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A topological separation condition
for fractal attractors
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Abstract. We consider finite systems of contractive homeomorphisms of a complete metric
space, which satisfy the minimality property. In general this separation condition is weaker than
the strong open set condition and is not equivalent to the weak separation property. We prove
that this separation condition is equivalent to the strong Markov property (see definition below).
We also show that the set of N -tuples of contractive homeomorphisms, having the minimality
property, is a G set in the topology of pointwise convergence of every component mapping
with an additional requirement that the supremum of contraction coefficients of mappings in
the sequence be strictly less than one. We find a class of N -tuples of d x d invertible contraction
matrices, which define systems of affine mappings in R having the minimality property for
almost every N -tuple of fixed points with respect to the Nd -dimensional Lebesgue measure.
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1. Introduction

Let X be a complete metric space and d be the distance in X . Recall that a mapping
w: X — X is called a contracting mapping (or a contraction) if

o=o0(w)= sup M<l.

x#yeX d(x’y)

The number o (w) will be referred to as the contraction coefficient of the mapping w.
Let N € N, wy,...,wy: X — X be contracting homeomorphisms of X onto
itself and A = A(wy, ..., wn) C X be the unique non-empty compact set such that

N
A={Jwi(A4).

i=1
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The set A is known as the invariant set or the attractor of the system {wy, ..., wy}and
this way to define the attractor first appears in the paper by Hutchinson [6]. Denote
by M(X) the space of all contracting homeomorphisms w: X — X of the space
X onto itself. Sets defined as above have become generically to be called fractals
and those whose parts do not overlap to much seem to be the most amenable to
investigate. It has been an area of much study to make precise how much overlap is
allowed between each w; (A4). Moran [11] and Hutchinson [6] gave a criterion called
the open set condition which guaranteed that there is not to much overlap. A set of
contractions (wy, ..., wy) € (M(X))V satisfies the open set condition (OSC), if
there is a non-empty open set @ C X such that

1. w; (@) N wj((9) =0,i #j;

2.wi(Q)CcO,i=1,...,N.

A system of contractions (wq, ..., wy) satisfies the strong open set condition
(SOSC) if it satisfies the OSC with O N A # @.

A mapping w: X — X is called a contracting similitude if there is a number
r € (0, 1) such that

d(w(x), w(y)) = rd(x,y), x,ye€X,

and r is sometimes called the similarity coefficient. The attractor of a finite system
of contracting similitudes in X is known as a self-similar set. If X = RY, d € N,

and wy,...,WN: R? — R9 are contracting similitudes Bandt and Graf [1] studied
the set
€ ={w;'wizi.jeFUB} i#j}
where
7=z
neN
with ¥ = {1, ..., N} and showed that the Hausdorff measure of A4 is strictly positive

if and only if the identity mapping  is not in €. Schief [12], using this approach
showed that the SOSC and the OSC are equivalent. He accomplished this by showing
that if the Hausdorff measure of A is positive then the SOSC holds thus solving an
important open problem in the area. For extensions see [15]. The positivity of the
Hausdorff measure of A implies that the Hausdorff dimension of A is the same as
its similarity dimension (see equation (13)). In general however, the OSC does not
imply the SOSC (cf. e.g. [12]). For every vectori = {iy,...,i,} € X", let

= Wj; ... Wi, = Wj; ©...0Wj,.

Let 3 be the set of all infinite sequences (i1, i2,...), wherei; € X, j =1,2,....
A sequence (i1, ip,...) € X is called an address of a point x € A, if
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This is equivalent to the fact that for some pointa € X,
x = lim w;,,. ;,(a).
n—>oo

It is not difficult to see that every point x € A has at least one address and every
sequence from X*° is an address of some point from A. If the set

T = Jwi(4) Nnw;(4)
i#j

is non-empty, there are points in A, which have more than one address. An important
consequence of the OSC for contracting similitudes on R¢ is that it limits the number
of addresses a point in A may have (see [6]). A weaker separation condition than the
OCS condition,

I ¢ (EN\{ID). (1

was used by Lau and Ngai ([8] and [9]) to study the multifractal spectrum of certain
attractors.

Definition 1.1. For every n € N, denote by V, the set of all ordered N -tuples
(wi,...,wy) € (M(X))" such that for every i € X", there holds

wi(A) Z ) wi(A).

jexn, j#i

A separation property based upon the above definition was introduced by
Kigami [7], Section 1.3.

Definition 1.2. A system (wy, ..., wy) € (M(X))" is said to be minimal if

o0
(wy,...,wN) € ﬂ"Vn.

n=1

Theorem 1.3.8 in [7] gives different equivalent restatements of the minimality
property. A collection (wq,...,wy) € (M(X))V satisfies the Markov partition
property (MPP) if there exists a subset V' C A open relative to A such that

1.V = A:
22w, (V)yNw;(V)=0,i # j.
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Definition 1.3. A system of mappings (wy, ..., wy) € (M(X))" satisfies the strong
Markov property (SMP) if for every n € N, there is an open set @, C X such that

1.9, NA =4,
2. wi(On) Nwj(Oy) = 0, forevery i # j € X".

Itis not difficult to see that SMP implies MPP if we let V' = (91N A, and that SOSC
implies the SMP if we set @, = O for every n € N. The SMP does not in general
imply the SOSC; hence, MPP is also a weaker property than SOSC (see Remark 4.11
for a more detailed discussion). Furthermore, in R, condition (1) combined with
the SMP is equivalent to SOSC (provided that the attractor is in general position),
see Remark 4.6 and Propositions 4.7 and 4.8 for more details. Condition (1) is also
known to be equivalent to the weak separation property introduced in [8], see [14].

One of the results proved in this paper is the equivalence of minimality and SMP.
One of our main objectives is to investigate the set 7~ above to see how much overlap is
allowed under the SMP condition. We also show in the case of contracting similitudes
on R? that if the Hausdorff dimension and the similarity dimension of A are equal
then A satisfies the SMP.

An interesting question is how generic are any of the above separation conditions
in M(X). One of the results we present below is to show that the SMP condition is a
countable intersection of open sets i.e a G set. We also show that when X = R and
all the w;’s are similitudes the SMP is generic in the sense of Lebesgue measure. This
result should be contrasted with that of Falconer [4] where he considered attractors
associated with affine maps and obtained a formula for the Hausdorff dimension that
was generic in the sense of Lebesgue measure.

We establish the following results.

Theorem 1.4. Let X be a complete metric space. The system (w1,...,wWx) of
contracting homeomorphisms of X onto X satisfies the SMP if and only if it is minimal.

