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A topological separation condition
for fractal attractors
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Abstract. We consider finite systems of contractive homeomorphisms of a complete metric
space, which satisfy the minimality property. In general this separation condition is weaker than
the strong open set condition and is not equivalent to the weak separation property. We prove
that this separation condition is equivalent to the strong Markov property (see definition below).
We also show that the set of N -tuples of contractive homeomorphisms, having the minimality
property, is a Gı set in the topology of pointwise convergence of every component mapping
with an additional requirement that the supremum of contraction coefficients of mappings in
the sequence be strictly less than one. We find a class of N -tuples of d �d invertible contraction
matrices, which define systems of affine mappings in Rd having the minimality property for
almost every N -tuple of fixed points with respect to the Nd -dimensional Lebesgue measure.
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1. Introduction

Let X be a complete metric space and d be the distance in X . Recall that a mapping
w W X ! X is called a contracting mapping (or a contraction) if

� D �.w/ D sup
x¤y2X

d.w.x/; w.y//

d.x; y/
< 1:

The number �.w/ will be referred to as the contraction coefficient of the mapping w.
Let N 2 N, w1; : : : ; wN W X ! X be contracting homeomorphisms of X onto

itself and A D A.w1; : : : ; wN / � X be the unique non-empty compact set such that

A D
N[

iD1

wi .A/:

1Tim Bedford was partially supported by an NSF grant and a Simons grant.
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The set A is known as the invariant set or the attractor of the system fw1; : : : ; wN g and
this way to define the attractor first appears in the paper by Hutchinson [6]. Denote
by M.X/ the space of all contracting homeomorphisms w W X ! X of the space
X onto itself. Sets defined as above have become generically to be called fractals
and those whose parts do not overlap to much seem to be the most amenable to
investigate. It has been an area of much study to make precise how much overlap is
allowed between each wi .A/. Moran [11] and Hutchinson [6] gave a criterion called
the open set condition which guaranteed that there is not to much overlap. A set of
contractions .w1; : : : ; wN / 2 .M.X//N satisfies the open set condition (OSC), if
there is a non-empty open set O � X such that

1. wi .O/ \ wj .O/ D ;, i ¤ j ;

2. wi .O/ � O, i D 1; : : : ; N .

A system of contractions .w1; : : : ; wN / satisfies the strong open set condition
(SOSC) if it satisfies the OSC with O \ A ¤ ;.

A mapping w W X ! X is called a contracting similitude if there is a number
r 2 .0; 1/ such that

d.w.x/; w.y// D rd.x; y/; x; y 2 X;

and r is sometimes called the similarity coefficient. The attractor of a finite system
of contracting similitudes in X is known as a self-similar set. If X D Rd , d 2 N,
and w1; : : : ; wN W Rd ! Rd are contracting similitudes Bandt and Graf [1] studied
the set

E D fw�1
j wi W i; j 2 F [ f;g; i ¤ jg:

where
F D

[
n2N

†n:

with † D f1; : : : ; N g and showed that the Hausdorff measure of A is strictly positive
if and only if the identity mapping I is not in xE . Schief [12], using this approach
showed that the SOSC and the OSC are equivalent. He accomplished this by showing
that if the Hausdorff measure of A is positive then the SOSC holds thus solving an
important open problem in the area. For extensions see [15]. The positivity of the
Hausdorff measure of A implies that the Hausdorff dimension of A is the same as
its similarity dimension (see equation (13)). In general however, the OSC does not
imply the SOSC (cf. e.g. [12]). For every vector i D fi1; : : : ; ing 2 †n, let

wi D wi1;:::;in D wi1 : : : win D wi1 B : : : B win :

Let †1 be the set of all infinite sequences .i1; i2; : : :/, where ij 2 †, j D 1; 2; : : : .
A sequence .i1; i2; : : :/ 2 †1 is called an address of a point x 2 A, if

x 2
1\

nD1

wi1;:::;in.A/:
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This is equivalent to the fact that for some point a 2 X ,

x D lim
n!1 wi1;:::;in.a/:

It is not difficult to see that every point x 2 A has at least one address and every
sequence from †1 is an address of some point from A. If the set

T D
[
i¤j

wi .A/ \ wj .A/

is non-empty, there are points in A, which have more than one address. An important
consequence of the OSC for contracting similitudes on Rd is that it limits the number
of addresses a point in A may have (see [6]). A weaker separation condition than the
OCS condition,

I … .E n fI g/; (1)

was used by Lau and Ngai ([8] and [9]) to study the multifractal spectrum of certain
attractors.

Definition 1.1. For every n 2 N, denote by Vn the set of all ordered N -tuples
.w1; : : : ; wN / 2 .M.X//N such that for every i 2 †n, there holds

wi.A/ ª
[

j2†n; j¤i

wj.A/:

A separation property based upon the above definition was introduced by
Kigami [7], Section 1.3.

Definition 1.2. A system .w1; : : : ; wN / 2 .M.X//N is said to be minimal if

.w1; : : : ; wN / 2
1\

nD1

Vn:

Theorem 1.3.8 in [7] gives different equivalent restatements of the minimality
property. A collection .w1; : : : ; wN / 2 .M.X//N satisfies the Markov partition
property (MPP) if there exists a subset V � A open relative to A such that

1. xV D A;

2. wi .V / \ wj .V / D ;, i ¤ j .
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Definition 1.3. A system of mappings .w1; : : : ; wN / 2 .M.X//N satisfies the strong
Markov property (SMP) if for every n 2 N, there is an open set On � X such that

1. On \ A D A;

2. wi.On/ \ wj.On/ D ;, for every i ¤ j 2 †n.

It is not difficult to see that SMP implies MPP if we let V D O1\A, and that SOSC
implies the SMP if we set On D O for every n 2 N. The SMP does not in general
imply the SOSC; hence, MPP is also a weaker property than SOSC (see Remark 4.11
for a more detailed discussion). Furthermore, in Rd , condition (1) combined with
the SMP is equivalent to SOSC (provided that the attractor is in general position),
see Remark 4.6 and Propositions 4.7 and 4.8 for more details. Condition (1) is also
known to be equivalent to the weak separation property introduced in [8], see [14].

One of the results proved in this paper is the equivalence of minimality and SMP.
One of our main objectives is to investigate the set T above to see how much overlap is
allowed under the SMP condition. We also show in the case of contracting similitudes
on Rd that if the Hausdorff dimension and the similarity dimension of A are equal
then A satisfies the SMP.

An interesting question is how generic are any of the above separation conditions
in M.X/. One of the results we present below is to show that the SMP condition is a
countable intersection of open sets i.e a Gı set. We also show that when X D Rd and
all the wi ’s are similitudes the SMP is generic in the sense of Lebesgue measure. This
result should be contrasted with that of Falconer [4] where he considered attractors
associated with affine maps and obtained a formula for the Hausdorff dimension that
was generic in the sense of Lebesgue measure.

We establish the following results.

Theorem 1.4. Let X be a complete metric space. The system .w1; : : : ; wN / of
contracting homeomorphisms of X onto X satisfies the SMP if and only if it is minimal.

Definition 1.5. We call a sequence fumgm2N of mappings from M.X/ strongly
pointwise convergent to a mapping w 2 M.X/ and write

um

s.p.�! w; m ! 1;

if

1. lim
m!1 um.x/ D w.x/ for every x 2 X ;

2. sup
m2N

�.um/ < 1.

If fumgm2N � M.X/ is a sequence of similitudes and w 2 M.X/ is a similitude,
then strong pointwise convergence is equivalent to the “usual” pointwise convergence.
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We introduce a topology BN on the space .M.X//N by defining a subset C �
.M.X//N to be closed if for every sequence f.wm

1 ; : : : ; wm
N /gm2N � C , such that

fwm
i g s.p.!wi 2 M.X/, i D 1; : : : ; N , we have .w1; : : : ; wN / 2 C . We agree here

that ; is closed. It is not difficult to see, for example, that the space .M.X//N with
the topology BN is a Hausdorff topological space.

