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On McMullen-like mappings

Antonio Garijo1 and Sébastien Godillon

Abstract. We introduce a generalization of particular dynamical behavior for rational

maps. In 1988, C. McMullen showed that the Julia set of f�.z/ D zn C �=zd for j�j ¤ 0

small enough is a Cantor set of circles if and only if 1=n C 1=d < 1 holds. Several other

speci�c singular perturbations of polynomials have been studied in recent years, all have

parameter values where a Cantor set of circles is present in the associated Julia set. We

unify these examples by de�ning a McMullen-like mapping as a rational map f associated

to a hyperbolic postcritically �nite polynomial P and a pole data D where we encode the

location of every pole of f and the local degree at each pole. As for the McMullen family

f�, we characterize a McMullen-like mapping using an arithmetic condition depending

only on .P;D/. We show how to check the de�nition in practice providing new explicit ex-

amples of McMullen-like mappings for which a complete topological description of their

Julia sets is made.
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1. Introduction

�e Fatou set of a rational map f W yC ! yC, denoted by F.f /, is de�ned to be

the set of points at which the family of iterates of f is a normal family in the

sense of P. Montel. �e complement of the Fatou set in the Riemann sphere yC,

is the Julia set, denoted by J.f /. �e Julia set is known to be the closure of

the set of repelling periodic points of f , and it is the set where f has sensitive

dependence on initial conditions. Equivalently, the Julia set is the smallest closed

set containing at least three points which is completely invariant under f . For a

deep and helpful introduction on iteration of rational maps see [1, 4, 17, 22]. One

of the main goals in complex dynamics is to study the topological properties of

the Julia set and the dynamics of f restricted to J.f /.

In [15], C. McMullen showed the �rst example of Julia set which is a Can-
tor set of circles, namely homeomorphic to the product of the Cantor set and a

simple closed curve. �e rational map that exhibits this phenomenon, hereafter

McMullen family, is f�.z/ D zn C �=zd for some values of n; d 2 N and � 2 C.

�e McMullen family, which can be viewed as a singular perturbation of the poly-

nomial z 7! zn when we add a pole of order d at the origin, has been the focus

of attention for several reasons. On the one hand, the parameter space has com-

plex dimension one, since the “free” critical points of f� behave in a symmetric

way, and on the other hand, it exhibits classical Julia sets including Cantor sets,

Sierpiński curves, and Cantor sets of circles (see [8]). �e McMullen family has

been studied extensively by R. Devaney et al. [8, 9, 2], N. Steinmetz [23] and Qiu

W., P. Roesch, Wang X. and Yin Y. [20, 19] among others. We refer to [6] for a

survey of the main results about singular perturbations of complex polynomials

and references therein.

For the polynomial z 7! zn, with n > 2, in�nity and the origin are super-

attracting �xed points and the Julia set is the unit circle. When we add the per-

turbation �=zd with � ¤ 0, several aspects of the dynamics remain the same,

but others change dramatically. For instance the point at in�nity is still a super-

attracting �xed point and there is an immediate attracting basin of 1 that we call

V1. However, there is a neighborhood of the pole located at the origin that is

now mapped d -to-1 onto a neighborhood of 1. When this neighborhood of 0

is disjoint from V1, we call it the trap door and denote it by T0. Every point

that escapes to in�nity and does not lie in V1 has to do so by passing through T0.

Since the degree of f� changes from n to nCd , some additional critical points are

created. �e set of critical points includes 1 and 0 whose orbits are completely

determined, so there are nCd additional “free” critical points. �e orbits of these

points are of fundamental importance in characterizing the Julia set of f�.
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McMullen showed that if the arithmetic condition 1=n C 1=d < 1 holds and if

the free critical values lie in the trap door T0 (this second condition being satis�ed

as soon as j�j ¤ 0 is small enough) then the Julia set of f� is a Cantor set of

circles (see [15, 8, 7]). Under these assumptions we notice that the n C d free

critical points belong to a doubly connected Fatou component A separating the

trap door T0 from the immediate attracting basin of in�nity V1, and such that f�

maps the annulus A over T0 with degree n C d .

In recent years, several works have appeared in the literature dealing with sin-

gular perturbations of polynomials of the form Pc.z/ D zn C c where c is chosen

to be the center of a hyperbolic component of the corresponding Multibrot set

and adding a perturbation with one or several poles (see for instance [2, 11]). Fig-

ure 1 displays the Julia set of three singular perturbations of polynomials. �e

�rst one corresponds to a member of the McMullen family, concretely the ratio-

nal map z 7! z3 � 10�2=z3. �e second one is the Julia set of the rational map

z 7! z3 C i � 10�7=z3, that corresponds to a singular perturbation of the cubic

polynomial z 7! z3 C i , that exhibits a super-attracting cycle 0 7! i 7! 0, when

we add a pole at the origin. Finally, the third one is the Julia set of the rational

map z 7! z2 � 1 C 10�22=.z7.z C 1/5/ that corresponds to a perturbation of the

quadratic polynomial z2 � 1, with super-attracting cycle 0 7! �1 7! 0, when we

add two poles, one at z D 0 and another one at z D �1. In this �gure we also

show the dynamical plane of the corresponding polynomial and we mark the Fatou

component with a number where we add a pole with corresponding local degree.

We remark that all these examples present Cantor sets of circles in their Julia set.

�e main goal of this paper is to present a uni�ed approach to this kind of

dynamical systems. We �rstly de�ne what we call a McMullen-like mapping. Here

we give an idea and we refer to the next section for a precise de�nition. Before the

de�nition we need two ingredients: the �rst one is a hyperbolic postcritically �nite

polynomial (hereafter HPcFP) and the second one is a pole data that encodes the

information about the poles (locations and local degrees).

A McMullen-like mapping of type .P;D/, formed by a HPcFP P and a pole

data D, is a rational map f verifying the following conditions. �e �rst condition

is that 1 is a super-attracting �xed point of f , whose immediate attracting basin

is denoted by V1, and that @V1 is a homeomorphic copy of the Julia set of the

polynomial P . Outside the Fatou components that appears in the pole data D, the

second condition requires that the dynamics of f is basically that of the polyno-

mial P . �e third condition is about the trap doors which are simply connected

domains mapped by f onto V1 according to the pole data D. Moreover, around

every trap door we require the existence of an annulus (containing some critical
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Figure 1. �ree examples of McMullen-like mappings. On the left, we show the dynamical

plane of the polynomial z 7! z3 (up) and the rational map z 7! z3 � 10�2=z3 (down).

In the middle, the polynomial z 7! z3 C i and the rational map z 7! z3 C i � 10�7=z3.

And �nally, on the right, the polynomial z 7! z2 � 1 and the rational map z 7! z2 � 1 C
10�22=.z7.z C 1/5/. In each case, the bounded Fatou component where we put a pole has

been marked with the local degree.

points) separating the corresponding trap door from V1 and mapped by f onto a

simply connected domain. Finally, the last condition on the critical points of f en-

sures that the forward orbit under f of every annulus described above eventually

reaches a trap door.

�e main result of this paper �eorem A, about the existence of McMullen-

like mappings. More precisely, given a pair .P;D/, formed by a HPcFP P and

a pole data D, we can characterize the existence of a McMullen-like mapping of

type .P;D/ under an arithmetic condition. We also describe the Julia set of any

McMullen-like mapping.

We organize the rest of the paper in the following way. In Section 2 we give

the precise de�nition of a pole data (De�nition 2.1) and of a McMullen-like map-

ping (De�nition 2.2). �en we describe the Julia set of any McMullen-like map-

ping (�eorem 2.5) and we show some examples from the literature regarding this

kind of rational maps (Subsection 2.3). In Section 3 we state the main result of

this work, namely �eorem A which characterizes the existence of a McMullen-

like mapping of type .P;D/ using an arithmetic condition (?) depending on the

polynomial P and the pole data D. �e rest of Section 3 is devoted to proving

�eorem A. We �rst use the theory developed by W. �urston about obstruc-
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tions (see [10, 14]) to prove the necessity of the arithmetic condition (?) (Subsec-

tion 3.2). �en using quasiconformal surgery (see [21, 3]) we are able to construct

a McMullen-like mapping of given type .P;D/ assuming only the arithmetic con-

dition (?) (Subsection 3.3), proving thus the su�ciency. Finally, in Section 4 we

give some new examples of McMullen-like mappings. In particular, we give an

explicit expression of a McMullen-like mapping of minimal degree 4.

