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Guo-Tai Deng, Ka-Sing Lau,1 and Jun Jason Luo2

Abstract. In [13], two of the authors gave a study of Lipschitz equivalence of self-similar
sets through the augmented trees, a class of hyperbolic graphs introduced by Kaimanovich
in [9] and developed by Lau and Wang [10]. In this paper, we continue such investigation.
We remove a major assumption in the main theorem in [13] by using a new notion of quasi-
rearrangeable matrix, and show that the hyperbolic boundary of any simple augmented
tree is Lipschitz equivalent to a Cantor-type set. We then apply this result to consider
the Lipschitz equivalence of certain totally disconnected self-similar sets as well as their
unions.
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1. Introduction

The class of hyperbolic graphs plays an important role in geometric group the-
ory [8, 20]. Such graphs together with their limits (hyperbolic boundaries) have
striking resemblance to the classical hyperbolic spaces. In [9], Kaimanovich first
introduced this hyperbolicity into the study of self-similar set K. He initiated the
notion of augmented tree by adding more edges to the symbolic space of K ac-
cording to the neighboring cells. This gives a far richer structure on the symbolic
space. The idea was pursued by Lau and Wang [10] (also Wang [19]), they showed
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that for K satisfying the open set condition, the augmented tree is hyperbolic, and
K can be identified with the hyperbolic boundary of the augmented tree. There is
a large literature on random walks on hyperbolic graphs and their boundary be-
haviors (see [20] and references therein); such consideration on augmented trees
can be found in [9, 11]. In another attempt, the augmented trees and hyperbolic
boundaries were used to study the Lipschitz equivalence of self-similar sets [13]
and Moran fractals [12].

Recall that two compact metric spaces .X; dX / and .Y; dY / are said to be Lip-
schitz equivalent, and denoted by X ' Y , if there is a bi-Lipschitz map � from X

onto Y , i.e., � is a bijection and there is a constant C > 0 such that

C �1dX .x; y/ � dY .�.x/; �.y// � CdX .x; y/; for all x; y 2 X:

Lipschitz classification of sets has been an important topic in geometry, topol-
ogy and analysis. In fractal geometry, the pioneer work was due to Cooper and
Pignataro [1] and Falconer and Marsh [5] on Cantor-type sets under the strong
separation condition. The recent interest was due to Rao, Ruan, and Xi [15] on
their path breaking solution to a question of David and Semmes, the so called
“¹1; 3; 5º � ¹1; 4; 5º problem.” For the developments and the generalizations, the
reader can refer to [2, 16, 17, 21, 22, 23, 24, 25] for more details. In particular,
in [24], the Lipschitz classification of self-similar sets with exponentially com-
mensurable contraction ratios is characterized in terms of the ideal classes in al-
gebra.

Let K be a self-similar set generated by an iterated function system (IFS) of
N similitudes of equal contraction ratio, and let

X D
1[

nD0

†n; † D ¹1; : : : ; N º;

be the associated symbolic space of words; we also use the notion “N - : : : ” to
emphasize on the cardinality N . We denote the set of edges from the canonical
tree structure by Ev (vertical edges); as a tree the boundary is a homogeneous
Cantor set. We add new edges by joining words i; j in the same level †n if the cor-
responding cells Ki, Kj intersect, and denote this set of edges by Eh (horizontal
edges). Let E D Ev [ Eh, and call .X;E/ a self-similar augmented tree [9]. We
say that .X;E/ is simple if there is only finitely many non-isomorphic classes of
subgraphs defined by the horizontal components and their descendants (see Defi-
nition 2.2). In this case, .X;E/ is hyperbolic [13], and the hyperbolic boundary @X

can be identified with K (see [9, 10]). We use A to denote the incidence matrix,
which describes the graph relation of the horizontal components of .X;E/. The
main theorem in [13] is the next one.
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Theorem. If the incidence matrix A is primitive, then @.X;E/ is Lipschitz equiv-
alent to @.X;Ev/, which is a homogeneous N -Cantor set.

Moreover, if the self-similar set K satisfies condition (H) (see Section 5 below),
then K is Lipschitz equivalent to the N -Cantor set with the same contraction ratio
as the IFS.

Note that in this consideration, we do not need to assume the open set condi-
tion, but it will come out as a consequence of the Lipschitz equivalence (Corollary
3.11 in [13]). This augmented tree approach provides a general and simple frame-
work to study the Lipschitz equivalence of totally disconnected self-similar sets,
and unifies many of the previous investigations. It covers most of the known ex-
amples, and also certain Moran fractals [12]. In the investigation in [13], a number
of questions were raised. In particular, it was asked whether the assumption that
the incidence matrix A is primitive can be removed, as there are simple examples
that such condition is not satisfied (see Example 5.4 in Section 5 or discussions
in [24]).

In this paper we continue our investigation started in [13]. Our main purpose
is to remove the primitive assumption on the incidence matrix, and to extend the
scope to more general class of augmented trees, which includes the union of cer-
tain self-similar sets. We called .X;E/ an N -ary augmented tree if it is a tree such
that each vertex has N descendants, and the horizontal edges satisfy the condition
in Definition 2.1.

Theorem 1.1. Suppose an N -ary augmented tree .X;E/ is simple, then @.X;E/ is
Lipschitz equivalent to @.X;Ev/, which is an N -Cantor set.

By applying the theorem to self-similar sets, we have the following result.

Theorem 1.2. Suppose a self-similar augmented tree .X;E/ defined by an IFS
(N similitudes with equal contraction ration r) is simple and satisfies condi-
tion (H) (see Section 5), then K is Lipschitz equivalent to the N -Cantor set with
contraction ratio r .

The proof Theorem 1.1 is based on constructing a near-isometry � between the
augmented tree .X;E/ and the tree .X;Ev/ (� is stronger than the rough isometry
in literature). In [13], the existence of such isometry depends on the incidence
matrix A is primitive, which implies rearrangeable, a combinatoric property that
allows us to permute the vertices and edges of the augmented tree in order to con-
struct � . Without the primitive condition as in Theorem 1.1, we need to introduce a
new notion of quasi-rearrangeable to obtain the needed near-isometry (Sections 3
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and 4). In doing so, we also need to extend slightly the definition of near-isometry,
together with other modifications of the augmented trees that include the unions
and quotients. As a consequence, we can use Theorem 1.2 to consider some fractal
sets that are not necessarily self-similar. Among those, we prove

Proposition 1.3. Let C be the standard Cantor set. Then C [ .C C ˛/ is Lipschitz
equivalent to C if ˛ > 1 or if 0 < ˛ � 1 is a rational.

