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Spectral gaps of almost Mathieu operators
in the exponential regime
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Abstract. For almost Mathieu operator
(Hx . q.0Wn = Un4+1 +up—1 + 24 cos2n(6 + na)uy,,

the dry version of the Ten Martini Problem predicts that the spectrum X, , of H) « ¢ has
all gaps open for all A # 0 and ¢ € R\Q. Avila and Jitomirskaya prove that X, ,, has all
gaps open for Diophantine « and 0 < |A| < 1. In the present paper, we show that X , has
all gaps open for all « € R\Q with small A.
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1. Introduction and main results

The almost Mathieu operator (AMO) is the (discrete) quasi-periodic Schrodinger
operator on {2(Z):

(Hp q,6U)n = Ung1 +Up—1 + Av(0 + na)u,, with v(f) = 2cos2n0,

where A is the coupling, « is the frequency, and 6 is the phase.

The AMO is a tight binding model for the Hamiltonian of an electron in a
one-dimensional lattice or in a two-dimensional lattice, subject to a perpendicular
(uniform) magnetic field (through a Landau gauge) [19, 32]. This model also de-
scribes a square lattice with anisotropic nearest neighbor coupling or anisotropic
coupling to the nearest neighbors on a triangular lattice [11, 34]. In addition, in 1980
the discovery by von Klitzing [31] of the integer Quantum Hall Effect leaded to a
beautiful theory by Thouless, Kohmoto, Nightingale, and den Nijs. Central to their
theory is the use of the AMO as a model for Bloch electrons in a magnetic field.
For more applications in physics, we refer the reader to [26] and the references
therein.

Besides its application to some fundamental problems in physics, the AMO
itself is also fascinating because of its remarkable richness of the related spectral
theory. In Barry Simon’s list of Schrodinger operator problems for the twenty-
first century [33], there are three problems about the AMO. The spectral theory
of AMO has attracted many authors, for example, Avila and Damanik [3], Avila
and Jitomirskaya [4, 5], Avron and Simon [9, 10], Bourgain [13], Jitomirskaya and
Last [22], and so on.

Here we are concerned with the topological structure of the spectrum, which is
heavily related to the arithmetic properties of frequency «. If « = p/q is rational,
it is well known that the spectrum consists of the union of ¢ intervals called bands,
possibly touching the endpoints. Wheno € R\Qand A # 0, the spectrum sset X 4
of H) 4. (in this case the spectrum of H} 4 ¢ is independent of 6) has been con-
jectured for a long time to be a Cantor set. This conjecture is named after the Ten
Martini Problem.! It has been solved by Avila and Jitomirskaya completely [4] by
Anderson localization (i.e., only pure point spectrum with exponentially decaying
eigenfunctions) of H, , ¢ when |A| > e¥, where

ﬁzﬂ(a)zlimsuplnq—”“, (1.1)

n—o00 qn

! The Ten Martini Problem is the fourth problem in [33].
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and f]’—z be the continued fraction approximants (§2.5) to «. See [4] for more
historic backgrounds about the Ten Martini Problem. Recently, the condition
[A] > ¢ has been refined by the authors of this paper [28]2 to |A| > e

About the topological structure of the spectrum of the AMO, a stronger conjec-
ture is the so-called “dry version” of the Ten Martini Problem. In order to state it,
we introduce the integrated density of states Ny o (E) (see (2.9)) of AMO, which
is a continuous non-decreasing surjective function with Ny o: R +— [0, 1]. For
a € R\Q, the basic relation between X, o, and N, 4 is that E ¢ X, , if and only
if N 4 is constant in a neighborhood of E. Each connected component of R\X;
is called a gap of X, 4. If E is an endpoint of some gap, then Ny o(E) € aZ + Z
(combining [20] with [24]). The dry version of the Ten Martini Problem predicts
the converse is also true. Concretely, N, o(E) € aZ + Z with E € X, o im-
plies E is an endpoint of some gap for all A # 0 and « € R\Q (this obviously
implies the Ten Martini Problem). For convenience, we say that all gaps of X, ,
are open if Ny o(E) € Z + Z and E € X, , implies E is an endpoint of some
gap. Equivalently, the dry version of the Ten Martini Problem predicts % o has
all gaps open for all 1 # 0 and? o € R\Q.