Theorem 1.6. Let N 2 N and X be a complete metric space. The set of systems
of mappings .w1; : : : ; wN / 2 .M.X//N , which satisfy the SMP is a Gı set in the
topology BN .

For a d � k matrix B , let

kBk D max
x2Rknf0g

jBxj
jxj (2)

be its norm. We say that B is a contraction matrix if kBk < 1.
Let X D Rd and B1; : : : ; BN be invertible d � d contraction matrices. Denote

by Ed .B1; : : : ; BN / the set of all ordered N -tuples .˛1; : : : ; ˛N / of points from Rd

such that the system of mappings wi W Rd ! Rd ,

wi .x/ D Bi .x � ˛i / C ˛i ; i D 1; : : : ; N;

satisfies the SMP. We will sometimes consider the set Ed .B1; : : : ; BN / as a subset
of RdN .

Corollary 1.7. For any collection B1; : : : ; BN of invertible d � d contraction ma-
trices, the set Ed .B1; : : : ; BN / is a Gı subset of RdN (in the topology induced by the
Euclidean distance).

The rest of the paper is structured as follows. In Section 2 we proveTheorem 1.4 by
showing that SMP holds if and only if .w1; : : : ; wN / is minimal, i.e. .w1; : : : ; wN / 2
\1

nD1Vn. Next, in Section 3, the genericity of the SMP is taken up and it is shown
that the set of all systems of mappings that satisfy SMP is a Gı set in a suitable
topology, thus establishing Theorem 1.6 and Corollary 1.7. In Section 4 we establish
certain necessary or sufficient conditions for the SMP. Finally in Section 5 genericity
results for the SMP in the case of self-affine sets in Rd are established. For instance,
in Section 5 we prove the following results.

Theorem 5.2. Let B1; : : : ; BN be invertible d � d contraction matrices such
that

PN
iD1 kBik < 1. Then the set Ed .B1; : : : ; BN / is a Gı -subset of RdN of full

Lebesgue measure.

Theorem 5.3. Let Bi D �iUi , where �i 2 .0; 1/, Ui is a 2 � 2 rotation matrix,
i D 1; : : : ; N , and

PN
iD1 �2

i < 1. Then the set E2.B1; : : : ; BN / is either empty or
is a Gı -subset of R2N of full Lebesgue measure.

When d D 1 Theorem 5.2 follows from a result of Falconer [3].
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2. Proof of Theorem 1.4

We will start the proof with the following statement.

Lemma 2.1. Let X be a complete metric space and .w1; : : : ; wN / 2 .M.X//N . If
.w1; : : : ; wN / 2 \1

nD1Vn; then there is an open set O � X such that O \ A D A

and wi .O/ \ wj .O/ D ;, i ¤ j . In particular, the system .w1; : : : ; wN / will satisfy
the MPP.

Proof. In order to prove Lemma 2.1 denote

Ki .A/ D wi .A/ n
N[

j D1
j ¤i

wj .A/; i D 1; : : : ; N:

Let also

Zi D w�1
i .Ki.A// and V D

N\
iD1

Zi :

For example, if w1.x/ D x=2 and w2.x/ D x=2C1=2, then A D Œ0; 1�, Z1 D Œ0; 1/,
Z2 D .0; 1�, and hence, V D .0; 1/.

It is not difficult to see that Zi � A, i D 1; : : : ; N . We show that xZi D A,
i D 1; : : : ; N . Let x 2 A and let U � X be any open set containing x. Denote by
B.a; �/ the open ball in X centered at point a of radius � > 0. Since wi.U / is also
open, there is � > 0 such that B.wi .x/; �/ � wi .U /. Let ri D �.wi / 2 .0; 1/ be the
contraction coefficient of wi , i D 1; : : : ; N , and define

rmax D max
iD1;:::;N

ri :

Choose a number m 2 N so that .rmax/m �diamA < �. There exist indices i1; : : : ; im 2
† such that x 2 wi1;:::;im.A/. Then wi .x/ 2 wi;i1;:::;im.A/ and

diam wi;i1;:::;im.A/ � ri � ri1 � : : : � rim � diamA � .rmax/mC1 � diamA < �:

Hence,
wi;i1;:::;im.A/ � B.wi.x/; �/ � wi.U /: (3)

Since .w1; : : : ; wN / 2 VmC1, we have

wi;i1;:::;im.A/ ª
[

j1;:::;jmC12†

j1¤i

wj1;:::;jmC1
.A/ D

N[
j D1
j ¤i

wj .A/:

Hence, there is z 2 A such that wi;i1;:::;im.z/ does not belong to [j W j ¤i wj .A/: Let
t D wi1;:::;im.z/. Since wi.t / does not belong to any wj .A/ with j ¤ i , we must
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have wi .t / 2 wi .A/, that is, wi.t / 2 Ki .A/. Hence, t 2 Zi . On the other hand,
since wi .t / 2 wi;i1;:::;im.A/, in view of (3), we have wi .t / 2 wi.U /, that is t 2 U ,
which implies that xZi D A, i D 1; : : : ; N .

We next show that xV D A. Indeed, since each Zi is open relative to A, there
are open sets Wi � X such that Zi D Wi \ A, i D 1; : : : ; N . Let y be any
element in A and U be any open neighborhood of y. Since xZ1 D A, there is
z1 2 Z1 \ U D A \ W1 \ U . Since xZ2 D A, there is z2 2 Z2 in the open
neighborhood W1 \ U of the point z1 2 A, that is z2 2 A \ U \ W1 \ W2. Then by
induction, there will be an element zN 2 A \ U \ W1 \ : : : \ WN D V \ U , and
the required relation follows.

Note that for every i ¤ j , there holds

wi .V / \ wj .V / � wi .Zi / \ wj .Zj / D Ki.A/ \ Kj .A/

� .wi .A/ n wj .A// \ wj .A/ D ;:

Taking also into account the fact that V is relatively open with respect to A as an
intersection of a finite collection of subsets of A, which are open relative to A, we
conclude that the system .w1; : : : ; wN / possesses the MPP.

For every x 2 V , denote

�.x/ D min
iD1;:::;N

dist
�
wi .x/;

N[
j D1
j ¤i

wj .A/
�
:

In view of the relations

wi .V / � wi .Zi / D Ki.A/; i D 1; : : : ; N;

the point wi .x/, x 2 V , does not belong to the closed set
S

j W j ¤i wj .A/. Hence,
�.x/ > 0, x 2 V , and the set

O D
[
x2V

B .x; �.x/=2/

is open. Since xV D A and V � O \ A � A, we have O \ A D A. To show that
wi.O/ \ wj .O/ D ;, i ¤ j , assume to the contrary that there exist indices i ¤ j

such that wi.O/ \ wj .O/ contains some element y. Then y D wi .p/ D wj .q/

for some p; q 2 O. There are points c; b 2 V such that d.c; p/ < �.c/=2 and
d.b; q/ < �.b/=2. Note that

d.y; wi.c// D d.wi .p/; wi.c// � ri � d.p; c/ < ri � �.c/=2 (4)

and
d.y; wj .b// D d.wj .q/; wj .b// � rj � d.q; b/ < rj � �.b/=2: (5)
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There also hold the following relations

�.c/ � dist
�
wi .c/;

N[
kD1
k¤i

wk.A/
�

� dist.wi .c/; wj .A// � d.wi .c/; wj .b// (6)

and

�.b/ � dist
�
wj .b/;

N[
kD1
k¤j

wk.A/
�

� dist.wj .b/; wi.A// � d.wj .b/; wi.c//: (7)

Then, in view of relations (4)–(7), we obtain

�.c/ C �.b/ � 2d.wi .c/; wj .b//

� 2.d.wi .c/; y/ C d.y; wj .b///

< ri � �.c/ C rj � �.b/

< �.c/ C �.b/;

which is impossible. Hence, wi .O/ and wj .O/ are disjoint, which completes the
proof of Lemma 2.1.