There have been considerable studies on the intersections of Cantor sets (see
for instance [7, 3, 4, 6] and references therein). However, to our knowledge, there
are few results on their unions. Proposition 1.3 is perhaps a new attempt on the
Cantor sets.

The paper is organized as follows. In Section 2, we briefly review the hyper-
bolic graphs and the augmented trees to set up the notation, and derive some basic
properties. We define the quasi-rearrangeable matrices in Section 3, and prove
Theorem 1.1 in Section 4. Finally in Section 5, we apply the main results on the
hyperbolic boundaries to self-similar sets and their unions by proving Theorem 1.2
and Proposition 1.3.

2. The augmented tree

We use the same notation as in [13]. Let X be an infinite connected graph. For
x; y 2 X , let �.x; y/ denote a geodesic from x to y, and d.x; y/ its length. Let o

be a root of the graph, and let jxj D d.o; x/. According to [20], for x; y 2 X , let

jx ^ yj D 1

2
.jxj C jyj � d.x; y// (1)

denote the Gromov product, and call X hyperbolic (with respect to o) if there is
ı � 0 such that

jx ^ yj � min¹jx ^ zj; jz ^ yjº � ı for any x; y; z 2 X:

For a > 0 with exp.ıa/ � 1 <
p

2 � 1, we define a hyperbolic metric on X by

�a.x; y/ D ıx;y exp.�ajx ^ yj/; (2)

where ıx;y D 0; 1 according to x D y or x ¤ y. Let xX be the completion of X

in the metric �a. We call @X D xX n X the hyperbolic boundary of X . It is clear
that �a can be extended to @X , and @X is a compact set under �a. It is useful to
identify � 2 @X with a geodesic ray in X that converges to �.
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Let X be a tree with root o. It is well-known that X is hyperbolic (with ı D 0),
and the hyperbolic boundary is totally disconnected. We use Ev to denote the set
of edges of X (v for vertical), and

Xn D ¹x 2 X W jxj D nº:

We introduce some additional edges on each level of X .

Definition 2.1. .[9, 10]/ Let .X;Ev/ be a tree. We call .X;E/ an augmented tree
if

E D Ev [ Eh;

where Eh � .X � X/ n ¹.x; x/ W x 2 Xº is symmetric and satisfies

.x; y/ 2 Eh H) jxj D jyj and either x� D y� or .x�; y�/ 2 Eh: (3)

(x� is the predecessor of x.) We call elements in Eh horizontal edges.
Furthermore, if each vertex of X has N offsprings, we call .X;E/ an N -ary

augmented tree.

For an N -ary tree, it is obvious that we can identify Xn with †n where † D
¹1; : : : ; N º, and hence X D S1

nD0 Xn D S1
nD0 †n. We will use both whenever

convenient. For x; y 2 X , the geodesic path of x; y is not unique in general, but
there is a canonical one of the form

�.x; y/ D �.x; u/ [ �.u; v/ [ �.v; y/ (4)

where �.x; u/; �.v; y/ are vertical paths, �.u; v/ is a horizontal path, and for any
geodesic � 0.x; y/, d.o; �.u; v// � d.o; � 0.x; y//. (It can happen that there are
only two parts, with v D y or x D u.) The following is known [9, 10].

An augmented tree is hyperbolic if and only if there is k > 0 such that the
length of the horizontal parts of the canonical geodesics in X is bounded by k.

For T � Xn, the set of descendants of T (including T itself) is denoted by TD,
i.e.,

TD D ¹x 2 X W xjn 2 T º
where xjn is the initial segment of x with length n. Note that if T is connected,
then TD is a subgraph of X . Moreover, if .X;E/ is hyperbolic, then TD is also
hyperbolic. We say that T is an Xn-horizontal component if T � Xn is a maximal
connected subset with respect to Eh, and denote T by bxc for x 2 T . We let Fn

denote the family of all Xn-horizontal components, and let F D S
n�0 Fn. Note
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that for distinct T; T 0 2 Fn, the subgraphs TD; T 0
D are disjoint. We can define

a graph structure on F as bxc and byc is connected by an edge if and only if
.x; y/ 2 Ev; we denote this graph by XQ (see Figure 1). It is clear that XQ defined
above is a tree, and we call it the quotient tree of X .

:::
:::

:::

Figure 1. The augmented tree X , the quotient tree XQ and the union of three copies of X .

For T; T 0 2 F, we say that T and T 0 are equivalent, and use the notation
T � T 0, if there exists a graph isomorphism

g W TD �! T 0
D;

i.e., the map g and the inverse map g�1 preserve the vertical and horizontal edges
of TD and T 0

D. We denote the equivalence class by ŒT �.

Definition 2.2. We call an augmented tree .X;E/ simple if the equivalence classes
in F is finite. Let ŒT1�; : : : ; ŒTm� be the equivalence classes in X n ¹oº, and let aij

denote the cardinality of the horizontal components of offsprings of T 2 ŒTi � that
belong to ŒTj �. We call A D Œaij � the incidence matrix of .X;E/.

The above definition is a modification from Definition 3.3 of [13] (there is an
oversight there, nevertheless this adjustment does not affect the proofs in [13]).
We also adjust slightly the incidence matrix from the previous one ((3.3) in [13]),
as in here Œo� is not counted in A as the initial one (it is still possible that there
is ŒTj � D Œo� for some j ). This change of A does not make any difference for the
boundary, but will be more convenient when we consider the subgraph TD. It can
be verified easily that aij is independent of the choice of T .

Note that the incidence matrix A and the quotient tree XQ are related as the
following: for each T D bxc 2 XQ, say T 2 ŒTi � for some i , then bxc has a total
of

P
j aij offsprings in XQ; for each j , there are exactly aij (ignore those D 0) of

them that are roots of isomorphic subtrees of XQ. In fact, XQ is the induced tree
by the graph directed system defined by A, see [14].
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Proposition 2.3. Every simple augmented tree .X;E/ is hyperbolic. Moreover,
@X ' @XQ, and both of them are totally disconnected.

Proof. That a simple augmented tree is hyperbolic was proved in Proposition 3.4
in [13]. Basically, it follows from the fact that the length of horizontal compo-
nents is uniformly bounded, hence the horizontal part of a geodesic is uniformly
bounded, which yields the hyperbolicity of the augmented tree X .

