2k.x/:

Consequently, applying (3),

Z 1

0

c�;�.z; t /2 d�.t/ D
1

X

nD0

.�1/n z2n

n
X

kD0

Z 1

0

p2k.t / p2n�2k.t / d�.t/

D
1

X

nD0

.�1/n z2n

n
X

kD0

2k
X

j D0

.�1/j pj p2nC1�j :

Straightforward computation yields

n
X

kD0

2k
X

j D0

.�1/j pj p2nC1�j D
n

X

kD0

.n C 1 � 2k/ p2k p2nC1�2k ;

which proves (5). �e proof of (6) works analogously.

We put z D
p

�N;m and z D
p

�D;m to get the following corollary.

Corollary 4.3. �e L2.�/-norm of the Neumann eigenfunction fN;m is given by

kfN;mk2
L2.�/ D

1
X

nD0

.�1/n�n
N;m

n
X

kD0

.n C 1 � 2k/ p2k p2nC1�2k

and of the Dirichlet eigenfunction fD;m by

kfD;mk2
L2.�/ D

1
X

nD0

.�1/n�nC1
D;m

nC1
X

kD0

.n C 1 � 2k/ q2kC1 q2nC2�2k :

5. A trigonometric identity

As in the previous section, we consider an atomless Borel probability measure

� on Œ0; 1�. We prove a formula that links the functions c�;�; c�;�; s�;�, and s�;�

generalizing the trigonometric identity sin2 C cos2 D 1. For this we need the

following lemma.

Lemma 5.1. For k; n 2 N with k � n and for all x 2 Œ0; 1� we have

Z x

0

q2k�1.t / p2n�2k.t / d�.t/ D
2k�1
X

j D0

.�1/j C1qj .x/ p2n�j .x/:
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Proof. We prove this by induction on k. For k D 1 and n � 1, we get by Lem-

ma 2.2

Z x

0

q1.t / p2n�2.t / d�.t/ D q1.x/ p2n�1.x/ �
Z x

0

p2n�1.t / dt

D q1.x/ p2n�1.x/ � p2n.x/;

and so the assertion holds. Now, take k 2 N, and assume that the assertion holds

for k and all n � k. �en, again by using Lemma 2.2, we get

Z x

0

q2kC1.t / p2n�2k�2.t / d�.t/

D q2kC1.x/ p2n�2k�1.x/ �
Z x

0

q2k.t / p2n�2k�1.t / dt

D q2kC1.x/ p2n�2k�1.x/ � q2k.x/ p2n�2k.x/

C
Z x

0

q2k�1.t / p2n�2k.t / d�.t/:

�us, by the induction hypothesis, for all n � k C 1,

Z x

0

q2kC1.t / p2n�2k�2.t / d�.t/ D
2kC1
X

j D0

.�1/j C1qj .x/ p2n�j .x/:

Corollary 5.2. If we set n D k in Lemma 5.1, we get the formula

2n
X

j D0

.�1/j qj .x/ p2n�j .x/ D 0;

which holds for all n 2 N and x 2 Œ0; 1�.

With the above corollary we can prove the following theorem.

�eorem 5.3. For all x 2 Œ0; 1� and z 2 R,

c�;�.z; x/ c�;�.z; x/ C s�;�.z; x/ s�;�.z; x/ D 1:
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Proof. Take x 2 Œ0; 1� and z 2 R. �en, by Corollary 5.2,

1
X

nD0

.�1/nz2n

n
X

kD0

q2k.x/ p2n�2k.x/

C
1

X

nD0

.�1/nz2nC2

n
X

kD0

q2kC1.x/ p2nC1�2k.x/

D 1 C
1

X

nD1

.�1/nz2n
h

n
X

kD0

q2k.x/ p2n�2k.x/ �
n�1
X

kD0

q2kC1.x/ p2n�.2kC1/.x/
i

D 1 C
1

X

nD1

.�1/nz2n

2n
X

kD0

.�1/k qk.x/ p2n�k.x/ D 1:

6. Symmetric measures

In this section we consider symmetric measures � on Œ0; 1�, meaning that, addi-

tionally to being an atomless Borel probability measure, � shall satisfy for all

x 2 Œ0; 1�

�.Œ0; x�/ D �.Œ1 � x; 1�/:

Proposition 6.1. Let � be symmetric and let x 2 Œ0; 1�. �en, for n 2 N0,

p2nC1.x/ D
n

X

kD0

p2kC1 q2n�2k.x/ �
n

X

kD1

p2k p2n�2kC1.x/ � p2nC1.1 � x/; (7)

and

p2n.x/ D
n�1
X

kD0

p2kC1 q2n�2k�1.x/ �
n

X

kD1

p2k p2n�2k.x/ C p2n.1 � x/: (8)

Proof. For p1.x/ the formula reduces to p1.x/ D p1 �p1.1�x/. �is holds since

p1.x/ D �.Œ0; x�/ D �.Œ1 � x; 1�/ D
Z 1

0

d� �
Z 1�x

0

d� D p1 � p1.1 � x/:

With d�.t/ D d�.1 � t / the rest of the induction proof is straightforward.
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Corollary 6.2. Let � be symmetric. �en, for n 2 N,

n
X

kD0

p2k p2n�2kC1 D
n

X

kD0

p2kC1 q2n�2k : (9)

Proof. �is follows from Proposition 6.1 by putting x D 1 in (7).

Remark 6.3. In the special case where � is the Lebesgue measure, the above

formula reduces to
Pn

kD0.�1/k
�

n
k

�

D 0.

Corollary 6.4. Let � be symmetric. �en the following statements hold:

(i) p2n D q2n for all n 2 N;

(ii) cosN
� .z/ D cosD

� .z/ for all z 2 R;

(iii) cosN
� .z/2 C sinN

� .z/ sinD
� .z/ D 1 for all z 2 R;

(iv) we have the recursion formula

p2n D 1

2

2n�1
X

kD1

.�1/kC1 pk q2n�k : (10)

Proof. We prove (i) by induction. By putting n D 1 in (9), we �nd that

p3 C p2p1 D p1q2 C p3;

which implies p2 D q2. Assume that p2k D q2k for all k smaller than some

n 2 N, n � 2. We reverse the order of the summands in the second sum of (9) to

get

n�1
X

kD0

p2k p2n�2kC1 C p2n p1 D
n�1
X

kD0

p2n�2kC1 q2k C p1 q2n:

From the induction hypothesis follows that p2n D q2n. �en, (ii) follows imme-

diately and by Proposition 5.3 also (iii). Clearly, (iv) follows from (i) and Corol-

lary 5.2.



130 P. Arzt

Proposition 6.5. Let � be symmetric. �en, for all z 2 R and x 2 Œ0; 1�,

c�;�.z; 1 � x/ D cosN
� .z/ c�;�.z; x/ C sinN

� .z/ s�;�.z; x/:

Proof. Rearranging (8) gives

p2n.1 � x/ D
n

X

kD0

p2k p2n�2k.x/ �
n�1
X

kD0

p2kC1 q2n�2k�1.x/:

Multiplying with .�1/nz2n and summing from n D 0 to in�nity gives

1
X

nD0

n
X

kD0

.iz/2kp2k � .iz/2n�2kp2n�2k.x/

�
1

X

nD1

n�1
X

kD0

.iz/2kC1p2kC1 � .iz/2n�2k�1q2n�2k�1.x/

D
1

X

nD0

.�1/nz2np2n �
1

X

kD0

.�1/kz2kp2k.x/

C
1

X

nD1

.�1/nz2nC1p2nC1 �
1

X

kD0

.�1/kz2kC1q2kC1.x/

D cosN
� .z/ c�;�.z; x/ C sinN

� .z/ s�;�.z; x/:

Corollary 6.6. Let � be symmetric. �en the Neumann eigenfunctions fN;m are

either symmetric or antisymmetric, that is, either

fN;m.x/ D fN;m.1 � x/

or

fN;m.x/ D �fN;m.1 � x/

for all x 2 Œ0; 1�.

Proof. Let z2 be a Neumann eigenvalue. �en, by Proposition 3.7, sinN
� .z/ D 0

and hence, by Corollary 6.4 (iii), jcosN
� .z/j D 1. �us, by Proposition 6.5, we get

c�;�.z; 1 � x/ D ˙ c�;�.z; x/: Since c�;�.z; �/ D fN;m for z2 D �m the corollary

is proved.

Remark 6.7. All statements in this section have a counterpart in the Dirichlet

case.
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7. Self-similar measures

In this section we impose that the measure � has a self-similar structure. For

de�nitions of the concept of iterated function systems and self-similar measures,

see Hutchinson [16]. For reasons of simplicity, we take an IFS consisting only of

two mappings, but it should not raise considerable problems to generalize this to

an arbitrary number.

