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Spectral gaps of almost Mathieu operators
in the exponential regime

Wencai Liu and Xiaoping Yuan1

Abstract. For almost Mathieu operator

.H�;˛;�u/n D unC1 C un�1 C 2� cos 2�.� C n˛/un;

the dry version of the Ten Martini Problem predicts that the spectrum†�;˛ ofH�;˛;� has
all gaps open for all � ¤ 0 and ˛ 2 RnQ. Avila and Jitomirskaya prove that †�;˛ has all
gaps open for Diophantine ˛ and 0 < j�j < 1. In the present paper, we show that †�;˛ has
all gaps open for all ˛ 2 RnQ with small �.
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1. Introduction and main results

The almost Mathieu operator (AMO) is the (discrete) quasi-periodic Schrödinger
operator on `2.Z/:

.H�;˛;�u/n D unC1 C un�1 C �v.� C n˛/un; with v.�/ D 2 cos 2��;

where � is the coupling, ˛ is the frequency, and � is the phase.
The AMO is a tight binding model for the Hamiltonian of an electron in a

one-dimensional lattice or in a two-dimensional lattice, subject to a perpendicular
(uniform) magnetic field (through a Landau gauge) [19, 32]. This model also de-
scribes a square lattice with anisotropic nearest neighbor coupling or anisotropic
coupling to the nearest neighbors on a triangular lattice [11, 34]. In addition, in 1980
the discovery by von Klitzing [31] of the integer Quantum Hall Effect leaded to a
beautiful theory by Thouless, Kohmoto, Nightingale, and den Nijs. Central to their
theory is the use of the AMO as a model for Bloch electrons in a magnetic field.
For more applications in physics, we refer the reader to [26] and the references
therein.

Besides its application to some fundamental problems in physics, the AMO
itself is also fascinating because of its remarkable richness of the related spectral
theory. In Barry Simon’s list of Schrödinger operator problems for the twenty-
first century [33], there are three problems about the AMO. The spectral theory
of AMO has attracted many authors, for example, Avila and Damanik [3], Avila
and Jitomirskaya [4, 5], Avron and Simon [9, 10], Bourgain [13], Jitomirskaya and
Last [22], and so on.

Here we are concerned with the topological structure of the spectrum, which is
heavily related to the arithmetic properties of frequency ˛. If ˛ D p=q is rational,
it is well known that the spectrum consists of the union of q intervals called bands,
possibly touching the endpoints. When ˛ 2 RnQ and� ¤ 0, the spectrum set†�;˛

of H�;˛;� (in this case the spectrum of H�;˛;� is independent of �) has been con-
jectured for a long time to be a Cantor set. This conjecture is named after the Ten
Martini Problem.1 It has been solved by Avila and Jitomirskaya completely [4] by
Anderson localization (i.e., only pure point spectrum with exponentially decaying
eigenfunctions) of H�;˛;� when j�j > e 16ˇ

9 , where

ˇ D ˇ.˛/ D lim sup
n!1

ln qnC1

qn

; (1.1)

1 The Ten Martini Problem is the fourth problem in [33].
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and pn

qn
be the continued fraction approximants (�2:5) to ˛. See [4] for more

historic backgrounds about the Ten Martini Problem. Recently, the condition
j�j > e 16ˇ

9 has been refined by the authors of this paper [28]2 to j�j > e 3ˇ
2 .

About the topological structure of the spectrum of the AMO, a stronger conjec-
ture is the so-called “dry version” of the Ten Martini Problem. In order to state it,
we introduce the integrated density of states N�;˛.E/ (see .2.9/) of AMO, which
is a continuous non-decreasing surjective function with N�;˛ W R 7! Œ0; 1�. For
˛ 2 RnQ, the basic relation between †�;˛ and N�;˛ is that E … †�;˛ if and only
ifN�;˛ is constant in a neighborhood ofE. Each connected component ofRn†�;˛

is called a gap of †�;˛ . If E is an endpoint of some gap, then N�;˛.E/ 2 ˛Z CZ

(combining [20] with [24]). The dry version of the Ten Martini Problem predicts
the converse is also true. Concretely, N�;˛.E/ 2 ˛Z C Z with E 2 †�;˛ im-
plies E is an endpoint of some gap for all � ¤ 0 and ˛ 2 RnQ (this obviously
implies the Ten Martini Problem). For convenience, we say that all gaps of †�;˛

are open if N�;˛.E/ 2 ˛Z C Z and E 2 †�;˛ implies E is an endpoint of some
gap. Equivalently, the dry version of the Ten Martini Problem predicts †�;˛ has
all gaps open for all � ¤ 0 and3 ˛ 2 RnQ.

In proving the dry version of the Ten Martini Problem, much progress has been
recently achieved by many authors. The proofs depend on whether ˇ.˛/ > 0 or
ˇ.˛/ D 0. One usually calls a set of the kind ¹˛ 2 RnQ W ˇ.˛/ > 0º exponential
regime and a set of the kind ¹˛ 2 RnQ W ˇ.˛/ D 0º sub-exponential regime.

In the exponential regime (ˇ.˛/ > 0), for any " > 0, one has
ˇ̌̌
ˇpn

qn

� ˛
ˇ̌̌
ˇ � 1

qnqnC1

� 1

e.ˇ�"/qn

if n is large enough (see .2.12/). This means rational number pn

qn
is exponentially

close to ˛, thus the gaps of spectrum †�;˛ can be rational approximated by the
gaps4 of †�;

pn
qn

. Choi, Elliott, and Yui in [15] considered the 1=3-Hölder conti-
nuity of the spectrum for � D 1, i.e., Dist.†1;˛1

; †1;˛2
/ < C j˛1 � ˛2j1=3, and

give a good estimate for the gaps of †1;
pn
qn

, where Dist.K1; K2/means Hausdorff
distance between two subsets K1 � R and K2 � R. Then they prove that if
� D 1, then †�;˛ has all gaps open for ˇ > 9 ln 2C 3 ln 3. In [7], Avron, Mouche

2 After submitting the present paper, we learned of that Avila, You, and Zhou [8] claimed
they extended the result to regime j�j > eˇ in different way. (Their preprint is not available yet.)

3 After submitting the present paper, we learned of that Avila-You-Zhou claimed solution of
the dry version of the Ten Martini Problem for all values of parameters except ˇ.˛/ D 0 and
j�j D 1 (Their preprint is not available yet).

4 For ˛ 2 Q, †�;˛ D S
� †�;˛;� , where †�;˛;� is the spectrum of H�;˛;� .
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and Simon considered the 1=2-Hölder continuity of the spectrum. Combining [7]
with [15], Avila and Jitomirskaya [4] obtained that †�;˛ has all gaps open for
0 < ˇ � 1 and e�ˇ < j�j < eˇ . In particular, for ˛ 2 RnQ such that ˇ D 1,
†�;˛ has all gaps open if � ¤ 0. Thus in the present paper, unless stated otherwise,
we always assume that ˛ 2 RnQ satisfies ˇ D ˇ.˛/ < 1 and � ¤ 0.

Now let us return to the sub-exponential regime (ˇ.˛/ D 0). Typical of this
case is the well-known Diophantine number. We say ˛ 2 RnQ satisfies a Dio-
phantine condition DC.�; �/ with � > 0 and � > 0, if

jq˛ � pj > �jqj�� for any .p; q/ 2 Z2; q ¤ 0:

Let
DC D

[
�>0;�>0

DC.�; �/:

We say ˛ satisfies the Diophantine condition, if ˛ 2 DC. Note that the set DC
is a proper subset of the sub-exponential regime, i.e., DC ¤ ¹˛ W ˇ.˛/ D 0º. For
˛ 2 DC, Puig in [29, 30] developed a method to estimate the gaps via establishing
reducibility (�2:1). He proved that, for ˛ 2 DC, if N�;˛.E/ 2 ˛Z C Z with
E 2 †�;˛ and cocycle S�;E (see (2.7) for the definition) is analytically reducible,
then E is an endpoint of some gap. In [5], Avila and Jitomirskaya developed a
quantitative version of Aubry duality and used it to obtain a sharp estimate of the
rotation number 	.˛; A/ (�2:2) with A D S�;E for ˛ 2 DC. As a result, they
established that the cocycle S�;E is reducible when 0 < j�j < 1 with E 2 †�;˛

andN�;˛.E/ 2 ˛ZCZ. Combining with Puig’s discussion, they proved that†�;˛

has all gaps open if ˛ 2 DC and 0 < j�j < 1.
In conclusion, we give a list for the unsolved cases about the dry version of the

Ten Martini Problem:5

˛ 2 ¹˛ W 0 < ˇ.˛/ < 1º; 0 < j�j � e�ˇ ;(1)

˛ 2 DC; j�j D 1;(2)

˛ 2 ¹˛ W ˇ.˛/ D 0º n DC; 0 < j�j � 1:(3)

In the present paper, we prove the following theorem.

Theorem 1.1 (main theorem). For every ˛ 2 RnQ such that ˇ D ˇ.˛/ < 1, there
exists a absolute constant C , such that †�;˛ has all gaps open if 0 < j�j < e�Cˇ .

5 By Aubry duality, it suffices to discuss 0 < j�j � 1.
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Remark 1.1. The main contribution in the present paper is that the unsolved
regime j�j 2 .0; e�ˇ � in Case 1 is shrunk to j�j 2 Œe�Cˇ ; e�ˇ �. We should point
out that the constantC > 0 is very large. Therefore there is a long way to decrease
it to C < 1 such that the problem is solved completely. The unsolved Case 3 is
now solved by letting ˇ D 0 in Theorem 1.1, except j�j D 1. Actually, Case 3 is
solved by careful checking the proofs of [5] and [30].

The paper is organized as follows. In §2, we give some preliminary notions
and facts which are taken from [4]. In §3, we obtain the strong localization esti-
mate of the Aubry dual model yH�;˛;� in the exponential regime (i.e., ˇ.˛/ > 0).
In §4, we set up sharp estimate of the rotation number (Theorem 4.7) for reso-
nant phase by developing the quantitative version of Aubry duality in exponen-
tial regime. This process is the same as to set up almost reducibility for cocy-
cles S�;E . In §5, we obtain the analytic reducibility in a strip domain for non-
resonant phase (Theorem 5.2) by constructing a new reducible matrix in PSL.2;R/
(by Lemma 5.1 and Theorem 5.1). Combining with the sharp estimate of rotation
number in §4, we set up the reducibility for cocycle S�;E when E 2 †�;˛ and E
satisfies N�;˛.E/ 2 ˛Z C Z (Theorem 5.3). In §6, in order to use Puig’s method,
we generalize his result to exponential regime by KAM iteration .Theorem 6.1/.
In the end, we give a summary about the dry version of the Ten Martini Problem
(Theorem 6.2).