To show that @XQ ' @X , we note that .X;E/ is simple, there exists k > 0 such
that the number of vertices in each Ti is bounded by k. For x 2 X , let bxc denote
the horizontal component that contains x. We define a projection

� W X �! XQ

by
�.x/ D bxc:

Note that for any x; y 2 X , the canonical geodesic, as in (4), is

�.x; y/ D �.x; u/ [ �.u; v/ [ �.v; y/:

This implies
buc D bvc;

and
�.bxc; byc/ D �.bxc; buc/ [ �.buc; byc/:

Since d.u; v/ � k, by (1) and (2),

jbxc ^ bycj � jx ^ yj � jbxc ^ bycj C k; (5)

and for bxc ¤ byc,

c�a.bxc; byc/ � �a.x; y/ � �a.bxc; byc/; (6)

where c D e�ka. Hence we can extend

� W xX �! xXQ

continuously. It is clear that � W @X ! @XQ is surjective. We claim that it is also
one–to–one. Note that in a hyperbolic boundary, two geodesic rays �.x1; x2; : : : /

and �.y1; y2; : : : / represent the same � 2 @X if and only if jxn ^ ynj ! 1 as
n ! 1 [20]. Hence for � ¤ � in @X , there exist geodesic rays �.x1; x2; : : : / and
�.y1; y2; : : : / representing � and � respectively and jxn ^ ynj 6! 1 as n ! 1.
It follows from (5) that jbxnc ^ byncj 6! 1. This implies b�c ¤ b�c in @XQ. The
conclusion that @X ' @XQ follows by extending (6) to the boundaries.

Since XQ is a tree, whose boundary is a Cantor-type set, it follows that both
of @X and @XQ are totally disconnected by the above argument.
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Corollary 2.4. Let X; Y be two simple augmented trees and have the same inci-
dence matrix A. Then @X ' @Y .

Proof. It follows from the assumption that XQ and YQ are graph isomorphic so
that @XQ ' @YQ. The corollary follows from Proposition 2.3.

Definition 2.5. Let X; Y be two hyperbolic graphs. We say that � is a near-
isometry of X and Y if there exist finite subsets E � X , F � Y , and c > 0

such that � W X n E ! Y n F is a bijection and satisfies

jd.�.x/; �.y// � d.x; y/j < c:

We remark that this definition of near-isometry is a slight relaxation of the one
in [13] by allowing an exception of finite sets. Actually, we can allow the sets E; F

to be countable as long as in the boundaries, the limit points from E and F are the
limit points of X nE and Y nF respectively. The proof of the following proposition
is the same as in [13] with some obvious modifications.

Proposition 2.6. Let X; Y be two hyperbolic augmented trees. Suppose there
exists a near-isometry from X to Y , then @X ' @Y .

The following is a crucial algebraic property of a simple N -ary augmented
tree, the proof follows easily from the definition.

Proposition 2.7. Let .X;E/ be a simple N -ary augmented tree, let ¹ŒT1�; : : : ; ŒTm�º
be the equivalence classes with incidence matrix A, and let u D Œu1; : : : ; um�t

where ui D #T for T 2 ŒTi �. Then Au D N u.

Let Xi ; 1 � i � ` be augmented trees with roots oi . Let

yX D
� [̀

iD1

Xi

�
[ ¹oº

where o is an additional vertex. We equip yX with an edge set yE that includes all
Ei and the new edges joining o and oi . Then . yX; yE/ forms a new connected graphs
and each .Xi ;Ei/ becomes its subgraph (see Figure 1). We call . yX; yE/ the union
of ¹Xiº`

iD1. Occasionally we use
S`

iD1.Xi ;Ei/ or
S`

iD1 Xi to denote . yX; yE/ for
clarity. The following proposition is useful.

Proposition 2.8. Let .X;E/ be an N -ary augmented tree such that @.X;E/ '
@.X;Ev/. Suppose .Xi ;Ei/; 1 � i � `, are copies of .X;E/, and . yX; yE/ is the
union of ¹.Xi ;Ei/º`

iD1. Then @. yX; yE/ ' @.X;E/.
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Proof. It is easy to see that for @.Xi ;E/ ' @.Xi ;Ev/, the disjoint union implies
@. yX; yE/ ' @. yX; yEv/. Hence it suffices to prove the proposition for @. yX; yEv/ '
@.X;Ev/.

Let X D S1
nD0 †n where † D ¹1; : : : ; N º. Consider a subset of vertices of X :

I D ¹isº1
sD1 D ¹1; : : : ; N � 1I N1; : : : ; N.N � 1/I N 21; : : : ; N 2.N � 1/I : : : º:

Similarly, for the vertices of the union yX , denote by

J WD ¹jsº1
sD1 WD ¹o1; : : : ; o`�1º [ ¹o`is W is 2 I º:

Define a map
� W I �! J

by
�.is/ D js

(see Figure 2), and extend it to

� W X n ¹oº �! yX n ¹oº

by

�.isu/ D jsu for u 2 X ,

and

�.N iC1/ D o`N i for i D 0; 1; 2; : : :

(this last part of � is not essential in view of the remark after Definition 2.5). Then
the map is bijective and satisfies

jd.�.x/; �.y// � d.x; y/j � Œ`=N � C 1; for all x; y 2 X n ¹oº;

where Œ`=N � denotes the largest integer not greater than `=N . This can be verified
immediately on I first, and then for arbitrary x; y. Therefore, � is a near-isometry,
and the result follows by Proposition 2.6.

There is another useful variance of an augmented tree. Let .X;E/ be an N -ary
augmented tree. For k > 1, we write

X .k/ D
1[

nD0

Xkn;
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:::

:::
:::

:::

:::
:::

:::

�7�!
i1 i2

i3 i4

i5 i6

3

32

33

oo

o2

o23

o232

j1 D o1

j2 j3

j4 j5

j6

Figure 2. An illustration of the map � W I ! J by letting N D 3; ` D 2.

then X .k/ is a kN -ary tree. We define the horizontal edges on the n-th level of
X .k/ to be the same as the the kn-th level in X , and denote the induced edge set
by Eh as well. Let

E D Ev [ Eh on X .k/,

then the following proposition is immediate.