In proving the dry version of the Ten Martini Problem, much progress has been
recently achieved by many authors. The proofs depend on whether f(«) > 0 or
B(a) = 0. One usually calls a set of the kind {& € R\Q: B(«x) > 0} exponential
regime and a set of the kind {& € R\Q: B(«) = 0} sub-exponential regime.

In the exponential regime (8(«) > 0), for any ¢ > 0, one has

< <
- qnqn+1 - e(.B—E)‘In

dn

pn‘ 1 1
o

if n is large enough (see (2.12)). This means rational number fl’—: is exponentially
close to «, thus the gaps of spectrum X, , can be rational approximated by the
gaps* of X AL Choi, Elliott, and Yui in [15] considered the 1/3-Holder conti-
nuity of the spectrum for A = 1, i.e., Dist(Z1,4,, Z1.0,) < Cla; — az|/3, and
give a good estimate for the gaps of ;. on, where Dist(K, K»2) means Hausdorff
distance between two subsets K; C R and K, C R. Then they prove that if
A =1, then X, , has all gaps open for f > 9In2 4 31n3. In [7], Avron, Mouche

2 After submitting the present paper, we learned of that Avila, You, and Zhou [8] claimed
they extended the result to regime |A| > e# in different way. (Their preprint is not available yet.)

3 After submitting the present paper, we learned of that Avila-You-Zhou claimed solution of
the dry version of the Ten Martini Problem for all values of parameters except B(«) = 0 and
|A| = 1 (Their preprint is not available yet).

‘Fora € Q, 2y .o = Ug Za.a.0, Where X, 4 ¢ is the spectrum of H) 4 ¢.
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and Simon considered the 1/2-Hdlder continuity of the spectrum. Combining [7]
with [15], Avila and Jitomirskaya [4] obtained that X, , has all gaps open for
0 <pB <ooande™® < |A| < ef. In particular, for « € R\Q such that 8 = oo,
X ,.« hasall gaps openif A # 0. Thus in the present paper, unless stated otherwise,
we always assume that @ € R\Q satisfies § = B(«) < oo and A # 0.

Now let us return to the sub-exponential regime (f(e) = 0). Typical of this
case is the well-known Diophantine number. We say o € R\Q satisfies a Dio-
phantine condition DC(k, t) with k > 0 and t > 0, if

lgo — p| > k|q|™® forany (p.,q) € Z*,q # 0.

Let
DC= () DCk.1).

k>0,7>0

We say « satisfies the Diophantine condition, if « € DC. Note that the set DC
is a proper subset of the sub-exponential regime, i.e., DC & {a: B(a) = 0}. For
a € DC, Puig in [29, 30] developed a method to estimate the gaps via establishing
reducibility (§2.1). He proved that, for « € DC, if Ny o(E) € aZ + Z with
E € ¥, 4 and cocycle S; g (see (2.7) for the definition) is analytically reducible,
then E is an endpoint of some gap. In [5], Avila and Jitomirskaya developed a
quantitative version of Aubry duality and used it to obtain a sharp estimate of the
rotation number p(c, A) (§2.2) with A = S, g for « € DC. As a result, they
established that the cocycle S, g is reducible when 0 < |A| < 1 with £ € X, ,
and N, ,(E) € aZ+ 7. Combining with Puig’s discussion, they proved that X, ,
has all gaps openif« € DCand 0 < |A| < 1.

In conclusion, we give a list for the unsolved cases about the dry version of the
Ten Martini Problem:>

(1) aefa:0<pl@) <o), 0<]|A<e?;
(2) o € DC, Al =1;
(3) ac{a: B@)=0\DC, 0<|A|<I.

In the present paper, we prove the following theorem.

Theorem 1.1 (main theorem). Foreverya € R\Q such that § = f(a) < oo, there
exists a absolute constant C, such that ¥, has all gaps open if 0 < |A| < e CP.

5By Aubry duality, it suffices to discuss 0 < |A| < 1.
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Remark 1.1. The main contribution in the present paper is that the unsolved
regime |A| € (0,e~#] in Case 1 is shrunk to |A| € [e"€#, e~P]. We should point
out that the constant C > 0 is very large. Therefore there is a long way to decrease
it to C < 1 such that the problem is solved completely. The unsolved Case 3 is
now solved by letting 8 = 0 in Theorem 1.1, except |A| = 1. Actually, Case 3 is
solved by careful checking the proofs of [5] and [30].