2. Preliminaries

2.1. Cocycles. Denote by SL.2;C/ the all complex 2 � 2-matrixes with deter-
minant 1. We say a function f 2 C!.R=Z;C/ if f is well defined in R=Z, i.e.,
f .x C 1/ D f .x/ and f is analytic in a neighbor of Im x D 0. The definitions
of SL.2;R/ and C!.R=Z;R/ are similar to those of SL.2;C/ and C!.R=Z;C/,
respectively, except that the involved matrixes are real and the functions are real
analytic. A C!-cocycle in SL.2;C/ is a pair .˛; A/ 2 R � C!.R=Z; SL.2;C//,
where A 2 C!.R=Z; SL.2;C// means A.x/ 2 SL.2;C/ and the elements of A
are in C!.R=Z;C/. Sometimes, we say A a C!-cocycle for short, if there is no
ambiguity. Note that all functions and cocycles in the present paper are analytic.
Thus we often do not mention the analyticity, for instance, we call A a “cocycle”
instead of a “C!-cocycle.”
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The Lyapunov exponent for the cocycle A is given by

L.˛; A/ D lim
n!1

1

n

Z
R=Z

ln kAn.x/kdx; (2.1)

where

An.x/ D A.x C .n � 1/˛/A.x C .n � 2/˛/ : : :A.x/: (2.2)

By Corollary 2 in [16] (since irrational rotations are uniquely ergodic)

L.˛; A/ D lim
n!1 sup

x2R=Z

1

n
ln kAn.x/k; (2.3)

that is, the convergence in (2.3) is uniform with respect to x 2 R. In detail, for all
" > 0,

kAn.x/k � e.L.˛;A/C"/n; for n large enough: (2.4)

Given two cocycles .˛; A/ and .˛; A0/, a conjugacy between them is a cocycle
B 2 C!.R=Z; SL.2;C// such that

B.x C ˛/�1A.x/B.x/ D A0: (2.5)

The notion of real conjugacy (between real cocycles) is the same as before, except
that we ask for B 2 C!.R=Z; PSL.2;R//, i.e., B.xC1/ D ˙B.x/ and detB D 1.
We say that cocycle .˛; A/ is reducible if it is conjugate to a constant cocycle.

2.2. The rotation number. Let

A.�/ D
�
a.�/ b.�/

c.�/ d.�/

�
;

we define the map

T˛;A W .�; '/ 2 T � 1

2
T 7�! .� C ˛; '˛;A.�; '// 2 T � 1

2
T;

with

'˛;A D 1

2�
arctan

�c.�/C d.�/ tan 2�'
a.�/C b.�/ tan 2�'

�
;

where T D R=Z.
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Assume now that
A W R=Z �! SL.2;R/

is homotopic to the identity. Then T˛;A admits a continuous lift
zT˛;A W .�; '/ 2 R � R �! .� C ˛; Q'˛;A.�; '// 2 R � R

such that
Q'˛;A.�; '/ mod

1

2
Z D '˛;A.�; '/

and Q'˛;A.�; '/ � ' is well defined on T � 1
2
T. The number

	.˛; A/ D lim sup
n!1

1

n
.p2 ı zT n

˛;A.�; '/ � '/ mod
1

2
Z;

does not depend on the choices of � and ', where

p2.�; '/ D ';

is the rotation number of .˛; A/, see [20, 25].
It follows from the definition that (cf. [5, p. 8])

k	.˛; A/� �kR=2Z < C sup
x2R

kA.x/ �R�k; (2.6)

where
kxkR=2Z D min

`2Z

ˇ̌̌
ˇx � `

2

ˇ̌̌
ˇ;

k � k is any Euclidean norm, and

R� D
�

cos 2�� � sin 2��
sin 2�� cos 2��

�
:

If we take

A;A0 W R=Z �! SL.2;R/
and

B W R=2Z �! SL.2;R/

(note that B W R=Z 7! PSL.2;R/ implies B W R=2Z 7! SL.2;R/) such that A is
homotopic to the identity and

B.x C ˛/�1A.x/B.x/ D A0;

then A0 is homotopic to the identity and

2	.˛; A/� 2	.˛; A0/ D k˛ mod Z;

where k is the degree of B (denoted by deg.B/), i.e., x 7! B.x/ is homotopic to
x 7! Rkx

2
.
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2.3. Almost Mathieu cocycles and the integrated density of states. For the
almost Mathieu operators ¹H�;˛;�º�2R, the spectrum of operator H�;˛;� does not
depend on � , denoted by †�;˛ . Indeed, shift is an unitary operator on `2.Z/, thus
†�;˛;� D †�;˛;�C˛ , where †�;˛;� is the spectrum of H�;˛;� . By the minimality
of � 7! � C ˛ and continuity of spectrum †�;˛;� with respect to � , the statement
follows.

Let

S�;E D
�
E � 2� cos 2�x �1

1 0

�
: (2.7)

We call .˛; S�;E / almost Mathieu cocycle. It’s easy to see that the almost Math-
ieu cocycle is homotopic to the identity, and let 	�;˛.E/ 2 Œ0; 1

2
� be the rotation

number of the almost Mathieu cocycle .˛; S�;E/.
Next we will give the definition of the integrated density of states N�;˛ , which

has been mentioned in §1.
LetH be a bounded self-adjoint operator on `2.Z/. Then .H �z/�1 is analytic

in Cn†.H/, where †.H/ is the spectrum of H , and we have for f 2 `2

Imh.H � z/�1f; f i D Im z � k.H � z/�1f k2;

where h�; �i is the usual inner product in `2.Z/. Thus


f .z/ D h.H � z/�1f; f i

is an analytic function on the upper half plane with Im
f � 0 (
f is a so-called
“Herglotz function”).

Therefore one has a representation


f .z/ D h.H � z/�1f; f i D
Z
R

1

x � z d�
f .x/ (2.8)

where �f is the spectral measure associated to f .
Fix an almost Mathieu operatorH�;˛;� . Denote by �f

�;˛;�
the spectral measure

of operator H�;˛;� and vector f as before. The integrated density of states (IDS)
N�;˛ is obtained by averaging the spectral measure �ı0

�;˛;�
with respect to � , i.e.,

N�;˛.E/ D
Z
R=Z

�
ı0

�;˛;�
.�1; E�d�; (2.9)

where ı0 is the normal vector in `2.Z/with 0th component being 1, others being 0.
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Between the integrated density of states N�;˛.E/ and the rotation number
	�;˛.E/, there is the relation [23]

N�;˛.E/ D 1� 2	�;˛.E/: (2.10)

In particular, N�;˛.E/ 2 ˛Z C Z is equivalent to 2	�;˛.E/ 2 ˛Z C Z.
Let

L�;˛.E/ D L.˛; S�;E/

be the Lyapunov exponent of S�;E . In [14] Bourgain and Jitomirskaya obtain the
accurate value of Lyapunov exponent when E 2 †�;˛.

Theorem 2.1 ([14]). For every ˛ 2 RnQ, � 2 R and E 2 †�;˛, one has

L�;˛.E/ D max¹ln j�j; 0º:

2.4. Classical Aubry duality. Let

yH�;˛;� D �H��1;˛;� :

If ˛ 2 RnQ, then the spectrum of yH�;˛;� is exactly †�;˛ , see [17]. yH�;˛;� is
called Aubry dual model ofH�;˛;� . Classical Aubry duality expresses an algebraic
relation between the families of operators ¹ yH�;˛;�º�2R and ¹H�;˛;xºx2R by Bloch
waves, i.e., if

u W R=Z �! C

is an L2 function whose Fourier coefficients Ou satisfy

yH�;˛;� Ou D E Ou;
then

U.x/ D
�
e2�i�u.x/

u.x � ˛/
�

satisfies
S�;E .x/ � U.x/ D e2�i�U.x C ˛/:

2.5. Continued fraction expansion. Define, as usual, for 0 � ˛ < 1;

a0 D 0; ˛0 D ˛;

and inductively, for k > 0;

ak D b˛�1
k�1c; ˛k D ˛�1

k�1 � ak ;

where btc denotes the greatest integer less than or equal t .
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We define

p0 D 0; q0 D 1;

p1 D 1; q1 D a1;

and, inductively,

pk D akpk�1 C pk�2;

qk D akqk�1 C qk�2:

Recall that ¹qnºn2N is the sequence of best denominators of irrational number ˛,
since it satisifies

kk˛kR=Z � kqn˛kR=Z for all 1 � k < qnC1; (2.11)

where kxkR=Z D min`2Z jx � `j. Moreover, we also have the following estimate,

1

2qnC1

� �n , kqn˛kR=Z � 1

qnC1

: (2.12)

3. Strong localization estimate for 0 < ˇ.˛/ < 1

Given � 2 R and 
0 > 0, we say k is an 
0-resonance for � if

k2� � k˛kR=Z � e��0jkj

and

k2� � k˛kR=Z D min
jj j�jkj

k2� � j˛kR=Z:

Clearly, 0 2 Z is an 
0-resonance. We order the 
0-resonances

0 D jn0j < jn1j � jn2j < : : : :

We say � is 
0-resonant if the set of 
0-resonances is infinite. If � is non-resonant,
with the set of resonances ¹n0; n1; : : : ; nj�

º, we set

nj� C1 D 1:

Note that if k2� � k˛kR=Z D 0 for some k 2 Z, then k is an resonance for � , and
� is not 
0-resonant.
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Below, C is a large absolute constant and c is a small absolute constant, which
may change through the arguments, even when appear in the same formula. How-
ever, their dependence on other parameters will be explicitly indicated. For in-
stance, we denote by C.˛/ a large constant depending on ˛.

Before starting our main work in this part, we firstly give some simple facts.

Lemma 3.1. Assume 0 < ˇ.˛/ < 1, then

inf
0<jj j�k

kj˛kR=Z � c.˛/e�2ˇk; (3.1)

and6
inf

0<jj j�k
kj˛kR=Z � e�3ˇk; for k > k.˛/: (3.2)

Proof. By .1.1/ and (2.12) there exists some n0 > 0 such that for n > n0.˛/,

kqn˛kR=Z � 1

2
q�1

nC1 � e�2ˇ qn : (3.3)

Let
c.˛/ D inf

0<jj j�qn0C1

kj˛kR=Z > 0:

Assume 0 < jj j � k. If jj j � qn0C1, select qn � jj j < qnC1 with n � n0 C 1.
By (2.11) and .3.3/

kj˛kR=Z � kqn˛kR=Z

� e�2ˇ qn

� e�2ˇk

� c.˛/e�2ˇk:

(3.4)

If jj j < qn0C1, by the definition of c.˛/,

kj˛kR=Z � c.˛/ � c.˛/e�2ˇk:

This implies .3.1/. For .3.2/, note that c.˛/ > e�ˇk for k > k.˛/.

Remark 3.1. In particular, kk˛kR=Z � c.˛/e�2ˇ jkj for all k 2 Zn¹0º. This is a
small divisor condition when we solve the homological equation (see Theorem 5.2
or Theorem 6.1).

6 In (3.2), k > k.�/ means k is large enough depending on �.
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Lemma 3.2. If 
0 D C1ˇ > 0, C1 is a large absolute constant. Then there
exists k0.˛/ > 0 such that if jkj > k0.˛/ and k2� � k˛k � e��0jkj, then k is an

0-resonance for � .

Proof. It suffices to prove

k2� � k˛kR=Z D min
jj j�jkj

k2� � j˛kR=Z:

If jj j � jkj and j ¤ k, by .3.2/ there exists some k0.˛/ such that

k2� � j˛kR=Z � k.k � j /˛kR=Z � k2� � k˛kR=Z

� e�6ˇ jkj � e��0jkj

> e��0jkj

� k2� � k˛kR=Z

(3.5)

for k > k0.˛/. It follows that k is an 
0-resonance for � .

Definition 3.1. We say that yH�;˛;� satisfies a strong localization estimate if there
exists C0 > 0, 
0 > 0 and 
1 > 0 such that for any solution yH�;˛;� Ou D E Ou with
Ou0 D 1 and j Ouk j � 1C jkj, where E in the spectrum of yH�;˛;� , i.e., E 2 †�;˛ , we
have

j Ouk j � C. Ou/e��1jkj for C0jnj j < jkj < C�1
0 jnj C1j.