Proposition 2.9. Let X be an N -ary tree, and .X;E/ be a simple augmented tree
with an incidence matrix A. Then for .X .k/;E/ defined as above, the incidence
matrix is Ak, and if we take the hyperbolic metric �a and �ka on the respective
spaces, then @.X;E/ D @.X .k/;E/

To conclude this section, we remark that it is rather flexible to choose the hor-
izontal edges to form an augmented tree (see Definition 2.1 and [10, 13, 19]).

Example 2.10. Let X D S
n�0 †n, † D ¹1; 2º. Let

Eh D ¹.11; 12/º and E D Ev [ Eh:

It is easy to see that the equivalence classes are Œ1�; Œ2�; Œ11; 12�; and the incidence
matrix is

A D
2
40 0 1

0 2 0

0 4 0

3
5 :

Hence .X;E/ is simple and its hyperbolic boundary is Lipschitz equivalent to the
one of .X;E�/, but .X;E/ can not be induced by an IFS.
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Example 2.11. Let X D S
n�0 †n; † D ¹1; 2º, and let A � N be a non-periodic

infinite set. Let

Eh D ¹.1p; 1p�12/ W p 2 Aº and E D Ev [ Eh:

Then .X;E/ is a hyperbolic augmented tree. There are infinitely many equivalence
classes

¹Œ2�º [ ¹Œ1p� W p 62 Aº [ ¹Œ1p; 1p�12� W p 2 Aº:
Hence .X;E/ is not simple. But the identical map � W .X;Ev/ ! .X;E/ is a near-
isometry, which implies @.X;Ev/ ' @.X;E/ by Proposition 2.6.

3. Quasi-rearrangeable matrices

We see in Proposition 2.3 that the hyperbolic boundary of a simple augmented
tree is totally disconnected. In order to show that its boundary is also Lipschitz
equivalent to a homogeneous Cantor set, a combinatoric device to rearrange ver-
tices is needed. This idea was introduced in [15], reformulated and investigated
in [2] and [13] as follows.

Consider a set of vertices that are connected by edges, the number of con-
nected components with size ui is ai . For N > 0, under what condition can
we rearrange (but not breaking) these components into groups such that each
group has N vertices?

In this case, we can put this group of vertices as the N descendants of one vertex.
We will make use of this property inductively to construct the near-isometry of
the N -ary augmented tree with an N -ary tree.

Definition 3.1. Let a D Œa1; : : : ; am� and u D Œu1; u2; : : : ; um�t be in Nm. For
N > 0, we say that a is .N; u/-rearrangeable if there exists p > 0 and a non-
negative integral p � m matrix C (rearranging matrix) such that

a D Œ1; : : : ; 1�„ ƒ‚ …
p

C and C u D ŒN; : : : ; N �t„ ƒ‚ …
m

: (7)

(In this case au D pN .) We say that a is .N; u/-quasi-rearrangeable if the second
identity is replaced by C u � ŒN; : : : ; N �t .

A matrix A is said to be .N; u/-rearrangeable (quasi-rearrangeable) if each
row vector in A is .N; u/-rearrangeable (quasi-rearrangeable). (Note that the p

and C in each row may be different.)
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To realize the above definition, let us assume that there are m different kinds
of objects, each kind has cardinality ai and each one of the same kind has weight
ui , hence the total weight is

P
i aiui D pN . The rearranging matrix C is a way

to divide these objects into p groups (first identity in (7)) such that every entry of
a row represents the number of each kind in the group, and the total weight of the
objects in the group is N (the second identity in (7))

C D

c11 : : : c1j : : : c1m

:::
:::

:::
ci1 : : : cij : : : cim

:::
:::

:::
cp1 : : : cpj : : : cpm

2
666666664

3
777777775

i-th group.

sum aj

The next lemma is a basic criterion given in [2] to determine a vector to be
rearrangeable (see also [13]).

Lemma 3.2. Let a D Œa1; : : : ; am�, u D Œu1; : : : ; um�t be in Nm. Suppose

au D pN

and all ai , are sufficiently large compare to all uj , say,

ai > p2
�Xm

j D1
uj

��Ym

j D1
uj

�
; 1 � i � m: (8)

Then a is .N; u/-rearrangeable if and only if gcd.u/ divides N . In this case, the
rearranging matrix C is of size p � m.

Here gcd.u/ is the greatest common divisor of u1; : : : ; um. Intuitively, if all
the weights uj are small, and there are enough objects ai ’s to maneuver, then it is
possible to round up the group to be with weight N . Lemma 3.2 yields the follow-
ing useful sufficient condition for rearrangement, which applies to the incidence
matrix (see Proposition 4.2, Lemma 4.4).

Proposition 3.3. Let A be an m � m primitive matrix (i.e., there exists n > 0 such
that An > 0), and u 2 Nm. Let u D gcd.u/,
(i) if Au D N u, then there exists k > 0 such that Ak is .uN k ; u/-rearrangeable;
(ii) if Au � N u, then there is an integer k > 0 such that Ak is .uN k ; u/-quasi-

rearrangeable.
In both cases, the corresponding rearranging matrix Ci for each row of Ak is of
size .ui=u/ � m.
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Proof. (i) Let
ai WD a.k/

i

denote the i-th row of Ak. As u is the N -eigenvector of A, it follows that

aiu D uiN
k WD pN 0

where p D ui =u and N 0 D uN k . From the primitive property of A, we can find
an integer k > 0 such that each entry of Ak D Œa

.k/
ij � is sufficiently large so that (8)

is satisfied. Hence by Lemma 3.2, ai is .uN k ; u/-rearrangeable, and (i) follows.

(ii) We assume that Au ¤ N u. Choose n large enough such that Anu < N nu,
and let

w WD N nu � Anu > 0:

Suppose u D Œu1; : : : ; um�t . Let u0 D Œu1; : : : ; um; 1�t and

A0 D
�
An w
0 N n

�
:

It is direct to check that A0u0 D N nu0. If we denote the i-th row of Ank and A0k
by ai and a0

i D Œai ; ai;mC1� respectively, then a0
iu0 D uiN

nk . It follows from the
above (and Lemma 3.2) that a0

i is .uN nk ; u0/-rearrangeable, in the sense that for
the i-th row vector a0

i with i � m, there exists a .ui=u/ � .m C 1/ non-negative
matrix C 0

i satisfying

a0
i D 1C 0

i ; and C 0
i u0 D ŒuN nk ; uN nk ; : : : ; uN nk �t :

Let Ci be obtained by deleting the last column of C 0
i , then

ai D 1Ci ; and Ciu � ŒuN nk ; uN nk ; : : : ; uN nk �t

which yields (ii).