The paper is organized as follows. In §2, we give some preliminary notions
and facts which are taken from [4]. In §3, we obtain the strong localization esti-
mate of the Aubry dual model H 1.a,0 in the exponential regime (i.e., B(«) > 0).
In §4, we set up sharp estimate of the rotation number (Theorem 4.7) for reso-
nant phase by developing the quantitative version of Aubry duality in exponen-
tial regime. This process is the same as to set up almost reducibility for cocy-
cles Sy . In §5, we obtain the analytic reducibility in a strip domain for non-
resonant phase (Theorem 5.2) by constructing a new reducible matrix in PSL(2, R)
(by Lemma 5.1 and Theorem 5.1). Combining with the sharp estimate of rotation
number in §4, we set up the reducibility for cocycle Sy g when E € X, , and E
satisfies Nj o (E) € aZ + Z (Theorem 5.3). In §6, in order to use Puig’s method,
we generalize his result to exponential regime by KAM iteration (Theorem 6.1).
In the end, we give a summary about the dry version of the Ten Martini Problem
(Theorem 6.2).

2. Preliminaries

2.1. Cocycles. Denote by SL(2, C) the all complex 2 x 2-matrixes with deter-
minant 1. We say a function f € C?(R/Z, C) if f is well defined in R/Z, i.e.,
f(x +1) = f(x) and f is analytic in a neighbor of Imx = 0. The definitions
of SL(2,R) and C*®(R/Z, R) are similar to those of SL(2, C) and C*(R/Z, C),
respectively, except that the involved matrixes are real and the functions are real
analytic. A C“-cocycle in SL(2, C) is a pair («, 4) € R x C®(R/Z,SL(2, C)),
where A € C?(R/Z,SL(2,C)) means A(x) € SL(2,C) and the elements of A4
are in C®(R/Z, C). Sometimes, we say A a C®-cocycle for short, if there is no
ambiguity. Note that all functions and cocycles in the present paper are analytic.
Thus we often do not mention the analyticity, for instance, we call A a “cocycle”
instead of a “C®-cocycle.”
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The Lyapunov exponent for the cocycle 4 is given by
1
L(a,A) = lim — In || A, (x)] dx, (2.1)
n—oon R/Z
where
Ap(x) = A(x + (n — Da)A(x + (n —2)a) ... A(x). 2.2)

By Corollary 2 in [16] (since irrational rotations are uniquely ergodic)

1
L(x,A) = lim sup —In|A4,(x)]|, (2.3)
"0 xer/z N

that is, the convergence in (2.3) is uniform with respect to x € R. In detail, for all
>0,

[ Ap (x)]| < eE@D+n  for ; large enough. (2.4)

Given two cocycles (o, A) and («, A’), a conjugacy between them is a cocycle
B € C®?(R/Z,SL(2, C)) such that

B(x +a) 'A(x)B(x) = 4. (2.5)
The notion of real conjugacy (between real cocycles) is the same as before, except

that we ask for B € C®(R/Z,PSL(2,R)),i.e., B(x+1) = +B(x)anddet B = 1.
We say that cocycle («, A) is reducible if it is conjugate to a constant cocycle.

2.2. The rotation number. Let

_ (a(6) )
A(e)‘(cw) d(e))’

we define the map

1 1
To,a: (0,¢9) € T x ET > (0 + o, ¢q,4(0,9)) € T x ET’

with

c(0) + d(0) tan 27r<p)

1
o = t
Pod arctan (a(e) t 5(9) tan 27¢

2w
where T = R/Z.
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Assume now that
A:R/Z — SL(2,R)

is homotopic to the identity. Then 7, 4 admits a continuous lift
Ton: (0,0) eRXR—> (0 + ., Gou(0.9) e RxR
such that :
fa.a0.¢) mod SZ = g4,4(0.¢)
and @q 4(0, ¢) — ¢ is well defined on T x %T. The number

1 ~ 1
p(a, A) = limsup ;(pz 0T, 4(8,9) —¢) mod EZ’

n—>oo

does not depend on the choices of 6 and ¢, where

P2(0,9) = ¢,

is the rotation number of («, A), see [20, 25].
It follows from the definition that (cf. [5, p. 8])

ol A) = Ollgj2z < C sup IA(x) — Ry, (2.6)
X€

where

X = min [x — —|,
” ||]R/2Z = ) ’
|| . || is any Euclidean norm, and

_ (cos2xf —sin2mH
~ \sin270 cos2zf )

If we take
A A" R/Z — SL(2,R)
and
B:R/27Z — SL(2,R)