To prove sufficiency in Theorem 1.4, assume that

.w1; : : : ; wN / 2
1\

nD1

Vn � .M.X//N :

Then for every m 2 N and n 2 N, we have .w1; : : : ; wN / 2 Vnm � .M.X//N ,
which implies that the system fwigi2†m belongs to the set Vn � .M.X//N m

. Hence,
fwigi2†m 2 \1

nD1Vn � .M.X//N m
. By Lemma 2.1, there is an open set Om � X

such that Om \ A D A and wi.Om/ \ wj.Om/ D ; for every i ¤ j 2 †m, m 2 N.
Hence, the system .w1; : : : ; wN / satisfies the SMP.

The proof of the necessity inTheorem 1.4 is preceded by the following proposition.

Lemma 2.2. Let mappings w1; : : : ; wN 2 M.X/ be such that there is a non-empty
open set O � X with the property

wi .O/ \ wj .O/ D ;; i ¤ j:

Then for every i D 1; : : : ; N ,

wi.O/ \
[

j W j ¤i

wj . xO/ D ;:
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Proof. Assume the contrary. Then for some j0 ¤ i , there is x 2 wi .O/ \ wj0
. xO/.

Let z 2 xO be such that x D wj0
.z/. There is a sequence fzmgm2N � O such

that z D lim
m!1 zm and hence x D lim

m!1 wj0
.zm/. Since wi .O/ is an open neigh-

borhood of x, we have wj0
.zm/ 2 wi .O/ for every m sufficiently large, and hence

wi.O/ \ wj0
.O/ ¤ ;, which contradicts the assumptions. Lemma 2.2 is proved.

Completion of the proof of Theorem 1.4. Assume that system .w1; : : : ; wN / 2
.M.X//N satisfies the SMP. Let k 2 N be arbitrary. Then there is an open set
Ok � X such that Ok \ A D A and wi.Ok/ \ wj.Ok/ D ; for every i ¤ j 2 †k .
We first show that for every i 2 †k ,

wi.A/ D wi.Ok/ \ A: (8)

Taking into account Lemma 2.2 and the fact that A D Ok \ A � Ok , we obtain

wi.Ok/ \ A D .wi.Ok/ \ wi.A// [
�
wi.Ok/ \

[
j2†k; j¤i

wj.A/
�

� wi.Ok \ A/ [
�
wi.Ok/ \

[
j2†k ; j¤i

wj.Ok/
�

D wi.Ok \ A/:

Then
wi.Ok/ \ A � wi.Ok \ A/ D wi.Ok \ A/ D wi.A/:

On the other hand,

wi.A/ D wi.Ok \ A/ D wi.Ok \ A/ D wi.Ok/ \ wi.A/ � wi.Ok/ \ A;

and (8) follows.
Assume that .w1; : : : ; wN / does not belong to \1

nD1Vn. Then there is n 2 N and
in 2 †n such that

win.A/ �
[

j2†n; j¤in

wj.A/:

Then, taking into account (8) we obtain

win.On/ \ A � win.On/ \ A D win.A/

�
[

j2†n; j¤in

wj.A/

D
[

j2†n; j¤in

wj.On/ \ A

�
[

j2†n; j¤in

wj.On/:
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Since win.On/ \ A D win.A/ ¤ ;, there is a point x 2 win.On/ \ A � win.On/.
Then x 2 S

j2†n; j¤in wj.On/. Hence,

win.On/ \
[

j2†n; j¤in

wj.On/ ¤ ;;

which contradicts Lemma 2.2. Theorem 1.4 is proved. �

3. Proofs of Theorem 1.6 and of Corollary 1.7.

The proof of some statements in this section is standard, but we include it for the
convenience of the reader.

Lemma 3.1. If a sequence fumgm2N � M.X/ converges strongly pointwise to a
mapping w 2 M.X/, then the sequence of fixed points of mappings um converges to
the fixed point of w.

Proof. Let xm 2 X be the fixed point of the mapping um, m 2 N, and x 2 X be the
fixed point of w. Denote also

� D sup
m2N

�.um/:

Then

d.xm; x/ � d.xm; um.x// C d.um.x/; x/

D d.um.xm/; um.x// C d.um.x/; w.x//

� �d.xm; x/ C d.um.x/; w.x//:

Hence,

d.xm; x/ � 1

1 � �
d.um.x/; w.x//;

and we have
lim

m!1 d.xm; x/ D 0:

Lemma 3.1 is proved.

Lemma 3.2. Let A be the attractor of a system of mappings w1; : : : ; wN 2 M.X/

with contraction coefficients not exceeding a given number � 2 .0; 1/. Let also
BŒa; r� be a closed ball containing the fixed point of every mapping w1; : : : ; wN .
Then A � BŒa; R�, where R D 1C�

1��
r .
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Proof. Assume the contrary. Denote by y1; : : : ; yN the fixed points of mappings
w1; : : : ; wN respectively. Let z be a point in A furthest from a. Then we must have
d.z; a/ > R. Let 1 � i � N be such index that z D wi .z1/ for some z1 2 A. Then

d.z1; a/ � d.z1; yi/ � d.yi ; a/

� 1

�
d.wi .z1/; wi.yi // � r

D 1

�
d.z; yi / � r

� 1

�
d.z; a/ � 1

�
d.yi ; a/ � r

� 1

�
d.z; a/ � r

�
� r:

Hence,
d.z1; a/

d.z; a/
� 1

�
� .1 C �/r

�d.z; a/
>

1

�
� .1 C �/r

�R
D 1;

which contradicts the fact that z is a point in A furthest from a.

Lemma 3.3. Let fwm
1 gm2N; : : : ; fwm

n gm2N be sequences of mappings from M.X/

such that wm
i

s.p.! wi 2 M.X/, i D 1; : : : ; n. Then wm
1 B : : :Bwm

n
s.p.! w1 B : : :Bwn,

m ! 1.

Proof. We will use induction. For n D 1, the assertion of the lemma is trivial.
Assume that the assertion is true for a given value of n � 1 and show that it holds for
any n C 1 sequences satisfying the assumptions of the lemma. For every x 2 X , we
will have

d.wm
1 wm

2 : : : wm
nC1.x/; w1w2 : : : wnC1.x//

� d.wm
1 .wm

2 : : : wm
nC1.x//; wm

1 .w2 : : : wnC1.x///

C d.wm
1 .w2 : : : wnC1.x//; w1.w2 : : : wnC1.x///

� d.wm
2 : : : wm

nC1.x/; w2 : : : wnC1.x//

C d.wm
1 .w2 : : : wnC1.x//; w1.w2 : : : wnC1.x///:

By the assumption of the induction, both distances in the last line vanish as m ! 1
and we have

lim
m!1 wm

1 wm
2 : : : wm

nC1.x/ D w1w2 : : : wnC1.x/; x 2 X:

Since
� D max

iD1;:::;nC1
sup
m2N

�.wm
i / < 1;
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we have
�.wm

1 wm
2 : : : wm

nC1/ � �nC1 < 1; m 2 N;

which implies strong pointwise convergence. Lemma 3.3 is proved.

Given a system W D .w1; : : : ; wN / 2 .M.X//N and an address i 2 †1, let
…i.W / be the point in the attractor of W with address i.