Let r1, r2, m1 and m2 be positive numbers satisfying

r1 C r2 � 1 and m1 C m2 D 1:

Let S D .S1; S2/ be the IFS given by

S1.x/ D r1x and S2.x/ D r2x C 1 � r2; x 2 Œ0; 1�:

By K we denote the invariant set of S and by � its invariant measure with vector

of weights .m1; m2/. In this case we are able to prove several properties of the

functions pn.x/ and qn.x/ that resemble corresponding ones of xn

nŠ
. �ese we will

employ to examine the Neumann and Dirichlet eigenfunctions and eigenvalues of

� d
d�

d
dx

. In particular, we will develop a recursion law for pn.1/ and qn.1/.

In the following proposition we present a formula that can be viewed as an

analogue of the binomial theorem, adapted to the self-similar measure �. It re-

lates values on the left part of K, contained in Œ0; r1�, to values on the right part,

contained in Œ1 � r2; 1�.

Proposition 7.1. For x 2 Œ0; 1� and n 2 N0,

p2nC1.1 � r2 C r2x/

D Œ1 � .r1 C r2/�

n�1
X

iD0

p2iC1.r1/
�r2

r1

�n�i�1�m2

m1

�n�i

p2n�2i�1.r1x/

C
n

X

iD0

p2iC1.r1/
�r2m2

r1m1

�n�i

q2n�2i .r1x/

C
n

X

iD0

p2i .r1/
�r2

r1

�n�i �m2

m1

�n�iC1

p2n�2iC1.r1x/

(11)
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where a sum from 0 to �1 is regarded as zero, and, for n 2 N,

p2n.1 � r2 C r2x/

D Œ1 � .r1 C r2/�

n�1
X

iD0

p2iC1.r1/
�r2m2

r1m1

�n�i�1

p2n�2i�2.r1x/

C
n

X

iD0

p2i .r1/
�r2m2

r1m1

�n�i

p2n�2i .r1x/

C
n�1
X

iD0

p2iC1.r1/
�r2

r1

�n�i�m2

m1

�n�i�1

q2n�2i�1.r1x/:

(12)

Remark 7.2. If r1 D m1 and r2 D m2 and r1 C r2 D 1 (and hence, � is the

Lebesgue measure), the above formulas reduce to

.r1 C r2x/n D
n

X

iD0

�

n

i

�

r i
1 .r2x/n�i ; n 2 N:

Proof. We prove the proposition by induction. We have � D m1.S1�/ on Œ0; r1�

and � D m2.S2�/ on Œ1 � r2; 1� and therefore,

p1.1 � r2 C r2x/ D
Z 1�r2Cr2x

0

d�

D
Z r1

0

d� C
Z 1�r2Cr2x

1�r2

d�

D p1.r1/ C m2

Z 1�r2Cr2x

1�r2

d.S2�/

D p1.r1/ C m2

Z x

0

d�

D p1.r1/ C m2

Z r1x

0

d.S1�/

D p1.r1/ C m2

m1

Z r1x

0

d�

D p1.r1/ C m2

m1

p1.r1x/;

which proves the assertion for p1.
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Assume that the formula for p2nC1 holds for some n 2 N0. �en

p2nC2.1 � r2 C r2x/

D
Z r1

0

p2nC1.t / dt C
Z 1�r2

r1

p2nC1.t / dt C
Z 1�r2Cr2x

1�r2

p2nC1.t / dt

D p2nC2.r1/ C Œ1 � .r1 C r2/�p2nC1.r1/ C r2

Z x

0

p2nC1.1 � r2 C r2t / dt:

Applying the induction hypothesis and basic sum transformations, we receive the

formula for p2nC2, for a more detailed calculation, see [1].

Furthermore, suppose that the assertion is true for p2n for some n 2 N. �en,

transforming � as in the proof of the initial step and applying the induction

hypothesis we get the formula for p2nC1.

Analogous formulas hold for the functions qn.

Proposition 7.3. For x 2 Œ0; 1� and n 2 N0,

q2nC1.1 � r2 C r2x/ D Œ1 � .r1 C r2/�

n
X

iD0

q2i .r1/
�r2m2

r1m1

�n�i

p2n�2i .r1x/

C
n

X

iD0

q2iC1.r1/
�r2m2

r1m1

�n�i

p2n�2i .r1x/

C
n

X

iD0

q2i .r1/
�r2

r1

�n�iC1�m2

m1

�n�i

q2n�2iC1.r1x/;

(13)

and, for n 2 N,

q2n.1 � r2 C r2x/

D Œ1 � .r1 C r2/�

n�1
X

iD0

q2i .r1/
�r2

r1

�n�i�1�m2

m1

�n�i

p2n�2i�1.r1x/

C
n

X

iD0

q2i .r1/
�r2m2

r1m1

�n�i

q2n�2i .r1x/

C
n�1
X

iD0

q2iC1.r1/
�r2

r1

�n�i�1�m2

m1

�n�i

p2n�2i�1.r1x/:

(14)

Proof. �e proof works by induction analogously to that of Proposition 7.1.
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We translate the formulas about the functions pn.x/ and qn.x/ into formulas

about c�;�.z; x/ and s�;�.z; x/. In the Lebesgue case, these are the usual addition

theorems for cos.r1z C r2xz/ and sin.r1z C r2xz/.

Corollary 7.4. Let z 2 R and x 2 Œ0; 1�. With the abbreviation

Nz WD
r

r2m2

r1m1

z

we get

c�;�.z; 1 � r2 C r2x/ D c�;�.z; r1/ c�;�. Nz; r1x/

�
q

r2m1

r1m2
s�;�.z; r1/ s�;�. Nz; r1x/

� Œ1 � .r1 C r2/�z s�;�.z; r1/ c�;�. Nz; r1x/

(15)

and

s�;�.z; 1 � r2 C r2x/ D s�;�.z; r1/ c�;�. Nz; r1x/

C
q

r2m1

r1m2
c�;�.z; r1/ s�;�. Nz; r1x/

C Œ1 � .r1 C r2/�z c�;�.z; r1/ c�;�. Nz; r1x/:

(16)

Proof. We prove (16). We multiply (13) by

.�1/nz2nC1 D 1

i
.iz/2nC1;

sum from n D 0 to in�nity and get

s�;�.z; 1 � r2 C r2x/

D 1

i

1
X

nD0

n
X

kD0

.iz/2kC1q2kC1.r1/
�

i
q

r2m2

r1m1
z
�2n�2k

p2n�2k.r1x/

C
q

r2m1

r1m2

1

i

1
X

nD0

n
X

kD0

.iz/2kq2k.r1/
�

i
q

r2m2

r1m1
z
�2n�2kC1

q2n�2kC1.r1x/

C Œ1 � .r1 C r2/�z

1
X

nD0

n
X

kD0

.iz/2kq2k.r1/
�

i
q

r2m2

r1m1
z
�2n�2k

p2n�2k.r1x/:
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�is we transform to

1

i

�

1
X

nD0

.iz/2nC1q2nC1.r1/
��

1
X

kD0

�

i

r

r2m2

r1m1

z
�2k

p2k.r1x/
�

C
r

r2m1

r1m2

1

i

�

1
X

nD0

.iz/2nq2n.r1/
��

1
X

kD0

�

i

r

r2m2

r1m1

z
�2kC1

q2kC1.r1x/
�

C Œ1 � .r1 C r2/�z
�

1
X

nD0

.iz/2nq2n.r1/
��

1
X

kD0

�

i

r

r2m2

r1m1

z
�2k

p2k.r1x/
�

D s�;�.z; r1/ c�;�. Nz; r1x/ C
r

r2m1

r1m2

c�;�.z; r1/ s�;�. Nz; r1x/

C Œ1 � .r1 C r2/�z c�;�.z; r1/ c�;�. Nz; r1x/:

By multiplying (12) with .�1/nz2n and summing up, (15) is proved in the same

way.

�e following scaling properties are a replacement of the property

�1

2
x

�n

D 1

2n
xn

for pn and qn.

Proposition 7.5. For x 2 Œ0; 1� and n 2 N0 we have

p2nC1.r1x/ D rn
1 mnC1

1 p2nC1.x/;

q2nC1.r1x/ D rnC1
1 mn

1 q2nC1.x/;

and, for n 2 N,

p2n.r1x/ D .r1m1/n p2n.x/;

q2n.r1x/ D .r1m1/n q2n.x/:

Proof. We prove the asserted property for pn by induction on n 2 N. Since �

satis�es �.B/ D m1.S1�/.B/ for all Borel sets B � Œ0; r1�, we have

p1.r1x/ D
Z r1x

0

d�

D m1

Z r1x

0

d.S1�/

D m1

Z x

0

d� D m1p1.x/:
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Suppose the assertion is true for p2nC1 for some n 2 N0. �en

p2nC2.r1x/ D
Z r1x

0

p2nC1.t / dt

D r1

Z x

0

p2nC1.r1t / dt

D .r1m1/nC1p2nC2.x/:

Assuming that the formula holds for p2n for some n 2 N, we get

p2nC1.r1x/ D
Z r1x

0

p2n.t / d�.t/

D m1

Z x

0

p2n.r1t / d�.t/

D rn
1 mnC1

1 p2nC1.x/:

�e formula for qn is proved analogously.