Lemma 3.3 ([4, Lemma 9.7]). Let ˛ 2 RnQ, x 2 R and 0 � `0 � qn � 1 be such
that

j sin�.x C `0˛/j D inf
0�`�qn�1

j sin�.x C `˛/j;

then for some absolute constant C > 0,

� C ln qn �
qn�1X

`D0;`¤`0

ln j sin�.x C `˛/j C .qn � 1/ ln 2 � C ln qn; (3.6)

where qn is given in �2:5.

The next theorem is our main work in this section.

Theorem 3.1. Fix 
0 D C1ˇ > 0, where C1 is large enough so that it is much
larger than any absolute constant C , c�1 emerging in the present paper. Then
there exists some constant C2 such that, for 0 < j�j < e�C2ˇ , yH�;˛;� satisfies a
strong localization estimate with parameters C0 D 3, 
0 D C1ˇ and 
1 D � ln j�j

64
.
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Remark 3.2. Refering to Lemma 4.2 in the next section, it follows that

jnj C1j > C1

8
jnj j:

Thus there exists k such that

3jnj j < jkj < 1

3
jnj C1j

if C1 is large enough.

By Aubry duality yH�;˛;� D �H��1;˛;� , thus to prove Theorem 3.1, we only
need prove {H�;˛;� , H��1;˛;� satisfies the strong localization estimate instead.
Since this does not change any of the statements, sometimes the dependence of
parameters E; �; ˛; � will be ignored in the following. Assume {H
 D E
 with

.0/ D 1 and j
.k/j � 1C jkj. Our objective is to prove

j
.y/j � C.
/e� L
64

jyj:

Without loss of generality, assume 0 < � < 1 (for � < 0, note that {H�;˛;� D
{H��;˛;�C 1

2
). By Theorem 2.1, the Lyapunov exponent of S��1;E satisfies L D

� ln�, where E 2 †��1;˛.
Define

HI D RI
{HRI ;

where
RI D coordinate restriction to I D Œx1; x2� � Z,

and denote by
GI D . {HI �E/�1

the associated Green function, if {HI � E is invertible. Denote by GI .x; y/ the
matrix elements of the Green function GI .

Definition 3.2. Fix m > 0 and 1=10 < ı < 1=2. A point y 2 Z will be called
.m; k/-regular with ı if there exists an interval Œx1; x2� containing y, where x2 D
x1 C k � 1 such that

jGŒx1;x2�.y; xi/j < e�mjy�xi j and dist.y; xi/ � ık for i D 1; 2I (3.7)

otherwise, y will be called .m; k/-singular with ı.

It is easy to check that [13, p. 61]


.x/ D �GŒx1;x2�.x1; x/
.x1 � 1/ �GŒx1;x2�.x; x2/
.x2 C 1/; (3.8)

where x 2 I D Œx1; x2� � Z.
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Lemma 3.4. For any m > 0 and any ı with 1=10 < ı < 1=2, 0 is .m; k/-singular
with ı if k > k.m/.

Proof. Otherwise, 0 is .m; k/-regular with some 1=10 < ı < 1=2, i.e.,

jGŒx1;x2�.0; xi /j < e�mjy�xi j � e� m
10

k for i D 1; 2; (3.9)

since jy � xi j > k
10

. In (3.8), let x D 0 and recall that


.x1 � 1/ � 1C jx1 � 1j � 1C k

and

.x2 C 1/ � 1C jx2 C 1j � 1C k:

Thus

j
.0/j D jGŒx1;x2�.x1; 0/
.x1 � 1/CGŒx1;x2�.0; x2/
.x2 C 1/j
� 2.1C k/e� m

10
k:

(3.10)

This implies j
.0/j < 1 if k > k.m/, which is contradicted to the hypothesis

.0/ D 1.

Let us denote

Pk.�/ D det.RŒ0;k�1�. {H�;˛;� �E/RŒ0;k�1�/;

and
A D S��1;E :

Then the k-step transfer-matrix Ak.�/ given by .2.2/ can be written as [13, p. 14]

Ak.�/ D
�
Pk.�/ �Pk�1.� C ˛/

Pk�1.�/ �Pk�2.� C ˛/

�
: (3.11)

By Cramer’s rule [13, p. 15] for given x1 and x2 D x1 C k � 1, with y 2 I D
Œx1; x2� � Z, one has

jGI .x1; y/j D
ˇ̌
ˇ̌Px2�y.� C .y C 1/˛/

Pk.� C x1˛/

ˇ̌
ˇ̌ (3.12)

and

jGI .y; x2/j D
ˇ̌̌
ˇPy�x1

.� C x1˛/

Pk.� C x1˛/

ˇ̌̌
ˇ : (3.13)
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The numerators in (3.12) and (3.13) can be bounded uniformly with respect to �
by (2.4) and (3.11), i.e., for any " > 0,

jPk.�/j � kAk.�/k � e.LC"/k for sufficiently large k and all �: (3.14)

In fact, .3.14/ can be also uniform with respect to E 2 †��1;˛ by the compactness
of †��1;˛ and subadditivity of ln kAkk (see the proof of Theorem 4.2).

Following [21], Pk.�/ is an even function of � C 1
2
.k � 1/˛ and can be written

as a polynomial of order k in cos 2�.� C 1
2
.k � 1/˛/:

Pk.�/ D
kX

j D0

cj cosj 2�.� C 1

2
.k � 1/˛/

, Qk.cos 2�.� C 1

2
.k � 1/˛//:

(3.15)

Let
Ak;r D ¹� 2 R W jQk.cos 2��/j � e.kC1/rº

with k 2 N and r > 0.

Definition 3.3. We say that the set ¹�1; : : : ; �kC1º is �-uniform if

max
x2Œ�1;1�

max
iD1;:::;kC1

kC1Y
j D1;j ¤i

jx � cos 2��j j
j cos 2��i � cos 2��j j < e

k	 : (3.16)

The next two lemmas are from [4], for self-contain we give the proof.

Lemma 3.5 ([4, Lemma 9.2]). Suppose that y 2 Z is .L � 	; k/-singular with
1=10 < ı < 1=2, then for any " > 0 and any x 2 Z such that y � .1 � ı/k �
x � y � ık, we have that � C .x C 1

2
.k � 1//˛ belongs to Ak;L�
ıC" for k large

enough.

Proof. Otherwise, there exist " > 0 and x1 satisfying y � .1� ı/k � x1 � y � ık
and � C .x1 C 1

2
.k � 1//˛ … Ak;L�
ıC", i.e., Pk.� C x1˛/ > e.kC1/.L�
ıC"/

by .3.15/. Let I D Œx1; x2� with x2 D x1 C k � 1, then y 2 I and dist.y; xi/ � ık

for i D 1; 2. By .3.12/, .3.13/, and .3.14/, we have

jGI .y; xi/j � e.LC"/.k�jy�xi j/�.kC1/.L�
ıC"/

< e�.L�
/jy�xi j for i D 1; 2:
(3.17)

This implies y is .L � 	; k/-regular, contradicting to the hypothesis.
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Lemma 3.6 ([4, Lemma 9.3]). Let �1 < � . If �1; : : : ; �kC1 2 Ak;L�	 , then
¹�1; : : : ; �kC1º is not �1-uniform for k > k.�; �1; �/.

Proof. If Lemma 3.6 is false, then

max
x2Œ�1;1�

kC1Y
j D1;j ¤i

jx � cos 2��j j
j cos 2��i � cos 2��j j < e

k	1 ; i D 1; 2; : : : ; k C 1:

By .3.15/, we can write polynomial Qk.x/ in the Lagrange interpolation form at
points cos 2��i , i D 1; 2; : : : ; k C 1, thus

jQk.x/j D
ˇ̌̌
ˇ̌
kC1X
iD1

Qk.cos 2��i /

Q
j ¤i .x � cos 2��j /Q

j ¤i .cos 2��i � cos 2��j /

ˇ̌̌
ˇ̌

� .k C 1/e.kC1/.L�	/ek	1

D ekL.k C 1/e�k.	�	1/CL�	

< ekL

for all x 2 Œ�1; 1� and k > k.�; �1; �/. By .3.15/ again, jPk.x/j < ekL for all
x 2 R. However, by Herman’s subharmonic function methods (see [13, p. 16],
or [20, p. 461]), Z

R=Z

ln jPk.x/jdx � kL:

This is impossible.

Without loss of generality, assume

3jnj j < y < jnj C1j
3

:

Select n such that

qn � y

8
< qnC1

and let s be the largest positive integer satisfying

sqn � y

8
:
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Set I1; I2 � Z as

I1 D Œ�2sqn C 1; 0� and I2 D Œy � 2sqn C 1; y C 2sqn�; (3.18)

if nj < 0, and
I1 D Œ0; 2sqn � 1� and I2 D Œy � 2sqn C 1; y C 2sqn�; (3.19)

if nj � 0. In either case, the total number of elements in I1 [ I2 is 6sqn. Let

�j 0 D � C j 0˛ for j 0 2 I1 [ I2.

Lemma 3.7. Under the condition of Theorem 3.1, the set ¹�j 0ºj 02I1[I2
constructed

as .3.18/ or .3.19/ is C
0-uniform for y > y.˛/ (or equivalently n > n.˛/).

Proof. Firstly we estimate the numerator in (3.16). In (3.16), let x D cos 2�a and
take the logarithm. We have

X
j 02I1[I2;j 0¤i

ln j cos 2�a � cos 2��j 0 j

D
X

j 02I1[I2;j 0¤i

ln j sin�.aC �j 0/j

C
X

j 02I1[I2;j 0¤i

ln j sin�.a � �j 0/j C .6sqn � 1/ ln 2

D †C C†� C .6sqn � 1/ ln 2;

(3.20)

where
†C D

X
j 02I1[I2;j 0¤i

ln j sin�.aC �j 0/j; (3.21)

and
†� D

X
j 02I1[I2;j 0¤i

ln j sin�.a � �j 0/j: (3.22)

Both †C and †� consist of 6s terms of the form of .3.6/, plus 6s terms of the
form

ln min
j 0D0;1;:::;qn�1

j sin�.x C j 0˛/j; (3.23)

minus ln j sin�.a˙ �i /j. Since there exists a interval of length qn in sum of (3.21)
and (3.22) containing i , thus the minimum over this interval is not more than
ln j sin�.a˙ �i /j (by the minimality). Thus, by .3.6/ one has

X
j 02I1[I2;j 0¤i

ln j cos 2�a � cos 2��j 0 j � �6sqn ln 2C Cs ln qn: (3.24)
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The estimate of the denominator of (3.16) requires a bit more work. In .3.20/,
let a D �i , we obtain

X
j 02I1[I2;j 0¤i

ln j cos 2��i � cos 2��j 0 j D †C C†� C .6sqn � 1/ ln 2; (3.25)

where
†C D

X
j 02I1[I2;j 0¤i

ln j sin�.2� C .i C j 0/˛/j; (3.26)

and
†� D

X
j 02I1[I2;j 0¤i

ln j sin�.i � j 0/˛j: (3.27)

Firstly, †� consists of 6s terms of the form of .3.6/ plus 6s � 1 minimum terms
like (3.23) (since there exists a interval of length qn containing i , the sum over this
interval is exactly of the form .3.6/). By .2.11/ and .3.3/,

min
0<jj 0j<qnC1

kj 0˛kR=Z D kqn˛kR=Z � e�2ˇ qn;

for n > n.˛/. Therefore, for n > n.˛/,

max¹ln j sin xj; ln j sin.x C �j 0˛/jº � �Cˇqn; for x 2 R and 0 < jj 0j < qnC1:

(3.28)
By known condition sqn < qnC1, then there exist at most 6 minimum terms
smaller than �Cˇqn. Next we estimate the minimum terms. Obviously, ji � j 0j <
Csqn for i; j 0 2 I1 [ I2. By .3.2/,

min
j 02I1[I2;j 0¤i

ln j sin�.i � j 0/˛j � �Csqnˇ for n > n.˛/: (3.29)

By (3.6), (3.28), and (3.29), we obtain

†� � �6sqn ln 2� Csqnˇ: (3.30)

Similarly, †C consist of 6s terms of the form of .3.6/ plus 6s minimum terms
and minus ln j sin 2��i j, and there exist at most 6 minimum terms smaller than
�Cˇqn by .3.28/. Thus we only need estimate the minimum term. By the defi-
nition of I1 and I2, one easily verifies i C j 0 ¤ �nj and ji C j 0j < jnj C1j. By
Lemma 3.8 below, one has

min
j 02I1[I2;j 0¤i

k2� C .i C j 0/˛kR=Z � e�Csqn�0 : (3.31)
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Replacing (3.29) with (3.31), and following the discussion of †�, we have

†C � �6sqn ln 2� Csqn
0; (3.32)

for n > n.˛/ or y > y.˛/. Putting .3.24/, .3.30/, and .3.32/ together,

max
i2I1[I2

Y
j 02I1[I2;j 0¤i

jx � cos 2��j 0 j
j cos 2��i � cos 2��j 0 j < e

C6sqn�0 ; (3.33)

for y > y.˛/.