Acknowledgments. �e �rst author is partially supported by the Catalan grant

2009SGR-792 and by the Spanish grant MTM-2008-01486 Consolider (including a

FEDER contribution).

2. De�nition and properties of McMullen-like mappings

2.1. De�nition of McMullen-like mappings. Let P be a hyperbolic postcriti-

cally �nite polynomial (HPcFP for short), namely a polynomial map P W C ! C

of degree n D deg.P / > 2 such that every critical point is eventually mapped

under iteration to a super-attracting periodic cycle. �e Julia set J.P / is con-

nected and the Fatou set F.P / contains countably many connected components

which are simply connected. Moreover the unbounded Fatou component, denoted

by U1, is a completely invariant super-attracting basin with @U1 D J.P /, and

every bounded Fatou component U is eventually mapped to a periodic cycle of

immediate super-attracting basins (see [1, 4, 17, 22]).

We arbitrary choose a labeling of the �nitely many periodic bounded Fatou

components, of the following form

¹Ui;j j 1 6 i 6 N and j 2 Z=piZº

where N > 1 is the number of bounded super-attracting periodic cycles, pi > 1

is the period of the i-th cycle, and so that P.Ui;j / D Ui;j C1 for every 1 6 i 6 N

and j 2 Z=piZ. Moreover for every periodic bounded Fatou component Ui;j ,

we denote by ni;j the degree of the restriction P jUi;j
, which coincides with the

degree of the restriction P j@Ui;j
. Notice that the Riemann–Hurwitz formula gives

n � 1 D
P

i;j .ni;j � 1/.

De�nition 2.1 (pole data). A pole data D associated to a HPcFP P is a nonempty

collection of periodic bounded Fatou components of P , each provided with a pos-

itive integer. More precisely, D is the data of a nonempty subset of ¹Ui;j j 1 6

i 6 N and j 2 Z=piZº and a function from this subset to N n ¹0º denoted by

Ui;j 7! di;j .
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With abuse of notation, we write Ui;j 2 D if and only if Ui;j is picked in the

pole data D, and conversely U … D for every bounded Fatou component U which

is not a Ui;j 2 D.

�e degree of the pole data D is de�ned to be

d D deg.D/ WD
X

Ui;j 2D
di;j > 1:

We remark that if there is a simply connected domain V1 � yC and an orien-

tation preserving homeomorphism ' W yC ! yC so that '.@U1/ D @V1 then we

may de�ne for every bounded Fatou component U of P a simply connected do-

main V.U / � yC as the unique connected component of yC n '.@U / which does

not intersect V1 (it is well de�ned because @U is a simple closed curve since P is

hyperbolic, see for instance Lemma 19.3 in [17]). In order to lighten the notation,

we write Vi;j D V.Ui;j / for every 1 6 i 6 N and j 2 Z=piZ.

De�nition 2.2 (McMullen-like mapping). Let D be a pole data associated to a

HPcFP P . A McMullen-like mapping of type .P;D/ is a rational map f W yC ! yC
which satis�es the following conditions.

(i) �ere exist a simply connected domain V1 � yC and an orientation preserving

homeomorphism ' W yC ! yC such that f .V1/ D V1, '.@U1/ D @V1, and

f j@V1 ı ' D ' ı P j@U1 .

(ii) For every U … D, f .V .U // D V.P.U //.

(iii) For every Ui;j 2 D, there exist a simply connected domain Ti;j � Vi;j , called

a trap door, and a doubly connected domain Ai;j � Vi;j nTi;j which separates

Ti;j from V1 such that

� f .Ti;j / D V1 and f jTi;j
has degree di;j ;

� f .Ai;j / is a simply connected domain contained in V.P.Ui;j // D Vi;j C1

and f jAi;j
is a proper map (namely f .@Ai;j / D @f .Ai;j /);

� f has no critical points in Vi;j n .Ai;j [ Ti;j /.

(iv) For every critical point c of f , if c is eventually mapped under iteration of f

into Vi;j for some Ui;j 2 D, or equivalently if

tc WD min¹k > 1 j 9Ui;j 2 D; f k.c/ 2 Vi;j º < C1;

then c is mapped into the corresponding trap door, namely f tc .c/ 2 Ti;j .
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According to points (i) and (ii) above, f jV1 W V1 ! V1 is a holomorphic

branched covering of degree n D deg.P / with n � 1 critical points counted with

multiplicity, and for every U … D, f jV.U / W V.U / ! V.P.U // is a holomorphic

branched covering of same degree as P jU W U ! P.U / with the same number of

critical points counted with multiplicity. �e following lemma extends point (iii)

above by describing how f acts on each Vi;j .

Lemma 2.3. For every Ui;j 2 D, denote by Aout
i;j the closed annulus between @Vi;j

and @Ai;j , and by Ain
i;j the closed annulus between @Ai;j and @Ti;j . �en the action

of f on Vi;j D Aout
i;j [ Ai;j [ Ain

i;j [ Ti;j is as follows:

� f .Aout
i;j / is the closed annulus in Vi;j C1 between @Vi;j C1 and @f .Ai;j /, and

f jAout
i;j

is a holomorphic covering of degree ni;j ;

� f .Ai;j / is a simply connected domain in Vi;j C1, and f jAi;j
is a holomorphic

branched covering of degree ni;j Cdi;j with ni;j Cdi;j critical points counted
with multiplicity;

� f .Ain
i;j / is the closed annulus between @f .Ai;j / and @V1, and f jAin

i;j
is a

holomorphic covering of degree di;j ;

� f .Ti;j / D V1, and f jTi;j
is a holomorphic branched covering of degree di;j

with di;j � 1 critical points counted with multiplicity.

In particular f .Vi;j / D yC (and hence f jVi;j
is not a proper map).

Proof. Since f has no critical points in Vi;j n .Ti;j [ Ai;j /, it follows that f jAi;j

has degree

deg.f jAi;j
/ D deg.f j@Vi;j

/ C deg.f jTi;j
/ D ni;j C di;j

because deg.f j@Vi;j
/ D deg.P j@Ui;j

/ D ni;j from point (i) in De�nition 2.2. �e

remaining easily follows by using the Riemann–Hurwitz formula.

Notice that each of the critical points c 2 Ai;j satis�es f .c/ 2 Vi;j C1.

It follows from De�nition 2.2 that tc 6 pi < C1 and tc only depends on Ai;j ,

namely on Ui;j 2 D. �e following lemma shows that Ai;j may be chosen in

De�nition 2.2 in order that the whole image f tc .Ai;j / is actually the trap door

containing f tc .c/.
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Lemma 2.4. For every Ui;j 2 D, we may assume without loss of generality that
f ti;j .Ai;j / D Ti;j Cti;j

where

ti;j WD min¹k > 1 j Ui;j Ck 2 Dº:

In particular, tc D ti;j for every critical point c 2 Ai;j .

�is result is similar to the �rst proposition of Section 3 in [8] for the McMullen

mapping f�.z/ D znC�=zd , except we can not use the symmetry of the map here.

Proof. Remark that f ti;j �1.Vi;j C1/ D Vi;j Cti;j
from the de�nition of ti;j and

point (ii) in De�nition 2.2, and the critical values of f ti;j �1jVi;j C1
lie in Ti;j Cti;j

from point (iv). �erefore the preimage of Ti;j Cti;j
under f ti;j �1jVi;j C1

is a simply

connected domain in Vi;j C1.