Next, we deduce formulas corresponding to those in Proposition 7.5 that re-

late values of c�;�.z; �/ and s�;�.z; �/ at S1.x/ to values of c�;�.
p

r1m1z; �/ and

s�;�.
p

r1m1z; �/ at x.

Proposition 7.6. For all x 2 Œ0; 1� and z 2 R we have

c�;�.z; S1.x// D c�;�.
p

r1m1z; x/ (17)

and

s�;�.z; S1.x// D
r

r1

m1

s�;�.
p

r1m1z; x/: (18)

Furthermore, we have

s�;�.z; S1.x// D
r

m1

r1

s�;�.
p

r1m1z; x/

and

c�;�.z; S1.x// D c�;�.
p

r1m1z; x/:
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Proof. With Proposition 7.5 we get

1
X

nD0

.�1/nz2np2n.r1x/ D
1

X

nD0

.�1/n.
p

r1m1z/2np2n.x/

D c�;�.
p

r1m1z; x/

and

1
X

nD0

.�1/nz2nC1q2nC1.r1x/ D
r

r1

m1

1
X

nD0

.�1/n.
p

r1m1z/2nC1q2nC1.x/

D
r

r1

m1

s�;�.
p

r1m1z; x/:

�e other two equations are obtained by deriving.

�e counterparts of (17) and (18) are the following formulas for c�;�

�

z; S2.x/
�

and s�;�.z; S2.x//.

Proposition 7.7. For all x 2 Œ0; 1� and z 2 R we have

c�;�

�

z; S2.x/
�

D �Œ1 � .r1 C r2/�

r

m1

r1

z sinN
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

C cosN
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

�
r

r2m1

r1m2

sinN
� .

p
r1m1z/ s�;�.

p
r2m2z; x/

(19)

and

s�;�.z; S2.x// D Œ1 � .r1 C r2/�z cosD
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

C
r

r1

m1

sinD
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

C
r

r2

m2

cosD
� .

p
r1m1z/ s�;�.

p
r2m2z; x/:

(20)

Furthermore, we have

s�;�.z; S2.x// D �Œ1 � .r1 C r2/�

r

m1m2

r1r2

z sinN
� .

p
r1m1z/ s�;�.

p
r2m2z; x/

r

m1

r1

sinN
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

C
r

m2

r2

cosN
� .

p
r1m1z/ s�;�.

p
r2m2z; x/
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and

c�;�.z; S2.x// D �Œ1 � .r1 C r2/� z

r

m2

r2

cosD
� .

p
r1m1z/ s�;�.

p
r2m2z; x/

cosD
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

�
r

r1m2

r2m1

sinD
� .

p
r1m1z/ s�;�.

p
r2m2z; x/:

Proof. By (15) and Proposition 7.6 we get

c�;�.z; 1 � r2 C r2x/

D c�;�.z; r1/ c�;�

�

r

r2m2

r1m1

z; r1x
�

�
r

r2m1

r1m2

s�;�.z; r1/ s�;�

�

r

r2m2

r1m1

z; r1x
�

� Œ1 � .r1 C r2/�z s�;�.z; r1/ c�;�

�

r

r2m2

r1m1

z; r1x
�

D cosN
� .

p
r1m1z/ c�;�.

p
r2m2z; x/

�
r

r2m1

r1m2

sinN
� .

p
r1m1z/ s�;�.

p
r2m2z; x/

� Œ1 � .r1 C r2/�

r

m1

r1

z sinN
� .

p
r1m1z/ c�;�.

p
r2m2z; x/:

Analogously, (20) is proved using (16).

�e other two equations are obtained by deriving.

If the functions cosN
� , sinN

� and sinD
� are assumed to be known, then equa-

tions (17) and (19) allow to compute basically all relevant values of the function

c�;�.z; �/. If, namely, x is a point in the invariant set K, then there is a sequence

.xn/n that converges to x and takes only values of the form

Sw1
ı Sw2

ı � � � ı Swn
.0/

or

Sw1
ı Sw2

ı � � � ı Swn
.1/;

where n 2 N and w1; : : : wn 2 ¹1; 2º. For each of these values, (17) and (19) can

be applied n times to get a formula containing only values of cosN
� , sinN

� and sinD
� .
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For example

c�;�.z; S2.S1.1///

D cosN
� .

p
r1m1z/ cosN

� .
p

r2m2r1m1z/

�
r

r2m1

r1m2

sinN
� .

p
r1m1z/ sinD

� .
p

r2m2r1m1z/

� Œ1 � .r1 C r2/�

r

m1

r1

z sinN
� .

p
r1m1z/ cosN

� .
p

r2m2r1m1z/:

�e same holds for s�;� and formulas (18) and (20). �is procedure we will use

to compute approximate values of the maxima and to give plots of eigenfunctions

in Section 10.

�erefore we are interested in the functions sinD
� , sinN

� , cosN
� , and cosD

� . �ese

have power series representations with coe�cients pn D pn.1/ and qn D qn.1/.

For these numerical sequences we prove a recursion formula in the following.

Proposition 7.8. For n 2 N0,

p2nC1 D
n

X

iD0

r i
1miC1

1 .r2m2/n�ip2iC1 q2n�2i

C
n

X

iD0

.r1m1/irn�i
2 mn�iC1

2 p2i p2n�2iC1

C Œ1 � .r1 C r2/�

n�1
X

iD0

r i
1miC1

1 rn�i�1
2 mn�i

2 p2iC1 p2n�2i�1;

(21)

p2n D
n

X

iD0

.r1m1/i .r2m2/n�ip2i p2n�2i

C
n�1
X

iD0

r i
1miC1

1 rn�i
2 mn�i�1

2 p2iC1 q2n�2i�1

C Œ1 � .r1 C r2/�

n�1
X

iD0

r i
1miC1

1 .r2m2/n�i�1p2iC1 p2n�2i�2;

(22)
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q2nC1 D
n

X

iD0

r iC1
1 mi

1.r2m2/n�iq2iC1 p2n�2i

C
n

X

iD0

.r1m1/irn�iC1
2 mn�i

2 q2i q2n�2iC1

C Œ1 � .r1 C r2/�

n
X

iD0

.r1m1/i .r2m2/n�iq2i p2n�2i ;

(23)

and

q2n D
n

X

iD0

.r1m1/i .r2m2/n�iq2i q2n�2i

C
n�1
X

iD0

r iC1
1 mi

1rn�i�1
2 mn�i

2 q2iC1 p2n�2i�1

C Œ1 � .r1 C r2/�

n�1
X

iD0

.r1m1/irn�i�1
2 mn�i

2 q2i p2n�2i�1:

(24)

Remark 7.9. If we take r1 D m1 and r2 D m2 (and thus r1 C r2 D 1 and � is the

Lebesgue measure), the above formulas reduce to
Pn

iD0

�

n
i

�

r i
1rn�i

2 D 1.

Proof. We put x D 1 in Propositions 7.1, 7.3, and 7.5. �en we eliminate all terms

of the form pn.r1/ and qn.r1/ to obtain formulas that contain only the members

of the sequences .pn/n and .qn/n (as well as r1, r2, m1 and m2).

To get the desired recursion formulas, we solve the above formulas for the

highest order terms.