Lemma 3.8. Under the condition of Lemma 3.7, suppose i C j 0 ¤ �nj and
ji C j 0j < jnj C1j, where i; j 0 2 I1 [ I2, then

k2� C .i C j 0/˛kR=Z � e�Csqn�0 ; (3.34)

for n > n.˛/ (or equivalently y > y.˛/).

Proof. Let jk0j � ji C j 0j be such that

k2� C k0˛kR=Z D min
jkj�jiCj 0j

k2� C k˛kR=Z:

We have two cases.

Case 1 . k0 ¤ i C j 0. If k2� C k0˛kR=Z � e�Csqn�0 , by the minimality of k0, we
have

k2� C .i C j 0/˛kR=Z � k2� C k0˛kR=Z � e�Csqn�0 :

If k2� C k0˛kR=Z � e�Csqn�0 , by (3.1)

k2� C .i C j 0/˛kR=Z � k.i C j 0 � k0/˛kR=Z � k2� C k0˛kR=Z

� c.˛/e�2ˇ jiCj 0�k0j � e�Csqn�0

� e�Csqnˇ ;

(3.35)

for n > n.˛/, since ji C j 0 � k0j < Csqn.

Case 2. k0 D i C j 0. If �k0 is not an resonance for � , then by the definition of
resonance

k2� C .i C j 0/˛kR=Z � e��0jk0j � e�Csqn�0 :

If �k0 is an resonance for � , therefore jk0j � jnj j (otherwise �k0 D nj C1). Next
we discuss k2��nj˛kR=Z � e�Csqn�0 and k2��nj˛kR=Z � e�Csqn�0 respectively.
Following the proof of case 1, we also have, for n > n.˛/

k2� C .i C j 0/˛kR=Z � e�Csqn�0 : (3.36)

Putting all cases together, we complete the proof of this lemma.
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Remark 3.3. Note that (3.34) holds if n is large enough, which only depends on
˛, does not depend on � . By the way, all estimates in the present paper is uniform
with respect to � and E 2 †�;˛ . This is important.

By Lemma 3.6 and 3.7, there exists at least one of �j0
with j0 2 I1 [ I2 such

that �j0
… A6sqn�1;L�C�0

. We will prove that for all j 0 2 I1, �j 0 2 A6sqn�1;L�C�0

if � < e�C2ˇ with C2 large enough, thus there exists some j0 2 I2 such that
�j0

… A6sqn�1;L�C�0
.

Lemma 3.9. There exists some absolute constant C2 such that for all j 0 2 I1,
�j 0 2 A6sqn�1;L�C�0

if 0 < � < e�C2ˇ and n > n.�; ˛/.

Proof. Recall that by Lemma 3.4, y D 0 is .m; k/-singular with any ı satisfy-
ing 1

10
< ı < 1

2
if k is large enough. In Lemma 3.5, let y D 0, ı D 99

600
,

	 D 99
100
L, " D 1

100
L and k D 6sqn�1 � 1. One easily checks that for all j 0 2 I1,

�j 0 2 A6sqn�1; 50799
60000

L. Obviously, 50799
60000

L < L�C
0 if 0 < � < e�C2ˇ because of
L D � ln�.

Proof of Theorem 3.1. Let j0 2 I2 be such that �j0
… A6sqn�1;L�C�0

. Set

I D Œj0 � 3sqn C 1; j0 C 3sqn � 1� D Œx1; x2�:

Let " D 
0 in .3.14/, combining with .3.12/ and .3.13/,

jGI .y; xi/j � e.LC�0/.6sqn�1�jy�xi j/�6sqn.L�C�0/

� e�Ljy�xi jCCsqn�0 for i D 1; 2:

By a simple computation jy � xi j � sqn � 2 � y
16

. Recall that L D � ln�, thus

jGI .y; xi/j � e� y
16

.L�C�0/ � e� L
32

y for i D 1; 2; (3.37)

if j�j < e�C2ˇ with C2 large enough. By (3.8), we obtain that for y > y.�; ˛/,
j
.y/j � e� L

64
y with y satisfying 3jnj j < y < jnj C1j=3. This implies j
.y/j �

C.�; ˛/e� L
64

y for all y with 3jnj j < y < jnj C1j=3. For y < 0, the proof is
similar.

We actually have proved a slightly more precise version of Theorem 3.1.



Spectral gaps of almost Mathieu operators in the exponential regime 21

Theorem 3.2. Let 
0 D C1ˇ and j�j 2 .0; e�C2ˇ / where C1; C2 are the con-
stants in Theorem 3.1, and let Ou be a solution of the equation yH�;˛;� Ou D E Ou
satisfying Ou0 D 1 and j Ouk j � 1 C jkj, where E 2 †�;˛ . Then we have that
j Ouk j � e� L

64
jkj if 3jnj j < jkj < 3�1jnj C1j and jkj > C.�; ˛/, or equivalently, that

j Ouk j � C.�; ˛/e� L
64 jkj for all k satisfying 3jnj j < jkj < 3�1jnj C1j, where set ¹nj º

is the 
0-resonance for � .

Remark 3.4. If � is not 
0-resonant, and a solution yH�;˛;� Ou D E Ou satisfying
Ou0 D 1 and j Ouk j � 1 C jkj, then by Theorem 3.2, j Ouk j � C.�; ˛/e� L

64
jkj with

jkj > 3jnj�
j, since nj� C1 D 1, where L D � ln�.

4. The estimate of rotation number for resonant phase

It is well known that for almost every E 2 †�;˛ , there exists a solution Ou of
the equation yH Ou D E Ou with Ou0 D 1 and j Ouk j � .1 C jkj/C .See for the proof of
continuous-time Schrödinger operator. The proof of discrete Schrödinger operator
is similar, see [27]. Generally, it does not hold for everyE 2 †�;˛ . Such exclusion
is inherent to Gelfand–Maurin theorem. Avila and Jitomirskaya in [5] conquer
this difficulty by changing the phase � . This is a starting point of the quantitative
version of Aubry duality.

Lemma 4.1 ([5, Theorem 3.3]). If E 2 †�;˛ , then there exists � 2 R and a
bounded solution of yH�;˛;� Ou D E Ou with Ou0 D 1 and j Ouk j � 1.

Fix ˛ such that 0 < ˇ.˛/ < 1, and fix C1 in Theorem 3.1. Without loss of
generality, assume � > 0. By Theorem 3.1 or Theorem 3.2, there exists an absolute
constant C2 such that, for 0 < � < e�C2ˇ , yH�;˛;� satisfies a strong localization
estimate with parameters 
0, 
1 D 2�h and C0, where 
0 D C1ˇ, h D C1
0 and
C0 D 3. This is because 2�h < � ln �

64
in view of 0 < � < e�C2ˇ with C2 large

enough. Given E 2 †�;˛, let � D �.E/ and Ouk be given by Lemma 4.1. In this
section, assume �.E/ is 
0-resonant with the infinite set of 
0-resonances ¹nj º1

j D1.
Let k � k be the Euclidean norms, and denote

kf k� D sup
j Im xj<�

kf .x/jj

and

kf k0 D sup
x2R

kf .x/k:
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Below, unless stated otherwise, set

A D S�;E D
�
E � 2� cos 2�x �1

1 0

�

with 0 < � < e�C2ˇ and E 2 †�;˛ . Note that in Section 3, A D S��1;E .

Lemma 4.2. For jnj j large enough (depending on ˛),

k2� � nj˛kR=Z � e�8ˇ jnj C1j; (4.1)

in particular,
jnj C1j > C1

8
jnj j: (4.2)

Proof. By .3.2/,

k2� � nj˛kR=Z � k.nj C1 � nj /˛kR=Z � k2� � nj C1˛kR=Z

� e�6ˇ jnj C1j � e��0jnj C1j

� e�8ˇ jnj C1j
(4.3)

This implies (4.1). Combining with the fact k2� � nj˛kR=Z � e��0jnj j, one
has (4.2).

We will say that a trigonometrical polynomial

p W R=Z �! C

has essential degree at most k if its Fourier coefficients outside an interval I of
length k (for I D Œa; b�, k D b � a) are vanishing.

Lemma 4.3 ([5, Theorem 6.1]). Let 1 � r � bqnC1=qnc. If p has essential degree
at most k D rqn � 1 and x0 2 R=Z, then

kpk0 � CqCr
nC1 sup

0�j �k

jp.x0 C j˛/j: (4.4)

In the present paper, under condition

ˇ.˛/ D lim sup
n!1

ln qnC1

qn

;

equation (4.4) becomes

kpk0 � CeCr ln qnC1 sup
0�j �k

jp.x0 C j˛/j

� eCˇk sup
0�j �k

jp.x0 C j˛/j;
(4.5)

for n > n.˛/ or equivalently k > k.˛/.
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For any n with 9jnj j < n < 1
9
jnj C1j of the form n D rqk � 1 < qkC1

(by Lemma 4.2, there exists such n if jnj j is large enough depending on ˛), let

uI1.x/ D
X
k2I1

Ouke
2�ikx

with
I1 D

h
�

hn
2

i
; n �

hn
2

ii
D Œx1; x2�:

Recall that Ouk is given by Lemma 4.1 and satisfies the estimate in Theorem 3.2.
Define

U I1.x/ D
�
e2�i�uI1.x/

uI1.x � ˛/
�
;

by direct computation

AU I1.x/ D e2�i�U I1.x C ˛/C e2�i�

�
g.x/

0

�
; (4.6)

and the Fourier coefficients of g.x/ satisfy

Ogk D �I1
.k/.E � 2 cos 2�.� C k˛// Ouk � �

X
j 2¹�1;1º

�I1
.k � j / Ouk�j ; (4.7)

where �I is the characteristic function of I . Since yH Ou D E Ou, we also have

� Ogk D �ZnI1
.k/.E� 2 cos 2�.�Ck˛// Ouk ��

X
j 2¹�1;1º

�ZnI1
.k� j / Ouk�j : (4.8)

By .4.7/ and .4.8/, Ogk ¤ 0, only at four points x1, x2, x1 � 1 and x2 C 1. By the
strong localization estimate

j Ouk j � C.�; ˛/e�2�hjkj;

it is easy to see kgk h
3

� C.�; ˛/e�3hn, in particular kgk h
3

� e�2hn for n > n.�; ˛/,
since C.�; ˛/ < ehn for n > n.�; ˛/.