Let

A0
i;j D

®
z 2 Vi;j

ˇ̌
f .z/ 2 .f ti;j �1jVi;j C1

/�1.Ti;j Cti;j
/
¯
:

It follows that f .A0
i;j / is a simply connected domain in Vi;j C1, f jA0

i;j
is a proper

map (since f .Vi;j / D yC from Lemma 2.3), and f ti;j .A0
i;j / D Ti;j Cti;j

. Notice

that A0
i;j � Vi;j n Ti;j because f .Ti;j / D V1 is outside Vi;j C1. Furthermore,

every critical point c 2 Ai;j satis�es f ti;j .c/ 2 Ti;j Cti;j
from the de�nition of

ti;j and point (iv), and hence is in A0
i;j . �erefore f has no critical points in

Vi;j n .A0
i;j [ Ti;j /.

Consequently, it is enough to show that A0
i;j is a doubly connected domain

which separates Ti;j from V1. At �rst remark that f jA0
i;j

is actually a holomorphic

branched covering of degree deg.f jA0
i;j

/ D ni;j Cdi;j with �.f jA0
i;j

/ D ni;j Cdi;j

critical points counted with multiplicity from Lemma 2.3 since every critical point

and every cocritical point of f jAi;j
is in A0

i;j by de�nition. Denote by ¹C` j 1 6

` 6 Lº the collection of L > 1 connected components of A0
i;j , and by m` > 1 the

number of connected components in every @C`. �e Riemann–Hurwitz formula

gives

2 � m` D .2 � 1/ deg.f jC`
/ � �.f jC`

/; 1 6 ` 6 L;

that leads by summing to

2L�
LX

`D1

m` D
LX

`D1

deg.f jC`
/�

LX

`D1

�.f jC`
/ D deg.f jA0

i;j
/��.f jA0

i;j
/ D 0: (1)

Furthermore, every simply connected components of Vi;j nA0
i;j must contain some

points which are mapped into V1 � yC n f .A0
i;j /, and hence must contain Ti;j

from Lemma 2.3. In particular there is no m` > 3, and (1) implies that every
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C` is a doubly connected domain which separates Ti;j from V1. Assume the

.C`/16`6L are ordered labelled from @Ti;j to @Vi;j , then deg.f jC1
/ > di;j C 1

and deg.f jCL
/ > 1 C ni;j lead to a contradiction as soon as L > 2.

As a consequence, the orbit of Ai;j is as follows:

Ai;j � Vi;j ; with Ui;j 2 D;

f k.Ai;j / � Vi;j Ck; for all 1 6 k < ti;j ; with Ui;j Ck … D;

f ti;j .Ai;j / D Ti;j Cti;j
� Vi;j Cti;j

; with Ui;j Cti;j
2 D;

f k.Ai;j / D V1; for all k > ti;j :

2.2. Julia sets of McMullen-like mappings. �e following result describes the

Julia set of any McMullen-like mapping.

�eorem 2.5. If f is a McMullen-like mapping of type .P;D/ for some pole
data D associated to a HPcFP P , then f is a hyperbolic rational map of degree
deg.f / D deg.P / C deg.D/ with disconnected Julia set, every Fatou component
is either simply or doubly connected, and J.f / contains

� countably many preimages of @V1 which is a �xed Julia component quasisy-
metrically equivalent to @U1 D J.P /;

� countably many Cantor sets of circles such that every pair of simple closed
curves in each Cantor set of circles belong to di�erent Julia components;

� and, if P is not a�ne conjugate to z 7! zn, uncountably many point Julia
components which accumulate everywhere on J.f /.

�ere is actually much more structure in the Julia set J.f /. Indeed, countably

many simple closed curves are eventually mapped under iteration onto a proper

subset of @V1. �erefore every Julia component which contains such a simple

closed curve is actually quasisymetrically equivalent to a �nite covering of @U1 D
J.P /, and hence comes with in�nitely many “decorations” attached to the simple

closed curve, provided P is not a�ne conjugate to z 7! zn (this structure has

already been noticed in [7, 11]). We will see in the proof below that except for the

preimages of @V1, all others Julia components are either points or simple closed

curves (in particular, every buried Julia component is either a point or a simple

closed curve, compare with [12]), that provides a complete topological description

of all Julia components.
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Proof. We compute the degree of the rational map f . �e Riemann–Hurwitz

formula gives 2 deg.f / � 2 D �.f / where �.f / denotes the number of critical

points of f counted with multiplicity. From the de�nition of a McMullen-like

mapping (De�nition 2.2), we have

�.f / D �.f jV1/ C �0.f / C
X

Ui;j 2D
�.f jAi;j

/ C
X

Ui;j 2D
�.f jTi;j

/

where

� �.f jV1/ D n � 1 is the number of critical points of f jV1 counted with

multiplicity;

� �0.f / is the number of critical points of f counted with multiplicity which

are neither in V1 nor in
S

Ui;j 2D Vi;j , namely

�0.f / D
X

U …D
.deg.f jV.U // � 1/

D
X

U …D
.deg.P jU / � 1/ D .n � 1/ �

X

Ui;j 2D
.ni;j � 1/I

� �.f jAi;j
/ D ni;j Cdi;j is the number of critical points of f jAi;j

counted with

multiplicity;

� �.f jTi;j
/ D di;j � 1 is the number of critical points of f jTi;j

counted with

multiplicity.

Putting everything together leads to

deg.f / D 1

2
.�.f / C 2/

D 1

2

�
2n C

X

Ui;j 2D
2di;j

�

D n C d

D deg.P / C deg.D/:

In order to prove that f is a hyperbolic map we study the orbit of every critical

point. Let c be a critical point of f . From De�nition 2.2 and Lemma 2.4, one of

the following holds:
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� either c 2 V1 (and hence tc D C1), where V1 is a �xed simply connected

domain, that corresponds to a �xed immediate attracting or super-attracting

basin;

� or c 2 Ti;j for some Ui;j 2 D (and hence tc D C1), where Ti;j is a simply

connected preimage by f of V1;

� or c 2 Ai;j for some Ui;j 2 D (and hence tc D ti;j ), where Ai;j is a doubly

connected preimage by f ti;j C1 of V1;

� or c 2 V.U / for some U … D and tc < C1, then c lies in a simply connected

preimage by f tcC1 of V1;

� or c 2 V.U / for some U … D and tc D C1, then V.U / is a simply con-

nected domain which is eventually mapped onto a periodic cycle of simply

connected domains of the form V.Ui;j / with Ui;j … D, that corresponds to a

periodic cycle of immediate attracting or super-attracting basins.

�erefore the rational map f is hyperbolic, and every Fatou component is ei-

ther simply or doubly connected.

Now, we focus on the Julia set. J.f / is disconnected since there is at least

one doubly connected Fatou component. From point (i) in De�nition 2.2, @V1
is a �xed Julia component homeomorphic to @U1. Using the surgery procedure

described in [15] (Sections 5 and 6), we can extend the topological conjugation

'j@U1 W @U1 ! @V1 to a quasiconformal conjugation on a neighborhood of

@U1, and hence @V1 is quasisymetrically equivalent to @U1 D J.P /.

Fix Ui;j 2 D and consider the orbit of the closed annulus xA D Aout
i;j [Ai;j [Ain

i;j

where Aout
i;j and Ain

i;j are de�ned as in Lemma 2.3. It turns out that f pi .A/ covers

Vi;j . �e preimage of xA by f pi contains two disjoint closed annuli both nested

in xA (more precisely, they are nested in Aout
i;j and Ain

i;j respectively) which do not

contain critical points of f pi . It is then straightforward to show (see [15] or [8])

that the non-escaping set
T

k>1.f pi /�k.A/ � J.f / is homeomorphic to a Cantor

set of circles, namely to †2 � @D where †2 D ¹0; 1ºN is the set of all one-sided

sequences on two symbols. Moreover, the topological dynamics is conjugate to

the following skew product

."0"1"2 : : : ; z/ 2 †2 � @D 7�!

8
<
:

."1"2"3 : : : ; zni;j / if "0 D 1

.�."1"2"3 : : : /; z�di;j / if "0 D 0

where

�."1"2"3 : : : / D .1 � "1/.1 � "2/.1 � "3/ : : : :
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Notice that every copy of @D which is eventually mapped under iteration by the

2-to-1 map � to the �xed copy coded by 11111 : : : , corresponds to a simple closed

curve in J.f / which is eventually mapped under iteration by f pi to @Vi;j � @V1.