(note that B: R/Z +— PSL(2, R) implies B: R/2Z + SL(2, R)) such that A is
homotopic to the identity and

B(x + a) ' A(x)B(x) = A,
then A’ is homotopic to the identity and
20(a, A) — 2p(a, A') = ka  mod Z,

where k is the degree of B (denoted by deg(B)), i.e., x — B(x) is homotopic to
X = R/%x.
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2.3. Almost Mathieu cocycles and the integrated density of states. For the
almost Mathieu operators {H ,.¢}9er, the spectrum of operator H, 4 ¢ does not
depend on 6, denoted by X, ,. Indeed, shift is an unitary operator on {%(Z), thus
Y5060 = ZAa0+a> Where Xy 4 ¢ is the spectrum of H) ,¢. By the minimality
of 6 — 0 + « and continuity of spectrum X , ¢ with respect to 6, the statement
follows.

Let

E —2Xcos2nx —1
Sy E = ( ) 0 ) 2.7)

Wecall (o, Sy, g) almost Mathieu cocycle. It’s easy to see that the almost Math-
ieu cocycle is homotopic to the identity, and let py o (E) € [0, %] be the rotation
number of the almost Mathieu cocycle (o, S; g).

Next we will give the definition of the integrated density of states N, o, which
has been mentioned in §1.

Let H be a bounded self-adjoint operator on £2(Z). Then (H —z)~! is analytic
in C\X (H), where X (H) is the spectrum of H, and we have for f € (>

Im((H —2)"' f, f) =Imz - |(H —2)"' f|?,
where (-, -) is the usual inner product in ¢2(Z). Thus
¢r(z) = ((H—2)"" [ f)

is an analytic function on the upper half plane with Im¢s > 0 (¢ is a so-called
“Herglotz function™).
Therefore one has a representation

du (x) (2.8)

br(2) = (H -2 £, f) =/ :

RX—Z

where u/ is the spectral measure associated to f.

Fix an almost Mathieu operator H, , 9. Denote by /‘{,a,e the spectral measure
of operator H; , ¢ and vector f as before. The integrated density of states (IDS)
Nj, o is obtained by averaging the spectral measure ui(fa, o With respect to 0, i.e.,

NialB) = [l o0, EVS, 2.9)
R/Z

where 8 is the normal vector in £2(Z) with Oth component being 1, others being 0.
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Between the integrated density of states N, o(E) and the rotation number
P (E), there is the relation [23]

Nya(E) = 1203 4(E). (2.10)

In particular, N, o(E) € aZ + Z is equivalent to 2p, o (E) € aZ + Z.
Let
Lyo(E) = L(a, S3,E)

be the Lyapunov exponent of S, g. In [14] Bourgain and Jitomirskaya obtain the
accurate value of Lyapunov exponent when E € X 4.

Theorem 2.1 ([14]). Foreverya € R\Q, A e Rand E € X, 4, one has
L «(E) = max{ln |A], 0}.
2.4. Classical Aubry duality. Let
Hj o =AHj—1 4.

If « € R\Q, then the spectrum of I-Al;k’a’g is exactly X, o, see [17]. I-Al;k’a’g is
called Aubry dual model of H, , ¢. Classical Aubry duality expresses an algebraic
relation between the families of operators {ﬁ 1,0 0er and {Hy o x}xer by Bloch
waves, i.e., if

u: R/2Z — C

is an L? function whose Fourier coefficients # satisfy

H;L’a’gﬁ = Eﬁ,

U(x) _ (eZnié?u(x))

u(x —a)

then

satisfies
Sy e(x) - Ux) = e*U(x + ).

2.5. Continued fraction expansion. Define, as usual, for0 < o < 1,

and inductively, for k > 0,
-1 -1
ar = Lak_lj, U = Oy — Ak,

where |7 ] denotes the greatest integer less than or equal ¢.
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We define
Po=0, go=1,
r=1 q=ai,
and, inductively,
Pk = Ak Pk—1 + Dk—2,
dk = akqk—1 + qk—2-

Recall that {g, }»en is the sequence of best denominators of irrational number «,
since it satisifies

lkallr/z > gnallr/z forall 1l <k < guy1, (2.1D)

where | x|r/z = mingez |x — £|. Moreover, we also have the following estimate,

1
< An 2 |gnalgrz < 2.12)

2qn+1 dn+1

3. Strong localization estimate for 0 < B(«) < oo

Given 6 € R and ¢¢ > 0, we say k is an €qg-resonance for 0 if

126 — kallg/z < e~
and
20 —ka = min [|20 — ja .
| Ir/z min, I jellr/z
Clearly, 0 € Z is an €p-resonance. We order the €j-resonances

0=lno| <|n1| <|n2l <....