Lemma 4.4 ([2, Theorem 10]). If ˛ 2 RnQ, � ¤ 0, E 2 R and 
 � 0, then

L.˛; AE;�/ D max¹L.˛; AE/; ln j�j C 2�
º;
where

AE;� D
�
E � 2� cos 2�.x C i
/ �1

1 0

�
;

and AE D AE;0.
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Corollary 4.1. If ˛ 2 RnQ, j�j < 1 and ln j�j
2�

� 
 � � ln j�j
2�

, then

L.˛; AE;�/ D 0 for E 2 †�;˛ .

Proof. By Theorem 2.1, if j�j < 1 and E 2 †�;˛ , then L.˛; AE/ D 0. If we
suppose 0 � 
 � � ln j�j

2�
, i.e., ln j�jC2�
 � 0, thenL.˛; AE;�/ D 0 by Lemma 4.4.

By symmetry L.˛; AE;�/ D 0 for ln j�j
2�

� 
 � � ln j�j
2�

.

Next we will set up the priori estimate of transfer matrix, precisely,

kAn.x/k D eo.n/

through band j Im xj < � ln j�j
2�

uniformly, where A D S�;E and An is given
by (2.2). This can be done by Furman’s uniquely ergodic theorem and vanish-
ing Lyapunov exponent (Corollary 4.1).

Theorem 4.1 ([16, Theorem 1]). Let ¹fnº be a continuous subadditive cocycle on a
uniquely ergodic system .X; �; T /, i.e., X is a compact metric space, T W X 7! X

is a homeomorphism with � being the unique T -invariant probability measure on
X , and fn 2 C.X/ with fnCm.x/ � fn.x/ C fm.T

nx/ for all x 2 X . Then, for
every x 2 X and uniformly on X ,

lim sup
n!1

1

n
fn.x/ � lim

n!1
1

n

Z
fnd�: (4.9)

Theorem 4.1 is usually called Furman’s uniquely ergodic theorem.

Theorem 4.2. For all E 2 †�;˛ ,

kAE
k .x/k� � C.�; ˛/eˇk;

where � D � ln j�j
2�

.

Proof. By Corollary 4.1, L.˛; AE;�/ D 0 for any �� � 
 � � and E 2 †�;˛.
In Theorem 4.1, let fn D ln kAE;�

n k, X D R=Z, T x D x C ˛ and � is Lebesgue
measure. Since irrational rotations are uniquely ergodic, then there exists some
k0.�; ˛; E; 
/ such that

ln kAE
k .x/k < ˇk

for all x satisfying Im x D 
 with j
j � � ln j�j
2�

and k � k0.�; ˛; E; 
/.
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By continuity and compactness of R=Z, there exists ı.�; ˛; E; 
/ such that if
jE 0 � Ej < ı and j Im x0 � 
j < ı, then

ln kAE 0

k .x0/k < ˇk (4.10)

for every k0.�; ˛; E; 
/ � k � 2k0.�; ˛; E; 
/C 1.
For any k > 2k0.�; ˛; E; 
/, let k D sk0 C r , where k0 � r < 2k0, then by

subadditivity,

ln kAE 0

k .x0/k � s max
j Im x1��j<ı

ln kAE 0

k0
.x1/k C max

j Im x1��j<ı
ln kAE 0

r .x1/k < ˇk:

Thus .4.10/ holds for all k � k0.�; ˛; E; 
/. By the compactness of ¹j
j � �º and
†�;˛ , there exists k0.�; ˛/, such that

ln kAE
k .x/k < ˇk

for every x satisfying j Im xj � �, E 2 †�;˛ and k > k0.�; ˛/. It follows that

kAE
k .x/k� � C.�; ˛/eˇk:

Remark 4.1. In fact, our proof suggests that for any ı > 0,

kAE
k .x/k� � C.ı; �; ˛/eık

with � D � 1
2�

ln j�j. This verifies a claim by Avila in [1, footnote 5].

For more subtle estimate of the transfer matrix, a couple of lemmata and the-
orems are necessary.

Theorem 4.3. For n > n.�; ˛/,

inf
j Im xj< h

3

kU I1.x/k � e�Cˇn: (4.11)

Proof. If (4.11) is false, then let x0 with Im x0 D t and jt j < h
3

such that

kU I1.x0/k � e�Cˇn:

By (4.6) and Theorem 4.2,

kU I1.x0 C j˛/k � e�Cˇn; 0 � j � n;

since kgk h
3
< e�2hn for n > n.�; ˛/. This implies, for n > n.�; ˛/,

juI1.x0 C j˛/j � e�Cˇn; 0 � j � n.
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Thus
kuI1

t k0 � e�Cˇn

by .4.5/, contradicting to Z
u

I1
t .x/dx D 1

(since Ou0 D 1), where uI1
t .x/ D uI1.x C t i /.

Theorem 4.4 ([1, Theorem 2.6]). Let U W R=Z ! C2 be analytic in j Im xj < �.
Assume that ı1 < kU.x/k < ı�1

2 holds for all x satisfying j Im xj < � . Then there
exists

B W R=Z �! SL.2;C/

being analytic in j Im xj < � with first column U and

kBk� � Cı�2
1 ı�1

2 .1 � ln.ı1ı2//:

Lemma 4.5.
max
x2R kAm.x/k � C.�; ˛/mC : (4.12)

Proof. The estimate j Ouk j � 1 implies kU I1kˇ < eCˇn. Let B.x/ 2 SL.2;C/ be
the matrix, whose first column is U I1.x/, given by Theorem 4.4 with � D ˇ, then
kBkˇ � eCˇn for n > n.�; ˛/. Combining with .4.6/, one easily verifies

B.x C ˛/�1A.x/B.x/ D
�
e2�i� 0

0 e�2�i�

�
C

�
ˇ1.x/ b.x/

ˇ2.x/ ˇ3x

�
; (4.13)

where kbkˇ < eCˇn, and kˇ1kˇ , kˇ2kˇ , kˇ3kˇ < e�hn, since kgk h
3

� e�2hn.
Taking ˆ D DB.x/�1, where

D D
�
d 0

0 d�1

�

with d D e� hn
4 , we get

ˆ.x C ˛/A.x/ˆ.x/�1 D
�
e2�i� 0

0 e�2�i�

�
CH.x/; (4.14)

where kHkˇ < e
� hn

4 and kˆkˇ < e
hn. Thus

sup
0�s�e

hn
4

kAs.x/kˇ � e3hn: (4.15)
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If m > C.�; ˛/, we can select n with

C
lnm
h

< n < C 2 lnm
h

of the form
n D rqk � 1 < qkC1

and
9jnj j < n < 1

9
jnj C1j;

thus
kAmkˇ < m

C

by .4.15/. That is
kAmkˇ < C.�; ˛/m

C for all m.

Fix some n D jnj j and let N D jnj C1j. Construct new function uI2.x/ with

I2 D
h

�
hN
9

i
;
hN
9

ii

and a vector-valued function

U I2.x/ D
�
e2�i�uI2.x/

uI2.x � ˛/
�

as before.

Theorem 4.5. For n > n.�; ˛/,

inf
j Im xj< h

3

kU I2.x/k � e�Cˇn: (4.16)

Proof. Let rqk be the minimal such that rqk > 9jnj j and rqk � 1 < qkC1, and let

J D
h

�
hrqk

2

i
; rqk � 1 �

hrqk

2

ii
:

Define U J .x/ as before. By the estimates j Ouk j � e�2�hjkj for 3n < jkj < N
3

and
juk j � 1 for others (since n > n.�; ˛/), we have

kU I2 � U J k h
3

� e�hn:

By .4.11/ and a simple fact rqk � Cn, one has

inf
j Im xj< h

3

kU J .x/k � e�Cˇn:
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This implies

inf
j Im xj< h

3

kU I2.x/k � e�Cˇn: (4.17)

We finish the proof of the theorem.

Let
zU.x/ D e�inj xU I2.x/

and
Q� D � � nj˛

2
:

Note that zU.x/ depends on I2, for simplicity we drop the dependence, since below
the interval is always

I2 D
h

�
hN
9

i
;
hN
9

ii
:

Let B.x/ be the matrix with columns zU.x/ and zU.x/, where zU.x/ is the complex
conjugate of zU.x/, and let

P�1 D k2� � nj˛kR=Z:

By the same arguments of (4.6)–(4.8), for n > n.�; ˛/,

A zU.x/ D e2�i Q� zU.x C ˛/C
�
g.x/

0

�
with kgk h

3
< e�chN : (4.18)

By the definition of resonance and Lemma 4.2,

e�0n � P � e8ˇN for n > n.˛/: (4.19)

Theorem 4.6. For n > n.�; ˛/,

inf
x2R=Z

j detB.x/j � P�C : (4.20)

Proof. By the proof of [5, Lemma 8.1], for any complex matrix M with columns
V and W ,

j detM j D kV k min
�2C

kW � �V k (4.21)

and the minimizing � satisfies k�V k � kW k. Suppose (4.20) would not hold.
By Theorem 4.5, infx2R k zU.x/k � e�Cˇn; then there exists x0 2 R and �0 2 C

(j�0j � 1) such that
j zU.x0/ � �0

zU.x0/j � P�C :
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By .4.12/ and .4.18/, we have

je�2�ij Q� zU.x0 C j˛/ � e2�ij Q��0
zU.x0 C j˛/j � P�C ; 0 � j � P: (4.22)

That is

j zU.x0 C j˛/ � e4�ij Q��0
zU.x0 C j˛/j � P�C ; 0 � j � P: (4.23)

Note the simple fact that

je4�ij Q� � 1j < Ck2j Q�kR=Z < P
�c ; for 0 � j � P 1�c ,

since k2 Q�kR=Z D P�1. Combining with (4.23) and noting k zU k0 � C.�; ˛/n by
the strong localization estimate, one has

j zU.x0 C j˛/ � �0
zU.x0 C j˛/j � P�c ; 0 � j � P 1�c : (4.24)

Let zUk.x/ obtained by truncating the Fourier coefficients of zU.x/ at scale k D
c
ˇ

lnP . By .4.19/, one has 9n < k < 1
9
N . By the strong localization estimate in

Theorem 3.2 and the definition of zU.x/,
k zU � zUkk0 � e

� c
ˇ

h ln P � P�c : (4.25)

Therefore, we may assume the essential degree of zU is c
ˇ

lnP . By .4.5/ and (4.24),
we have (first replacing zU.x/ with zU.2x/ so that zU.2x/ is well defined in R=Z)

sup
x2R=Z

j zU.x/ � �0
zU.x/j � eCˇ c

ˇ
ln PP�c � P�c : (4.26)

In (4.23), let
j D Œ

P

4
�:

We get
ji zU .x1/C i�0

zU .x1/j � P�c ; (4.27)

where
x1 D x0 C Œ

P

4
�˛:

By .4.26/ and .4.27/, j zU.x1/j � P�c. Recall that infx2R k zU.x/k � e�Cˇn, thus
we get P � eCˇn. This contradicts to .4.19/ P � e�0n, since 
0 D C1ˇ and we
assumeC1 is much larger than any absolute constantC emerging in this paper.