In view of Lemma 3.2 and the proof of the above proposition, we also have the
following result.

Corollary 3.4. Under the assumption of the previous proposition, if further gcd.u/

divides N , then we can conclude that Ak is .N k ; u/-rearrangeable in (i), and
.N k ; u/-quasi-rearrangeable in (ii).
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4. Proofs of the main results

Let A D Œaij � 2 Mm.Z/ be a non-negative matrix, and An D Œa
.n/
ij �. We say that

A is primitive if An > 0 for some n > 0, and is irreducible if for any entry aij ,
there exists n > 0 such that a

.n/
ij > 0. In matrix theory, it is well-known that for

any non-negative matrix A, it can be brought into the form of the upper triangular
block by a permutation matrix P ,

P tAP D

2
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A1 �
: : :

0 Ar
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where each Ai is a square matrix that is either irreducible or zero, i D 1; : : : ; r .
The following is a stronger result that for certain power A`, the block matrices are
primitive, if not zero.

Lemma 4.1. Let A be a non-negative matrix, then
(i) if An is irreducible for any n � 1, then A is primitive;
(ii) there is ` � 1 such that the block matrices lying in the diagonal of the canon-

ical form of A` are either primitive or 0.

Proof. (i) For 1 � k � m, let rk > 0 be the smallest integer such that in Ark ,
the entry a

.rk/

kk
> 0; also let r be the least common multiple of r1; : : : ; rm. Then

a
.r/

kk
> 0 for each k. This implies that if a

.rn0/
ij > 0 for some n0, then a

.rn/
ij > 0 for

any n � n0. For any i ¤ j , let rij be such that a
.rrij /

ij > 0, then n D r
Qm

i;j D1;i¤j rij

is the desired integer.
(ii) We use induction on the order m of A. It is trivial for m D 1. Assume it is

also true for m � 1. Consider order m. If An is primitive for some n, then we are
done. Otherwise, by (i), there exists n0 > 0 such that An0 is not irreducible. Let
A1 be the block matrix on the diagonal of the canonical form of An0 , if it is not
zero, then it is irreducible. By induction hypothesis, there exists n1 such that A

n1

1

satisfies (ii). Consider the matrix A2 obtained by deleting the rows and columns
of An0 corresponding to A1. Then by using the induction hypothesis again, there
exists n2 such that A

n2

2 satisfies (ii). By letting n D n0n1n2, we conclude that An

satisfies (ii) and completes the proof.

Proposition 4.2. Let .X;E/ be a simple N -ary augmented tree. Let T be a hori-
zontal component, and let A be the incidence matrix of the subgraph TD. If A is
primitive, then @.TD;E/ ' @.X;Ev/.
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Proof. Let ¹ŒT1�; : : : ; ŒTm�º be the equivalence classes in TD, let ui D #Ti be the
number of vertices in Ti , and let u D gcd.u/. The proof follows from the same
idea as Theorem 3.7 in [13] for .X;E/ where gcd.u/ D 1 . Here we only sketch the
main idea.

By Proposition 3.3, there exists k such that Ak is .uN k ; u/-rearrangeable.
In view of Proposition 2.9, we can assume without loss of generality that k D 1.
Hence for any Ti , we have a Ci to rearrange its descendants into pi D ui =u groups
consisting of the Tj ’s, we denote them by Vk ; 1 � k � pi , the number of vertices
in Vk is uN .

Let ` D #T , let Y be the union of ` copies of .X;Ev/. Let E0 be an augmented
structure on Y by adding horizontal edges that joining u consecutive vertices in
each level (see the left figure in Figure 3). (Note that number of vertices in the
n-th level is `N n�1 and u divides `.) Then

@.Y;E0/ ' @.Y;Ev/ ' @.X;Ev/

as the first ' follows from a direct check that the identity map is a near-isometry,
and the second ' follows from Proposition 2.8.

�7�!T

T †

Figure 3. An illustration of � W TD ! Y with u D 2; ` D 4, the 	; �; ı; � denote four kinds
of components.

With this setup, we can define a map

� W .TD;E/ �! .Y;E0/

as follows. On the first level, let � be any bijection from T to Y1. Suppose we
have defined the Ti of TD in the n-th level, i.e., for Ti D ¹i1; : : : ; itº, and �.Ti/ D
.j1 D �.i1/; : : : ; jt D �.it //, we define � on Ti† by assigning the vertices of Vk

consecutively to the descendants of �.Ti/ (see Figure 3). It follows from the re-
arrangement property that each �.Vk/ are descendants of u consecutive vertices in
�.Ti /.� Yn/ (see Theorem 3.7 in [13] for detail). By the same proof as Theorem 3.7
in [13], that � is a near-isometry, and hence @.TD;E/ ' @.Y;E0/ ' @.X;Ev/.
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Remark 4.3. It follows from the above that there is a near-isometry

� W .TD;E/ �! .Y;Ev/;

where .Y;Ev/ is the union of ` copies of .X;Ev/ and ` D #T . (Actually we can
take any finite copies of .X;Ev/ according to Proposition 2.8.)

Lemma 4.4. Let .X;E/ be a simple N-ary augmented tree with equivalence classes
¹ŒT1�; : : : ; ŒTm�º, and the incidence matrix is of the form

A D
�
A1 A3

0 A2

�

where A1; A2 are non-zero matrices with orders r and m � r respectively. Let
ui D #Ti , u1 D Œu1; : : : ; ur �t and u D gcd.u/. Suppose

(i) A1 is .uN; u1/-quasi-rearrangeable;

(ii) for i D r C 1; : : : ; m, there exist near-isometries �i W ..Ti/D;E/ ! .Yi ;Ev/

as in Remark 4.3.