�erefore, every Julia component which contains such a simple closed curve is

actually a preimage of @V1. �e others copies correspond to buried simple closed

curves, and are either preperiodic or wandering. In the �rst case (for instance the

�xed copy coded by 01010 : : : ), the surgery procedure described in [15] (Sections 5

and 6) shows that the simple closed curve is the whole Julia component. �e same

holds in the second case according to the main result in [18].

Now if P is not a�ne conjugate to z 7! zn, every preimage of @V1 comes with

in�nitely many “decorations”. In particular, Vi;j contains some disjoint closed

disks which are preimages by f pi of the whole closed disks Vi;j . Repeating

this reasoning gives uncountably many sequences of nested closed disks. It is

then straightforward to show (see [7, 11]) that the intersection of such a nested se-

quence is actually a point connected component of J.f /. �e grand orbit of such

a point consists of point Julia components as well, and it accumulates everywhere

on J.f /.

�eorem 2.6. Two McMullen-like mappings are topologically conjugate on their
Julia sets (by an orientation preserving homeomorphism of yC) if and only if they
have same type .P;D/ up to conjugation by an a�ne map.

Proof. Let f1 and f2 be two McMullen-like mappings, of type .P1;D1/ and

.P2;D2/ respectively, which are topologically conjugate on their Julia sets. Since

they both have only one Fatou component which contains the image of every

trap door, it follows from point (i) in De�nition 2.2 that P1 and P2 are topologi-

cally conjugate on their Julia sets, and hence are a�ne conjugate as HPcFP. It is

straightforward to see that the combinatorial description of all Julia components

in the proof of �eorem 2.5 concludes the proof.

2.3. Known examples of McMullen-like mappings. In this subsection we show

some known examples of McMullen-like mappings from the literature. For each

example we focus in the pair .P;D/ where P is a HPcFP and D is the pole data in

the de�nition of a McMullen-like mapping (see De�nition 2.1 and De�nition 2.2).

�e �rst example is the McMullen family given by f�.z/ D zn C �=zd . �is

rational map has 1 as a super-attracting �xed point and the only �nite preimage of

1 is the origin. �us if V1 is the immediate super-attracting basin of 1 and when

V1 does not contain the origin, there exists a unique trap door T0, a neighborhood

of the origin, that is mapped d -to-1 onto V1. We also recall that f� has n C d
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“free” critical points given by c� D .�d=n/1=.nCd/ and the corresponding free

critical values are v� D f�.c�/. In Figure 1 we show the dynamical plane of the

McMullen-like mapping z 7! z3 � 10�2=z3.

In this case the polynomial z 7! zn is a HPcFP, this is a singular case since the

Fatou set F.P / only contains two simply connected components: the immediate

super-attracting basin of 1 and the immediate super-attracting basin of 0. �us

there is a unique bounded Fatou component, denoted by U0, which coincides with

the unit disk. �e pole data D is formed by U0 and a positive integer d D d0 > 1.

From [15, 8, 7] we conclude the following result.

Proposition 2.7. Let f�.z/ D zn C �=zd be such that the free critical values v�

belong to the trap door T0 (or equivalently j�j ¤ 0 is mall enough) and the arith-
metic condition 1=n C 1=d < 1 is satis�ed, then f� is a McMullen-like mapping.

�e next two examples of McMullen-like mappings are related to the poly-

nomial Pc.z/ D zn C c where c 2 C is a center of a hyperbolic component of

the corresponding Multibrot set. �e choice of the parameter c ensures that Pc

is HPcFP since the orbit of the critical point located at 0 is a periodic orbit. We

denote by p the period of 0 and by U0; U1; : : : ; Up�1 the Fatou components con-

taining 0; Pc.0/; : : : ; P
p�1
c .0/, respectively.

�e �rst McMullen-like mapping related to Pc was introduced in [2] where

the authors studied the family of rational maps g�.z/ D zn C c C �=zn. In this

case the pole data is formed by the Fatou component U0 and the positive integer n,

making thus the �rst generalization of the McMullen family. In Figure 1 we show

the dynamical plane of the McMullen-like mapping z 7! z3 C i � 10�7=z3. In [2]

the authors proved the following result.

Proposition 2.8. Let g�.z/ D zn C c C �=zn be such that j�j ¤ 0 is small
enough and the arithmetic condition n > 2 is satis�ed, then g� is a McMullen-
like mapping.

�e second McMullen-like mapping related to Pc.z/ D z2 C c for n D 2

was introduced in [11] where the authors studied the family h�.z/ D z2 C c C
�=

Qp�1
j D0 .z � cj /dj with cj WD P

j
c .0/ for every 0 6 j 6 p � 1. In this case h�

has a pole of order dj in every point cj of the super-attracting orbit c0 D 0 7!
c1 D Pc.0/ 7! : : : 7! cp�1 D P

p�1
c .0/. �e pole data D is formed by the

Fatou components ¹U0; U1; : : : ; Up�1º, and the corresponding positive integers

d0; d1; : : : ; dp�1. In Figure 1 we show the dynamical plane of the McMullen-like

mapping z 7! z2 � 1 C 10�22=.z7.z C 1/5/. In [11], the following is proved.
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Proposition 2.9. Let h�.z/ D z2 C c C �=
Qp�1

j D0 .z � cj /dj be such that j�j ¤ 0

is small enough and the arithmetic conditions 2d1 > d0 C 2 and dj C1 > dj C 1

for every 1 6 j 6 p � 1 (with dp D d0) are satis�ed, then h� is a McMullen-like
mapping.

We notice that in these three examples, some arithmetic conditions are re-

quired to ensure that the corresponding rational maps are McMullen-like map-

pings. In the next section we state the main result of this paper that characterize a

McMullen-like mapping of type .P;D/ using an arithmetic condition.

3. Existence of McMullen-like mappings

3.1. �eorem A: the arithmetic condition

�eorem A. Let D be a pole data associated to a HPcFP P . �en there exists
a McMullen-like mapping of type .P;D/ if and only if the following arithmetic
condition holds:

max
16i6N

° Y

j 2Z=piZ

Ui;j …D

1

ni;j

�
Y

j 2Z=piZ

Ui;j 2D

� 1

ni;j

C 1

di;j

�±
< 1 (?)

Let us give some remarks about this arithmetic condition.

Remark 1. It is enough to check the arithmetic condition (?) for every 1 6 i 6

N such that the set of indices Ji D ¹j 2 Z=piZ j Ui;j 2 Dº is not empty.

Indeed, for every 1 6 i 6 N there is at least one degree ni;j > 2, and henceQ
j 2Z=piZ

1=ni;j < 1. Moreover, notice that if ni;j > 2 and di;j > 3 for every

Ui;j 2 D, then the arithmetic condition (?) holds. Equivalently speaking, it is

su�cient that every periodic bounded Fatou component picked in the pole data

contains a critical point, and every degree in the pole data is larger than 3.

Remark 2. If P is a�ne conjugate to z 7! zn, namely if N D 1 and p1 D 1, then

the arithmetic condition (?) reduces to the well known arithmetic condition 1=nC
1=d < 1 (see [15] and Proposition 2.7). �e same holds if P is a�ne conjugate to

z 7! zn C c where c is a center of a hyperbolic component of the corresponding

Multibrot set, and if D only consists of the bounded Fatou component containing

the unique critical point (see Propositions 2.8 and 4.2). �e arithmetic conditions

introduced in [11] (see Proposition 2.9) implies the arithmetic condition (?), but

the converse is not true (see Proposition 4.3).



On McMullen-like mappings 263

Remark 3. It is straightforward to show that the degree of a McMullen-like map-

ping of type .P;D/, that is deg.P / C deg.D/, has a lower bound according to

condition (?). �is lower bound is reached for a polynomial P of degree n D 3

with two simple critical points in a same super-attracting cycle of period 2, and a

pole data which only consists of one of the two bounded Fatou components con-

taining a critical point with d D 1 (see Proposition 4.1). Indeed, in that case (?)

reduces to 1=2 � .1=2 C 1=1/ D 3=4 < 1. In particular, there is no McMullen-like

mappings of degree less than 4.