The following theorem gives a sharp estimate of the rotation number if phase
�.E/ is 
0-resonant.
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Theorem 4.7. Fix n D jnj j (large enough depending on � and ˛) andN D jnj C1j,
then there exists mj with jmj j � Cn such that

k2	.˛; A/�mj˛ ˙ .2� � nj˛/kR=Z � e�chN :

Proof. Let S D Re zU , T D Im zU , and let zW be the matrix with columns S and
˙T so that det zW > 0. Then by .4.18/

A zW .x/ D zW .x C ˛/ �R� Q� CO.e�chN /; x 2 R=Z: (4.28)

Let W.x/ D jdet B.x/
2

j�1=2 zW .x/, it is easy to verify detW D 1. By Theorem 4.6,

AW.x/ D j detB.x C ˛/j1=2

j detB.x/j1=2
W.x C ˛/ �R� Q� CO.e�chN /; x 2 R=Z: (4.29)

By .4.18/ and detA D 1, j detB.x C ˛/j � j detB.x/j D O.e�chN /, thus we have

AW.x/ D W.x C ˛/ �R� Q� CO.e�chN /; x 2 R=Z: (4.30)

Since detW D 1 and

W.x/ D
ˇ̌
ˇ̌detB.x/

2

ˇ̌
ˇ̌�1=2

j zW .x/; for x 2 R=Z;

we have
kW �1k � PC :

Then
W.x C ˛/�1AW.x/ D R� Q� CO.e�chN /; x 2 R=Z: (4.31)

Since W.x/ is well defined in R=2Z, combing with (2.6),

k2	.˛; A/�m˛ ˙ 2 Q� jjR=Z � e�chN ;

where m D deg.W /. Thus, to prove this theorem, we only need prove

j deg.W /j � Cn:

Next we will estimate the degree of W . The degree of W is the same as the
degree of any of its columns.7 It is enough to estimate the degree of M.x/

kM.x/k for
M D SorM D T . Note that

k
Z
R=Z

e��inj x.S.x/C iT .x//dxk D p
2:

7 Let S W R=2Z 7! R2n0, we say degree of S is k, denoted by deg.S/ D k, if S is homotopic
to

�cos kx=2
sin kx=2

�
.
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Without loss of generality, assume
Z
R=Z

kS.x/kdx � p
2=2:

By .4.28/,

AS.x/ D S.xC˛/ cos2� Q��T .xC˛/ sin2� Q�CO.e�chN /; x 2 R=Z: (4.32)

Combining with k2 Q�kR=Z � e��0n, we have

AS.x/ D S.x C ˛/CO.e�c�0n/;

or
AS.x/ D �S.x C ˛/CO.e�c�0n/:

Following the proof of Theorem 4.5, we have the similar estimate

inf
x2R kS.x/k � e�Cˇn: (4.33)

Denote zS.x/ by truncating the Fourier series of S at scale Cn, then

k zS.x/ � S.x/k � e�Chn <
kS.x/k
2

for x 2 R=2Z and n > n.�; ˛/. Thus the degree of S is equal to the degree of zS .
Now we estimate the degree of zS.x/. Let

zS.2x/ D
� zS1.x/

zS2.x/

�
:

Then zS1.x/, zS2.x/ only have Fourier series at scale Cn. Note that zS1.x/C i zS2.x/

can be written as a polynomial of z and z�1, where z D e2�ix. More precisely,
there exists a polynomial f .z/ of order less than Cn and k 2 N such that

f .e2�ix/

e2�ikx
D zS1.x/C i zS2.x/; where k < Cn.

It is a well known fact that the degree of zS.x/ is equal to the zeros of f .z/ in disk
D D ¹z W jzj � 1º minus k. Then j deg zS j � Cn, i.e., j degW j � Cn.

Remark 4.2. From (4.31), it is easy to see that S�;E is almost reducible to R˙� ,
if � D �.E/ given by Lemma 4.1 is 
0-resonant. Combining with Theorem 5.2 in
the next section, we have for every E 2 †�;˛ , S�;E is almost reducible.
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5. Reducibility for non-resonant phase

In �4, we obtain sharp estimate of the rotation number 	.˛; A/when �.E/ is 
0-res-
onant. In this section, we will set up reducibility for A D S�;E with E 2 †�;˛

when �.E/ is not 
0-resonant.

Lemma 5.1. Let W W R=2Z 7! C2 be an real analytic vector in j Im xj < �.
Assume that infj Im xj<� kW.x/k > ı with some ı > 0, then there exists

B W R=2Z 7�! SL.2;R/

being real analytic in j Im xj < � with first column W .

Proof. Let

W.x/ D
�
w1.x/

w2.x/

�
:

By Theorem 4.4 there exist b1 and b2 being analytic in j Im xj < � such that

w1b1 �w2b2 D 1:

Let8

Qw1.z/ D b1.z/C Nb1.z/

2
and

Qw2.z/ D b2.z/C Nb2.z/

2
:

Then
B D

�
w1 Qw2

w2 Qw1

�
W R=2Z 7! SL.2;R/

is real analytic in j Im xj < �.

Remark 5.1. Given a non-zero real analytic vector-valued function

W.x/ D
�
w1.x/

w2.x/

�

with
W.x C 1/ D ˙W.x/;

8 Na.z/ is defined by Na.z/ D P
anzn; if a.z/ D P

anzn. Note that a.z/ is the complex
conjugate of a.z/, however Na.z/ is not.
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all of Avila, Jitomirskaya, Puig and so on construct B as follows:

B.x/ D 1

w2
1 C w2

2

�
w1.x/ �w2.x/

w2.x/ w1.x/

�
:

Since both w1 and w2 are real analytic, w2
1 C w2

2 > 0 for x 2 R. By continuity,
w2

1 Cw2
2 ¤ 0 in a neighbor of real axis and B W R=Z 7! PSL.2;R/ is real analytic

in a neighbor of real axis (this process is a key step to set up reducibility for cocycle
A D S�;E . See the proof of Theorem 5.2). Usually, B.x/ is not real analytic in
the given strip. In the present paper, since W.x/ is well defined in R=2Z, we can
use Lemma 5.1 to construct a cocycle B W R=2Z 7! SL.2;R/ with first column
W so that B is real analytic in the given strip. However, we do not have a map
B W R=Z 7! PSL.2;R/ in general. Fortunately, the following theorem suggests
that it does not matter whether B W R=2Z 7! SL.2;R/ or B W R=Z 7! PSL.2;R/
in defining reducibility.

Theorem 5.1. If

B W R=2Z �! SL.2;R/

is analytic in j Im xj < � and B.x C ˛/�1A.x/B.x/ is constant, then there exists

B 0 W R=Z �! PSL.2;R/

being analytic in j Im xj < � such that B 0.x C ˛/�1A.x/B 0.x/ is constant.

Proof. Step 1 . We will prove that there exists

B1 W R=4Z �! SL.2;R/

being analytic in j Im xj < � such that

B�1
1 .x C ˛/A.x/B1.x/ D V

and
B1.x C 1/�1B1.x/ D D;

where V , D are constant and commute (i.e., VD D DV ).
By hypothesis there exists B W R=2Z 7! SL.2;R/ such that

B�1.x C ˛/A.x/B.x/ D V1;

with V1 being constant. Let

D1.x/ D B.x C 1/�1B.x/:
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Then
D1.x C 2/ D D1.x/

and

V1D1.x/V
�1

1 D B.x C 1C ˛/�1A.x C 1/B.x C 1/B.x C 1/�1

B.x/B.x/�1A.x/�1B.x C ˛/

D B.x C 1C ˛/�1B.x C ˛/

D D1.x C ˛/:

(5.1)

Assume that V1 is not conjugate to a rotationR� with 2� 2 1
2
˛ZCZ. WriteD1.x/

in the Fourier series (note that D1.x/ is well defined in R=2Z)

D1.x/ D
X
k2Z

yD1.k/e
�ikx ; yD1.k/ 2 M.2;C/; (5.2)

then
yD1.k/e

�ik˛ D V1
yD1.k/V

�1
1 : (5.3)

If yD1.k/ ¤ 0 for some k ¤ 0, then e�ik˛ is an eigenvalue of

Ad.V1/ W M.2;C/ �! M.2;C/;

where
Ad.V1/ � F D V1FV

�1
1 for F 2 M.2;C/.

This implies that V1 is conjugate to some rotation R� with 2� D ˙k˛
2

C` for some
` 2 Z (see Lemma 5.2 below), contradicting to our assumption. Thus we deduce
that D1.x/ D yD1.0/ is a constant. Let B1.x/ D B.x/, D D D1 and V D V1.
Then

VD D DV

by .5.1/ and
B�1

1 .x C ˛/A.x/B1.x/ D V:

Assume that V1 is conjugate to some rotation R� with 2� D k˛
2

C `, where
k; ` 2 Z, i.e., V1 D UR�U

�1 with U 2 SL.2;R/. Let

B1.x/ D B.x/URk
4

x
U�1:

Then
B1.x C 4/ D B1.x/;

and
B1.x C ˛/�1A.x/B1.x/ D ˙I; (5.4)

where I is the identity of 2 � 2 matrix.
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Let
D2.x/ D B1.x C 1/�1B1.x/:

As in .5.1/, we have
D2.x C ˛/ D D2.x/:

By the minimality of x 7! x C ˛, D2 is constant. Let

V D ˙I and D D D2:

Then
VD D DV

and
B�1

1 .x C ˛/A.x/B1.x/ D V

by (5.4).

Step 2. Let
d D 1

2�i

Z
�

.�I � "D/�1 ln�d�

where � is a closed cure in complex plane, contains all spectra of "D and 0 … �,
and " 2 ¹�1; 1º (" D 1 if the spectra of D are positive, otherwise " D �1). It is
easy to check that D D "ed and d 2 sl.2;R/ commutes with V and D, where
d 2 sl.2;R/means the trace of matrix d (denote trd ) is 0. Let

B 0.x/ D B1.x/e
xd :

then
B 0.x C 1/�1B 0.x/ D " I ;

i.e., B 0 W R=Z 7! PSL.2;R/. Moreover, B 0.x C ˛/�1A.x/B 0.x/ D e�˛dV is
constant.

Lemma 5.2. If for some k 2 Zn¹0º and 2� 2 matrix D ¤ 0, the following holds,

De�ik˛ D VDV �1; (5.5)

where V is a real constant cocycle. Then V is conjugate to a rotation R� with
2� D ˙k˛

2
C ` for some ` 2 Z.
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Proof. Without loss of generality, assume V is the form of
�
t 0

0 t�1

�
with t ¤ ˙1 and t 2 R,

or �˙1 a

0 ˙1
�

with a ¤ 0 and a 2 R,

or �
e2�i� 0

0 e�2�i�

�
with � 2 R,

since detV D 1.
If

V D
�
e2�i� 0

0 e�2�i�

�
:

Write
D D .Dij /i;j D1;2;

by a simple computation in (5.5), we have
�
D11 D12

D21 D22

�
e�ik˛ D

�
D11 e4�i�D12

e�4�i�D21 D22

�
: (5.6)

Thus,

D11; D22; D21 D 0 and e4�i� D e�ik˛

and
D11; D22; D12 D 0 and e�4�i�D e�ik˛:

In either case
2� D ˙k˛

2
C ` for some ` 2 Z.

For

V D
�
t 0

0 t�1

�
with t ¤ ˙1,

or

V D
�˙1 a

0 ˙1
�

with a ¤ 0,

we can prove that those two cases can not happen by a similar discussion as the
above.