Corollary 7.10. For n 2 N,

p2nC1 D 1

1 � rn
1 mnC1

1 � rn
2 mnC1

2

�

n�1
X

iD0

r i
1miC1

1 .r2m2/n�ip2iC1 q2n�2i

C
n

X

iD1

.r1m1/irn�i
2 mn�iC1

2 p2i p2n�2iC1

C Œ1 � .r1 C r2/�

n�1
X

iD0

r i
1miC1

1 rn�i�1
2 mn�i

2 p2iC1 p2n�2i�1

�

;

(25)
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p2n D 1

1 � .r1m1/n � .r2m2/n

�

n�1
X

iD1

.r1m1/i .r2m2/n�ip2i p2n�2i

C
n�1
X

iD0

r i
1miC1

1 rn�i
2 mn�i�1

2 p2iC1 q2n�2i�1

C Œ1 � .r1 C r2/�

n�1
X

iD0

r i
1miC1

1 .r2m2/n�i�1p2iC1 p2n�2i�2

�

;

(26)

q2nC1 D 1

1 � rnC1
1 mn

1 � rnC1
2 mn

2

�

n�1
X

iD0

r iC1
1 mi

1.r2m2/n�iq2iC1 p2n�2i

C
n

X

iD1

.r1m1/irn�iC1
2 mn�i

2 q2i q2n�2iC1

C Œ1 � .r1 C r2/�

n
X

iD0

.r1m1/i .r2m2/n�iq2i p2n�2i

�

;

(27)

and

q2n D 1

1 � .r1m1/n � .r2m2/n

�

n�1
X

iD1

.r1m1/i .r2m2/n�iq2i q2n�2i

C
n�1
X

iD0

r iC1
1 mi

1rn�i�1
2 mn�i

2 q2iC1 p2n�2i�1

C Œ1 � .r1 C r2/�

n�1
X

iD0

.r1m1/irn�i�1
2 mn�i

2 q2i p2n�2i�1

�

:

(28)

Example 7.11. We take r1 D r2 D 1
3

and m1 D m2 D 1
2
. �en, K is the mid-

dle third Cantor set and � is the normalized
log 2

log 3
-dimensional Hausdor� measure

restricted to K. We calculate the �rst members of the sequences .pn/n and .qn/n

using formulas (25) and (27) for p2nC1 and q2nC1, which simplify to

p2nC1 D 1

2 � 6n � 2

�

2n
X

iD1

pi p2nC1�i C
n�1
X

iD0

p2iC1 p2n�2i�1

�

;

q2nC1 D 1

3 � 6n � 2

�

2n
X

iD1

qi q2nC1�i C
n

X

iD0

q2i q2n�2i

�

:
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Since � is symmetric, we can use for p2n and q2n the simpler formula (10)

p2n D q2n D 1

2

2n�1
X

iD1

.�1/iC1pi q2n�i

from Corollary 6.4. �en,

p1 D 1; q1 D 1; p2 D 1

2
;

p3 D 1

5
; q3 D 1

8
; p4 D 3

80
;

p5 D 27

2 800
; q5 D 21

4 240
; p6 D 311

296 800
;

p7 D 6 383

31 906 000
; q7 D 33 253

383 465 600
; p8 D 4 716 349

329 780 416 000
;

and therefore

sinN
� .z/ D z � 6

5

z3

3Š
C 81

70

z5

5Š
� 57 447

56 975

z7

7Š
C � � � ;

sinD
� .z/ D z � 3

4

z3

3Š
C 63

106

z5

5Š
� 299 277

684 760

z7

7Š
C � � � 2

and

cosN
� .z/ D cosD

� .z/ D 1 � z2

2Š
C 9

10

z4

4Š
� 2 799

3 710

z6

6Š
C 42 447 141

73 611 700

z8

8Š
� � � � :

Plots of sinN
� and sinD

� as well as further examples can be found in Section 10.

�e functions sinN
� , sinD

� , cosN
� and cosD

� can be characterized by the following

system of functional equations.

�eorem 7.12. For z 2 R we have

sinN
� .z/ D

r

m1

r1

sinN
� .

p
r1m1z/ cosD

� .
p

r2m2z/

C
r

m2

r2

cosN
� .

p
r1m1z/ sinN

� .
p

r2m2z/

� Œ1 � .r1 C r2/�

r

m1m2

r1r2

z sinN
� .

p
r1m1z/ sinN

� .
p

r2m2z/;

(29)
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sinD
� .z/ D

r

r1

m1

sinD
� .

p
r1m1z/ cosN

� .
p

r2m2z/

C
r

r2

m2

cosD
� .

p
r1m1z/ sinD

� .
p

r2m2z/

C Œ1 � .r1 C r2/� z cosD
� .

p
r1m1z/ cosN

� .
p

r2m2z/;

(30)

cosN
� .z/ D cosN

� .
p

r1m1z/ cosN
� .

p
r2m2z/

�
r

r2m1

r1m2

sinN
� .

p
r1m1z/ sinD

� .
p

r2m2z/

� Œ1 � .r1 C r2/�

r

m1

r1

z sinN
� .

p
r1m1z/ cosN

� .
p

r2m2z/;

(31)

and

cosD
� .z/ D cosD

� .
p

r1m1z/ cosD
� .

p
r2m2z/

�
r

r1m2

r2m1

sinD
� .

p
r1m1z/ sinN

� .
p

r2m2z/

� Œ1 � .r1 C r2/�

r

m2

r2

z cosD
� .

p
r1m1z/ sinN

� .
p

r2m2z/:

(32)

Furthermore, the functions sinN
� , sinD

� , cosN
� and cosD

� are the only analytic func-

tions that solve the above system of functional equations and satisfy the conditions

that sinN
� and sinD

� are odd, cosN
� and cosD

� are even, and

lim
z!0

sinN
� .z/

z
D lim

z!0

sinD
� .z/

z
D 1

and

cosN
� .0/ D cosD

� .0/ D 1:

Remark 7.13. If we would know all the values of all four functions on a given

interval, say, Œ0; a�, then, using the formulas above, we could calculate all values

of all four functions on Œ0; .maxi
p

rimi /
�1a�. �en, iteratively, we get the values

on Œ0; .maxi
p

rimi /
�2a� and so on. So, the functions are determined on Œ0; 1/

by their values on an arbitrary small interval Œ0; a�.

Furthermore, the theorem describes a kind of “self-similarity” of our four func-

tions.
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Proof. To show that sinN
� , sinD

� , cosN
� and cosD

� satisfy the equations, put x D 1

in Proposition 7.7.

Suppose that f1; f2; g1 and g2 are real analytic functions that satisfy the above

equations, and that f1, f2 are odd, g1, g2 are even, lim
z!0

f1.z/
z

D lim
z!0

f2.z/
z

D 1,

and g1.0/ D g2.0/ D 1. �en, power series representations exist, that is, there are

real sequences .an/, .bn/, .cn/ and .dn/ such that, for all z 2 R,

f1.z/ D
1

X

nD0

anz2nC1; f2.z/ D
1

X

nD0

bnz2nC1;

g1.z/ D
1

X

nD0

cnz2n; g2.z/ D
1

X

nD0

dnz2n;

where a0 D b0 D c0 D d0 D 1. Since these functions satisfy (29), we get for all

z 2 R

1
X

nD0

anz2nC1

D
r

m1

r1

1
X

nD0

z2nC1

n
X

kD0

ak

p
r1m1

2kC1
dn�k

p
r2m2

2n�2k

C
r

m2

r2

1
X

nD0

z2nC1

n
X

kD0

ck

p
r1m1

2k
an�k

p
r2m2

2nC1�2k

� Œ1 � .r1 C r2/�

r

m1m2

r1r2

1
X

nD0

z2nC3

n
X

kD0

ak

p
r1m1

2kC1
an�k

p
r2m2

2nC1�2k
:

If we derive this equation 2j C 1 times and put z D 0, we receive formula (21)

for aj . Analogously, one can show that bj satis�es (23), cj satis�es (22) and dj

satis�es (24). Together with the initial condition a0 D b0 D c0 D d0 D 1 it

follows that aj D p2j C1, bj D q2j C1, cj D p2j and dj D q2j for all j 2 N. �us,

f1 D sinN
� , f2 D sinD

� , g1 D cosN
� and g2 D cosD

� .

Example 7.14. (i) If we take r1 D m1 and r2 D m2 and r1 C r2 D 1, then K is the

unit interval and � the Lebesgue measure. �e functions sinN
� , sinD

� , cosN
� and

cosD
� equal the usual sine and cosine functions, and the formulas in �eorem 7.12

simplify to

sin.z/ D sin.r1z C r2z/ D sin.r1z/ cos.r2z/ C cos.r1z/ sin.r2z/;

cos.z/ D cos.r1z C r2z/ D cos.r1z/ cos.r2z/ � sin.r1z/ sin.r2z/:
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(ii) Let r1 D r2 D 1
3

and m1 D m2 D 1
2
. �en � is the Cantor measure and the

formulas in �eorem 7.12 can be rewritten as

sinN
� .

p
6z/ D

p
6

2
sinN

� .z/.2 cosN
� .z/ � z sinN

� .z//;

sinD
� .

p
6z/ D

p
6

3
cosN

� .z/.2 sinD
� .z/ C z cosN

� .z//;

cosN
� .

p
6z/ D cosN

� .z/2 � sinN
� .z/ sinD

� .z/ � z cosN
� .z/ sinN

� .z/:

Since K is symmetric, cosN
� D cosD

� .

Observe that �eorem 7.12 in combination with the recursive rules in Corol-

lary 7.10 supply a technique for investigation of further properties of the eigenval-

ues. On a given interval Œ0; a� we can approximate the functions sinN
� , sinD

� , cosN
�

and cosD
� arbitrarily exact by polynomials consisting of su�ciently many mem-

bers of the corresponding power series. �en, by �eorem 7.12, we can extend all

four functions successively to larger intervals.