Lemma 3.4. Let Wm D .wm
1 ; : : : ; wm

N /, m 2 N, be a sequence from .M.X//N such
that for every i D 1; : : : ; N , the sequence fwm

i gm2N converges strongly pointwise to
some mapping wi 2 M.X/. Then for every address i 2 †1,

lim
m!1 …i.Wm/ D …i.W /;

where W D .w1; : : : ; wN /.

Proof. Given an arbitrary address i D .i1; i2; : : :/ 2 †1, denote by xi1:::in the fixed
point of the mapping wi1;:::;in . Let also

ı D max
iD1;:::;N

sup
m2N

�.wm
i /:

Let B.a; r/ be a ball containing the attractor A of the system W and R D 1Cı
1�ı

r .
Choose an arbitrary � > 0 and let n 2 N be large enough so that

d.…i.W /; xi1:::in/ < � and Rın < �: (9)

Denote by xm
˛1:::˛n

the fixed point of the mapping wm
˛1

B : : :Bwm
˛n

, ˛1; : : : ; ˛n 2 †. By
Lemma 3.3, we have wm

˛1
B : : : B wm

˛n

s.p.! w˛1;:::;˛n
, m ! 1. Then by Lemma 3.1,

we have lim
m!1 xm

˛1:::˛n
D x˛1:::˛n

for every ˛1; : : : ; ˛n 2 †. Since x˛1:::˛n
2 A �

B.a; r/, there is a number mn 2 N such that for every m > mn and ˛1; : : : ; ˛n 2 †,
we have xm

˛1:::˛n
2 B.a; r/. For every m > mn, we obtain

d.…i.W /; …i.Wm// � d.…i.W /; xi1:::in/

C d.wi1;:::;in.xi1:::in/; wm
i1

: : : wm
in

.xi1:::in//

C d.wm
i1

: : : wm
in

.xi1:::in/; …i.Wm//

� � C d.wi1;:::;in.xi1:::in/; wm
i1

: : : wm
in

.xi1:::in//

C d.wm
i1

: : : wm
in

.xi1:::in/; wm
i1

: : : wm
in

.zi;m//;

where zi;m is some point in the attractor Am of the system Wm. Taking into account
Lemma 3.3, we will have

d.…i.W /; …i.Wm// � � C o.1/ C ınd.xi1:::in; zi;m/:

For every i D 1; : : : ; N , the fixed point xm
i of wm

i is also the fixed point of the n-th
power of wm

i , and as it was noted above, xm
i 2 B.a; r/, m > mn. By Lemma 3.2, we
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have zi;m 2 Am � BŒa; R�. Since xi1:::in 2 A � B.a; r/ � BŒa; R�, in view of (9),
we obtain

d.…i.W /; …i.Wm// � � C o.1/ C 2Rın � 3� C o.1/:

Hence,
lim sup
m!1

d.…i.W /; …i.Wm// � 3�:

In view of arbitrariness of �, we have

lim
m!1 d.…i.W /; …i.Wm// D 0;

and the assertion of Lemma 3.4 follows.

Let
F D

[
n2N

†n:

Lemma 3.5. Let N; n 2 N. If a sequence f.wm
1 ; : : : ; wm

N /gm2N � .M.X//N n Vn

converges strongly pointwise in every component to a system W D .w1; : : : ; wN / 2
.M.X//N , then we have W 2 .M.X//N n Vn.

From Lemma 3.5 we obtain the following statement, which in view of Theo-
rem 1.4, implies the assertion of Theorem 1.6.

Corollary 3.6. For every positive integers n and N , the set Vn is open in the topology
BN , and hence, \1

nD1Vn is a Gı set.

Proof of Lemma 3.5. Let Wm D .wm
1 ; : : : ; wm

N / 2 .M.X//N n Vn be a sequence,
where every component is convergent strongly pointwise to the corresponding compo-
nent of the system W D .w1; : : : ; wN / 2 .M.X//N . Denote wm

k D wm
k1

B : : : B wm
kp

,
k D .k1; : : : ; kp/ 2 F . For every m 2 N, there is a vector im 2 †n such that

wm
im.Am/ �

[
k2†n; k¤im

wm
k .Am/;

where Am is the attractor of the system Wm. There is an index i 2 †n and an infinite
subsequence N � N such that

wm
i .Am/ �

[
k2†n; k¤i

wm
k .Am/; m 2 N : (10)

Let A be the attractor of the system W and x 2 wi.A/ be an arbitrary point. Then
x D …iˇ .W / for some ˇ 2 †1. In view of (10), for every m 2 N , there holds

…iˇ .Wm/ 2 wm
i .Am/ \ wm

jm
.Am/
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for some jm 2 †n distinct from i. There are index j 2 †n, j ¤ i, and infinite
subsequence N 0 � N such that

…iˇ .Wm/ 2 wm
i .Am/ \ wm

j .Am/; m 2 N 0:

Hence, there is a sequence �m D .�m
1 ; �m

2 ; : : :/ 2 †1 such that

…iˇ .Wm/ D …j�m
.Wm/; m 2 N 0: (11)

One can find an infinite subsequence N1 � N 0 and an index �1 2 † such that �m
1 D

�1, m 2 N1. One can find an infinite subsequence N2 � N1 and an index �2 2 †

such that �m
1 D �1 and �m

2 D �2, m 2 N2. Continuing this process indefinitely, we
obtain an address � D .�1; �2; : : :/ 2 †1 and a sequence of embedded infinite sets
N1 � N2 � : : : � Nk � : : : such that �m

k
D �k , m 2 Nk , k 2 N.

Let as above, B.a; r/ be an open ball containing A. Since A contains the fixed
points of mappings w1; : : : ; wN , by Lemma 3.1, there is m0 2 N such that for every
m 2 N, m > m0, the fixed points of mappings wm

1 ; : : : ; wm
N will be in B.a; r/. Then,

by Lemma 3.2, Am � BŒa; R�, where R D 1Cı
1�ı

r and ı D max
iD1;N

sup
m2N

�.wm
i / 2

.0; 1/: For every k 2 N and m 2 Nk , m > m0, there are points b and c in Am such
that

d.…j�m
.Wm/; …j�.Wm// D d.wm

j wm
�m

1
;:::;�m

k
.b/; wm

j wm
�1;:::;�k

.c//

D d.wm
j wm

�1;:::;�k
.b/; wm

j wm
�1;:::;�k

.c//

� �.wm
j / � �.wm

�1
/ � : : : � �.wm

�k
/d.b; c/

� ınCkdiamAm � 2RınCk:

By Lemma 3.4 and relation (11), for every m 2 Nk , m > m0, we obtain

d.x; …j� .W // � d.…iˇ .W /; …iˇ .Wm//

C d.…j�m
.Wm/; …j�.Wm//

C d.…j� .Wm/; …j�.W //

� 2RınCk C o.1/:

Hence, letting m ! 1 along the sequence Nk , we will have

d.x; …j� .W // � 2RınCk; k 2 N:

Letting now k ! 1 we get that d.x; …j� .W // D 0, which implies that

x D …j� .W / 2 wj.A/ �
[

k2†n; k¤i

wk.A/;
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where vector j was chosen to be distinct from i. Since x 2 wi.A/ was chosen
arbitrarily, we obtain that

wi.A/ �
[

k2†n; k¤i

wk.A/;

and hence, W 2 .M.X//N n Vn. Lemma 3.5 is proved, which completes the proof
of Theorem 1.6. �

Proof of Corollary 1.7. Let Un, n 2 N, be the set of ordered N -tuples
.˛1; : : : ; ˛N / 2 .Rd /N such that the system of mappings

wi .x/ D Bi .x � ˛i / C ˛i ; i D 1; : : : ; N; (12)

belongs to Vn. By Theorem 1.4, we have

Ed .B1; : : : ; BN / D
1\

nD1

Un:

It remains to show that for every n 2 N, the set Un is open. Assume the contrary
and let ˛ D .˛1; : : : ; ˛N / 2 Un be not an interior point of Un. Then there is a se-
quence fˇmg1

mD1 � .Rd /N n Un such that ˛ D lim
m!1 ˇm. Let ˇm D .ˇm

1 ; : : : ; ˇm
N /,

m 2 N, where ˇm
i 2 Rd , i D 1; : : : ; N . Then for every m 2 N, the system of

contracting mappings

wm
i .x/ D Bi .x � ˇm

i / C ˇm
i ; i D 1; : : : ; N;

does not belong to Vn. Since for every i D 1; : : : ; N and x 2 Rd ,

lim
m!1 wm

i .x/ D wi.x/;

where wi is defined as in (12), and

max
iD1;:::;N

kBik < 1;

we have a strong pointwise convergence of the sequence fwm
i g1

mD1 to wi , i D
1; : : : ; N . By Lemma 3.5, we have that .w1; : : : ; wN / does not belong to Vn, i.e.
˛ … Un. This contradiction shows that Un is an open set for every n and the assertion
of Corollary 1.7 follows. �



258 T. Bedford, S. V. Borodachov, and J. S. Geronimo

4. Remarks about conditions related the SMP

In this section we mention several simple statements, which give necessary or suffi-
cient conditions for the SMP.

Proposition 4.1. Let X be a complete metric space and .w1; : : : ; wN / be a collection
of contracting homeomorphisms of X onto X . If .w1; : : : ; wN / satisfies the SOSC,
then .w1; : : : ; wN / satisfies the SMP.

Proof. Let O � X be the open set from the definition of the SOSC. Show that
A \ O D A. Indeed, if x 2 A and � > 0 are arbitrary, for some m 2 N sufficiently
large and i 2 †m we have x 2 wi.A/ � B.x; �/. Since wi.O\A/ ¤ ;, wi.O\A/ �
B.x; �/, and

wi.O \ A/ D wi.O/ \ wi.A/ � O \ A;

we have .O \ A/ \ B.x; �/ ¤ ;. Hence, A � O \ A. Since the opposite inclusion
is trivial, we have O \ A D A.

If for every n 2 N, we let On D O, then conditions 1 and 2 in the definition
of the SMP will hold and, by Theorem 1.4, we have .w1; : : : ; wN / 2 \1

nD1Vn.
Proposition 4.1 is proved.

The converse of Proposition 4.1 is not true (see Remark 4.11 below).
Recall that

T D
[
i¤j

wi .A/ \ wj .A/

and denote
D D D.w1; : : : ; wN / D A n

[
i2F

w�1
i .T /:

Theorem 1.3.8 in [7], in particular, implies the following statement.

Proposition 4.2. Let X be a complete metric space and w1; : : : ; wN be contracting
homeomorphisms of the space X onto X . The system .w1; : : : ; wN / is minimal if and
only if D.w1; : : : ; wN / ¤ ;.

Hence, in view of Proposition 4.1, the condition D D ; implies that the SOSC
does not hold. We also remark that the following statement holds.

Proposition 4.3. Let X be a complete metric space and w1; : : : ; wN be contracting
homeomorphisms of the space X onto X . Then

1. wi .D/ � D , i D 1; : : : ; N ;

2. wi .D/ \ wj .D/ D ;, i ¤ j .

If in addition, this system satisfies the SMP, then

3. xD D A.
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Proof. If D D ;, conditions 1 and 2 hold trivially. Assume that D ¤ ; (which is
equivalent to the SMP). To prove the first statement assume the contrary, i.e. for some
1 � k � N , there is y 2 wk.D/ n D . Then there is a point x 2 D such that y D
wk.x/. On the other hand, since y is not in D , there is a vector p D .p1; : : : ; ps/ 2 F

such that wp.y/ 2 T . Hence, wp1;:::;ps ;k.x/ 2 T , which contradicts the fact that
x 2 D .

To prove the second statement, assume again the contrary, i.e. for some indexes
1 � i ¤ j � N , there is a point x 2 wi .D/ \ wj .D/. Then x D wi .t /, t 2 D .
Since

wi.t / 2 wi.D/ \ wj .D/ � wi.A/ \ wj .A/ � T ;

we have a contradiction with the fact that t 2 D .
To show the third statement, choose any point z 2 A and a ball B.z; �/, � > 0.

Denote rmax D max
iD1;:::;N

�.wi /: Let m 2 N be such number that rm
max � diamA < �

and i D .i1; : : : ; im/ 2 †m be such that z 2 wi.A/. Let point q 2 A be such that
z D wi.q/ and x be some point in D . Then, by the first statement, wi.x/ 2 D . Since

d.z; wi.x// D d.wi.q/; wi.x//

� �.wi1/ � : : : � �.wim/ � d.q; x/

� rm
max � diamA < �;

we have D \ B.z; �/ ¤ ; for every z 2 A and � > 0. Taking into account that
D � A, we have xD D A. Proposition 4.3 is proved.

The following statement shows the relation between the cardinality of the overlaps
of sets wi .A/ and the SMP.

Proposition 4.4. Let w1; : : : ; wN 2 M.X/ be such that the corresponding attractor
A is uncountable and every set wi.A/ \ wj .A/, i ¤ j , is at most countable. Then
the system .w1; : : : ; wN / satisfies the SMP.

Proof. By assumption, the set T is at most countable. Then the set [i2F w�1
i .T /

is also at most countable. Since A is uncountable, we have D.w1; : : : ; wN / ¤
;. By Proposition 4.2 and Theorem 1.4, the system .w1; : : : ; wN / has the SMP.
Proposition 4.4 is proved.

The following statement is obtained if one combines Corollaries 1.4.8 and 1.4.9
from [7]

Proposition 4.5. Let X be a complete metric space and w1; : : : ; wN W X ! X be
contracting homeomorphisms of X onto X . Assume that every point in the attractor
A of this system has a finite number of addresses. Then the system .w1; : : : ; wN /

satisfies the SMP.
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We say that two vectors i; j 2 F are incomparable if neither i is an initial word
of j nor j is an initial word of i. Denote

E D fw�1
j wi W i; j 2 F [ f;g; i; j incomparableg:

Denote by I the identity mapping from X to X .

Remark 4.6. In the case when X D Rd and wi ’s are contractive similitudes, the
results of papers by Hutchinson [6], Bandt and Graf [1], and Schief [12] imply the
equivalence of the following three conditions: SOSC, OSC, and the condition that
I … xE in the topology of pointwise convergence of similitudes. The weak separation
property (WSP) introduced by Lau and Ngai in [8] was shown to be equivalent to
the condition that I … E n fI g for finite systems of contractive similitudes whose
attractor is not contained in a hyperplane (cf. the work by Zerner [14]).

Moreover, the following statement holds.

Proposition 4.7 (see [14], Proposition 1). Assume that attractor A of a system W D
.w1; : : : ; wN / of contractive similitudes in Rd is not contained in any hyperplane.
Then the OSC holds if and only if the WSP holds and wi ¤ wj for every i ¤ j from F .

This proposition implies the following statement.

Proposition 4.8. Let W D .w1; : : : ; wN / be a system of contractive similitudes in
Rd , whose attractor is not contained in any hyperplane. Then system W satisfies the
SOSC if and only if it satisfies the WSP and the SMP.