Remark 4. Finally, and according to �eorem 2.6, the set of all types .P;D/,

where P is a monic centered HPcFP and D is an associated pole data which sat-

is�es condition (?), is in 1-to-1 correspondence with the set of all topological

conjugation classes of Julia sets of McMullen-like mappings.

3.2. Proof of �eorem A: necessity of the arithmetic condition. �e main

ingredient to prove the necessity of the arithmetic condition (?) is the theory of

�urston obstructions for rational maps (see [10, 14]).

Assume there exists a McMullen-like mapping f of a given type .P;D/. De-

note by Pf the closure of its postcritical set. Fix 1 6 i 6 N such that the set of

indices Ji D ¹j 2 Z=piZ j Ui;j 2 Dº is not empty. Remark that every Ui;j may

be uniquely written as Ui;j 0Ck for some Ui;j 0 2 D and some 1 6 k 6 ti;j 0 .

For every j 2 Z=piZ, consider an arbitrary simple closed curve �i;j in Vi;j

such that

� �i;j separates @Vi;j from f k.Ai;j 0/ � Vi;j if Ui;j D Ui;j 0Ck … D with

1 6 k < ti;j 0 ;

� �i;j separates @Vi;j from f ti;j 0 .Ai;j 0/ D Ti;j (by Lemma 2.4) if Ui;j D
Ui;j 0Cti;j 0 2 D.

From Lemma 2.3, every f k.Ai;j 0/ contains at least ni;j 0 C di;j 0 > 2 postcritical

points. �us, it is straightforward to show that �i D ¹�i;j j j 2 Z=piZº is a mul-

ticurve, namely a �nite collection of disjoint, non-homotopic, and non-peripheral

simple closed curves in yC nPf (recall that a simple closed curve in yC nPf is said

to be non-peripheral if each connected component of its complement contains at

least two points in Pf ).

For every �i;j 2 �i , consider the connected components of f �1.�i;j / which

are homotopic in yCnPf to some simple closed curves in �i . According to De�ni-

tion 2.2 and Lemma 2.3, any such connected component lies in Vi;j �1, and hence

is homotopic in yC n Pf to �i;j �1. More precisely, there are

� only one connected component if Ui;j �1 … D, which is mapped onto �i;j

with degree ni;j �1 (from point (ii) in De�nition 2.2);
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� two connected components if Ui;j �1 2 D, one in Aout
i;j �1 and one in Ain

i;j �1,

which are mapped onto �i;j with degrees ni;j �1 and di;j �1 respectively (from

Lemma 2.3).

It follows that the transition matrix associated to the multicurve �i may be written

as 0
BBBBBBBBB@

0

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

m1;2 0

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

m2;3

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

0

0
▲

▲

▲

▲

▲

mpi �1;pi

mpi ;1 0 0 0

1
CCCCCCCCCA

where

mj �1;j D

8
ˆ̂̂
<
ˆ̂̂
:

1

ni;j �1

if Ui;j �1 … D;

1

ni;j �1

C 1

di;j �1

if Ui;j �1 2 D:

It is straightforward to show that the associated leading eigenvalue is

�.�i / D
h Y

j 2Z=piZ

mj �1;j

i 1
pi

D
h Y

j 2Z=piZ

Ui;j …D

1

ni;j

�
Y

j 2Z=piZ

Ui;j 2D

� 1

ni;j

C 1

di;j

�i 1
pi :

Now applying �eorem B.3 and �eorem B.4 from [14] to the hyperbolic ratio-

nal map f , we get �.�i / < 1 for every 1 6 i 6 N such that Ji ¤ ;, that implies

the arithmetic condition (?).

3.3. Proof of �eorem A: construction of McMullen-like mappings. In this

section, we construct a McMullen-like mapping of an arbitrary given type .P;D/

which satis�es the arithmetic condition (?), that will show the su�ciency of (?)

and conclude the proof of �eorem A. �e method is to start from the polynomial

P and to add a pole of degree di;j on every Ui;j 2 D by quasiconformal surgery

(we refer readers to [3] for a comprehensive treatment on this powerful method).

At �rst, we need the two following technical lemmas that will allow us to divide

the Riemann sphere yC into several pieces on which a quasiregular map will be

de�ned.
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Lemma 3.1. If the arithmetic condition (?) holds then there exist some positive
real numbers .˛i;j /Ui;j 2D and .ˇi;j /Ui;j 2D such that, for all Ui;j 2 D;

˛i;j < ˇi;j

and
�ni;j Cti;j

di;j Cti;j

˛i;j Cti;j
C ˇi;j Cti;j

�
<

� ti;j �1Y

kD0

ni;j Ck

�
˛i;j :

Proof. Fix 1 6 i 6 N such that the set of indices Ji D ¹j 2 Z=piZ j Ui;j 2 Dº
is not empty, and let M be the positive constant

M D
h Y

j 2Z=piZ

Ui;j …D

1

ni;j

�
Y

j 2Z=piZ

Ui;j 2D

� 1

ni;j

C 1

di;j

�i�1=2jJi j

D
Y

j 2Ji

h ti;j �1Y

kD1

1

ni;j Ck

�
� 1

ni;j

C 1

di;j

�i�1=2jJi j
:

Remark that the arithmetic condition (?) precisely implies that M > 1.

Now pick one j0 2 Ji , let ˛i;j0
be any positive real number, and recursively

de�ne ˛i;j for every j 2 Ji by

˛i;j Cti;j
D

�
M �2 ni;j

ni;j Cti;j

h ti;j �1Y

kD1

1

ni;j Ck

�
� 1

ni;j Cti;j

C 1

di;j Cti;j

�i�1�
˛i;j : (2)

�e .˛i;j /j 2Ji
are well de�ned because the product over j 2 Ji of the terms in the

biggest brackets is 1 by de�nition of M . De�ne ˇi;j for every j 2 Ji so that

Mni;j

� 1

ni;j

C 1

di;j

�
˛i;j D ni;j

di;j

˛i;j C ˇi;j

or equivalently

ˇi;j D M˛i;j C .M � 1/
ni;j

di;j

˛i;j :

Remark that ˇi;j > ˛i;j since M > 1. Moreover, (2) may be rewritten as follows

Mni;j Cti;j

� 1

ni;j Cti;j

C 1

di;j Cti;j

�
˛i;j Cti;j

D M �1
� ti;j �1Y

kD0

ni;j Ck

�
˛i;j :

Using the de�nition of ˇi;j Cti;j
above concludes the proof since M �1 < 1.
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For every periodic bounded Fatou component Ui;j , Böttcher’s �eorem pro-

vides a Riemann mapping �i;j W D ! Ui;j such that the following diagram com-

mutes:

D
z 7! zni;j

//

�i;j
��

D
z 7! zni;j C1

//

�i;j C1
��

D //

�i;j C2
��

� � �

Ui;j
P

// Ui;j C1
P

// Ui;j C2
// � � �

� � � // D
z 7! zni;j Cpi �1

//

�i;j Cpi �1
��

D

�i;j Cpi
D �i;j

��

� � � // Ui;j Cpi �1
P

// Ui;j Cpi
D Ui;j :

An equipotential  in some Ui;j is the image by �i;j of an Euclidean circle in

D centered at 0. �e radius of this circle is called the level of  , and is denoted by

Li;j ./ 2�0; 1Œ in order that  D ¹z 2 Ui;j j j��1
i;j .z/j D Li;j ./º.

Similarly, Böttcher’s �eorem provides a Riemann mapping �1 W yCnD ! U1
which conjugates P jU1 with z 7! zn. �e equipotentials in U1 are de�ned as

well (with level > 1).