Definition 1.5. We call a sequence {u,,}men of mappings from M (X) strongly
pointwise convergent to a mapping w € M (X) and write

s.p.
Uy —> W, M —> 00,

if
1. lim u,(x) = w(x) forevery x € X;
m—00

2. sup o(u,) < 1.
meN

If {umtmen C M(X) is asequence of similitudes and w € M(X) is a similitude,
then strong pointwise convergence is equivalent to the “usual” pointwise convergence.
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We introduce a topology By on the space (M (X))V by defining a subset C C

(M(X))N to be closed if for every sequence tw?, ..., w)men C C, such that
{w"}=2>w; € M(X),i =1,...,N, wehave (wy,...,wy) € C. We agree here

that @ is closed. It is not difficult to see, for example, that the space (M (X))V with
the topology By is a Hausdorff topological space.

Theorem 1.6. Let N € N and X be a complete metric space. The set of systems
of mappings (w1, ..., wy) € (M(X))N, which satisfy the SMP is a Gg set in the
topology By .

For a d x k matrix B, let

| Bx|
Bl = max ——
xeRk\{0} [X]

2

be its norm. We say that B is a contraction matrix if | B|| < 1.

Let X = R? and By, ..., By be invertible d x d contraction matrices. Denote
by Ez(Bi, ..., By) the set of all ordered N-tuples (e1, ..., ay) of points from R?
such that the system of mappings w; : R — R<,

wi(x) =Bix—oa;)+a;, i=1,...,N,

satisfies the SMP. We will sometimes consider the set E;(B1,..., By) as a subset
of R4V,

Corollary 1.7. For any collection By, ..., By of invertible d x d contraction ma-
trices, the set Eq(By., ..., By) is a Gg subset of RN (in the topology induced by the
Euclidean distance).

The rest of the paper is structured as follows. In Section 2 we prove Theorem 1.4 by
showing that SMP holds if and only if (w1, ..., wy) is minimal, i.e. (wy, ..., wy) €
N2, Vu. Next, in Section 3, the genericity of the SMP is taken up and it is shown
that the set of all systems of mappings that satisfy SMP is a Gg set in a suitable
topology, thus establishing Theorem 1.6 and Corollary 1.7. In Section 4 we establish
certain necessary or sufficient conditions for the SMP. Finally in Section 5 genericity
results for the SMP in the case of self-affine sets in R? are established. For instance,
in Section 5 we prove the following results.

Theorem 5.2. Let By, ..., By be invertible d x d contraction matrices such
that le\;l |Bi|| < 1. Then the set Eq(B. ..., By) is a Gg-subset of RN of full
Lebesgue measure.

Theorem 5.3. Let B; = o;U;, where o; € (0,1), U; is a 2 x 2 rotation matrix,
i=1,...,N, and ElN=1 O'l-z < 1. Then the set E»(B1, ..., By) is either empty or

is a Gg-subset of R*N of full Lebesgue measure.

When d = 1 Theorem 5.2 follows from a result of Falconer [3].



248 T. Bedford, S. V. Borodachov, and J. S. Geronimo
2. Proof of Theorem 1.4
We will start the proof with the following statement.

Lemma 2.1. Let X be a complete metric space and (wy, ..., wy) € (M(X)N. If
(wi,...,wy) € NS, Vy, then there is an open set O C X such that O N A = A
and w; (Q) Nw;(Q) = 0, i # j. In particular, the system (w1, ..., wy) will satisfy
the MPP.

Proof. In order to prove Lemma 2.1 denote

N
Ki(A) =wi(H\ | Jw;4). i=1..N
S
Let also
N
Zi = w7 (Ki(4)) and V =()Z.
i=1
For example, if wi(x) = x/2and wa(x) = x/2+1/2,then A = [0, 1], Z; = [0, 1),
Z> = (0, 1], and hence, V' = (0, 1). 3
It is not difficult to see that Z; C A, i = 1,..., N. We show that Z; = A,
i=1,...,N. Letx € Aand let U C X be any open set containing x. Denote by
B(a, p) the open ball in X centered at point a of radius p > 0. Since w;(U) is also
open, there is € > 0 such that B(w; (x),€) C w; (U). Letr; = o(w;) € (0, 1) be the

contraction coefficient of w;,i = 1,..., N, and define
Fmax = Max r;.
i=1,..,.N
Choose anumberm € N sothat (rp,.,)™-diamA < €. Thereexistindicesiy, ..., iy €

Y such that x € w;,,.._;,,(A). Then w; (x) € w; ;,,....i,, (A) and

diam w; ;. i, (A) <ri-ri; -... 1, -diamA < (Fmax)™ 1 - diam4 < e.
Hence,
Wi iy,..im (A) C B(w;(x),€) C w;(U). (3)
Since (w1, ..., wxN) € Viyy1, we have
N
Wiinoim @ Z | Wi (D) = [ wi(4).
J1eeees Jm+1€Z Jj=1
J1#i J#i
Hence, there is z € A such that w; ;,,....;,, (z) does not belong to U;. ;+; w;(A). Let

.....

t = wj,,. i, (2). Since w;(¢) does not belong to any w; (A4) with j # i, we must
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have w; (t) € w;(A), that is, w;(t) € K;(A). Hence, t € Z;. On the other hand,
since w; (t) € wj j,,....i,m (A), in view of (3), we have w; (t) € w;(U), thatist € U,
which implies that Z; = A,i =1,..., N.

We next show that V = A. Indeed, since each Z; is open relative to A, there
are open sets W; C X suchthat Z; = W; N A,i = 1,...,N. Let y be any
element in A and U be any open neighborhood of y. Since Z; = A, there is
71 € ZiNU = ANW, NU. Since Z, = A, there is z, € Z, in the open
neighborhood W, N U of the point z; € A, thatis z, € AN U N Wy N W,. Then by
induction, there will be an element zy €e ANU NWiN...N Wy =V NU, and
the required relation follows.

Note that for every i # j, there holds

wi (V) Nw; (V) Cwi(Z:) Nw;(Z;) = Ki(A) N K;(A4)
C (wi(A) \ wj(A) Nw;(A4) = 0.

Taking also into account the fact that V' is relatively open with respect to 4 as an
intersection of a finite collection of subsets of A, which are open relative to A, we
conclude that the system (wy, ..., wy) possesses the MPP.