8. Self-similar measures with r1m1 D r2m2

In this section we suppose � is a self-similar measure as in the last section but

with parameters additionally satisfying r1m1 D r2m2. �is case is particularly

interesting because there we have the following property.

�eorem 8.1. Let r1m1 D r2m2. If � is the mth Neumann eigenvalue of � d
d�

d
dx

,

then 1
r1m1

� is the 2mth Neumann eigenvalue, that is, for all m 2 N,

r1m1 �N;2m D �N;m:

�is �eorem has been proved with the method of Prüfer angles by Volk-

mer [31] for the case r1 D r2 D 1
3
, m1 D m2 D 1

2
and by Freiberg [11] in a

more general setting. It delivers the foundation for the statements in this section.

An analogous property for Dirichlet eigenvalues does not seem to hold. However,

in the symmetric case there is a similar relation between Dirichlet eigenvalues and

eigenvalues of the problems (DN) or (ND) posed in Section 3.6. Remember, (DN)

has boundary conditions f .0/ D f 0.1/ D 0 and (ND) has f 0.0/ D f .1/ D 0.

Proposition 8.2. Let � be symmetric, that is r WD r1 D r2 and m1 D m2 D 1
2

and let � be an eigenvalue of (DN) or (ND). �en 2
r
� is a Dirichlet eigenvalue

and if f is a 2
r
�-Dirichlet eigenfunction, then f ı S1 is a �-(DN) eigenfunction,

and f ı S2 is a �-(ND) eigenfunction.
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Proof. In Corollary 6.4 we showed that since � is symmetric, we have cosN
� D

cosD
� . �en we can factorize (30) and get

sinD
� .

q

2
r
z
�

D cosN
� .z/ � Œ2

p
2r sinD

� .z/ C .1 � 2r/ z cosN
� .z/�:

Since � is an eigenvalue of the (DN) and the (ND) problem, cosN
� .

p
�/ D 0. �en,

sinD
�

�

q

2
r
�

�

D 0 and thus, 2
r
� is a Dirichlet eigenvalue. From Propositions 7.6

and 7.7 we get for x 2 Œ0; 1� that

s�;�

�

r

2

r
�; S1.x/

�

D
p

2r s�;�.
p

�; x/

and

s�;�

�

r

2

r
�; S2.x/

�

D
p

2r sinD
� .

p
�/ c�;�.

p
�; x/;

which proves the proposition.

In the following we treat only the Neumann eigenvalue problem for a (not

necessarily symmetric) measure � using �eorem 8.1. With the formula

cosD
� .z/ cosN

� .z/ C sinD
� .z/ sinN

� .z/ D 1; (33)

which follows from �eorem 5.3 by setting x D 1, we rearrange the functional

equations from �eorem 7.12. With the abbreviation

h.z/ WD r1 cosN
� .z/ C r2 cosD

� .z/ � Œ1 � .r1 C r2/�z sinN
� .z/ (34)

we can write

sinN
� .z/ D

p
r1m1

r1r2

sinN
� .

p
r1m1z/ h.

p
r1m1z/; (35)

cosN
� .z/ D �r2

r1

C 1

r1

cosN
� .

p
r1m1z/ h.

p
r1m1z/; (36)

sinD
� .z/ D Œ1 � .r1 C r2/�z C 1

p
r1m1

sinD
� .

p
r1m1z/ h.

p
r1m1z/; (37)

cosD
� .z/ D �r1

r2

C 1

r2

cosD
� .

p
r1m1z/ h.

p
r1m1z/: (38)

Employing the above formulas we can calculate the values of cosN
� , cosD

� and

sinD
� at the zero points of sinN

� .
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Lemma 8.3. Let m 2 N and let v.m/ be the multiplicity of the prime factor 2 in

m. Let zm WD
p

�N;m be the square root of the mth Neumann eigenvalue, that is,

the mth zero point of sinN
� . �en

cosN
� .zm/ D

�

�r2

r1

�2v.m/

; (39)

cosD
� .zm/ D

�

�r1

r2

�2v.m/

; (40)

sinD
� .zm/ D av.m/ � zm (41)

where .ak/k is determined by a0 D 1 � .r1 C r2/ and, for k 2 N,

ak D 1 � .r1 C r2/ C ak�1

�

r1

�

�r2

r1

�2k�1

C r2

�

�r1

r2

�2k�1�

:

Proof. Suppose m is odd. �en sinN
� .zm/ D 0 and sinN

� .
p

r1m1zm/ ¤ 0. To see

this, suppose sinN
� .

p
r1m1zm/ D 0. �en r1m1z2

m would be a Neumann eigen-

value, say r1m1z2
m D �N;l for some l 2 N, and because of �eorem 8.1, z2

m would

be the eigenvalue �N;2l . �us, m D 2l , which is a contradiction. Hence, it follows

by (35) that h.
p

r1m1zm/ D 0. �en, by (36), cosN
� .zm/ D � r2

r1
.

By (31) follows that, for all z 2 R, if sinN
�

�p
r1m1z

�

D 0; then cosN
� .z/ D

cosN
� .

p
r1m1z/2: �us, if m D 2l for some odd l , then

p
r1m1zm D zl and hence,

cosN
� .zm/ D cosN

� .zl /
2 D .� r2

r1
/2: Iteratively, we get that, if m D 2kl for some

odd l then cosN
� .zm/ D

�

� r2

r1

�2k

; which proves (39). Since sinN
� .zm/ D 0 for all

m 2 N we get by (33) that

cosD
� .zm/ D cosN

� .zm/�1

which implies (40).

Now we show (41). At �rst, suppose v.m/ D 0, that is, m is odd. �en,

as above, h.
p

r1m1zm/ D 0 and thus, by (37), sinD
� .zm/ D Œ1 � .r1 C r2/�zm:

Observe that we have for all m

h.zm/ D r1

�

�r2

r1

�2v.m/

C r2

�

�r1

r2

�2v.m/

: (42)

Suppose v.m/ � 1. �en
p

r1m1zm D z m
2
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and thus,

sinD
� .zm/

zm

D 1 � .r1 C r2/ C
sinD

� .
p

r1m1zm/
p

r1m1zm

h.
p

r1m1zm/

D 1 � .r1 C r2/ C
sinD

� .z m
2

/

z m
2

h.z m
2

/

D 1 � .r1 C r2/ C
sinD

� .z m
2

/

z m
2

�

r1

�

�r2

r1

�2v.m/�1

C r2

�

�r1

r2

�2v.m/�1�

:

Hence,
sinD

� .zm/

zm
depends only on v.m/ and so, with

av.m/ D
sinD

� .zm/

zm

;

we get

av.m/ D 1 � .r1 C r2/ C av.m/�1

�

r1

�

�r2

r1

�2v.m/�1

C r2

�

�r1

r2

�2v.m/�1�

;

which proves the assertion.

We use the above computed values of cosN
� .zm/ and Propositions 7.6 and 7.7

to get a relation between the mth and the 2mth Neumann eigenfunction.

Proposition 8.4. Let m 2 N and v.m/ be the 2-multiplicity of m. We denote the

mth Neumann eigenfunction by fm WD c�;�.zm; �/. �en, for all x 2 Œ0; 1�,

f2m

�

S1.x/
�

D fm.x/ (43)

and

f2m

�

S2.x/
�

D
�

�m1

m2

�2v.m/

fm.x/: (44)

Proof. Because of �eorem 8.1 we have �m D r1m1�2m and thus,

sinN
�

�p
r1m1z2m

�

D 0:

Since fm D c�;�.zm; �/, Propositions 7.6 and 7.7 give f2m

�

S1.x/
�

D fm.x/ and

f2m

�

S2.x/
�

D cosN
� .zm/ fm.x/ for x 2 Œ0; 1�. Noting that r2

r1
D m1

m2
, (44) follows

with (39).