Spectral gaps of almost Mathieu operators in the exponential regime 37

Remark 5.2. By Theorem 5.1, it does not matter whether B W R=2Z 7! SL.2;R/
or B W R=Z 7! PSL.2;R/ in the definition of reducibility. The basic idea of the
proof in Theorem 5.1 is due to Avila and Krikorian [6], where they deal with an-
other problem [6, Lemma 4.3].

Lemma 5.3. Cocycle A D S�;E can not be analytically reducible to ˙I.

Proof. Otherwise, without loss of generality, we can assume that there exists an
analytic function

B W R=Z �! PSL.2;R/

such that
B.x C ˛/�1A.x/B.x/ D I:

Since B.x/ 2 PSL.2;R/,
B.x C 1/ D ˙B.x/:

When B.x C 1/ D B.x/ the proof is simpler, see Remark 5.3. Here we give the
proof only for B.x C 1/ D �B.x/. Since

B.x C ˛/�1A.x/B.x/ D I,

it is easy to see that B must be with the form

B.x/ D
�

u1.x/ u2.x/

u1.x � ˛/ u2.x � ˛/
�

and

.E � 2� cos 2�x/u1.x/ � u1.x � ˛/ D u1.x C ˛/;

.E � 2� cos 2�x/u2.x/ � u2.x � ˛/ D u2.x C ˛/:

By comparing the Fourier coefficients (note that both u1 and u2 are well defined
in R=2Z), we obtain

.E � 2 cos.�k˛// Ou1.k/ D �. Ou1.k C 2/C Ou1.k � 2//; (5.7)

.E � 2 cos.�k˛// Ou2.k/ D �. Ou2.k C 2/C Ou2.k � 2//; (5.8)

where Oui .k/ is the Fourier coefficients of ui , i D 1; 2.
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Let � be a new self-adjoint operator on `2.Z/, with

.�f /.k/ D f .k C 2/C f .k � 2/C 2

�
cos.�k˛/f .k/; for all f 2 `2.Z/: (5.9)

After a simple computation
nX

j Dm

.f �g � g�f /.j / D Wn.f; g/�Wm�1.f; g/; (5.10)

where

Wn.f; g/ D f .n/g.nC 2/C f .n � 1/g.nC 1/

� g.n/f .nC 2/ � g.n � 1/f .nC 1/:
(5.11)

In .5.10/, let
f D ¹ Ou1.k/ºk2Z and g D ¹ Ou2.k/ºk2Z:

Combining with .5.7/ and .5.8/, one has

Wn. Ou1; Ou2/ D Wm. Ou1; Ou2/: (5.12)

Since ui is analytic,

lim
n!1 Oui .n/ D 0 for i D 1; 2

and
lim

m!1Wm. Ou1; Ou2/ D 0:

By (5.12),

Wn. Ou1; Ou2/ D Ou1.n/ Ou2.nC 2/C Ou1.n � 1/ Ou2.nC 1/

� Ou2.n/ Ou1.nC 2/ � Ou2.n � 1/ Ou1.nC 1/

D 0:

(5.13)

Moreover, Oui .k/ D 0 for even k because of

ui .x C 1/ D �ui .x/; i D 1; 2.

In .5.13/, let n D 2k, we have

Ou1.2k � 1/ Ou2.2k C 1/ � Ou2.2k � 1/ Ou1.2k C 1/ D 0: (5.14)

This implies Ou1 and Ou2 are linear related, contradicting to detB D 1.
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Remark 5.3. For another case B.x C 1/ D B.x/, i.e., B W R=Z 7! SL.2;R/, the
proof is simper. We only need replace (5.9) with

.�f /.k/ D f .k C 1/C f .k � 1/C 2

�
cos.2�k˛/f .k/

and (5.11) with

Wn.f; g/ D f .n/g.nC 1/ � g.n/f .nC 1/:

If E 2 †�;˛ such that �.E/ is not 
0-resonant, by Remark 3.4, there exists a
non-zero exponentially decaying solution of yH Ou D E Ou. Next we will set up the
reducibility of cocycle A D S�;E via constructing reducible matrix.

Theorem 5.2. Given ˛ 2 RnQ, � 2 R and E 2 †�;˛ , suppose there exists a
non-zero exponentially decaying eigenfunction Ou D ¹ Oukºk2Z, i.e., yH�;˛;� Ou D E Ou
with j Ouk j � e�2��jkj for k large enough, then the following hold.

(1) If 2� … ˛Z C Z, then there exists

B W R=Z �! SL.2;R/

being analytic in j Im xj < �, such that

B.x C ˛/�1A.x/B.x/ D R˙� ;

i.e., .˛; A/ is analytically reducible in strip j Im xj < �, where A D S�;E . In this
case

	.˛; A/ D ˙� C m

2
˛ mod Z;

where9 m D deg.B/ and 2	.˛; A/ … ˛Z C Z.

(1) If 2� � k˛ 2 Z for some k 2 Z and � > 8ˇ.˛/, then there exists

B W R=Z �! PSL.2;R/

being analytic in j Im xj < �
4
, such that

B.x C ˛/�1A.x/B.x/ D
�˙1 a

0 ˙1
�
;

with a ¤ 0, i.e., .˛; A/ is analytically reducible in strip j Im xj < �
4
. In this case

	.˛; A/ D m˛ mod Z;

where m D deg.B/, i.e., 2	.˛; A/ 2 ˛Z C Z.

9 Since B is well defined in R=Z, m D deg.B/ must be even.
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Proof. Since j Ouk j � e�2��jkj for k large enough, u.x/ D P Ouke
2�ikx is analytic

in j Im xj < �. Let

U.x/ D
�
e2�i�u.x/

u.x � ˛/
�
:

Then (see §2.4)
A.x/ � U.x/ D e2�i�U.x C ˛/: (5.15)

Let zB.x/ be a matrix with columns U.x/ and xU.x/, i.e.,

zB.x/ D .U.x/; xU.x//:

Note that xU.x/ is given by footnote 6. By the minimality of x 7! xC˛ and (5.15),
det zB is a constant.

Case A. If det zB ¤ 0, we have

zB.x C ˛/�1A.x/ zB.x/ D
�
e2�i� 0

0 e�2�i�

�
:

It is easy to see that det zB D ˙ci for some c > 0. If we take

B D 1

.2c/1=2
zB
�
1 ˙i
1 �i

�
;

then
B.x C ˛/�1A.x/B.x/ D R˙� ;

and
	.˛; A/ D ˙� C m

2
˛ mod Z;

where m D deg.B/.
Now we are in position to prove 2� … ˛Z C Z. Otherwise, there exists some

k 2 Z such that 2� � k˛ 2 Z. Let B 0.x/ D B.x/R˙ kx
2

, we have

B 0.x C ˛/�1A.x/B 0.x/ D I

or

B 0.x C ˛/�1A.x/B 0.x/ D �I:

This is impossible by Lemma 5.3.
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Case B. If det zB D 0. By the minimality of x 7! xC ˛ and (5.15), U.x/ ¤ 0 for
all x with j Im xj < �. Thus we have U.x/ D  .x/W.x/withW.xC1/ D ˙W.x/
and W.x/ being real analytic in j Im xj < �, and j .x/j D 1 for x 2 R (see
Lemma 5.4 below).

There exists ı > 0 such that kW.x/k > ı in j Im xj < �
2
, since W.x/ ¤ 0 for

all x with j Im xj < �. Let B1 be given by Lemma 5.1 with first column W , then
B1 W R=2Z 7! SL.2;R/ is analytic in j Im xj < �

2
, and

B1.x C ˛/�1A.x/B1.x/ D
�
d.x/ �.x/

0 d.x/�1

�
;

with
d.x/ D  .x C ˛/

 .x/
e2�i� :

Since jd.x/j D 1 and d.x/ is real for x 2 R, d.x/ D ˙1, i.e.,

B1.x C ˛/�1A.x/B1.x/ D
�˙1 �.x/

0 ˙
�
:

Moreover, 2	.˛; A/ D m1˛ mod Z since the degree of
�˙1 �.x/

0 ˙1

�
is 0, wherem1 D

deg.B1/.
If � > 8ˇ, we can further conjugateA to a constant parabolic matrix by solving

(comparing Fourier coefficients) the homological equation

˙
.x C ˛/� 
.x/ D �.x/ �
Z 2

0

�.x/ dx

in R=2Z with O
0 D 0. More precisely,

O
k D � O�k

1� e�ik˛
; k ¤ 0,

thus 
 is analytic in j Im xj < �
4

because of �.x/ being analytic in j Im xj < �
2

and
small divisor condition (3.1). Let

B2.x/ D B1.x/

�
1 
.x/

0 1

�
:

Thew get

B2.x C ˛/�1A.x/B2.x/ D
0
@˙1

Z 2

0

�.x/dx

0 ˙1

1
A ;

and B2 is well defined in R=2Z.
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By Theorem 5.1 (let B D B2 in Theorem 5.1), there exists

B3 W R=Z �! PSL.2;R/

such that B3.x C ˛/�1A.x/B3.x/ is a constant cocycle C . We will prove that C
is conjugate to

�˙1 a
0 ˙1

�
with a a constant. Otherwise, C is conjugate to rotation

R� 0 with 2� 0 2 ˛Z C Z (since 2	.˛; A/ 2 ˛Z C Z), this is impossible by the
discussion in Case A; or C is conjugate to

�
t 0
0 t�1

�
with t ¤ ˙1, this is impossible

since E 2 †�;˛ (S�;E is not uniformly hyperbolic10 for E 2 †�;˛ , see [24]).
Therefore, there exists a cocycle U such that

U�1CU D �˙1 a
0 ˙1

�
:

Let B.x/ D B3.x/U , then

B.x C ˛/�1A.x/B.x/ D �˙1 a
0 ˙1

�
:

This implies that 2	.˛; A/ D m˛ mod Z, where m D deg.B/. Note that a ¤ 0

by Lemma 5.3.
Now we prove that

2� D k˛ mod Z:

Since

d D ˙1 and d.x/ D  .x C ˛/

 .x/
e2�i� ;

we get
 .x C ˛/e2�i� D ˙ .x/:

This implies (comparing Fourier coefficients) that  .x/ D e��ikx (note that  
is well defined in R=2Z) and e2�i� D ˙e�ik˛ for some k 2 Z, that is 2� D k˛

mod Z.
Putting case A and B together, we finish the proof.

Remark 5.4. In above discussion, we have proven that if .˛; A/ is reducible and
2	.˛; A/ 2 ˛Z C Z, where A D S�;E with E 2 †�;˛ , then .˛; A/ must be conju-
gate to

�˙1 a
0 ˙1

�
, with a ¤ 0.

10 We say that the cocycle .˛; A/ is uniformly hyperbolic if there exist constants c > 0, 	 > 1

such that kAn.x/k � c	n for every x 2 R and n > 0.
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Lemma 5.4. Under the notation of Theorem 5.2, if det zB D 0, we have

U.x/ D  .x/W.x/

with W.x/ being real analytic in j Im xj < � and

W.x C 1/ D ˙W.x/;
and

j .x/j D 1 for x 2 R.

Proof. Let

U.z/ D
�
u1.z/

u2.z/

�
;

j Im zj < �. By condition det zB D 0, then there exists k.z/ such that

u1.z/ D k.z/ Nu1.z/ and u2.z/ D k.z/ Nu2.z/: (5.16)

By minimality of z 7! z C ˛ and (5.15), U.z/ ¤ 0 for j Im zj < �. Thus k.z/ ¤ 0

for all j Im zj < �. Moreover,

k.z/ D u1.z/

Nu1.z/
or k.z/ D u2.z/

Nu2.z/
;

which implies k.z/ can be selected so that k.z/ is analytic in j Im zj < � and
jk.x/j D 1 for x 2 R.