For every x € V, denote

N
p(x) = ,:rfnnN dist(wi (x), L_Jl w; (A)).
G2
In view of the relations
w; (V) Cwi(Z;) =K;(4), i=1,...,N,

the point w; (x), x € V, does not belong to the closed set | J;. ;; w;(A). Hence,
p(x) > 0, x € V, and the set

0= B@&.p(x)/2)

xeV

isopen. Since V.= Aand V C O N A C A, wehave © N A = A. To show that
w;(0) Nw;(OQ) = B,i # j,assume to the contrary that there exist indices i # j
such that w; (0) N w; (@) contains some element y. Then y = w;(p) = w,(q)
for some p,q € @. There are points ¢,b € V such that d(c, p) < p(c)/2 and
d(b,q) < p(b)/2. Note that

d(y, wi(c)) = d(w;i(p). wi(c)) < ri-d(p.c) <ri-pc)/2 (4)

and
d(y,w;(b)) = d(wj(g), w;(b)) <rj-d(q.b) <rj-pb)/2. (5)
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There also hold the following relations

N
p(e) < dist(wi(e). | J wi(A)) = dist(w; (). w;(4)) < d(wi(c).w; () (6)

k=1
ki

and

N
p() < dist(w; (). | we(4)) = distCw; 1), wi (A)) = dw; (b), wi(c)). (D)
2

Then, in view of relations (4)—(7), we obtain
p(c) + p(b) = 2d(wi(c), w;(b))
= 2(d(wi(c).y) +d(y, w;(b)))
<ri-p(c)+rj-pb)
< p(e) + p(b),

which is impossible. Hence, w; () and w;(¢) are disjoint, which completes the
proof of Lemma 2.1. O

To prove sufficiency in Theorem 1.4, assume that

(wi.....wx) € [ Va C (MX)DV.

n=1

Then for every m € N and n € N, we have (wy,...,wn) € Vum C (M(X))V,
which implies that the system {wj}jex= belongs to the set V,, C (M (X))¥". Hence,
{Wiliezm € NS, 'V, C (M(X))N™. By Lemma 2.1, there is an open set O,, C X
such that O,, N A = A and wi(O,) N wj(Op) = D foreveryi #je X", m € N.
Hence, the system (wy, ..., wy) satisfies the SMP.

The proof of the necessity in Theorem 1.4 is preceded by the following proposition.

Lemma 2.2. Let mappings wy, ..., wn € M(X) be such that there is a non-empty
open set @ C X with the property

wi (0) Nw;(O) =0, i ]

Then for everyi =1,..., N,

wi(@) N ) wj©O)=0.

Jr i
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Proof. Assume the contrary. Then for some jo # i, there is x € w; () N wj, ).
Let z € O be such that x = wj,(z). There is a sequence {z;}men C O such

that z = lim z, and hence x = lim wj,(z,). Since w;(Q) is an open neigh-
m—00 m—00

borhood of x, we have wj,(z,,) € w;(O) for every m sufficiently large, and hence
w; (0) Nwj,(O) # @, which contradicts the assumptions. Lemma 2.2 is proved. [

Completion of the proof of Theorem 1.4. Assume that system (wq,...,wy) €
(M(X))N satisfies the SMP. Let k € N be arbitrary. Then there is an open set
Ok C X such that Ox N A = A and w;i(Ok) N wj(Ok) = @ foreveryi # j € ¥k,
We first show that for every i € >k,

wi(A) = wi(Ok) N 4. ®)
Taking into account Lemma 2.2 and the fact that A = O N A C O, we obtain
wi(O) N A = Wi(On) Nwi(A) U (wi@n | wi)
jexk, j#i

cui@nHU(wi©@on |J @)
jexk, j#i
= wi(Or N A).

Then

wi((9k) NAC wi(@k N A) = wi((9k N A) = wi(A).
On the other hand,

wi(A) = wi(Or N A) = wi(Or N A) = wi(Ok) N wi(A) C wi(Og) N A,

and (8) follows.
Assume that (wq, ..., wy) does not belong to NS, V,,. Then there isn € N and
i, € X" such that

w, () wd).
J€X, j#in

Then, taking into account (8) we obtain

Wi, (0,)NAC Wi, (O,) NA= Wi, (A)
c U w@®
€D, jtin
= U w@nn4
JETM, j#in

c U w©.

JeX, j#in
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Since wi, (0,) N A = w;, (A) # @, there is a point x € w;,(@,) N A C w;, (Op).
Then x € Uiesn, ji, w;j(Oy). Hence,

wi, O N | ) wi(On) # 0.

JES, jtin

which contradicts Lemma 2.2. Theorem 1.4 is proved. O

3. Proofs of Theorem 1.6 and of Corollary 1.7.

The proof of some statements in this section is standard, but we include it for the
convenience of the reader.

Lemma 3.1. If a sequence {up}men C M(X) converges strongly pointwise to a
mapping w € M(X), then the sequence of fixed points of mappings u,, converges to
the fixed point of w.

Proof. Let x,,, € X be the fixed point of the mapping u,,, m € N, and x € X be the
fixed point of w. Denote also

o = sup 0 (Um).

meN
Then
d(xpm,x) < d(xXpm, um(x)) + d(Um(x), x)
= d(um(xm), um(x)) + d(Um(x), w(x))
< 0d(xm, Xx) + d(upm(x), w(x)).
Hence,

d(xm.x) < ﬁd(um(x)» w(x)),

and we have
lim d(xp,x) =0.
m—00

Lemma 3.1 is proved. O

Lemma 3.2. Let A be the attractor of a system of mappings wy, ..., wy € M(X)
with contraction coefficients not exceeding a given number o € (0,1). Let also
Bla,r] be a closed ball containing the fixed point of every mapping wy, ..., WN.
Then A C Bla, R], where R = 1+o,

1—0 "
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Proof. Assume the contrary. Denote by yi,..., yny the fixed points of mappings
w1, ..., wy respectively. Let z be a point in A furthest from a. Then we must have
d(z,a) > R. Let1 <i < N be such index that z = w; (z;) for some z; € A. Then

d(z1,a) = d(z1, yi) —d(yi,a)

> ld(wi(zl)v w;i(yi)) —r
o

1
= —d(z.y) ~r
o
1 1
> —d(z,a) — —d(yi,a) —r
o o

1 r
> —d(z,a)———r.
o o
Hence,
d(zy,a) - 1 (1+4+o)r - 1 (d+o)r
d(z,a) — o od(z,a) o oR
which contradicts the fact that z is a point in A furthest from a. O
Lemma 3.3. Let {w]'}men, - ... {w), meN be sequences of mappings from M(X)
such that w" 2> w; € M(X),i =1,...,n. Thenwio...owl =5 wio.. . owy,
m — Q.
Proof. We will use induction. For n = 1, the assertion of the lemma is trivial.

Assume that the assertion is true for a given value of n > 1 and show that it holds for
any n + 1 sequences satisfying the assumptions of the lemma. For every x € X, we
will have

dw'wy' .. wp' (X)), wiws ... Wy (X))
< d @ w (), Wl (w2 w1 (6)))
+dwi'(wz ... Wpt1(x)), w1 (W ... Wyt1(x)))
<dwy ... wy (x), wa. .. Wyp1(X))
+dwi'(wz ... Wpt1(x)), w1 (W2 ... Wyt1(x))).