�e above proposition can be employed to work out the relationship between

the suprema and the L2.�/ norms of fm and f2m.
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Proposition 8.5. Let m 2 N and v.m/ the 2-multiplicity of m. �en

kf2mk2
L2.�/ D

�

m1 C m2

�m1

m2

�2v.m/C1�

kfmk2
L2.�/ (45)

and

kf2mk1 D max
°

1;
�m1

m2

�2v.m/±

kfmk1: (46)

Proof. At �rst we prove (45). For m 2 N we have

kf2mk2
L2.�/ D

Z S1.1/

S1.0/

f2m.t /2 d�.t/ C
Z S2.1/

S2.0/

f2m.t /2 d�.t/

D m1

Z S1.1/

S1.0/

f2m.t /2 d.S1�/.t/ C m2

Z S2.1/

S2.0/

f2m.t /2 d.S2�/.t/

D m1

Z 1

0

f2m

�

S1.t /
�2

d�.t/ C m2

Z 1

0

f2m

�

S2.t /
�2

d�.t/:

By (43) and (44) we get

kf2mk2
L2.�/ D m1

Z 1

0

fm.t /2 d�.t/ C m2

�

�m1

m2

�2v.m/C1 Z 1

0

fm.t /2 d�.t/

D
h

m1 C m2

�m1

m2

�2v.m/C1i

kfmk2
L2.�/:

Now we show (46). With (43) and (44) we have

sup
x2ŒS1.0/;S1.1/�

jf2m.x/j D sup
x2Œ0;1�

ˇ

ˇf2m

�

S1.x/
�ˇ

ˇ D sup
x2Œ0;1�

jfm.x/j D kfmk1

and

sup
x2ŒS2.0/;S2.1/�

jf2m.x/j D sup
x2Œ0;1�

ˇ

ˇf2m

�

S2.x/
�ˇ

ˇ D
�m1

m2

�2v.m/

kfmk1:

�erefore, since f2m is linear on ŒS1.1/; S2.0/� and continuous,

sup
x2Œ0;1�

jf2m.x/j D max
°

1;
�m1

m2

�2v.m/±

kfmk1:

Now we consider the normalized Neumann eigenfunctions. For m 2 N0 we

set Qfm WD kfmk�1
L2.�/

fm: We are interested in the asymptotic behaviour of the

sequence .k Qfmk1/m. With Proposition 8.5 we get some information about certain

subsequences stated in the following theorem.
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�eorem 8.6. Let � be a self-similar measure with r1m1 D r2m2. �en, for all

m 2 N0,

k Qf2mk1 D
max

°

1;
�m1

m2

�2v.m/
±

s

m1 C m2

�m1

m2

�2v.m/C1

k Qfmk1: (47)

Suppose m1 � m2 and let l be an odd number. �en, for all k 2 N,

k Qf2klk1 D m
�

k
2

1

k
Y

j D1

�

1 C
�m1

m2

�2j
�1��

1
2 k Qflk1: (48)

Proof. (47) follows directly from (45) and (46). Suppose m1 � m2 and l 2 N is

odd. �en iterative application of (47) gives (48).

Corollary 8.7. Let l 2 N be odd. �en the following statements hold.

(i) If m1 D m2, then for all k 2 N, k Qf2k lk1 D k Qflk1:

(ii) If m1 < m2, then

C WD
�

m1

�

1 C m1

m2

���1=2

> 1;

and we have for all k 2 N,

k Qf2klk1 � C kk Qflk1:

Additionally, for all k 2 N,

k Qf2k lk1 � m
�

k
2

1

�m2

m1

�
k
2

.2k�1/

k Qflk1:

Proof. (i) follows directly from (48) by putting m1 D m2 D 1
2
.

If m1 < m2, then, for all j 2 N, 1 C
�

m1

m2

�2j
�1 � 1 C m1

m2
: �en,

k Qf2klk1 � m
�

k
2

1

�

1 C m1

m2

��
k
2 k Qflk1;

and since m1 < m2 implies m1 < 1
2
, we have m1

�

1 C m1

m2

�

< 1. For the upper

estimate, we write

k
Y

j D1

�

1 C
�m1

m2

�2j �1
�

�
�

1 C
�m1

m2

�2k�1
�k

�
�m1

m2

�k.2k�1/

;

which proves (ii).
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9. Self-similar measures with r1m1 D r2m2 and r1 C r2 D 1

As in the previous section we have the condition r1m1 D r2m2. We treat the

special case where r1 C r2 D 1 from which follows that r1 D m2 and r2 D m1.

Such measures have been investigated e.g. by Sabot [26] and [27].

�eorem 9.1. Let � be a self-similar measure where r1 D m2 and r2 D m1 (and

therefore r1 C r2 D 1). �en the positive eigenvalues of � d
d�

d
x

with Neumann

boundary conditions coincide with those with Dirichlet boundary conditions.

Proof. Since the eigenvalues are the squares of the zeros of sinN
� and sinD

� , re-

spectively, it is su�cient to show that sinN
� D sinD

� . To do that we show that for

all n 2 N0 p2nC1 D q2nC1: We do this by complete induction using the recursion

formulas from Corollary 7.10. By De�nition 3.1 we have

p1 D
Z 1

0

d� D 1 and q1 D
Z 1

0

dt D 1:

Now, let n 2 N and suppose that, for i D 0; : : : ; n � 1, p2iC1 D q2iC1. By (25)

and rearrangement of the order of the terms in the sums we get

p2nC1 D 1

1 � mn
2rnC1

2 � mn
1rnC1

1

�

n�1
X

iD0

mi
2r iC1

2 .r1m1/n�ip2iC1 q2n�2i

C
n

X

iD1

.r2m2/imn�i
1 rn�iC1

1 p2i p2n�2iC1

�

D 1

1 � mn
2rnC1

2 � mn
1rnC1

1

�

n
X

iD1

mn�i
2 rnC1�i

2 .r1m1/ip2nC1�2i q2i

C
n�1
X

iD0

.r2m2/n�imi
1r iC1

1 p2n�2i p2iC1

�

:

�en, by the induction hypothesis and (27),

p2nC1 D 1

1 � mn
2rnC1

2 � mn
1rnC1

1

�

n
X

iD1

mn�i
2 rnC1�i

2 .r1m1/iq2nC1�2i q2i

C
n�1
X

iD0

.r2m2/n�imi
1r iC1

1 p2n�2i q2iC1

�

D q2nC1:
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With the above theorem we can reformulate �eorem 5.3 to get a property of

the Wronskian of fN;m and fD;m.

Corollary 9.2. Let � be as above, let �m be the mth eigenvalue, let

fN;m D c�;�.
p

�m; �/ and fD;m D s�;�.
p

�m; �/

be the corresponding Neumann and Dirichlet eigenfunctions constructed in

Section 3.6. �en, for all x 2 Œ0; 1�,

fN;m.x/ f 0

D;m.x/ � fD;m.x/ f 0

N;m.x/ D
p

�m:

Proof. We put z D
p

�m in �eorem 5.3 and observe that

f 0

N;m D c0

�;�.
p

�m; �/ D �
p

�m s�;�.
p

�m; �/

and

f 0

D;m D s0

�;�.
p

�m; �/ D
p

�m c�;�.
p

�m; �/:

Since eigenfunctions can be multiplied with any non-zero number, the above

equation states basically that the Wronskian is constant. A similar property of a

di�erent Wronskian has been established in Freiberg [8], p. 41.

10. Figures and numbers

In this section we give some explicit results and �gures calculated by using for-

mulas we developed in the preceding sections for several examples of self-similar

measures. For the calculations we used Sagemath cloud [29]. �e program code

that we used can be found in the appendix of the longer version of this article

published on arXiv [1]. Also in this longer version more examples are recorded.

Example 10.1. Table 1 collects the �rst few values of the sequences .pn/n and

.qn/n for the classical Cantor set with evenly distributed measure, that is, for r1 D
r2 D 1

3
and m1 D m2 D 1

2
. We computed these values with the recursion formulas

in Corollary 7.10 that we implemented for that purpose in Sagemath.
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Table 1. �e �rst members of .pn/ and .qn/ for r1 D r2 D 1
3

and m1 D m2 D 1
2
.

n p2nC1

1
1

5

2
27

2800

3
6383

31906000

4 928 046 087
427 065 638 720 000

5 18 312 146 532 699
1 290 321 173 531 252 800 000

n q2nC1

1
1

8

2
21

4240

3
33253

383465600

4
76118969

91537621184000

5
20165083798890939

4103397246999022891520000

n p2n; q2n

1
1

2

2
3

80

3
311

296800

4
4716349

329780416000

5
186511983201

1659577072065920000
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Figure 1 shows a plot of the functions sinN
� and sinD

� for x 2 .0; 50/, where the

�rst 100 terms of the series are taken into account. �e zero points of these func-

tions squared give the Dirichlet and Neumann eigenvalues, respectively. Observe

that the pictures suggest that the eigenvalues are in the order

�N;0 < �N;1 < �D;1 < �D;2 < �N;2 < �N;3 < �D;3 < �D;4 < � � � :

Figure 1. sinN
� (solid) and sinD

� (dash-dot) for r1 D r2 D 1
3

and m1 D m2 D 1
2

.

Table 2 contains the �rst 16 positive Neumann eigenvalues correct to 5 decimal

places (rounded down).