Then there exists a near-isometry

� W .X;E/ �! .X;Ev/;

hence
@.X;E/ ' @.X;Ev/:

Proof. For convenience, we assume that A1 is .N; u1/-quasi-rearrangeable, the
general case follows from the same argument as in last proposition. We will use (i)
and (ii) to construct a near-isometry � W .X;E/ ! .X;Ev/. We write X1 D .X;E/

and X2 D .X;Ev/. Let

�.o/ D o and �.i/ D i; i 2 †:

Suppose � has been defined on †n such that

(1) for component T 2 ŒTi �; i � r , �.T / has the same parent, i.e.,

�.x/� D �.y/� for all x; y 2 T � †nI

(2) for component T 2 ŒTi �; i � r C 1, �.x/ D �i .x/ for x 2 TD.
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To define the map � on †nC1, we note that if T � †n in (2), then � is well-defined
by �i . If T � †n in (1), without loss of generality, we let T 2 ŒT1�. Then T gives
rise to horizontal components in †nC1, we group them into Z1;j ; j D 1; : : : m

according to the components belonging to ŒTj �.
By the quasi-rearrangeable property of A1 (assumption (i)), for the row vector

a1 D Œa11; : : : ; a1r �, there exists a nonnegative integral matrix C D Œcsj �u1�r such
that

a1 D 1C and C u1 � ŒN; : : : ; N �t :

By using this, we can decompose a1 into u1 groups as follows. Note that a1j

denotes the number of horizontal components that belong to ŒTj �. For each 1 �
s � u1, we choose csj ; 1 � j � r , of those components that are of size uj , and
denote by ƒs . Then

Sr
j D1Z1;j can be rearranged into u1 groups

r[
j D1

Z1;j D ƒ1 [ 
 
 
 [ ƒu1
: (9)

and the total vertices in each group is � N .

For the component T D ¹i1; : : : ; iu1
º � †n in .X;E/, we have defined �.T / D

¹j1 D �.i1/; : : : ; ju1
D �.iu1

/º in .X;Ev/ by induction. In view of (9), we define
� on

Sr
j D1Z1;j by assigning vertices in ƒs (cardinality � N ) to the descendants

of js (cardinality N ) in a one-to-one manner; for the remaining T 0 2 Sm
j DrC1Z1;j

(maybe empty), say T 0 2 ŒTj � and j � r C 1, we define for x 2 T 0, �.x/ to be any
point in �.T /† n Sr

j D1�.Z1;j / to fill up the �.T /† (see Figure 4). We also use
�i to induce a near-isometry � W TD ! .�.T //D. We apply the same construction
of � on the offsprings of every component in †nC1. Inductively, � can be defined
from X1 to X2.

�7�!T

T †

Figure 4. An illustration of a rearrangement by � , the 	; �; ı denote the three kinds of
components. The first component in 	 is T 0 which belongs to the second type, and the
other two components belong to the first type.
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Finally we show that � W X1 ! X2 is indeed a near-isometry. Let �.x; y/ be
the canonical geodesic in X1, it can be written as

�.x; y/ D Œx; v1; : : : ; vn; t1; : : : ; tk ; wn; : : : ; w1; y�

where Œt1; : : : ; tk � is the horizontal part and Œx; v1; : : : ; vn; t1�; Œtk ; wn; : : : ; w1; y�

are vertical parts. Clearly, ¹t1; : : : ; tkº must be included in one horizontal compo-
nent of X1, we denote it by T and let T 2 ŒTi � for some 1 � i � m.

If i � r C 1, it is clear that
ˇ̌
d.�.x/; �.y// � d.x; y/

ˇ̌ D ˇ̌
d.�i .x/; �i.y// � d.x; y/

ˇ̌ � c;

where c is the uniform bound of the near-isometries ¹�iºm
iDrC1.

If i � r , consider the position of x first: if x 2 T 0 2 ŒTj �; j � r , then j�.x/j D
jxj by the construction of � , hence jj�.x/j � jxjj D 0; otherwise x 2 T 0

D for some
T 0 2 ŒTj � and j � r C1, in this case, we have jj�.x/j�jxjj � c as above. Similarly
for y. Notice that d.x; y/ D jxj C jyj � 2` C h, where ` and h are the level and the
length of the horizontal part of the canonical geodesic �.x; y/ (see [10] or [13]).
Therefore
ˇ̌
d.�.x/; �.y// � d.x; y/

ˇ̌ � j j�.x/j � jxjj C jj�.y/j � jyj j C 2jl 0 � l j C jh0 � hj
� 2c C 2jl 0 � l j C jh0 � hj
� 2c C 2jl 0 � l j C c0;

where c0 D max1�i�r ui . Moreover, by condition (1), it follows that jl 0 � l j �
1
2
.c0 C 1/ (see also [13]). Consequently

ˇ̌
d.�.x/; �.y// � d.x; y/

ˇ̌ � 2.c C c0/ C 1:

This completes the proof that � is a near-isometry.

Theorem 4.5. Suppose .X;Ev/ is an N -ary tree, and the augmented tree .X;E/

is simple. Then @.X;E/ ' @.X;Ev/:

Proof. Let ¹ŒT1�; : : : ; ŒTm�º be the equivalence classes of horizontal components,
ui D #Ti , and A the associated incidence matrix. By Lemma 4.1, there exists
` � 1 and a permutation matrix P such that

A` D

2
64

A1 �
: : :

0 Ak

3
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where Ai are either 0 or primitive. From the definition of incidence matrix, we
see that Ak ¤ 0, hence is primitive. Without loss of generality, we let ` D 1 (by
Proposition 2.9).

If k D 1, then A D A1 is primitive. For any horizontal component T �
†, TD has incidence matrix A also. Hence by Proposition 4.2 that @.TD;E/ '
@.X;Ev/. As † is the disjoint union of such T , it follows from Proposition 2.8 and
Remark 4.3 that @.X;E/ D @.[.TD;E// ' @.X;Ev/.

If k D 2, let A1, A2 correspond to ¹ŒT1�; : : : ; ŒTr �º, and ¹ŒTrC1�; : : : ; ŒTr �º re-
spectively. If A1 D 0, we can take A2 as the incidence matrix of .X;E/ by re-
moving finitely many vertices that belong to ŒTi �; 1 � i � r . By Proposition 4.2,
the result follows. If A1 ¤ 0, then Proposition 4.2 and Remark 4.3 imply that as-
sumption (ii) in Lemma 4.4 is satisfied; the other assumptions also follow readily,
and the theorem follows.

The general case that k � 2 follows by applying the above argument induc-
tively.