By the assumption of the induction, both distances in the last line vanish as m — oo
and we have

mli_r)noo wi'wy' . w, (X)) = wiwa .. Weg(X), x € X.
Since

o= max supo(w) <I,
i=1,..n+1 ,cN
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we have
owy...owi ) <o" <1, meN,
which implies strong pointwise convergence. Lemma 3.3 is proved. O
Given a system W = (wy,...,wy) € (M(X))" and an address i € X, let

IT;(W) be the point in the attractor of W with address i.

Lemma 3.4. Let W, = (w{’, ..., w};), m € N, be a sequence from (MXNN such
that for everyi = 1,..., N, the sequence {w;" } me converges strongly pointwise to
some mapping w; € M(X). Then for every address i € X°°,

lim ITi(Wp) = ILi(W),
m—00
where W = (wy, ..., WN).

Proof. Given an arbitrary address i = (i1, i2,...) € X°°, denote by x;, _;, the fixed
point of the mapping w;,,...;,,. Let also

§ = max sup o(w/").
i=1,..., meN

Let B(a,r) be a ball containing the attractor A of the system W and R = %r.

Choose an arbitrary € > 0 and let n € N be large enough so that

d(I;(W), xi,..i,) <€ and R§" <e. 9)
Denote by xy"  ,, the fixed point oftheg mapping wg', ©...owg! , @1, ...,0n € L. By
Lemma 3.3, we have w('fl o...0 w(T,, =P Wa.....an, M — 00. Then by Lemma 3.1,
we have n}i—{noox"'?l---"‘" = Xq,..a, fOrevery ar,...,a, € X. Since Xy,..q, € A C
B(a, r), there is a number m,, € N such that for every m > m, anday,...,a, € %,
we have x5, € B(a,r). Forevery m > my, we obtain

d(IL(W), Ii(Wp)) < d(ILi(W), Xi,..i,)
+ d Wiy ,..in (Xiy i), Wi+ W) (X iy))
+dWi} . wi (X i)y (W)
<€+ dWiy,.in (Xiy i) Wi W (X 0y))
+dWil . wi (X i) Wi Wy (Zim)),s

where z; ,, is some point in the attractor A,, of the system W,,. Taking into account
Lemma 3.3, we will have

d(IG(W), Ti(Ww)) < € +0(1) + 8"d(xiy..i,» Ziim)-

Foreveryi = 1,..., N, the fixed point x!" of w" is also the fixed point of the n-th
power of wi", and as it was noted above, x!"* € B(a,r),m > m,. By Lemma 3.2, we
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have z; , € A,, C Bla. R]. Since x;,..;, € A C B(a,r) C Bla, R], in view of (9),
we obtain

d(T;(W), Ti(Wm)) < € +0(1) + 2R8" < 3e + o(1).
Hence,

lim sup d(IT;(W), [1;(W;y,)) < 3e.

m—00

In view of arbitrariness of €, we have
lim d(IT;(W), I1;(W,,)) = 0,
m—0o0
and the assertion of Lemma 3.4 follows. O

7=z

nelN

Let

Lemma 3.5. Let N.n € N. If a sequence {(wY", ..., wh)imen C (MXNV\ V,
converges strongly pointwise in every component to a system W = (wy,...,Wy) €
(M(X)N, then we have W € (M(X))N \ V,.

From Lemma 3.5 we obtain the following statement, which in view of Theo-
rem 1.4, implies the assertion of Theorem 1.6.

Corollary 3.6. For every positive integers n and N, the set 'V, is open in the topology
By, and hence, N3V, is a Gg set.

Proof of Lemma 3.5. Let Wy, = (w{", ..., wY;) € (M (X)) \ V, be a sequence,
where every component is convergent strongly pointwise to the corresponding compo-

nent of the system W = (wy, ..., wy) € (M(X))". Denote wy' = w,’fl 0...ow,'€’;,
k = (ky,...,kp) € ¥. For every m € N, there is a vector i, € X" such that
wl(Am) € ) wi(Am).
ke, ki

where A, is the attractor of the system W,,,. There is an index i € X" and an infinite
subsequence N C N such that

w(Am) € | wi(Am). me N (10)
keX”, k#i

Let A be the attractor of the system W and x € w;(A) be an arbitrary point. Then
x = ITjg(W) for some B € X°°. In view of (10), for every m € N, there holds

i (W) € wi" (Am) N wjnyz (Am)
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for some j, € X" distinct from i. There are index j € X", j # i, and infinite
subsequence N’ C N such that

ig (W) € wi™ (Am) N wi"(Ap), me N
Hence, there is a sequence y,, = (y1", v, ...) € X such that
ig(Wm) = jy,, W), me N’ (11)

One can find an infinite subsequence N; C N’ and an index y; € X such that y]" =
y1, m € Ni. One can find an infinite subsequence N, C N; and an index y, € X
such that y{" = y; and y)* = y», m € N,. Continuing this process indefinitely, we
obtain an address y = (y1, ¥2,...) € X°° and a sequence of embedded infinite sets
N1 DNy D...D N D...suchthat y" = yg,m € Ng, k € N,

Let as above, B(a, r) be an open ball containing A. Since A contains the fixed
points of mappings wy, ..., wy, by Lemma 3.1, there is my € N such that for every
m € N, m > my, the fixed points of mappings w{’, ..., wy willbein B(a, r). Then,
by Lemma 3.2, 4,, C Bla, R], where R = %r and § = imla)J(v sg&a(w{”) €

=1, m
(0,1). Forevery k € N and m € Ny, m > my, there are points b and ¢ in A,, such
that

(T, W) Ty (W) = d 'l (B). 'l (€))
= d(wjmwjr/n ..... Vi (b)v wjmw;/ri ..... Vi (C))
<o) -o(wy) ... o(wy )db,c)

< §"**diam4,, < 2R§"TF.
By Lemma 3.4 and relation (11), for every m € Ny, m > mg, we obtain

d(x, jy (W) < d(Tig (W), ig (W)
+ d(njym (Wm)a ij(Wm))
+ d (I (W), I, (W))

< 2RE"F £ o(1).
Hence, letting m — oo along the sequence N, we will have
d(x, T, (W)) <2R8"T*, ke N.