Table 2. Neumann eigenvalues of � d
d�

d
dx

for r1 D r2 D 1
3

and m1 D m2 D 1
2
.

m �N;m m �N;m

1 7:09743 9 1548:05582

2 42:58458 10 1637:90142

3 61:34420 11 1662:62743

4 255:50751 12 2208:39134

5 272:98357 13 2220:76944

6 368:06522 14 2301:31729

7 383:55288 15 2312:58212

8 1533:04511 16 9198:27070

�ese values have been calculated as zero points of the polynomial

a
X

nD0

.�1/n p2nC1 zn
�

�
sinN

� .
p

z/
p

z

�
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where a is su�ciently large. Note that by Lemma 3.3 we have

p2nC1 � 1

nŠ
q2.1/n D 1

nŠ � 2n
;

from which a more detailed error estimate can be obtained. More decimals and

more eigenvalues can be found in [1].

Observe that, as stated in �eorem 8.1, we have that �N;2m D 6 � �N;m for all

m.

In Table 3 we give approximate values of the sup norms of the normalized

eigenfunctions

k QfN;mk1 D kfN;mk1

kfN;mkL2.�/

:

For that, the L2 norms have been calculated with the formula in Corollary 4.3

where we put in the values for � from Table 2. �e number of summands had

to be chosen higher with bigger eigenvalues, so that the limit value could be

approximated with su�cient accuracy. For the supremum norms we calculated

Table 3. Norms of Neumann eigenfunctions for r1 D r2 D 1
3

and m1 D m2 D 1
2
.

m k QfN;mk1 m k QfN;mk1

1 1:248 9 1:467

2 1:248 10 1:405

3 1:306 11 1:512

4 1:248 12 1:306

5 1:405 13 1:474

6 1:306 14 1:401

7 1:401 15 1:508

8 1:248 16 1:248

fN;m.Sw.0// and fN;m.Sw.1// for all words w 2 ¹1; 2ºn for a certain iteration

level n and determined the biggest of these values. We varied n between 5 and

8 to get the values. �ese calculations were made with the formulas in Proposi-

tion 7.7. For that, the eigenvalue �m and values of the functions sinN
� , sinD

� and

cosN
� were needed.

Observe that, as stated in Equation (47), the values for even m are the same as

for m
2

, respectively.

Figure 2 shows plots of f1;N to f3;N and f1;D to f3;D . �ese were done by

iterative use of the formulas in Propositions 7.6 and 7.7 as for the calculation of

the sup-norms.
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Figure 2. �e �rst three Neumann (top) and Dirichlet (bottom) eigenfunctions for

r1 D r2 D 1
3

and m1 D m2 D 1
2
.
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In Table 4 we state the �rst 16 eigenvalues with Dirichlet boundary conditions

exact to 5 decimals. Estimates of the Dirichlet eigenvalues have also been obtained

by Vladimirov and Sheipak in [30] and by Etienne [6] with completely di�erent

methods.

Table 4. Dirichlet eigenvalues of � d
d�

d
dx

for r1 D r2 D 1
3

and m1 D m2 D 1
2
.

m �D;m m �D;m

1 14:43524 9 1581:17702

2 35:26023 10 1619:40072

3 140:78105 11 2029:61356

4 151:29061 12 2033:85281

5 326:05732 13 2268:79163

6 353:41692 14 2289:60406

7 876:27445 15 5258:33939

8 876:50531 16 5258:33940

As in the Neumann case, we calculated norms of Dirichlet eigenfunctions, see

Table 5.

m k QfD;mk1 m k QfD;mk1

1 1:469 9 1:799

2 1:387 10 1:767

3 1:770 11 2:032

4 1:734 12 2:233

5 1:461 13 1:857

6 1:654 14 1:809

7 2:469 15 3:369

8 2:468 16 3:491

Table 5. Norms of Dirichlet eigenfunctions for r1 D r2 D 1
3

and m1 D m2 D 1
2
.

Example 10.2. For the next example, we take the asymmetric self-similar mea-

sure with r1 D 1=3, r2 D 1=4, m1 D 3�dH and m2 D 4�dH where dH is the

Hausdor� dimension of the invariant set. �at is, dH is the solution of the equa-

tion
1

3dH
C 1

4dH
D 1:
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For the calculations we used 0:56049 88652 for dH . Variation of this value led to

no change in the �rst 5 digits of the eigenvalues. Plots of sinN
� and sinD

� are shown

in Figure 3 and the �rst eigenvalues exact to 5 decimal places are displayed in

Table 6. Note that here m1r1 ¤ m2r2. �ere seem to be no �xed order of Neumann

and Dirichlet eigenvalues as in Example 10.1 and there are no clear pairings of the

values.

Figure 3. sinN
� (solid) and sinD

� (dash-dot) for r1 D 1=3, r2 D 1=4, m1 D 3�dH and

m2 D 4�dH

Table 6. Neumann and Dirichlet eigenvalues for r1 D 1=3, r2 D 1=4, m1 D 3�dH and

m2 D 4�dH .

m �N;m �D;m

1 6:56703 16:10784

2 41:63279 35:90760

3 66:82276 128:33044

4 233:35501 236:46367

5 365:58421 373:70192

6 389:94561 423:63815

7 582:13820 713:78698

8 1295:88893 2013:16488
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Example 10.3. Figure 4 shows plots of sinN
� and sinD

� for r1 D 1
3
, r2 D 1

4
and

m1 D 3
7
, m2 D 4

7
. �e invariant set is geometrically the same as in Example 10.2,

but m1 and m2 are chosen such that r1m1 D r2m2 D 1
7

and thus,

�N;2m D 7 � �N;m:

�e �rst eigenvalues are given in Table 7. Comparing with Example 10.1, we ob-

serve that the Neumann eigenvalues behave qualitatively similar, but the Dirichlet

eigenvalues do not appear in such close pairs. However, it seems to hold again,

that two Neumann and two Dirichlet eigenvalues appear in turns.

Figure 4. sinN
� (solid) and sinD

� (dash-dot) for r1 D 1=3, r2 D 1=4, m1 D 3
7

and m2 D 4
7
.

Table 7. Neumann and Dirichlet eigenvalues for r1 D 1=3, r2 D 1=4, m1 D 3
7

and m2 D 4
7

.

m �N;m �D;m

1 6:75228 16:45251

2 47:26598 36:90424

3 62:06687 154:57752

4 330:86192 212:37652

5 345:19467 395:52681

6 434:46810 417:53270

7 446:40799 1083:25327

8 2316:03349 1485:47011
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11. Remarks and outlook

In this section we state several remarks and thoughts that could be subject of future

studies.

Conjecture 1. Due to the examination of several examples (see e.g. Examples 10.1

and 10.3) we conjecture that in case of a self-similar measure � with r1m1 D r2m2

the Neumann and Dirichlet eigenvalues satisfy

�N;0 < �N;1 < �D;1 < �D;2 < �N;2 < �N;3 < �D;3 < �D;4 < � � � :

Remark 2. It would be very interesting to �nd out, if there was a relation between

our sequences .pn/n and .qn/n to any known number sequences as e.g. Bernoulli

or Euler numbers. Indeed, the de�nition of pn.x/ or qn.x/ (De�nition 3.1) is rem-

iniscent of the recursive de�nition of the Euler polynomials En.x/ by E0.x/ WD 1

and En.x/ WD
R x

c
nEn�1.t / dt; where c D 1

2
if n is odd and c D 0 for even n.

�en the nth Euler number is En D 2nEn.1=2/.

Furthermore, (10) has a similar structure as the recursion rule

˛n D 1

2n

n�1
X

j D0

j̨ ˛n�1�j

with ˛0 D ˛1 D 1, where ˛n D 1
nŠ

jE2nj.

Remark 3. One could investigate the functional equations in �eorem 7.12 fur-

ther. In the simple case where r1 D r2 D 1
3

and m1 D m2 D 1
2
, for in-

stance, we can transform them (after eliminating terms containing sinD
� by using

cosN
� .z/2 C sinN

� .z/ sinD
� .z/ D 1) with the abbreviations u.z/ D z sinN

� .z/ and

v.z/ D 2 cosN
� .z/ to

u.
p

6z/ D 3 u.z/ v.z/ � 3 u.z/2

v.
p

6z/ D v.z/2 � v.z/ u.z/ � 2:

From this one can derive recursion formulas for the sequence .pn/n that contain

only members of pn and not, as in Corollary 7.10, both pn and qn. Furthermore,

it could be possible to somehow solve these functional equations to get a more

direct representation of sinN
� and cosN

� .

Remark 4. We de�ned our functions sinN
� , sinD

� , cosN
� and cosD

� only for real

arguments. However, one can just allow the argument to be complex. �en these

power series can be treated with methods of complex analysis.
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Remark 5. It is also interesting to consider the eigenvalue problem d
d�

d
d�

f D
��f with appropriate boundary conditions, where both � and � are non-atomic

�nite Borel measures. �is can be done by modifying the above considerations by

replacing � with �. �e case where both derivatives are with respect to the same

measure, that is, � D � is much simpler. �ere we get c�;�.z; x/ D cos
�

z p1.x/
�

and s�;�.z; x/ D sin
�

z p1.x/
�

: �e eigenvalues are �k D k2�2, k 2 N, as in the

classical Lebesgue measure case. �is is treated in Arzt and Freiberg [3]. See also

Freiberg and Zähle [13].