Recall that any pair of disjoint continua ;  0 in yC uniquely de�nes a doubly

connected domain denoted by A .;  0/. If ;  0 contain at least two points each,

A .;  0/ is biholomorphic to the round annulus ¹z 2 C j r < jzj < 1º where

r 2�0; 1Œ does not depend on the choice of biholomorphism. �e modulus of

A .;  0/ is de�ned to be mod .;  0/ D .2�/�1 log.1=r/. In particular if ;  0 are

two equipotentials in some Ui;j of levels Li;j ./ > Li;j . 0/ then

mod
�
;  0� D 1

2�
log

� Li;j ./

Li;j . 0/

�
:

Lemma 3.2. If the arithmetic condition (?) holds then there exist an equipotential
�1 in U1, and three equipotentials out

i;j ;  in
i;j ; 1

i;j in every Ui;j 2 D such that

(i) Li;j .out
i;j / > Li;j . in

i;j / > Li;j .1
i;j /;

(ii) mod. in
i;j ; 1

i;j / D 1
di;j

mod.�i;j C1; �1/ where �i;j C1 D P.out
i;j /;

(iii) Li;j Cti;j
.1

i;j Cti;j
/ >

� Qti;j �1

kD0
ni;j Ck

�
Li;j .out

i;j /.

Note that �i;j C1 is actually an equipotential in Ui;j C1 of level

Li;j C1.�i;j C1/ D ni;j Li;j .out
i;j /:
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Proof. Fix �1 to be any arbitrary equipotential in U1. Let r be a real number

in �0; 1Œ. In each Ui;j 2 D, de�ne out
i;j and  in

i;j to be the equipotentials of levels

Li;j .out
i;j / D r˛i;j and Li;j . in

i;j / D rˇi;j respectively, where ˛i;j and ˇi;j come

from Lemma 3.1. Notice that Li;j .out
i;j / > Li;j . in

i;j / since ˛i;j < ˇi;j . De�ne 1
i;j

in every Ui;j 2 D so that point (ii) holds, or equivalently Li;j .1
i;j / D rıi;j with

ıi;j D ˇi;j C
1

di;j
mod.�i;j C1; �1/

1
2�

ln.1
r
/

:

In particular, Li;j . in
i;j / > Li;j .1

i;j / since ˇi;j < ıi;j that completes point (i). For

the last point, using the reversed Grötzch inequality (see Appendix B in [5]),

mod.�i;j Cti;j C1; �1/ 6 C C 1

2�
ln

� 1

Li;j Cti;j C1.�i;j Cti;j C1/

�

D C C
ni;j Cti;j

2�
˛i;j Cti;j

ln

�
1

r

�
;

where C > 0 does not depend on r . Putting this in the expression of ıi;j Cti;j
leads

to

ıi;j Cti;j
6

�ni;j Cti;j

di;j Cti;j

˛i;j Cti;j
C ˇi;j Cti;j

�
C 2�C

di;j Cti;j
ln

�
1
r

�

<
� ti;j �1Y

kD0

ni;j Ck

�
˛i;j ;

provided r > 0 is small enough according to Lemma 3.1. Point (iii) follows.

Now we are going to piecewisely de�ne a quasiregular map F on yC according

to a partition induced by the equipotentials coming from Lemma 3.2. Let D1 be

the unbounded connected component of yC n �1, and W1 be the unbounded con-

nected component of yC n
S

Ui;j 2D out
i;j . Denote by D./ the bounded connected

component of yC n  for every simple closed curve  in C. Consider the partition

of yC
yC D W1

[

Ui;j 2D
.A.out

i;j ;  in
i;j / [ A. in

i;j ; 1
i;j / [ D.1

i;j //:



268 A. Garijo and S. Godillon

On W1. De�ne F jW1 to be the polynomial P in order that F continuously

extend to every out
i;j with

F.out
i;j / D P.out

i;j / D �i;j C1

and deg.F jout
i;j

/ D ni;j .

On every A. in
i;j

; 1

i;j
/. De�ne F jA. in

i;j
;1

i;j
/ in order that

F.A. in
i;j ; 1

i;j // D A.�i;j C1; �1/

and F jA. in
i;j

;1
i;j

/ is a holomorphic covering of degree di;j which continuously

extends on the boundary with F. in
i;j / D �i;j C1 and F.1

i;j / D �1. Point (ii) in

Lemma 3.2 ensures that such a holomorphic covering exists. Note that

deg.F j in
i;j

/ D deg.F j1
i;j

/ D di;j :

On every A.out
i;j

;  in
i;j

/. Continuously extend F so that

F.A.out
i;j ;  in

i;j // D D.�i;j C1/

and F jA.out
i;j

; in
i;j

/ is a quasiregular branched covering. �is extension must have

degree deg.F jout
i;j

/ C deg.F j in
i;j

/ D ni;j C di;j , and ni;j C di;j critical points

counted with multiplicity by the Riemann–Hurwitz formula (compare with the

action of a McMullen-like mapping on every Ai;j in Lemma 2.3). �e existence

of such an annulus-disk map is discussed in [3] (the section about annulus-disk

surgery by K. Pilgrim and Tan L.) and [12].

On every D.1

i;j
/. Continuously extend F so that

F.D.1
i;j // D D1

and F jD.1
i;j

/ is a quasiregular branched covering. �is extension must have degree

deg.F j1
i;j

/ D di;j , and di;j � 1 critical points counted with multiplicity by the

Riemann–Hurwitz formula (compare with the action of a McMullen-like mapping

on every Ti;j in Lemma 2.3). To construct such a quasiregular branched covering,

we may start from the map

�1 ı
�
z 7�! L1.�1/

�Li;j .1
i;j /

z

�di;j
�

ı ��1
i;j
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which is a holomorphic branched covering of degree di;j from D.1
i;j / onto D1,

and then quasiconformally modify it in a neighborhood of 1
i;j in order that the

continuous extension on 1
i;j agrees with the de�nition of F on A. in

i;j ; 1
i;j /.

Remark that F is holomorphic outside
S

Ui;j 2D.A.out
i;j ;  in

i;j / [ D.1
i;j //. �e

following lemma shows that this set does not intersect its forward orbit after �nitely

many iterations.

Lemma 3.3. For every Ui;j 2 D, the following hold:

F ti;j .A.out
i;j ;  in

i;j // � D.1
i;j Cti;j

/;

F.D.1
i;j // D D1;

and

F.D1/ � D1 � W1:

Proof. By de�nition of F on A.out
i;j ;  in

i;j / and W1,

F ti;j .A.out
i;j ;  in

i;j // D F ti;j �1.D.�i;j C1//

D P ti;j �1.D.�i;j C1//

D D.�i;j Cti;j
/;

where �i;j Cti;j
D P ti;j �1.�i;j C1/ D P ti;j .out

i;j / is an equipotential in Ui;j Cti;j
of

level

Li;j Cti;j
.�i;j Cti;j

/ D
� ti;j �1Y

kD0

ni;j Ck

�
Li;j .out

i;j /:

Point (iii) in Lemma 3.2 gives Li;j Cti;j
.1

i;j Cti;j
/ > Li;j Cti;j

.�i;j Cti;j
/ that im-

plies the �rst inclusion. �e equality follows from de�nition of F on D.1
i;j /.

Finally, D1 � U1 � W1 by de�nition of W1, and hence F jD1 D P jD1 is

conjugate to the action of z 7! zn on yCnL1.�1/D that concludes the proof.

As a consequence, the iterated pullback by F of the standard complex structure

provides a F -invariant Beltrami form on yC with uniformly bounded dilatation.

�en, after integrating, there exists a quasiconformal map ˆ W yC ! yC such that

f D ˆ ı F ı ˆ�1 is holomorphic on yC, namely a rational map. We refer readers

to [21, 3] for more details about this result, which is known as the Shishikura

principle for quasiconformal surgery.

Finally, it is straightforward to see that f is actually a McMullen-like mapping

of type .P;D/ by construction.



270 A. Garijo and S. Godillon

4. Further examples of McMullen-like mappings

In this section we present several new speci�c examples of McMullen-like map-

pings showing how to check in practice the conditions in De�nition 2.2.