Letting now kK — oo we get that d(x, ITj, (W)) = 0, which implies that

x=MpW)yewidc | w(A),
keX”, k#i
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where vector j was chosen to be distinct from i. Since x € w;j(A) was chosen
arbitrarily, we obtain that

wi(d) C w4,

KEX!, ki

and hence, W € (M(X))N \ V,. Lemma 3.5 is proved, which completes the proof
of Theorem 1.6. O

Proof of Corollary 1.7. Let U,, n € N, be the set of ordered N -tuples
(a1,...,0y) € (RN such that the system of mappings

wi(x) =Bi(x—oa;)+a;, i=1,...,N, (12)

belongs to V,,. By Theorem 1.4, we have
o
Eq(By.....BN) = (") Un.
n=1

It remains to show that for every n € N, the set U,, is open. Assume the contrary
and let « = (a¢q,...,ay) € U, be not an interior point of U,. Then there is a se-
quence {B,,15°_, C (RY)N \ U, suchthate = lim B,,. LetB,, = (BT....,B"%),

m—00

m € N, where ﬁ;" e R4, i = 1,...,N. Then for every m € NN, the system of
contracting mappings

w"(x) = Bix—B") + B, i=1,...,N,
does not belong to V,,. Since foreveryi = 1,..., N andx € [Rd,

lim w(x) = w;(x),
m—0o0

where w; is defined as in (12), and

max || B;]| <1,
i=1,..,N

.....

. . may oo . P—
we have a strong pointwise convergence of the sequence {w"} > | to w;, i =

1,...,N. By Lemma 3.5, we have that (w1, ..., wy) does not belong to V,, i.e.
a ¢ U,. This contradiction shows that U, is an open set for every n and the assertion
of Corollary 1.7 follows. O
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4. Remarks about conditions related the SMP

In this section we mention several simple statements, which give necessary or suffi-
cient conditions for the SMP.

Proposition 4.1. Let X be a complete metric space and (w1, . .., wy) be a collection
of contracting homeomorphisms of X onto X. If (wy, ..., wy) satisfies the SOSC,
then (wy, ..., wnN) satisfies the SMP.

Proof. Let @ C X be the open set from the definition of the SOSC. Show that
ANQO = A. Indeed, if x € A and € > 0 are arbitrary, for some m € N sufficiently
large andi € ™ wehave x € wi(A) C B(x,¢€). Sincewi(ONA) # G, wi(ONA) C
B(x,¢€),and

wi(ONA) =wi(Q) Nwi(A) CON A,

we have (O N A) N B(x,€) # @. Hence, A C @ N A. Since the opposite inclusion
is trivial, we have @ N A = A.

If for every n € N, we let @, = O, then conditions 1 and 2 in the definition
of the SMP will hold and, by Theorem 1.4, we have (wi,...,wy) € NS, V,.
Proposition 4.1 is proved. O

The converse of Proposition 4.1 is not true (see Remark 4.11 below).
Recall that
T = Jwi(4) nw;(4)
i#]
and denote
D=Dwr.....wy)=A\ | Juwy (D).
ie¥
Theorem 1.3.8 in [7], in particular, implies the following statement.

Proposition 4.2. Let X be a complete metric space and wy, ..., wy be contracting
homeomorphisms of the space X onto X. The system (w1, ..., wy) is minimal if and

only if D(wy,...,wy) # 0.

Hence, in view of Proposition 4.1, the condition & = @ implies that the SOSC
does not hold. We also remark that the following statement holds.

Proposition 4.3. Let X be a complete metric space and wy, . .., wy be contracting
homeomorphisms of the space X onto X. Then

LLwi(D)cD,i=1,...,N;

22w (D)Nwi(D)=0,i #j.

If in addition, this system satisfies the SMP, then
3.D=4
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Proof. It O = @, conditions 1 and 2 hold trivially. Assume that O # @ (which is
equivalent to the SMP). To prove the first statement assume the contrary, i.e. for some
1 <k < N,thereis y € wi(D) \ D. Then there is a point x € D such that y =
wg (x). On the other hand, since y isnotin O, there isa vectorp = (p1,..., ps) € F
such that wp(y) € 7. Hence, wp, .. p, k(x) € T, which contradicts the fact that
xed.

To prove the second statement, assume again the contrary, i.e. for some indexes
1 <i # j < N, thereis a point x € w; (D) Nw;(D). Then x = w;(¢),t € D.
Since

w;(t) € wi (D) Nw;(D) Cw;(Ad) Nw,;(A) CT,

we have a contradiction with the fact thatt € D.
To show the third statement, choose any point z € A and a ball B(z,¢€), € > 0.

Denote 7. = i=r{1axN o(w;). Let m € N be such number that r” - diamA4 < €

andi = (i1,...,iy) € 2™ be such that z € w;(A). Let point ¢ € A be such that
z = wj(q) and x be some point in . Then, by the first statement, w;(x) € D. Since

d(z, wi(x)) = d(wi(q), wi(x))
so(wiy)-...-owi,)-d(g,x)
<. -diamA <e,

we have D N B(z,€) # O for every z € A and € > 0. Taking into account that
D C A, we have D = A. Proposition 4.3 is proved. O

The following statement shows the relation between the cardinality of the overlaps
of sets w; (A) and the SMP.

Proposition 4.4. Let wy, ..., wy € M(X) be such that the corresponding attractor
A is uncountable and every set w;(A) N w;(A), i # j, is at most countable. Then
the system (w1, ..., wy) satisfies the SMP,

Proof. By assumption, the set 7 is at most countable. Then the set Uje 7 w; L(T)

is also at most countable. Since A is uncountable, we have D(wq,...,wy) #
@. By Proposition 4.2 and Theorem 1.4, the system (wq,...,wy) has the SMP.
Proposition 4.4 is proved. O

The following statement is obtained if one combines Corollaries 1.4.8 and 1.4.9
from [7]

Proposition 4.5. Let X be a complete metric space and wy,...,wy: X — X be
contracting homeomorphisms of X onto X. Assume that every point in the attractor
A of this system has a finite number of addresses. Then the system (Wi, ..., WxN)
satisfies the SMP.
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We say that two vectors i, j € ¥ are incomparable if neither i is an initial word
of j nor j is an initial word of i. Denote

&= {wj_lwi: i,j € ¥ U {0}, i,jincomparable}.
Denote by [ the identity mapping from X to X.

Remark 4.6. In the case when X = R? and w;’s are contractive similitudes, the
results of papers by Hutchinson [6], Bandt and Graf [1], and Schief [12] imply the
equivalence of the following three conditions: SOSC, OSC, and the condition that
I ¢ & in the topology of pointwise convergence of similitudes. The weak separation
property (WSP) introduced by Lau and Ngai in [8] was shown to be equivalent to
the condition that / ¢ & \ {I} for finite systems of contractive similitudes whose
attractor is not contained in a hyperplane (cf. the work by Zerner [14]).

Moreover, the following statement holds.

Proposition 4.7 (see [14], Proposition 1). Assume that attractor A of a system W =
(w1,...,wy) of contractive similitudes in R? is not contained in any hyperplane.
Then the OSC holds if and only if the WSP holds and w; # wj for everyi # j from ¥ .