Proof. In view of Propositions 4.1 and 4.7, the SOSC implies the SMP and the WSP.
If the system W satisfies the WSP and the SMP, assume to the contrary that for some
i D .i1; : : : ; im/ ¤ j D .j1; : : : ; jn/ from F , we had wi D wj (m � n). If i is a
prefix of j, then m < n and the contraction wjmC1;:::;jn

must be the identity mapping
which is a contradiction. If i is not a prefix of j, then .i1; : : : ; im/ ¤ .j1; : : : ; jm/ and

wi1;:::;im.A/ D wj1;:::;jn
.A/ � wj1;:::;jm

.A/;

which contradicts the fact that W has the SMP and shows that our assumption is
false. Then by Proposition 4.7, the system W possesses the SOSC. Proposition 4.8
is proved.

From the results cited above we obtain that that SOSC does not allow I 2 E . The
WSP allows I to be in E as an isolated point.

Proposition 4.9. Let X be a complete metric space and let the system .w1 ; : : : ; wN / 2
.M.X//N satisfy the SMP. Then I … E . The converse is not true.
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Proof. The proof of the fact that I … E is analogous to the proof of the Proposition 4.8
when i is not a prefix of j. The following counterexample shows that the converse is
not true. Let w1.x/ D x=2, w2.x/ D .x C 1/=2, and w3.x/ D .x C a/=2, where
a is an irrational number from .0; 1/. It is not difficult to see that interval Œ0; 1� is
the attractor of the system .w1; w2; w3/. Since w3.Œ0; 1�/ � w1.Œ0; 1�/ [ w2.Œ0; 1�/,
the system .w1; w2; w3/ does not satisfy the SMP. If we assumed that I 2 E , there
would be incomparable indexes i D .i1; : : : ; in/; j D .j1; : : : ; jm/ 2 F such that
wi D wj. Hence,

wi.x/ D 1

2n
x C

nX
kD1
ikD2

1

2k
C

nX
kD1
ikD3

1

2k
a D wj.x/ D 1

2m
x C

mX
kD1

jk D2

1

2k
C

mX
kD1

jk D3

1

2k
a:

Then n D m and

a
� X

k W jkD3

1

2k
�

X
k W ikD3

1

2k

�
D

X
k W ikD2

1

2k
�

X
k W jkD2

1

2k
:

Since a is irrational, we must have

X
k W jkD3

1

2k
D

X
k W ikD3

1

2k
:

Hence, fk W ik D 3g D fk W jk D 3g. But then

X
k W ikD2

1

2k
D

X
k W jkD2

1

2k
:

Hence, fk W ik D 2g D fk W jk D 2g. This implies that fk W ik D 1g D fk W jk D 1g
and i D j, which also contradicts the incomparability of i and j. This contradiction
shows that for the system .w1; w2; w3/ we have I … E but SMP does not hold.

Let W D .w1; : : : ; wN /, where w1; : : : ; wN W Rd ! Rd , d 2 N, are similitudes
with similarity coefficients r1; : : : ; rN 2 .0; 1/ respectively. Denote by ˛ D ˛.W /

the unique positive number such that

r˛
1 C : : : C r˛

N D 1: (13)

This number is known as the similarity dimension of the attractor A associated with
the system W . Denote by dimA the Hausdorff dimension of the set A and by H�,
� > 0, the �-dimensional Hausdorff measure in Rd . The standard covering argument
shows that

dimA.W / � ˛.W /: (14)

Proposition 4.10. Let W D .w1; : : : ; wN / be a system of contracting similitudes in
Rd , d 2 N, and dimA.W / D ˛.W /. Then A satisfies the SMP.
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Remark 4.11. The results by Hutchinson [6], Theorem 1, Section 5.3], combined
with the results by Schief [12], Theorem 2.1, imply that for the attractor A.W / of
a finite system W of contracting similitudes in Rd , we have H˛.W /.A.W // > 0 if
and only if W satisfies the OSC. Proposition 4.10 implies that any finite system of
contracting similitudes W such that dimA.W / D ˛.W / and H˛.W /.A.W // D 0

(examples of such systems were given by Mattila (see [10]) and Solomyak [13]),
will have the SMP. But such system will not satisfy the OSC, which shows non-
equivalence of these two properties. Since SMP implies MPP as asserted by Lemma
2.1, we conclude that MPP is also weaker than OSC.

Proof of Proposition 4.10. Assume the contrary. Then in view of Theorem 1.4,
there is n 2 N such that .w1; : : : ; wN / does not belong to Vn. Then there is a vector
i 2 †n such that

wi.A/ �
[

j2†n; j¤i

wj.A/:

Hence,
A D

[
j2†n

wj.A/ D
[

j2†n; j¤i

wj.A/

and A will be also the attractor for the system of mappings S D fwjgj2†n; j¤i. In this
case the similarity dimension of A associated with system S satisfies

X
j2†n; j¤i

r
˛.S/
j D 1;

where rj is the contraction coefficient of the mapping wj, j 2 †n. Since

X
j2†n

r
˛.W /
j D 1;

we have ˛.S/ < ˛.W /. Then, by (14), we obtain dimA � ˛.S/ < ˛.W /, which
contradicts the assumptions of the proposition. Proposition 4.10 is proved. �

5. Genericity of the SMP on certain classes of self-affine sets

Let B1; : : : ; BN be invertible d � d contraction matrices, d 2 N. Recall that
Ed .B1; : : : ; BN / is the set of ordered point collections .˛1; : : : ; ˛N / 2 �

Rd
�N

such
that the system of mappings

ui .x/ D Bi .x � ˛i / C ˛i ; i D 1; : : : ; N;

has the SMP. We will consider the set Ed .B1; : : : ; BN / as a subset of RdN .
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Remark 5.1. When B1 D �1U1; : : : ; BN D �N UN , where matrices U1; : : : ; UN

are orthogonal and

1) 0 < �i < 1
2

, i D 1; : : : ; N ;

2)
NP

iD1

�d
i < 1,

the set Ed .B1; : : : ; BN / is a subset of RdN of full measure. This follows from results
of Falconer [4], Theorem 5.3, Solomyak [13], Proposition 3.1, and Proposition 4.10.
(Recent results of Falconer and Miao [5] also imply upper estimate for the Hausdorff
dimension of the complement of Ed .B1; : : : ; BN /.) In this paper we can show that
Ed .B1; : : : ; BN / has full measure when assumption 1) is replaced with certain other
assumptions.

Theorem 5.2. Let B1; : : : ; BN be invertible d � d contraction matrices such thatPN
iD1 kBik < 1. Then the set Ed .B1; : : : ; BN / is a Gı -subset of RdN of full

Lebesgue measure.

When d D 1 the result of Theorem 5.2 immediately follows from the result of
Falconer [3] (also cited in [10], Theorem 9.13) and Corollary 1.7.

Theorem 5.3. Let Bi D �iUi , where �i 2 .0; 1/, Ui is a 2 � 2 rotation matrix,
i D 1; : : : ; N , and

PN
iD1 �2

i < 1. Then the set E2.B1; : : : ; BN / is either empty or
is a Gı -subset of R2N of full Lebesgue measure.