We will prove that there exists ' being analytic in j Im zj < � such that '2 D k

and ' is well defined in R=2Z with j'.x/j D 1 for x 2 R (i.e., N'' D 1). Fix a
point z0 2 R, and solve

p0.z/ D k0.z/
k.z/

with p.z0/ D ln k.z0/

(selecting a branch). We have p.z/ is analytic in j Im zj < � and ep.z/ D k.z/. Let

'.z/ D e
1
2

p.z/:

Then '2 D k. By the uniqueness theorem of analytic function in Complex Anal-
ysis, it’s easy to verify ' is well defined in R=2Z and j'.x/j D 1 for x 2 R.
Combining with .5.16/, for x 2 R,

N'.x/ui .x/ D '.x/ui .x/; i D 1; 2,

which implies both N'u1 and N'u2 are real analytic in j Im zj < �. Letting

W D
� N'u1

N'u2

�
and  D ';

we prove the lemma.
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Theorem 5.3. For 0 < ˇ.˛/ < 1 and j�j < e�C2ˇ , let A D S�;E with E 2 †�;˛.
If 2	.˛; A/ 2 ˛Z C Z (i.e., N�;˛.E/ 2 ˛Z C Z by (2.10)), then there exists

B W R=Z �! PSL.2;R/;

analytically extending to j Im xj < h
4
, such that

B.x C ˛/�1A.x/B.x/ D
�˙1 a

0 ˙1
�
;

with a ¤ 0.

Proof. Let E 2 †�;˛ , we first prove that if 2	.˛; A/ 2 ˛Z C Z, then �.E/ given
by Lemma 4.1 is not 
0-resonant. Otherwise, by Theorem 4.7, there existsmj such
that

jmj j < C jnj j
and

k2	.˛; A/�mj˛ ˙ .2� � nj˛/kR=Z < e
�chjnj C1j:

By .4.3/,

k2	.˛; A/�mj˛kR=Z � k2� � nj˛kR=Z � e�chjnj C1j

> e�8ˇ jnj C1j � e�chjnj C1j

> 0;

(5.17)

and

k2	.˛; A/�mj˛kR=Z � k2� � nj˛kR=Z C e�chjnj C1j

� e��0jnj j C e�chjnj C1j

� e�c�0jmj j:

(5.18)

It follows from (5.18) that 	.˛; A/ has a c
0-resonance atmj if jmj j is large enough
by Lemma 3.2. If the set of c
0-resonance for 	.˛; A/ is finite, i.e., ¹mj º is finite,
by .5.17/, there exists some ı > 0 such that

k2	.˛; A/�mj˛k > ı for all j ,

which is contradicted to the fact

k	.˛; A/�mj˛kR=Z �! 0 as j ! 1
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by the second inequality in (5.18). Thus 	.˛; A/ is c
0-resonant, this is impossible
because of 2	.˛; A/ 2 ˛Z C Z.

Now that �.E/ is not 
0-resonant, by Remark 3.4 there exists a non-zero expo-
nentially decaying solution Ou of yH�;˛;� Ou D E Ou with juk j � e�2�hjkj for jkj large
enough, where h D C 2

1 ˇ by our hypothesis in the beginning of §4. Combining
with Theorem 5.2, we finish the proof.

Theorem 5.4 ([4, Theorem 4.1]). For ˇ.˛/ D 0 and j�j < 1, let A D S�;E with
E 2 †�;˛ , there exists a small constant c.�; ˛/ such that, if 2	.˛; A/ 2 ˛Z C Z

then there exists B W R=Z 7! PSL.2;R/ being analytic in j Im xj < c.�; ˛/ such
that B.x C ˛/�1A.x/B.x/ is constant.

Remark 5.5. Avila and Jitomirskaya prove Theorem 5.4 only for ˛ 2 DC, in fact,
their proof suggests it holds for all ˇ.˛/ D 0 (after carefully checking their proof).

6. Proof of the main theorem

Theorem 6.1. If E0 2 †�;˛ such that 2	.˛; AE0
/ 2 ˛Z C Z, and .˛; AE0

/ is
analytically reducible in j Im xj < � with � > 6ˇ.˛/ .0 � ˇ.˛/ < 1/, where
AE0

D S�;E0
, then E0 is an endpoint of some gap.

Proof. Here we only give the proof if 0 < ˇ.˛/ < 1. For ˛ with ˇ.˛/ D 0, the
proof is similar. Let

B W R=Z �! PSL.2;R/

be analytic in j Im xj < � such that B.xC ˛/�1AE0
.x/B.x/ is a constant cocycle.

Since 2	.˛; AE0
/ 2 ˛Z C Z, combining with Remark 5.4, we have

B.x C ˛/�1AE0
.x/B.x/ D

�˙1 a

0 ˙1
�
; (6.1)

with a ¤ 0. Without loss of generality, assume

B.x C ˛/�1AE0
.x/B.x/ D

�
1 a

0 1

�
, Z with a < 0.

Writing B D .Bij /i;j D1;2, one easily obtains

B21.x C ˛/ D B11.x/ and B22.x C ˛/ D B12.x/ � aB21.x C ˛/: (6.2)

Below, let " > 0 be small. After carefully computing,

B.x C ˛/�1AE0C".x/B.x/ D Z C "P; (6.3)
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where
P D

�
B11B12 � aB2

11 �aB11B12 C B2
12

�B2
11 �B11B12

�
: (6.4)

We will prove that for an appropriate cocycle B1 W R=Z 7! SL.2;R/, one has

B1.x C ˛/�1.Z C "P.x//B1.x/ D Z C "ŒP �CO."2/; (6.5)

where Œ�� denotes the average of a matrix-valued function over R=Z. This can be
done by a step KAM iteration (or averaging theory). Refer to [18]. Namely, we
will look for a cocycle B1 with the form of

B1 D e"Y ; where Y W R=Z 7! sl.2;R/

(i.e., Y.x C 1/ D Y.x/ and t r.Y.x// D 0). Clearly,

B1.x C ˛/�1.Z C "P.x//B1.x/

D .I � "Y.x C ˛/CO."2//.Z C "P /.I C "Y CO."2//

D Z C ".ZY.x/C P.x/ � Y.x C ˛/Z/CO."2/:

(6.6)

Let
T .x/ D Z�1P.x/ � tr.Z�1P /

2
I

and solve the homological equation

Y.x C ˛/Z �ZY.x/ D Z.T .x/ � yT .0// in R=Z (6.7)

with yY .0/ D 0. We get, for k ¤ 0,

yY11.k/ D 	
.1� e2�ik˛/2

;

yY12.k/ D 	
.1� e2�ik˛/3

;

yY21.k/ D 	
.1� e2�ik˛/

;

yY22.k/ D 	
.1� e2�ik˛/2

;

where yYij .k/ is the Fourier coefficients of matrix elements Yij of Y , i; j D 1; 2,
and 	 may be different. Using small divisor condition (3.1), Y is analytic if � > 6ˇ.
Since Y is a solution of the equation

Y.x C ˛/ �ZY.x/Z�1 D Z.T .x/ � yT .0//Z�1;
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we deduce that

tr.Y.x C ˛// � tr.Y.x// D tr.T .x/� yT .0// D 0;

i.e., tr Y.x/ is constant for x 2 R=Z. Note that yY .0/ D 0, then tr.Y.x// D 0 for
x 2 R=Z, i.e., B1 D e"Y is indeed a cocycle.

By (6.3) det.Z C "P / D 1, it is straightforward to compute

tr.Z�1P / D �" detP;

thus the coefficients of " in .6.6/ satisfy

ZY.x/C P.x/ � Y.x C ˛/Z D ŒP �CO."/; (6.8)

which implies .6.5/.
Moreover,

Z C "ŒP �CO."2/ D exp.Z0 C "Z1 CO."2//; (6.9)

where

Z0 D
�
0 a

0 0

�
and Z1 D

�
ŒB11B12� � a

2
ŒB2

11� �aŒB11B12�C ŒB2
12�

�ŒB2
11� �ŒB11B12�C a

2
ŒB2

11�

�
:

(6.10)
Let

D D
�
d1 d2

d3 �d1

�
D Z0 C "Z1;

whose determinant is

d D �d2
1 � d2d3 D a"ŒB2

11�CO."2/ < 0

for small " > 0, since ŒB2
11� > 0 (otherwise B11 D 0, by .6.2/ B21 D 0, this is

impossible). Now we let

F D
�

d2 d2

�d1 C p�d �d1 � p�d
�
;

which has determinant �2a
q

�a"ŒB2
11�CO."/, then

kF k D O.1/; kF �1k D O."�1=2/;

and
F�1DF D

�p�d 0

0 �p�d
�

, H:



48 W. Liu and X. Yuan

Moreover,

exp.Z0 C "Z1 CO."2// D exp.F.H CO."3=2//F�1/

D F exp.H CO."3=2//F�1:
(6.11)

Note that

H CO."3=2/ D
q

�a"ŒB2
11�

��
1 0

0 �1
�

CO."/

�
:

Therefore, if " is small enough, the cocycle AE0C" has an exponential dichotomy
(i.e., AE0C" is uniformly hyperbolic), which implies E0 C " … †�;˛ , i.e., E0 is an
endpoint of some gap.

Remark 6.1. In [30], Puig proves Theorem 6.1 for ˛ 2 DC, we extend his result
to all ˛ with ˇ.˛/ < 1.

Combining with Avila and Jitomirskaya’s work [4, 5], we give a summary of
the dry version of the Ten Martini Problem.

Theorem 6.2. For every ˛ 2 RnQ, let ˇ.˛/ be given by (1.1), then the following
statements hold:

(1) if ˇ.˛/ D 1, then †�;˛ has all gaps open for all � ¤ 0I
(2) if 0 < ˇ.˛/ < 1, then †�;˛ has all gaps open for 0 < j�j < e�C2ˇ , or

e�ˇ < j�j < eˇ , or j�j > eC2ˇ , where C2 is a large absolute constant;

(3) if ˇ.˛/ D 0, then †�;˛ has all gaps open if � ¤ 0;�1; 1.

Proof. If ˇ.˛/ D 1, this case has already been proved by Avila and Jitomirskaya
[4, Theorem 8.2].

If 0 < ˇ.˛/ < 1, Avila and Jitomirskaya [4, Theorem 8.2] have proved that
†�;˛ has all gaps open for e�ˇ < j�j < eˇ . Fix 
0 D C1ˇ, h D C1
0, where
C1 is a large absolute constant given in Theorem 3.1. Let C2 be a large absolute
constant also given in the beginning of §4. If j�j < e�C2ˇ , by Theorem 5.3, for
any spectrumE0 satisfying N�;˛.E0/ 2 ˛ZCZ, i.e., 2	.˛; AE0

/ 2 ˛ZCZ, there
exists a morphism B W R=Z 7! PSL.2;R/ being analytic in j Im xj < h

4
such that

B.x C ˛/�1AE0
.x/B.x/ is constant. Note that h

4
> 6ˇ, since C1 is large. By

Theorem 6.1, E0 is an endpoint of some gap. For j�j > eC2ˇ , note that †��1;˛ D
��1†�;˛ and N��1;˛.�

�1E/ D N�;˛.E/ (Aubry duality).

If ˇ.˛/ D 0, we only need replace Theorem 5.3 with Theorem 5.4.
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