This proposition implies the following statement.

Proposition 4.8. Let W = (wq,...,wy) be a system of contractive similitudes in
R<, whose attractor is not contained in any hyperplane. Then system W satisfies the
SOSC if and only if it satisfies the WSP and the SMP.

Proof. In view of Propositions 4.1 and 4.7, the SOSC implies the SMP and the WSP.
If the system W satisfies the WSP and the SMP, assume to the contrary that for some
i=(@1,....im) #j = (J1,..., jn) from F, we had wj = wj (m < n). Ifiisa
prefix of j, then m < n and the contraction wj,, ..., must be the identity mapping
which is a contradiction. Ifiis not a prefix of j, then (i1, ...,im) # (j1,..., jm) and

Wiy,.im (A) = wjy ., (A) CTwjy g (A),

which contradicts the fact that W has the SMP and shows that our assumption is
false. Then by Proposition 4.7, the system W possesses the SOSC. Proposition 4.8
is proved. O

From the results cited above we obtain that that SOSC does not allow / € &. The
WSP allows I to be in & as an isolated point.

Proposition4.9. Let X be a complete metric space and let the system (wy, ..., Wy) €
(M(X)N satisfy the SMP. Then I ¢ &. The converse is not true.
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Proof. The proof of the fact that / ¢ & is analogous to the proof of the Proposition 4.8
when i is not a prefix of j. The following counterexample shows that the converse is
not true. Let w(x) = x/2, wa(x) = (x + 1)/2, and w3(x) = (x + a)/2, where
a is an irrational number from (0, 1). It is not difficult to see that interval [0, 1] is
the attractor of the system (w1, wz, w3). Since w3([0, 1]) C wq([0, 1]) U w4 ([0, 1]),
the system (w;, wy, w3) does not satisfy the SMP. If we assumed that / € &, there
would be incomparable indexes i = (i1,...,i),j = (j1,..., Jjm) € F such that
w;j = wj. Hence,

1
wi(x) = x+ Z + Z 2k = wj(x) = x+ Z 2k Z —za-
lk 2 lk 3 jk—2 k 3
Then n = m and
1 1y 1 1
O D BIFO LD DIE D D2
- 2 - 2 - 2 - 2
k: jr=3 k:ig=3 k:ip=2 k: jr=2
Since a is irrational, we must have
1 1
X w= X ow
k: jr=3 k:ip=3
Hence, {k: i = 3} = {k: jir = 3}. But then
1 1
> o= X
k:ig=2 k: jr=2
Hence, {k: iy = 2} = {k: jr = 2}. This implies that {k: i = 1} = {k: jr = 1}

and i = j, which also contradicts the incomparability of i and j. This contradiction
shows that for the system (w1, w», w3) we have I ¢ & but SMP does not hold. [

Let W = (wq,...,wn), where wy, ..., Wy : RY — R?, d € N, are similitudes
with similarity coefficients r1,...,ry € (0, 1) respectively. Denote by a = a(W)
the unique positive number such that

re g =1 (13)

This number is known as the similarity dimension of the attractor A associated with
the system W. Denote by dimA the Hausdorff dimension of the set A and by #j,
A > 0, the A-dimensional Hausdorff measure in R?. The standard covering argument
shows that

dimA(W) < a(W). (14)

Proposition 4.10. Let W = (wy, ..., wn) be a system of contracting similitudes in
R%, d € N, and dimA(W) = a(W). Then A satisfies the SMP.



262 T. Bedford, S. V. Borodachov, and J. S. Geronimo

Remark 4.11. The results by Hutchinson [6], Theorem 1, Section 5.3], combined
with the results by Schief [12], Theorem 2.1, imply that for the attractor A(W) of
a finite system W of contracting similitudes in R?, we have How)(AW)) > 0if
and only if W satisfies the OSC. Proposition 4.10 implies that any finite system of
contracting similitudes W such that dimA(W) = a(W) and Homw)(A(W)) = 0
(examples of such systems were given by Mattila (see [10]) and Solomyak [13]),
will have the SMP. But such system will not satisfy the OSC, which shows non-
equivalence of these two properties. Since SMP implies MPP as asserted by Lemma
2.1, we conclude that MPP is also weaker than OSC.

Proof of Proposition 4.10. Assume the contrary. Then in view of Theorem 1.4,
there is n € N such that (wy, ..., wy) does not belong to V,,. Then there is a vector
i € X" such that

wiA) c | wia).

JETN, j#i

Hence,

A= Jw= U ww

jexn jexn, j#i

and A will be also the attractor for the system of mappings S = {wj}jexn, jzi. In this
case the similarity dimension of A associated with system S satisfies

> 7P=1
jeT i

where rj is the contraction coefficient of the mapping wj, j € X". Since

> =1,

jexn

we have «(S) < a(W). Then, by (14), we obtain dimA < «a(S) < «(W), which
contradicts the assumptions of the proposition. Proposition 4.10 is proved. O

5. Genericity of the SMP on certain classes of self-affine sets

Let Bi,..., By be invertible d x d contraction matrices, d € N. Recall that

E;j(B1,..., By) is the set of ordered point collections (eq,...,ay) € ([Rd)N such
that the system of mappings

ui(x) =Bi(x—a;) +oa;, i =1,...,N,

has the SMP. We will consider the set E4(Bj., ..., By) as a subset of RZV
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Remark 5.1. When By = AUy, ..., By = AnyUy, where matrices Uy, ..., Uy
are orthogonal and

DO<Ai<3,i=1...N;

N
)Yy a2 <1,
i=1
theset E4(B1, ..., By)isasubset of RN of full measure. This follows from results
of Falconer [4], Theorem 5.3, Solomyak [13], Proposition 3.1, and Proposition 4.10.
(Recent results of Falconer and Miao [5] also imply upper estimate for the Hausdorff
dimension of the complement of E;(B1, ..., By).) In this paper we can show that
E; (B1,..., By) has full measure when assumption 1) is replaced with certain other
assumptions.

Theorem 5.2. Let By,..., By be invertible d x d contraction matrices such that
SN B/l < 1. Then the set Eq(By.....By) is a Gs-subset of RN of full
Lebesgue measure.

When d = 1 the result of Theorem 5.2 immediately follows from the result of
Falconer [3] (also cited in [10], Theorem 9.13) and Corollary 1.7.

Theorem 5.3. Let B; = o;U;, where o; € (0,1), U; is a 2 X 2 rotation matrix,
i=1,...,N, and ZlN=1 01.2 < 1. Then the set E»(B1, ..., By) is either empty or
is a Gg-subset of R?N of full Lebesgue measure.