Remark 5.4. The set E2.B1; : : : ; BN / can be empty under assumptions of Theorem
5.3 as the following example shows. Let �1; �2 > 0 be such that �1 C �2 > 1 and
�2

1 C �2
2 < 1, and B1 D �1I2, B2 D �2I2 (here and below Id denotes the d � d

identity matrix). For any ordered pair .˛1; ˛2/ of points in R2, the attractor A of the
system of mappings

wi .x/ D Bi.x � ˛i / C ˛i D �i x C .1 � �i /˛i ; i D 1; 2;

is the closed segment with endpoints ˛1 and ˛2. The set w1.A/\w2.A/ is a segment
of positive length. For n 2 N sufficiently large and some index i 2 †n, there holds
wi.A/ � w1.A/ \ w2.A/. If i starts with 1, we have

wi.A/ � w2.A/ D
[

j2†n�1

w2wj.A/ �
[

j2†n

j¤i

wj.A/:

If i starts with 2 we use analogous argument. Thus, the system .w1; w2/

does not posses the SMP for any collection of fixed points .˛1; ˛2/ and hence,
E2.B1; B2/ D ;. This example also shows that that in the case

PN
iD1 kBik > 1

the set Ed .B1; : : : ; BN / in Theorem 5.2 can even be empty.
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The proof of Theorems 5.2 and 5.3 will follow from the statement presented below.
For an ordered collection of points ˇ D .ˇ1; : : : ; ˇN / 2 .Rd /N , denote by …k.ˇ/

the element with the address k 2 †1 in the attractor of the system of mappings

ui .x/ D Bi .x � ˇi / C ˇi ; i D 1; : : : ; N:

Proposition 5.5. Let 1 � k � d be an integer and B1; : : : ; BN be invertible d � d

contraction matrices such that
PN

iD1 kBikk < 1. Assume that there is an ordered

collection �1 D .�1
1; : : : ; �1

N / 2 .Rd /N such that the system W D .w1; : : : ; wN /,
where

wi.x/ D Bi .x � �1
i / C �1

i ; i D 1; : : : ; N;

has the SMP. In the case k � 2 assume also that there are collections �j D
.�

j
1 ; : : : ; �

j
N / 2 .Rd /N , j D 2; : : : ; k, such that for every pair of addresses

i ¤ j 2 †1 such that …i.�1/ ¤ …j.�1/, the system of vectors

f…i.� i / � …j.� i / W i D 1; : : : ; kg
is linearly independent.

Then the set Ed .B1; : : : ; BN / is a Gı -subset of RdN of full Lebesgue measure.

Proof. Let ˛ D .˛1; : : : ; ˛N / 2 .Rd /N be arbitrary. For every t D .t1; : : : ; tk/ 2
Rk , denote by Wt D .wt

1; : : : ; wt
N / the system of mappings

wt
i .x/ D Bi .x � ˛i � t1�1

i � : : : � tk�k
i /

C ˛i C t1�1
i C : : : C tk�k

i ; i D 1; : : : ; N:

Let At D A.Wt/ be the attractor of the system Wt and A D A.W / be the attractor of
the system W . Denote

P.˛/ D ft 2 Rk W Wt has no SMPg
and for an index i D .i1; : : : ; in/ 2 †n, let wt

i D wt
i1

B : : : B wt
in

: We next estimate
the Hausdorff dimension of the set P.˛/. This set can be represented as

P.˛/ D
1[

nD1

[
i2†n

n
t 2 Rk W wt

i .At/ �
[

j2†n; j¤i

wt
j.At/

o
:

Denote by …k, k 2 †1, the element x in A with address k. Let also …t
k, k 2 †1,

be the element in At with address k. For every n 2 N and i 2 †n, let k.i/ 2 †1 be
such sequence that

…ik.i/ …
[

j2†n

j¤i

wj.A/
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(such k.i/ exists since W satisfies the SMP). For every pair of indices i ¤ j from †n,
let

Qi;j D ft 2 Rk W …t
ik.i/ 2 wt

j.At/g:
Then

P.˛/ �
1[

nD1

[
i2†n

[
j2†n

j¤i

Qi;j:

We now fix a number n 2 N and indices i ¤ j from †n. For every m 2 N and
k 2 †m, denote

Qk
i;j D ft 2 Rk W …t

ik.i/ 2 wt
jk.At/g D ft 2 Rk W …t

ik.i/ D …t
jkp for some p 2 †1g:

Then
Qi;j D

[
k2†m

Qk
i;j:

It is a straightforward argument to verify that for every address q D .q1; q2; : : :/ 2
†1, we have

…t
q D

1X
iD1

Bq1
� : : : � Bqi�1

.Id � Bqi
/.˛qi

C t1�1
qi

C : : : C tk�k
qi

/

D
1X

iD1

Bq1
� : : : � Bqi�1

.Id � Bqi
/˛qi

C t1

1X
iD1

Bq1
� : : : � Bqi�1

.Id � Bqi
/�1

qi
C � � � C

C tk

1X
iD1

Bq1
� : : : � Bqi�1

.Id � Bqi
/�k

qi

D …q.˛/ C t1…q.�1/ C � � � C tk…q.�k/:

Then

Qk
i;j D

n
t 2 Rk W …ik.i/.˛/ C

kX
iD1

ti…ik.i/.� i /

D …jkp.˛/ C
kX

iD1

ti…jkp.� i / for some p 2 †1o

D
n
t 2 Rk W

kX
iD1

ti.…ik.i/.� i / � …jkp.� i //

D …jkp.˛/ � …ik.i/.˛/ for some p 2 †1o
:
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Given an address q 2 †1, let

B.q/ D Œ…ik.i/.�1/ � …jq.�1/; : : : ; …ik.i/.�k/ � …jq.�k/�

be the d � k matrix with columns

…ik.i/.� i / � …jq.� i /; i D 1; : : : ; k:

Let also

b.q/ D …jq.˛/ � …ik.i/.˛/;

� D max
iD1;:::;N

kBik;

and
a D maxfdiam A.˛/; diamA.�1/; : : : ; diamA.�k/g; (15)

where A.c/, c D .c1; : : : ; cN / 2 .Rd /N , denotes the attractor of the system

ui .x/ D Bi .x � ci / C ci ; i D 1; : : : ; N;

and for an index j D .j1; : : : ; jn/ 2 †n, denote

�j D kBj1
k � : : : � kBjn

k:

Then
Qk

i;j D ft 2 Rk W B.kp/ � t D b.kp/ for some p 2 †1g:
We will need the following auxiliary statement.

Lemma 5.6. Let C be a set of d � k matrices of rank k � d , which has diameter
ı with respect to the matrix norm (2), and P be a set of vectors from Rd , which has
diameter � with respect to the Euclidean distance. Assume that there exists a finite
and positive number M > 0 such that for every matrix B 2 C ,

k �
BT B

��1 k � M:

Denote also by L and K positive numbers such that kBk � L for every matrix
B 2 C , and jbj � K for every vector b 2 P . Let Q be the set of all vectors t 2 Rk ,
which are solutions to the equation

Bt D b

for some matrix B 2 C and vector b 2 P . Then

diam Q � �ML C ıMK C 2ıM 2L2K: (16)

Proof. Let t1 and t2 be arbitrary points from Q. There exist matrices B1; B2 2 C

and vectors b1; b2 2 P such that

Bi ti D bi ; i D 1; 2: (17)
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Since matrices B1 and B2 have rank k, vector ti D �
BT

i Bi

��1
BT

i bi is the unique
solution for the i -th equation (17), i D 1; 2. Then

jt1 � t2j D j.BT
1 B1/�1BT

1 b1 � .BT
2 B2/�1BT

2 b2j
� j.BT

1 B1/�1BT
1 b1 � .BT

2 B2/�1BT
1 b1j

C j.BT
2 B2/�1BT

1 b1 � .BT
2 B2/�1BT

2 b1j
C j.BT

2 B2/�1BT
2 b1 � .BT

2 B2/�1BT
2 b2j

� k.BT
1 B1/�1 � .BT

2 B2/�1k � kBT
1 k � jb1j

C k.BT
2 B2/�1k � kBT

1 � BT
2 k � jb1j

C k.BT
2 B2/�1k � kBT

2 k � jb1 � b2j:
Due to equality kBT k D kBk and definition of numbers M; L and K, we have

jt1 � t2j � LK � k �
BT

1 B1

��1 � �
BT

2 B2

��1 k C ıMK C �ML:

Using the estimate

k.BT
1 B1/�1 � .BT

2 B2/�1k
D k.BT

2 B2/�1BT
2 B2.BT

1 B1/�1 � .BT
2 B2/�1BT

1 B1.BT
1 B1/�1k

D k.BT
2 B2/�1.BT

2 B2 � BT
1 B1/.BT

1 B1/�1k
� M 2kBT

2 B2 � BT
1 B1k

� M 2.kBT
2 B2 � BT

2 B1k C kBT
2 B1 � BT

1 B1k/

� M 2.kBT
2 k � kB2 � B1k C kBT

2 � BT
1 k � kB1k/

� 2ıM 2L;

(18)

for every t1; t2 2 Q, we obtain

jt1 � t2j � 2ıM 2L2K C ıMK C �ML;

and estimate (16) follows. Lemma 5.6 is proved.