Remark 6. Our recursion law for pn and qn works only for self-similar measures

with r1 C r2 � 1. It would be interesting to develop similar formulas for measures

with overlaps, i.e. with r1 C r2 > 1. Such measures are treated for example in

Ngai [25] and Chen and Ngai [5], which contains, in particular, numerical solu-

tions of the eigenvalue problem by the �nite elements method.

Remark 7. In this work, we examined the eigenvalues of � d
d�

d
dx

by following the

basic lines of the treatment of the classical second derivative operator on the in-

terval. In this classical case all eigenvalues are multiples of �2 and have therefore

direct representations in many forms, e.g. by using the series expansion of arctan.

Maybe one can �nd a series representation of eigenvalues of the generalized op-

erator, too, by using such functions as sinN
� , sinD

� , cosN
� and cosD

� .

Remark 8. In Corollary 8.7 we stated upper and lower estimates for subsequences

.k Qf2k lk1/k , l odd, of the suprema of the normed eigenfunctions. We have no

information about the growth of the sequence
�

k Qf2kC1k1

�

k
, though.

Such estimates could be used to prove estimates of the heat kernel

K.t; x; y/ D
1

X

mD1

e��mt Qfm.x/ Qfm.y/

for the corresponding quasi-di�usion process. �is process has been investigated

for example in Löbus [22] and Küchler [20, 21].

Remark 9. We used the functions pn.x/ and qn.x/, x 2 Œ0; 1�, de�ned in Def-

inition 3.1 to replace monomials 1
nŠ

xn in the classical case. One could use these

functions to build a kind of generalized polynomials that are adjusted to the mea-

sure �. For instance, we take the sequence

QP0.x/ D 1; QP1.x/ D q1.x/; QP2.x/ D p2.x/; QP3.x/ D q3.x/; : : :
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and orthogonalize it in L2.�/ by using the Gram-Schmidt process. We take odd

numbered qn.x/ and even numbered pn.x/, because they are the building blocks

for the eigenfunctions s�;�.z; �/ and c�;�.z; �/. We get

P0.x/ D 1;

P1.x/ D q1.x/ � q2;

P2.x/ D p2.x/ � p4 � p2 p3

q3 � p2 q2

q1.x/ C q2 p4 � q3 p3

q3 � p2 q2

:

In this fashion one can calculate a sequence of L2.�/-orthogonal “polynomials”.

As an example we take the Lebesgue measure for � and put

pn.x/ D qn.x/ D 1

nŠ
xn:

�en

P0.x/ D 1;

P1.x/ D x � 1

2
;

P2.x/ D 1

2
x2 � 1

2
x C 1

12

which are the �rst Legendre polynomials on Œ0; 1� (not normed).

If � is the standard Cantor measure, then p2 D q2 D 1
2
, p3 D 1

5
and q3 D 1

8

and we get

P0.x/ D 1;

P1.x/ D q1.x/ � 1

2
;

P2.x/ D p2.x/ � 1

2
q1.x/ C 1

20
:

Maybe one can use these functions for further analytical studies.

Remark 10 (fourier series). It is well known that the normed eigenfunctions

. QfN;k/1

kD0
and . QfD;k/1

kD1
form orthonormal bases in L2.�/ (see [8]).

We set

nN;k WD




 c�;�

�

q

�N;k ; �
�

L2.�/







and

nD;k WD




 s�;�

�

q

�D;k; �
�

L2.�/
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so that

QfN;k D 1

nN;k

c�;�

�

q

�N;k ; �
�

and

QfD;k D 1

nD;k

s�;�

�

q

�D;k; �
�

:

We decompose some functions f 2 L2.�/ into series of eigenfunctions (Fourier

series), ignoring questions about convergence for the moment. Assume that for

x 2 Œ0; 1�

f .x/ D
1

X

kD0

ak
QfN;k.x/

with

ak D
Z 1

0

f .t/ QfN;k.t / d�.t/:

For reasons of simplicity, we take � to be a symmetric measure. �en cosN
� D

cosD
� and we have cosN

� .z/2 C sinN
� .z/ sinD

� .z/ D 1. From that follows that

cosN
� .

p

�N;k/2 D 1 and it is heuristically clear that cosN
� .

p

�N;k/ D .�1/k.

Employing this fact and Lemma 2.2, the computations can be made explicitly,

following the lines of the classical (Euclidean) case.

As a �rst example, take f .x/ D x. �en, for k 2 N,

ak D 1

nN;k

Z 1

0

t � c�;�.
p

�k ; t / d�.t/

D 1

nN;k

h 1
p

�N;k

t s�;�

�

q

�N;k ; t
�

ˇ

ˇ

ˇ

ˇ

1

0

� 1
p

�N;k

Z 1

0

s�;�

�

q

�N;k ; t
�

dt
i

D 1

nN;k�N;k

c�;�

�

q

�N;k ; t
�

ˇ

ˇ

ˇ

1

0

D 1

nN;k�N;k

�

cosN
�

�

q

�N;k

�

� 1
�

:

�us, ak D 0 for even k � 1 and ak D �2.nN;k�N;k/�1 for odd k. Furthermore,

we have

a0 D
Z 1

0

t d�.t/ D q2.1/ D q2:
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�erefore, we have the decomposition into Neumann eigenfunctions

x D q2 � 2

1
X

kD0

1

nN;2kC1�N;2kC1

QfN;2kC1.x/:

Note that the required norms nN;k can be computed with Corollary 4.3.

We apply Parseval’s identity to this series. �is gives

Z 1

0

t2 d�.t/ D q2
2 C

1
X

kD0

4

c2
N;2kC1

�2
N;2kC1

;

and with

Z 1

0

t2 d�.t/ D t q2.t /
ˇ

ˇ

1

0
�

Z 1

0

q2.t / dt D q2 � q3

and

1 � q2 D p2

we get
1

X

kD0

1

c2
N;2kC1

�2
N;2kC1

D 1

4
.p2 q2 � q3/:

If we choose the Lebesgue measure for � (then p2 D q2 D 1
2
, q3 D 1

6
and

c2
N;2kC1

D 1
2
), the above equation becomes the well known identity

1
X

kD0

1

.2k C 1/4
D �4

96
:

In the same fashion we compute the decomposition of some more examples

(� symmetric):

x D
1

X

kD1

.�1/kC1

nD;k

p

�D;k

QfD;k.x/

1 D
1

X

kD0

2

cD;2kC1

p

�D;2kC1

QfD;2kC1.x/

fD;2nC1.x/ D 2
p

�D;2nC1

� 2
p

�D;2nC1

1
X

kD1

1
�

�N;2k � �D;2nC1

�

cN;2k

QfN;2k.x/;

for every n 2 N0.
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Applying Parseval’s identity to these decompositions leads, as above, to

1
X

kD1

1

n2
D;k

�D;k

D q2 � q3

1
X

kD0

1

c2
D;2kC1

�D;2kC1

D 1

4

1
X

kD1

1
�

�N;2k � �D;2nC1

�2
c2

N;2k

D
c2

D;2nC1

4�D;2nC1

� 1

�2
D;2nC1

:

If we again take the Lebesgue measure for �, we receive some well known iden-

tities.

Remark 11. �e de�nition of the operator � d
d�

d
dx

can be extended to subsets

of R
d , d 2 N, see, for example, Solomyak and Verbitsky [28], Naimark and

Solomyak [24] and Hu, Lau and Ngai [15]. �is case, however, is substantially

more di�cult and the techniques presented here can probably not be readily ex-

tended to it.

Remark 12. Analogously to our measure trigonometric functions we can de�ne

measure theoretic exponential functions. For x 2 Œ0; 1� and z 2 C put

e�;�.z; x/ WD
1

X

nD0

z2n p2n.x/ C
1

X

nD0

z2nC1 q2nC1.x/

and

e�;�.z; x/ WD
1

X

nD0

z2n q2n.x/ C
1

X

nD0

z2nC1 p2nC1.x/:

�en, e�;�.z; �/ 2 H 2.�; �/ and e�;�.z; �/ 2 H 2.�; �/ for every z 2 C. Further-

more, for all t 2 R and x 2 Œ0; 1�, we have Euler’s formula

e�;�.i t; x/ D c�;�.t; x/ C i s�;�.t; x/

and

e�;�.i t; x/ D c�;�.t; x/ C i s�;�.t; x/:
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