Remark 5.4. The set E2(B1, ..., By) can be empty under assumptions of Theorem
5.3 as the following example shows. Let 01,02 > 0 be such that o3 + 0, > 1 and
012 + 022 < 1,and By = o115, B, = 0,1, (here and below I; denotes the d x d
identity matrix). For any ordered pair (a1, a3) of points in R2, the attractor A of the
system of mappings

wi(x)=Bi(x—a;))+a; =0x+1—-0)e;, i =1,2,

is the closed segment with endpoints &1 and e,. The set wq(A) Nw,(A) is a segment
of positive length. For n € N sufficiently large and some index i € X", there holds
wi(A) C wi(A4) N wy(A). Ifi starts with 1, we have

wi(A) Cwa(A) = ) wawy(4) € | J wy(4).
jexn—1 jexn
i
If i starts with 2 we use analogous argument. Thus, the system (w;p,ws)
does not posses the SMP for any collection of fixed points (e, e,) and hence,
E>(B1, By) = @. This example also shows that that in the case ZlNzl |Bill > 1
the set E4(B1, ..., By) in Theorem 5.2 can even be empty.
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The proof of Theorems 5.2 and 5.3 will follow from the statement presented below.
For an ordered collection of points 8 = (8;....,Bx) € (R?)Y, denote by Iy (8)
the element with the address k € X in the attractor of the system of mappings

ui(x) =Bix—B;)+B;,, i=1,...,N.

Proposition 5.5. Let 1 < k < d be an integer and B, ..., By be invertible d x d
contraction matrices such that le\;l | B:||¥ < 1. Assume that there is an ordered

collection y; = (y}.....¥N) € (REYN such that the system W = (wy, ..., wy),
where

wi(x) = Bi(x—y)+yl, i=1,...,N,
has the SMP. In the case k > 2 assume also that there are collections y =

(y{, . ..,y1<,) e (RHN, j = 2,....k, such that for every pair of addresses
i #j e X% such that T1i(y ) # I;(y ), the system of vectors

i(y;) = Oj(y) i =1,....k}

is linearly independent.
Then the set E;(B1, ..., BN) is a Gg-subset of R4N of full Lebesgue measure.

Proof. Leta = (a1, ....ayn) € (RY)N be arbitrary. Forevery t = (f1,....1) €
R¥, denote by W; = (w!, ..., wY) the system of mappings
wi(x) = Bi(x—a; —t1y} —...— tkyf‘)

ta, +uyl . uyt, i=1,...,N

Let A, = A(W,) be the attractor of the system W; and A = A(W) be the attractor of
the system W. Denote

Pax) ={te R¥: W, has no SMP}

and for an index i = (i1,...,in) € 2", let wf = w! o...o0 w}n. We next estimate
the Hausdorff dimension of the set P (e). This set can be represented as

Pw=1J U {te RF:wiap ¢ wj‘(At)}.

n=1 jexn jexn, j#i

Denote by Ik, k € X°°, the element x in A with address k. Let also Hf(, k € X,
be the element in A¢ with address k. For every n € N andi € X7, let k(i) € X° be
such sequence that

My ¢ () wi(4)

jexn
jF#l
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(such k(i) exists since W satisfies the SMP). For every pair of indices i # j from X",
let
Qi = {t € RF: T € wj(4y)}.

rewcl) U U au

n=1 iexn jexn
i#i

We now fix a number n € N and indices i # j from X”. For every m € N and
k € ™ denote

Then

={te R : M) € wi(A)} = {t e R : M) = Ty, for some p € 7%}

1

Then
0= U o
kexm
It is a straightforward argument to verify that for every address q = (¢1,¢2,...) €
> we have

o0
I = ZBql +..o By (g — By g, + 1y} + ...+ tev))
i=1
= By ... By (I — Bg)ag,
i=1
o0
-i-llqu1 -.._-qu_l(]d—qu)y;i R
i=1
oo
+ 16> By, ... By (Ia — Bg)vk

i=1
= Mg(a) + 11 g(yy) + -+ + 5 q(¥i)-
Then

k
Q:fj = {t e Rk: ik (o) + Z ti iy (¥1)

i=1

k
= Hjip(e) + Zli Tip(y;) for some p € Eo"}

i=1

k
= {t € RF: Y1 (Muy (v,) — Mipp(7,))

i=1

= Mjkp () — k(i) (er) for some p € E‘x’}.
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Given an address q € X, let

B(q@) = [Mkg) (¥1) — Wiq(¥ 1) - - - Mike) (V) — Wjq(v )]

be the d x k matrix with columns

My (¥;) — jq(¥;). i =1.....k.

Let also
b(q) = TTjq(er) — Mk ().
o= max_|[B;,
i=1,...,
and
a = max{diam A(«),diamA(y),...,diamA(y;)}, (15)
where A(c), ¢ = (¢, ....cn) € (RN, denotes the attractor of the system
uj(x) = Bi(x—c¢;))+¢, i=1,...,N,
and for an index j = (J1,..., jn) € £", denote
o5 = 1B |l ----- I Bj, I
Then

OF; = {t € R*: B(kp) - t = b(kp) for some p € ™}

We will need the following auxiliary statement.

Lemma 5.6. Let € be a set of d x k matrices of rank k < d, which has diameter
8 with respect to the matrix norm (2), and P be a set of vectors from R¥, which has
diameter € with respect to the Euclidean distance. Assume that there exists a finite
and positive number M > O such that for every matrix B € €,

I (BTB) || < M.

Denote also by L and K positive numbers such that |B|| < L for every matrix
B € €, and |b| < K for every vectorb € P. Let Q be the set of all vectors t € R,
which are solutions to the equation

Bt=b
for some matrix B € € and vectorb € P. Then

diam Q < eML + MK + 25M*L*K. (16)

Proof. Let t; and t, be arbitrary points from Q. There exist matrices By, B, € €
and vectors by, b, € £ such that

Bit; =b;, i =12. 17)
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Since matrices By and B have rank k, vector t; = (B] B,~)_1 BT'b; is the unique
solution for the i-th equation (17), i = 1, 2. Then

|t — t2] = [(B] B1)™' B by — (B] B2)™' B] b,
< (BT By B by — (B Bo) ™' B by
+(B] B2) ' BI'by — (B] Bo) ™' B] by
+ (B B2)"' B b1 — (B B2) "' BI b,
< (B B)™" = (B Ba)~'[| - | B || - [by]|
+ (B3 B) 7 - I1B] — B || - by
+ (B B)™! |- 1B] || - [by —ba.