In the �rst example we give an explicit expression of a McMullen-like mapping

of minimal degree 4 (see Remark 3 below �eorem A). We notice that the �rst

example of a rational map of degree less than 5 with buried Julia components was

recently founded in [12] for an explicit family of cubic rational maps. We prove

the following result.

Proposition 4.1. Let q�.z/ D 2z3 � 3z2 C 1 C �=z such that j�j ¤ 0 is small
enough, then q� is a McMullen-like mapping of minimal degree 4.

Proof. We �rst consider the basic dynamics of the cubic polynomial Q.z/ D
2z3 �3z2 C1. It is a hyperbolic postcritically �nite polynomial. �e critical points

of Q are 1, 0, and 1 since Q0.z/ D 6z.z � 1/. �ere are two super-attracting cy-

cles, the �rst one is 1 7! 1 and the second one is 0 7! 1 7! 0. We denote by U1,

U0, and U1 the Fatou components of F.Q/ containing 1, 0, and 1, respectively.

�e dynamics of Q on these Fatou components is Q W U1 ! U1 with degree 3,

Q W U0 ! U1 with degree 2, and Q W U1 ! U0 also with degree 2. In Figure 2 we

show the dynamical planes of Q and q�.

We show that q� is a McMullen-like mapping of type .Q;D/ checking in turn

the conditions in De�nition 2.2, where Q.z/ D 2z3 � 3z2 C 1 and the pole data D

is formed by the Fatou component U0 (containing the origin) associated to the in-

teger d D d0 D 1. We prove the �rst two conditions using a holomorphic motion,

for � small, of U1 parametrized by � obtaining the immediate super-attractive

basin of 1 of q� as a result of this movement. Applying the ƒ�Lemma, estab-

lished by R. Mañé, P. Sad and D. Sullivan in [13], we extend this holomorphic

motion to the boundary of U1 which coincides with J.Q/. �is establish that the

boundary of the immediate super-attracting basin of 1 of q� is a holomorphic

motion of J.Q/ and this new holomorphic motion is precisely the conjugacy be-

tween q0 D Q acting on J.Q/ and q� acting on the boundary of the immediate

super-attracting basin of 1 of q�. Finally, we prove the last two conditions in

De�nition 2.2 studying the behavior of the critical points of q�.

First of all we can compute the critical points and the critical values of q�.

Obviously z D 1 is a super-attracting �xed point of q�, near in�nity the rational

map q� is conformally conjugate to z 7! z3. Moreover, since the degree of q�

is 4 we have that q� has six critical points counted with multiplicity: 1 with

multiplicity 2 and the four other critical points are solutions of q0
�
.z/ D 0. Easy
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computations show that these four “free” critical points are the solutions of

6z3.z � 1/ D �:

For small values of j�j, the above equation has three solutions near 0, denoted by

c0.�/, and one solution near 1, denoted by c1.�/. We have

c0.�/ ' 3

r
��

6
and

c1.�/ ' 1 C �

6
:

�e corresponding free critical values

v0.�/ D q�.c0.�//

and

v1.�/ D q�.c1.�//;

are given by

v0.�/ ' 1 � 9
3
p

36
.��/2=3 � 1

3
�

and

v1.�/ ' �

1 C �
6

C 1

12
�2 C 1

108
�3

D � � 1

12
�2 C O.�3/:

�erefore v0.�/ ! 1 and v1.�/ ! 0 as � ! 0.

We denote by V1.�/ the immediate super-attracting basin of z D 1 of q�.

As it is well known, there is a Böttcher coordinate �� de�ned in a neighborhood

of 1 in V1.�/ that conjugates q� to z 7! z3 in a neighborhood of 1. If none of

the free critical points lie in V1.�/, then it is well known that we may extend ��

so that it takes the entire immediate super-attracting basin univalently onto C n xD.

If � is su�ciently small then none of the free critical points lie in V1.�/, since

they are close to 0 and 1.

�us, we de�ne ı > 0 such that the Böttcher map �� extends to the whole

immediate super-attracting basin V1.�/ for all j�j < ı. We denote by Dı the

round disk ¹� 2 C j j�j < ıº. We consider the map

H W V1.0/ � Dı �! yC;

.z; �/ 7�! ��1
� ı �0.z/:
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Next we verify that H is a holomorphic motion. By construction, we have that

H.z; 0/ D ��1
0 ı�0.z/ D z. If we �x the parameter � we can see that the map z 7!

H.z; �/ is injective. �is is immediate since the Böttcher map �� is conformal.

Finally, if we �x a point z 2 V1.0/ we can see that � 7! H.z; �/ is a holomorphic

map. Indeed this map is a composition of holomorphic maps, since the Böttcher

map depends analytically on the parameter �.

Applying the ƒ-Lemma to H , we obtain a new holomorphic motion

xH W V1.0/ � Dı �! yC:

Hence, it follows that the boundary of V1.�/ is the continuous image under

xH.�; �/ W z 7�! xH.z; �/

of the Julia set of Q and the following diagram commutes

J.Q/
Q

//

xH.�; �/
��

J.Q/

xH.�; �/
��

@V1.�/
q�

// @V1.�/

proving thus conditions (i) and (ii) in De�nition 2.2.

Hereafter we consider j�j < ı. We observe that z D 0 is the unique �nite

preimage of z D 1, so in this case q� has a unique trap door T0.�/ containing

the origin and such that q� W T0.�/ ! V1.�/ has degree 1. We can compute

now the preimage of T0.�/. We claim that the preimage of T0.�/ is formed by

three simply connected domains W1.�/; W�1=2.�/, and W0.�/. To see the claim

we observe that the polynomial Q.z/ D 2z3 � 3z2 C 1 D 2.z � 1/2.z C 1=2/ has

three roots counted with multiplicity: a double root at z D 1, and a simple root

at z D �1=2. By continuity, a neighborhood of z D �1=2, denoted by W�1=2.�/,

is still mapped under q� to T0.�/ with degree 1 and a neighborhood of z D 1,

denoted by W1.�/ is still mapped under q� to T0.�/ with degree 2. Notice that

W1.�/ contains the free critical point c1.�/. Near the origin there exists another

preimage of the trap door, denoted by W0.�/ since q� sends the trap door T0.�/

onto V1.�/.

We can show now that the three remaining critical points, denoted by c0.�/, be-

long to a doubly connected domain A0.�/ separating T0.�/ from V1.�/.

We can compute the preimage of W1.�/ by q�. First we observe that Q.3=2/ D 1

since Q.z/ D z2.2z � 3/ C 1, so again by continuity there exists a simply con-

nected domain near z D 3=2 that is mapped under q� onto W1.�/. As we show
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before the corresponding free critical values v0.�/ D q�.c0.�// are close to 1,

hence in W1.�/ for � su�ciently small. �us the three critical points c0.�/ belong

to a preimage of W1.�/ and applying the Riemann–Hurwitz formula we obtain

that the three critical points belong to a doubly connected domain A0.�/, obtain-

ing thus that q� W A0.�/ ! W1.�/ with degree 3. Since W1.�/ is a preimage of the

trap door we have that q2
�
.A0.�// D q�.W1.�// D T0.�/ proving condition (iii)

in De�nition 2.2. Since q� has no other �nite critical points than c0.�/ and c1.�/,

condition (iv) follows that proves that q� is a McMullen-like mapping for � su�-

ciently small.

Finally, we can check the arithmetic condition (?) for the McMullen-like map-

ping q�. We have that U0 2 D, Q W U0 ! U1 with degree 2, U1 … D, Q W U1 ! U0

with degree 2, and d D d0 D 1, so the arithmetic condition writes as

1

2

�1

2
C 1

1

�
D 3

4
< 1:

Figure 2. Two examples of McMullen-like mappings. On the left, we show the dynamical

plane of the polynomial Q.z/ D 2z3�3z2C1 (up) and the rational map z 7! 2z3�3z2C1C
10�5=z (down). On the right, the Milnor cubic polynomial R

i
p

2
.z/ D z3 � 3i

p
2z2=2

(left) and the rational map z 7! z3 � 3i
p

2z2=2 C 10�9=z3 (right). In both cases, the

bounded Fatou component where we put a pole has been marked with the local degree.
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In the second example we consider the family of rational maps given by

g�.z/ D zn C c C �=zd

where c is chosen so that Pc.z/ D zn C c is a HPcFP (equivalently c is chosen to

be the center of a hyperbolic component of the corresponding Multibrot set). �e

case n D d was considered previously in [2] (see also Proposition 2.8). When

n ¤ d the only di�erence is the arithmetic condition (?) that in this case writes as

1=n C 1=d < 1. Using the same ideas as in the proof of Proposition 4.1, we have

the following result.