5. Applications to self-similar sets

In this section, we will make use of the previous results to study the Lipschitz
equivalence of self-similar sets and their unions. As before we assume the self-
similar set K is generated by an IFS ¹SiºN

j D1 on Rd where

Si .x/ D rRix C di ; 1 � i � N (10)

with 0 < r < 1, Ri orthogonal matrices and di 2 Rd . The representing symbolic
space of K is the tree X D S1

nD0 †n where † D ¹1; : : : ; N º, and †n is the set of
indices i D i1i2 : : : in, representing Si D Si1 ı 
 
 
 ı Sin . Let .X;Ev/ be as before,
we define the horizontal edge set Eh to be

Eh D ¹.i; j/ W jij D jjj; i 6D j and Si.K/ \ Sj.K/ 6D ;º; (11)

and let E D Ev [Eh. Then Eh satisfies (3); we call .X;E/ an (N -)self-similar aug-
mented tree. A sufficient condition for .X;E/ to be hyperbolic is that the IFS sat-
isfies the open set condition (OSC) [10] (see [19] for the more general situations).
In the special case that the IFS is strongly separated, i.e., Si.K/ \ Sj .K/ D ; for
i ¤ j , then E D Ev, and @X (also K) is a homogeneous Cantor-type set (it is also
called a dust-like self-similar set in [5, 13]).
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Let J be a nonempty bounded closed invariant set, i.e., Si.J / � J for all i .
For indices i 2 X , denote Ji D Si.J /. The self-similar set K (or the IFS) is said
to satisfy condition (H) if there exists a bounded closed invariant set J such that
for any integer n � 1 and indices i; j 2 †n, then

Ji \ Jj D ; H) dist.Ji; Jj/ � crn for some c > 0:

In many situations, we can take J D K, or take J D xU for the open set U in the
OSC (see [13], [12]). It was proved that if the augmented tree .X;E/ is simple and
K satisfies condition (H), then the natural map ˆ W @X ! K satisfies the second
inequality of the following the Hölder equivalent property:

C �1jˆ.�/ � ˆ.�/j � �a.�; �/˛ � C jˆ.�/ � ˆ.�/j; for all � ¤ � 2 @X;

where ˛ D � log r=a and C > 0 is a constant ([13], Proposition 3.5). (The first
inequality always holds.)

Condition (H) is satisfied by the standard self-similar sets, for example, the
generating IFS satisfies the strongly separation condition, or the OSC and all the
parameters of the similitudes are rational numbers (for more discussions on this
condition, we refer to [10, 19]). Note that all the IFSs considered here satisfy
condition (H).

Theorem 5.1. Let K; K 0 be two N -self-similar sets that are generated by two IFSs
with the same contraction ratio r (as in (10)) and satisfy condition (H). If their
associated augmented trees are simple, then K ' K 0.

In particular, K and K 0 are Lipschitz equivalent to the N -Cantor set with con-
traction ratio r .

Proof. We remark that the theorem is a modification of Theorem 3.10 in [13] by
omitting the rearrangeable condition on A, as it is not necessary in view of The-
orem 4.5. The proof is the same, we just sketch the main idea for completeness.
Let .X;E/; .Y;E/ be the two augmented trees induced by K; K 0 respectively. Then
Theorem 4.5 implies that

@.X;E/ ' @.X;Ev/ D @.Y;Ev/ ' @.Y;E/I
we let ' denote the bi-Lipschitz mapping from @.X;E/ onto @.Y;E/. Moreover,
there exist Hölder equivalent maps ˆ1 W @.X;E/ ! K and ˆ2 W @.Y;E/ ! K 0
(depend on the parameter a in the hyperbolic metric �a). Then � D ˆ2 ı ' ı ˆ�1

1

is the desired bi-Lipschitz map from K onto K 0.
The last statement also follows if we treat .X;Ev/ as an augmented tree induced

by a strongly separated IFS.
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Corollary 5.2. The IFSs in Theorem 5.1 satisfy the open set condition.

Proof. It follows from the same proof as Corollary 3.11 in [13]. The Lipschitz
equivalence implies that 0 < Hs.K/ < 1 where s is the dimension of K, which
implies the open set condition is satisfied by Schief’s criterion [18].

Corollary 5.3. Let ¹Kiº`
iD1 be a sequence of self-similar sets satisfying the as-

sumptions of Theorem 5.1. Let

X D ¹oº [
� [

n�0

¹1; 2; : : : ; `º†n
�

be a tree, and be equipped with a horizontal edge set

Eh D ¹.i i; j j/ W jij D jjj; .Ki /i \ .Kj /j ¤ ;; 1 � i; j � k; i; j 2 [n�0†nº:

Suppose the union [`
iD1Ki satisfies condition (H) in the sense that if .Ki /i \

.Kj /j D ; for any i; j 2 †n and n � 1 then dist..Ki/i; .Kj /j/ � crn for some
c > 0. Then [`

iD1Ki ' Kj for all j , provided the augmented tree .X;Ev [ Eh/ is
simple.

Proof. Since @X ' @Xj and @Xj is Hölder equivalent to Kj , it suffices to show
that @X and [`

iD1Ki are also Hölder equivalent. We omit the proof as it is the
same as that of Proposition 3.5 in [13] with some minor modifications.

In the following, we will illustrate our results by some simple examples. The
first one was raised in [13] (see also [24]) that its incidence matrix is not primitive.

Example 5.4. Let K be a self-similar set generated by ¹S1.x/ D x
5
; S2.x/ D

�1
5
.x � 4/; S3.x/ D 1

5
.x C 4/º (see Figure 5). Then K is Lipschitz equivalent to

a 3-Cantor set.

It is easy to see that the equivalence classes are Œ1�; Œ2; 3�. Hence the augmented
tree for K is simple, and the incidence matrix is

A D
�
1 1

0 3

�
:

By Theorem 5.1, K is Lipschitz equivalent to the 3-Cantor set K 0 generated by
¹S 0

i .x/ D 1
5
.x C 2.i � 1//º3

iD1.
The next two examples concern the union of Cantor-type sets, which are not

self-similar.
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:::
:::

Figure 5. Self-similar sets K and K0 of Example 5.4.

Example 5.5. Let 0 < r < 1=2,

d1 D
�
0

0

�
; d2 D

�
r�1 � 1

r�1 � 1

�
; d3 D

�
c1

r�1 � 1 � c2

�
; d 0

3 D
�
r�1 � 1 � c3

c4

�
;

where 0 < c1; c2; c3; c4 < r . Let

D1 D ¹d1; d2; d3º;
D2 D ¹d1; d2; d 0

3º
and let K, K 0 be the self-similar sets generated by

¹Sj .x/ D r.x C dj / W dj 2 D1º
and

¹Sj .x/ D r.x C dj / W dj 2 D2º;
respectively. Then K [ K 0 ' K ' K 0.(See Figure 6.)