Due to equality | BT || = || B| and definition of numbers M, L and K, we have

ity —to| < LK - || (BT B1) ' — (BYBy) ™" || + MK + eML.
Using the estimate
I(Bf B1)™" — (B} B2)™!|

= |(B] B2)™' B} B2(B] B)™" — (B] Bo)"' B] Bi(B] B)™'||

= |(B] B2)""(B] B»— B B))(B] B)™'|

< M?||B] B, — B Bi| (18)

< M?(|B] By — B] Bi| + || B] By — B] Bil))

<M*(|B] |- |B2— Bl + 1B — BT |- 1B1])

<28M>L,
for every t,t; € Q, we obtain

[t —ty] <26M?L*K + SMK + eML,

and estimate (16) follows. Lemma 5.6 is proved. Ol

Completion of the proof of Proposition 5.5. We apply Lemma 5.6 with € =
{B(kp): p € £} and # = {b(kp): p € ¥*°}. For a matrix B = [e¢q,..., ¢x],
denote

[Bll2,00 = max |c;].
i=1,...,k

.....

It is not difficult to see that for any d x k matrix B,

IBl2.00 < 1 BIl < V| Bl2,00- (19)
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Let
Mij = sup [(B@)" B@)™"].
qeX>®

Denote ¥ = {B(q): q € £°°}. By assumption, since [Ty ¢ w;j(A), the columns
of matrix B(q) are linearly independent for every q € X°°. In view of the fact that
detBT B # 0, B € ¥, and continuity of det B” B and of the algebraic complement to
every element of BT B (with respect to the matrix norm (2)), we have that || (BT B) ™!
is also continuous with respect to matrix norm (2) on the set ¥. Since ¥ is compact
with respect to the matrix norm (2), we obtain that M; is finite. It is not difficult
to see that diam € < a\/l;ajok and diam J# < aojoy, where a is defined by (15).
Denote

Lij = sup [|B(q)l,
qeX>®
and let
Kij = sup [b(q)|.
qeX>®

Then by Lemma 5.6,

diam QEJ < UjkaMi’jLi’j + Ujk«/EaMi’jKi,j + ZOJkﬁaMi,sziz,jKi’j = OjCTkUi,j.

Denote by A such number that

N
Y IBi* = 1.

i=1
Then

. - % : A _ATrh Arrh
H;.(Qi;) < lim sup Z (diam Qi,j) < mlgnoo Z oo Uy = of U < o0.
MO0 kexm kexm

Since P(e) is covered by a countable collection of sets of Hausdorff dimension at
most A, we have dimP(x¢) < A < k. To complete the proof of the proposition
denote V = RN\ E;4(By,...,By)andletT = [p,,...,y.] bethe dN x k matrix
with columns p,...,yy, and [ = dimKerI". For every vector & € (ImL)", we
also let Q(a) = P(a) N (KerT')*. Then we have P(a) = Q(«) @ Kerk.. Since
dimP (&) < k, the set P(a) has k-dimensional Lebesgue measure zero and hence,
the set O(a) as a subset of the space (KerI')* has (k — [)-dimensional Lebesgue
measure zero. Since mapping f : (KerI')* — (& + ImL), f(t) = a + Tt is affine,
bijective, and f(Q(a)) = o + T (e), where

Ta)={yelml':a +ye V},

we have

£'(T(a)) = 0, (20)
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where £’ is the (k — [)-dimensional Lebesgue measure in the space ImI". Corollary
1.7 implies that V' is Lebesgue measurable, since it is a complement of a Gg-set.
Moreover,
V= J (@+T@),
ac(Iml’)-+
where the union is disjoint. Denote by £” the (d N — k + [)-dimensional Lebesgue
measure in the space (ImI")~. In view of (20) we obtain

Lan(V) = / 2(T(@)d 2" (@) = 0,

(ImIN)-+
which shows that E;(Bj, ..., By) has full measure. The fact that it is a Gg-set
follows from Corollary 1.7. Proposition 5.5 is proved. O

Proof of Theorem 5.2. Letu € R? be a unit vector. Since ZIN=1 Bl <1, there
are numbers ¢1,...,cy € (—1,1) such that balls B[c;u, ||B;||],i = 1,..., N, are
pairwise disjoint and are contained in B[0, 1]. Let yl.l =c¢;(I; — B;) 'u, and

wi(x) = Bix+cu=Bi(x—y)+y}, i=1,_...,N,

and A = A(wy,...,wy) be the attractor of the system (wy,..., wy). It is not
difficult to see that

w; (B[0,1]) C Blc;u, ||Bi|] € B[0,1], i =1,...,N.
This implies that A C BJ0, 1]. Indeed, for every element x € A, there is a sequence
(i1,12,...) € Z®° such thatx = lim w;, . ;,(0). Since w;,, . ;,(0) € B[0, 1] for
n—>oo

every n € N, we have x € B[0, 1]. We also have
wi (A) Nw;(A) C w;(B[0,1]) N w; (B0, 1])
C Bleiw, [|Bi[l] N Blcju, [|Bj || =0, i # j,

which implies wi(4) N wj(4) = @,1i,j € ", i # j, n € N. Hence, sys-
tem of mappings (wy., ..., wy) has the SMP and we have y; = (y.....¥N) €
E (By,...,By). Since k = 1, the other assumption of Proposition 5.5 does not ap-
ply and we obtain that E; (B, . .., Bx) has full measure and is a Gs-set. Theorem 5.2
is proved. O

Proof of Theorem 5.3. Assume that E>(Bj,...,By) # 0 and let y; =

(ri..., y}v) € (R?)" be such collection of points that the system of mappings

wi(x) = Bi(x—y)+yl, i=1,...,N,

=(5%)

satisfies the SMP. Denote
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(V is a rotation matrix) and let y, = (Vy%, ey Vy]lv). Note that for any non-zero
vector X = (x1, x2) € R?, we have

X1 — X2

det [x, Vx| = det (
X2 X1

):x%+x§;ﬁ0. 1)

Since rotation matrices commute, for every address q = (¢1,¢2,...) € X, we
obtain,

o0
Hq(}’z) = Z Bgy-...- By, (12 — qu)Vy;[
i=1
o0
=Y By .- By (V= By, V)y,,
i=1
o0
=Y By ..o By, (V—=VBg)y)
i=1
o0
=V By ... By_,(In— By)y),
i=1
= an(}’l)-

Then for every pair of addresses i # j € X such that IT;(y;) # II;(y,), in view
of (21), we have

det[ITi(y 1) — Ij(y 1), Mi(y2) — Hj(y2)]
= det[ITi(y,) — Mj(y,), V(ITi(y,) — Oj(y,))] # 0.
Then vectors ITi(y;) — II(y;), i = 1,2, are linearly independent and by Propo-

sition 5.5 we obtain that E»(By,..., By) is a Gg-subset of R?V of full Lebesgue
measure. u
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