Proposition 4.2. Let g�.z/ D zn Cc C�=zd be such that j�j ¤ 0 is small enough
and the arithmetic condition 1=nC1=d < 1 is satis�ed, then g� is a McMullen-like
mapping.

In particular, �eorem 2.5 directly provides a description of the Julia set J.g�/

similar to that one already obtained in [2] for the case n D d .

In the third example we also consider the polynomial Pc.z/ D zn C c, where

c is such that the critical point located at 0 is periodic of period p. We denote

by U0; U1; : : : ; Up�1 the Fatou components containing 0; Pc.0/; : : : ; P
p�1
c .0/, re-

spectively. As in [11] we can consider McMullen-like mappings of type .Pc;D/

where the pole data D is formed by the Fatou components ¹U0; U1; : : : ; Up�1º and

the corresponding positive integers d0; d1; : : : ; dp�1. According to �eorem A,

the arithmetic condition (?) writes as
� 1

n
C 1

d0

��
1 C 1

d1

�
: : :

�
1 C 1

dp�1

�
< 1;

since U0 is the only bounded Fatou component containing a critical point where

Pc W U0 ! U1 is n-to-1 while Pc acts conformally on all the other bounded Fatou

components. In [11] (see also Proposition 2.9), which deals with the speci�c case

n D 2, the arithmetic conditions to conclude that the rational map h�.z/ D z2 C
c C �=

Qp�1
j D0 .z � cj /dj is a McMullen-like mapping are 2d1 > d0 C 2 and dj C1 >

dj C 1 for every 1 6 j 6 p � 1 (with dp D d0). We claim that these conditions

imply the arithmetic condition (?). To see the claim, we observe that

1

2
C 1

d0

D d0 C 2

2d0

<
2d1

2d0

D d1

d0

;

1 C 1

d1

D d1 C 1

d1

<
d2

d1

;

:::

1 C 1

dp�1

D dp�1 C 1

dp�1

<
d0

dp�1

:
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So, the arithmetic condition (?)

�1

2
C 1

d0

��
1 C 1

d1

�
: : :

�
1 C 1

dp�1

�
<

d1

d0

� d2

d1

� � � � � d0

dp�1

D 1;

is satis�ed. However the conserve is not true. Take for example p D 2 and d0 D
d1 D 4. For these values the arithmetic condition (?) is .1=2 C 1=4/.1 C 1=4/ D
15=16 < 1, whereas the arithmetic conditions in Proposition 2.9 are 2d1 > d0 C 2

and d0 > d1 C 1 which are not satis�ed.

However, it turns out that the explicit rational map

h�.z/ D z2 C c C �

p�1Y

j D0

.z � cj /dj

is not a McMullen-like mapping for every j�j ¤ 0 small enough if the arithmetic

conditions in Proposition 2.9 are not satis�ed. Indeed we can prove conditions (i)

and (ii) in De�nition 2.2 using a holomorphic motion (see the proof of Proposi-

tion 4.1), but studying the behavior of the “free” critical points shows that the free

critical values do not belong to the trap doors as soon as the arithmetic conditions

2d1 > d0 C 2 and dj C1 > dj C 1 for every 1 6 j 6 p � 1 (with dp D d0) are

not satis�ed (see Lemma 2.1 and Lemma 4.1 in [11]), and thus condition (iii) in

De�nition 2.2 does not hold.

�e following result is a direct consequence of �eorem A, and a straightfor-

ward generalization of the ideas in [11] and in the proof of Proposition 4.1.

Proposition 4.3. Let

h�.z/ D zn C c C �

p�1Y

j D0

.z � cj /dj

be such that j�j ¤ 0 is small enough and the arithmetic conditions nd1 > d0 C n

and dj C1 > dj C1 for every 1 6 j 6 p �1 (with dp D d0) are satis�ed, then h� is
a McMullen-like mapping of type .Pc ;D/. Furthermore, there exists a McMullen-
like mapping of type .Pc;D/ if and only if the strictly weaker arithmetic condition

�1

n
C 1

d0

��
1 C 1

d1

�
: : :

�
1 C 1

dp�1

�
< 1

is satis�ed.
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If the arithmetic condition (?) is satis�ed but not the arithmetic conditions

nd1 > d0 C n and dj C1 > dj C 1 for every 1 6 j 6 p � 1 (with dp D d0),

we guess there should be McMullen-like mappings of type .Pc ;D/ of the form
bh�.z/ D zn Cc Cƒ.z/=

Qp�1
j D0 .z �cj /dj where ƒ.z/ is a non constant polynomial

with deg.ƒ/ < deg.D/ WD
Pp�1

j D0 dj . But we have not been able to produce an

explicit example because of the large number of parameters (the case p D 2 and

d0 D d1 D 4 mentioned above leads to a polynomial ƒ.z/ of degree less than 8,

which is the smallest value of deg.D/ so that the stronger arithmetic conditions

are not satis�ed).

In the next example we introduce a McMullen-like mapping obtained from a

HPcFP with more that one bounded super-attracting periodic cycle. We consider

the Milnor cubic polynomials (see [16]), that is a particular slice of the space of

cubic polynomials �xing the behavior of one of the two critical points. More

precisely, we consider the family of polynomials given by Ra.z/ D z3 � 3az2=2.

�ere is a super-attracting �xed point at the origin and the other critical point is

located at z D a. In particular for a D i
p

2, the polynomial Ri
p

2 has two �nite

super-attracting �xed points: one at 0 and another one at i
p

2. We restrict to this

value of a, however the same result is true assuming that the polynomial Ra is

HPcFP. We denote by U0 and Ui
p

2 the Fatou components containing 0 and i
p

2,

respectively, and we consider the pole data D formed by the Fatou component U0

and a positive integer d D d0. Using the same ideas as in the proof of Proposition

4.1, we have the following result.

Proposition 4.4. Let r�.z/ D z3 �3i
p

2z2=2C�=zd be such that j�j ¤ 0 is small
enough and the arithmetic condition d > 2 is satis�ed, then r� is a McMullen-like
mapping.

Indeed, in this case we have two cycles, so N D 2, and according to �eorem A

the arithmetic condition (?) writes as

max
°1

2
;
1

2
C 1

d

±
< 1;

since U0 2 D, Ri
p

2 W U0 ! U0 with degree two, Ui
p

2 … D, and

Ri
p

2 W Ui
p

2 �! Ui
p

2

with degree two. In Figure 2 we show the dynamical planes of the Milnor cubic

polynomial Ri
p

2 and the McMullen-like mapping r�.
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Finally we can obtain two other examples of McMullen-like mappings topo-

logically conjugate on their Julia set to the McMullen family f� (see �eorem 2.6).

We �rst �x a small value of j�j ¤ 0 and we consider the family of rational maps

given by ef�.z/ D zn C �=.z � a/d . �en for every jaj su�ciently small, if the

arithmetic condition 1=n C 1=d < 1 is satis�ed then ef� is a McMullen-like map-

ping of same type as f�. In this case the pole is moved to a and not located at the

origin as in the McMullen family. �e Julia set of ef� has already been studied in

[9] but �eorem 2.6 directly shows that J. ef�/ is a Cantor set of circles. Similarly,

consider the family of rational maps given by bf�.z/ D zn C ƒ.z/=zd where ƒ.z/

is any polynomial with deg.ƒ/ < d and jƒ.0/j ¤ 0 small enough, if the arith-

metic condition 1=n C 1=d < 1 is satis�ed then bf� is a McMullen-like mapping

of same type as f�.
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