Proof. Note that K and K 0 are Lipschitz equivalent to the 3-Cantor set, and they
coincide in the diagonal, more precisely, Ki \ K 0

j ¤ ; if and only if i D j 2S
n�0¹1; 2ºn WD †�

2 . Let

X D ¹oº [
� [

n�0

¹1; 2º†n
�

with † D ¹1; 2; 3º,

and define the set of horizontal edges by

Eh D ¹.1i; 2i/ W i 2 †�
2º:

Then .X;E/ where E D Ev [ Eh is the augmented tree induced by K [ K 0. The
equivalence classes of .X;E/ are Œ1; 2�; Œ3�, and the corresponding incidence matrix
is

A D
�
2 2

0 3

�
:

Hence the augmented tree is simple and the conclusion follows by Corollary 5.3.
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Figure 6. Example 5.5: K, K0 and K [ K0 for r D 2=5; ci D 0; i D 1; : : : ; 4.

Proposition 5.6. Let C be the standard Cantor set for which the IFS is

S0.x/ D x=3; S2.x/ D .x C 2/=3:

Then C [ .C C ˛/ ' C when ˛ > 1 or 0 � ˛ � 1 is a rational.

Proof. Let Ka D C and Kb D C C ˛. When ˛ > 1, the two sets are disjoint, the
conclusion follows from Proposition 2.8 for the disjoint union of two trees. For
˛ D 1, then Ka touches Kb at one point. We can use the same argument as in
Example 5.5 to show that the augmented tree induced by Ka [ Kb is simple, and
has incidence matrix

A D
�
1 2

0 2

�
;

which yields Ka [ Kb ' C.
Now we consider the rational ˛ 2 .0; 1/. For the radix expansion ˛ D P1

nD1
˛n

3n ,
with ˛n 2 ¹�2; 0; 2º, it is easy to check that ˛ has two expansions if and only if
˛ D Pk

nD1 ˛n3�n ˙ 3�k , and the representing sequences are

˛1 : : : ˛k�1022 : : : and ˛1 : : : ˛k�12.�2/.�2/ : : : : (12)

Let

D D ¹0; 2º
and

Dn D D C 3D C 
 
 
 C 3n�1D; n � 1:

Then the Cantor set C satisfies the following set equation for all n � 1:

C D
[

d2Dn

1

3n
.C C d/:
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Hence 3kC1.Ka [ Kb/ can be written as

3kC1.Ka [ Kb/ D 3kC1
�
C [ .C C ˛/

� D
[

d;d 02DkC1

C [ .C C d � d 0 C 3kC1˛/

which is a finite disjoint union of translates of C and C [ .C C 1/. By the last part
and Corollary 5.3, we conclude that Ka [ Kb ' C.

It remains to consider the case that the rational ˛ 2 .0; 1/ has a unique expres-
sion. The representing sequence has the form

˛1˛2 : : : D ˛1 : : : ˛N �� : : : ; (13)

where � D ˛N C1 : : : ˛N CM , and is not equal to the expression in (12). For con-
venience, we denote the symbolic space of C by †� D S

n�0 †n with † D ¹0; 2º,
and let X D ¹oº [ ¹a; bº†� be the union tree for Ka [ Kb. Let I D Œ0; 1� be the
unit interval and Ii D Si.I /, then for any i; j 2 †n, Ii \ Ij ¤ ; if and only if
Ii D Ij. Define

Eh D ¹.ai; bj/ W jij D jjj; Ii \ .Ij C ˛/ ¤ ;º;

and E D Ev [ Eh, then .X;E/ is the augmented tree induced by Ka [ Kb. Note
that for distinct i; j 2 †n, .ai; bj/ 2 Eh is equivalent to jSi.0/� .Sj.0/C ˛/j < 3�n

(strict inequality holds, otherwise it will reduce to the previous case that ˛ has two
radix expansions) i.e.,

ˇ̌̌
ˇ

nX
kD1

ik � jk � ˛k

3k
�

1X
kDnC1

˛k

3n

ˇ̌̌
ˇ <

1

3n
; (14)

which is also equivalent to

ik � jk D ˛k ; 1 � k � n (15)

in view of the unique radix expansion of ˛. That (14) together with the diameter
of Ii or Ij C ˛ being 3�n, implies that any horizontal component T of .X;E/ must
satisfy #T � 2. Note that all the subtrees TD with #T D 1 are graph isomorphic.
Also we claim that

if T D ¹ai; bjº; T 0 D ¹ai0; bj0º are two horizontal components with i; j 2 †n

and i0; j 2 †nCM ; n > N , then T � T 0.

Then all horizontal components are equivalent to those in the first N CM C1 levels
of X . Hence .X;E/ is simple, which yields the desired result by Corollary 5.3.
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To prove the claim, we first define a map

� W TD �! T 0
D

by
�.aiu/ D ai0u; �.bjv/ D bj0v

and then show that � is a graph isomorphism. Let .x; y/ be a horizontal edge
in TD. Suppose x D aiu; y D bjv, where i D i1 : : : in; u D inC1 : : : inCk and
j D j1 : : : jn; v D jnC1 : : : jnCk . Then by (15), we have

im � jm D ˛m; 1 � m � n C k:

Since .ai0; bj0/ 2 Eh, (15) again implies i 0
m � j 0

m D ˛m; 1 � m � n C M ; also by
the definition of � and (13),

i 0
mCM � j 0

mCM D im � jm D ˛m D ˛mCM ; n C 1 � m � n C k:

By (15), we have .ai0u; bj0v/ 2 Eh. Therefore � preserves the horizontal edges.
Analogously, ��1 has the same property. This completes the proof of the claim.

To conclude, we mention that we only consider the augmented trees arise from
the IFS with equal contraction ratio. There are interesting investigations of Lips-
chitz equivalence of totally disconnected self-similar sets with non-equal contrac-
tion ratios [17, 16, 21, 24]. In particular, in [24], Xi and Xiong gave an extensive
study of the exponentially commensurable contraction ratios and the open set con-
dition; they obtained a complete classification of such case in terms of the ideal
classes. It will be interesting to show how this hyperbolic graph approach can be
extended to such cases.
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