Completion of the proof of Proposition 5.5. We apply Lemma 5.6 with C D
fB.kp/ W p 2 †1g and P D fb.kp/ W p 2 †1g. For a matrix B D Œc1; : : : ; ck�,
denote

kBk2;1 D max
iD1;:::;k

jci j:
It is not difficult to see that for any d � k matrix B ,

kBk2;1 � kBk �
p

kkBk2;1: (19)
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Let
Mi;j D sup

q2†1

k.B.q/T B.q//�1k:

Denote Y D fB.q/ W q 2 †1g. By assumption, since …ik.i/ … wj.A/, the columns
of matrix B.q/ are linearly independent for every q 2 †1. In view of the fact that
detBT B ¤ 0, B 2 Y, and continuity of detBT B and of the algebraic complement to
every element of BT B (with respect to the matrix norm (2)), we have that k.BT B/�1k
is also continuous with respect to matrix norm (2) on the set Y. Since Y is compact
with respect to the matrix norm (2), we obtain that Mi;j is finite. It is not difficult
to see that diam C � a

p
k�j�k and diam P � a�j�k, where a is defined by (15).

Denote
Li;j D sup

q2†1

kB.q/k;

and let
Ki;j D sup

q2†1

jb.q/j:

Then by Lemma 5.6,

diam Qk
i;j � �jkaMi;jLi;j C �jk

p
kaMi;jKi;j C 2�jk

p
kaM 2

i;jL
2
i;jKi;j DW �j�kUi;j:

Denote by � such number that

NX
iD1

kBik� D 1:

Then

H�.Qi;j/ � lim sup
m!1

X
k2†m

�
diam Qk

i;j

�� � lim
m!1

X
k2†m

��
j ��

k U �
i;j D ��

j U �
i;j < 1:

Since P.˛/ is covered by a countable collection of sets of Hausdorff dimension at
most �, we have dimP.˛/ � � < k. To complete the proof of the proposition
denote V D RdN nEd .B1; : : : ; BN / and let � D Œ�1; : : : ; �k � be the dN �k matrix
with columns �1; : : : ; �k , and l D dimKer� . For every vector ˛ 2 .ImŁ/?, we
also let Q.˛/ D P.˛/ \ .Ker�/?. Then we have P.˛/ D Q.˛/ ˚ KerŁ. Since
dimP.˛/ < k, the set P.˛/ has k-dimensional Lebesgue measure zero and hence,
the set Q.˛/ as a subset of the space .Ker�/? has .k � l/-dimensional Lebesgue
measure zero. Since mapping f W .Ker�/? ! .˛ C ImŁ/, f .t/ D ˛ C �t is affine,
bijective, and f .Q.˛// D ˛ C T .˛/, where

T .˛/ D fy 2 Im� W ˛ C y 2 V g;
we have

L0.T .˛// D 0; (20)
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where L0 is the .k � l/-dimensional Lebesgue measure in the space Im� . Corollary
1.7 implies that V is Lebesgue measurable, since it is a complement of a Gı -set.
Moreover,

V D
[

˛2.Im�/?

.˛ C T .˛//;

where the union is disjoint. Denote by L00 the .dN � k C l/-dimensional Lebesgue
measure in the space .Im�/?. In view of (20) we obtain

LdN .V / D
Z

.Im�/?

L0.T .˛//dL00.˛/ D 0;

which shows that Ed .B1; : : : ; BN / has full measure. The fact that it is a Gı -set
follows from Corollary 1.7. Proposition 5.5 is proved.

Proof of Theorem 5.2. Let u 2 Rd be a unit vector. Since
PN

iD1 kBik < 1, there
are numbers c1; : : : ; cN 2 .�1; 1/ such that balls BŒci u; kBik�, i D 1; : : : ; N , are
pairwise disjoint and are contained in BŒ0; 1�. Let �1

i D ci .Id � Bi/
�1u, and

wi .x/ D Bi x C ci u D Bi .x � �1
i / C �1

i ; i D 1; : : : ; N;

and A D A.w1; : : : ; wN / be the attractor of the system .w1; : : : ; wN /. It is not
difficult to see that

wi .BŒ0; 1�/ � BŒci u; kBik� � BŒ0; 1�; i D 1; : : : ; N:

This implies that A � BŒ0; 1�. Indeed, for every element x 2 A, there is a sequence
.i1; i2; : : :/ 2 †1 such that x D lim

n!1 wi1;:::;in.0/. Since wi1;:::;in.0/ 2 BŒ0; 1� for

every n 2 N, we have x 2 BŒ0; 1�. We also have

wi .A/ \ wj .A/ � wi.BŒ0; 1�/ \ wj .BŒ0; 1�/

� BŒci u; kBik� \ BŒcj u; kBj k� D ;; i ¤ j;

which implies wi.A/ \ wj.A/ D ;, i; j 2 †n, i ¤ j, n 2 N. Hence, sys-
tem of mappings .w1; : : : ; wN / has the SMP and we have �1 D .�1

1; : : : ; �1
N / 2

Ed .B1; : : : ; BN /. Since k D 1, the other assumption of Proposition 5.5 does not ap-
ply and we obtain that Ed .B1; : : : ; BN / has full measure and is a Gı -set. Theorem 5.2
is proved. �

Proof of Theorem 5.3. Assume that E2.B1; : : : ; BN / ¤ ; and let �1 D
.�1

1; : : : ; �1
N / 2 .R2/N be such collection of points that the system of mappings

wi.x/ D Bi .x � �1
i / C �1

i ; i D 1; : : : ; N;

satisfies the SMP. Denote

V D
�

0 � 1

1 0

�
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(V is a rotation matrix) and let �2 D �
V �1

1; : : : ; V �1
N

�
. Note that for any non-zero

vector x D .x1; x2/ 2 R2, we have

det Œx; V x� D det

�
x1 � x2

x2 x1

�
D x2

1 C x2
2 ¤ 0: (21)

Since rotation matrices commute, for every address q D .q1; q2; : : :/ 2 †1, we
obtain,

…q.�2/ D
1X

iD1

Bq1
� : : : � Bqi�1

.I2 � Bqi
/V �1

qi

D
1X

iD1

Bq1
� : : : � Bqi�1

.V � Bqi
V /�1

qi

D
1X

iD1

Bq1
� : : : � Bqi�1

.V � VBqi
/�1

qi

D V

1X
iD1

Bq1
� : : : � Bqi�1

.I2 � Bqi
/�1

qi

D V …q.�1/:

Then for every pair of addresses i ¤ j 2 †1 such that …i.�1/ ¤ …j.�1/, in view
of (21), we have

detŒ…i.�1/ � …j.�1/; …i.�2/ � …j.�2/�

D detŒ…i.�1/ � …j.�1/; V .…i.�1/ � …j.�1//� ¤ 0:

Then vectors …i.� i / � …j.� i /, i D 1; 2, are linearly independent and by Propo-
sition 5.5 we obtain that E2.B1; : : : ; BN / is a Gı -subset of R2N of full Lebesgue
measure. �
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