We say 0 is €g-resonant if the set of €p-resonances is infinite. If 6 is non-resonant,
with the set of resonances {ng,n1,...,nj,}, we set

Njg+1 = Q.

Note that if |20 — ka||r/z = 0 for some k € Z, then k is an resonance for ¢, and
0 is not €gp-resonant.
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Below, C is a large absolute constant and ¢ is a small absolute constant, which
may change through the arguments, even when appear in the same formula. How-
ever, their dependence on other parameters will be explicitly indicated. For in-
stance, we denote by C(«) a large constant depending on «.

Before starting our main work in this part, we firstly give some simple facts.

Lemma 3.1. Assume 0 < B(a) < 00, then

inf | ja|r/z > c(a)e 2Pk, 3.1)
0<|jl<k
and®
inf | jollrz = e %, fork > k(). (3.2)
0<|jl<k

Proof. By (1.1) and (2.12) there exists some no > 0 such that for n > ng(«),

I _ _
lgnetllr/z > Eqnil > ¢72Ban, (3.3)
Let
c(a) = inf | jetllr/z > 0.
0<|j|<gny+1

Assume 0 < |j| < k. If |j| = gny+1. select g, < |j| < gn41 Withn > ng + 1.
By (2.11) and (3.3)

ljellr/z > llgne|lr/z

> e 2Ban
— (3.4)
> c(a)e_zﬂk.
If |j| < qno+1, by the definition of ¢(«),
ljetllrsz = c(@) = c(@)e Pk,
This implies (3.1). For (3.2), note that ¢(«x) > e #* for k > k(«). U

Remark 3.1. In particular, ||ke|lg/z > c(a)e 2Pl for all k € Z\{0}. This is a
small divisor condition when we solve the homological equation (see Theorem 5.2
or Theorem 6.1).

6In (3.2), k > k(*) means k is large enough depending on *.
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Lemma 3.2. If ¢¢ = C18 > 0, Cy is a large absolute constant. Then there
exists ko(at) > 0 such that if |k| > ko() and |20 — ka|| < e=<0%| then k is an
€o-resonance for 0.

Proof. 1t suffices to prove
120 — ket|lg/z = min 120 — jo||r/z.
7=kl
If|j| < |k|and j # k, by (3.2) there exists some kq(«) such that

1260 — jellg/z = [k — jalr/z — 120 — kallg/z

> ¢=6BIKl _ p=colkl

3.5
< o—<olkl ©-2)
> 120 — ka|lg/z

for k > ko(a). It follows that k is an €p-resonance for 6. |

Definition 3.1. We say that H 1.,0 Satisfies a strong localization estimate if there
exists Co > 0, g > 0 and €; > 0 such that for any solution H ra.0d = Eu with
g = 1l and |ug| < 1+ |k|, where E in the spectrum of ﬁx,a,g, ie,E € X; 4, we
have

liie| < C(@e 1% for Coln;| < k| < Cy tinjy1l.

Lemma 3.3 ([4, Lemma 9.7]). Leta € R\Q, x € Rand 0 < £y < g, — 1 be such
that

|sinm(x + o) = inf |sinz(x + L),
0=<l=gn—1

then for some absolute constant C > 0,
qn—1

—Clng, < Y In|sinz(x + L)+ (gn—DIn2<Clng,.  (3.6)
£=0,0%£L0

where g, is given in §2.5.
The next theorem is our main work in this section.

Theorem 3.1. Fix ¢ = C18 > 0, where Cy is large enough so that it is much
larger than any absolute constant C, ¢~ emerging in the present paper. Then

there exists some constant C such that, for 0 < |A| < e~ €25, H 2.0 Satisfies a
“Tn Al

strong localization estimate with parameters Co = 3, g = C1f and €1 = —¢;
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Remark 3.2. Refering to Lemma 4.2 in the next section, it follows that

C
nji1] > §|"j|~
Thus there exists k& such that
1
3|nj| < [k| < §|”j+1|
if C; is large enough.

By Aubry duality H ra8 = AHj—1 49, thus to prove Theorem 3.1, we only
need prove H ) £ H A—1.q,0 satisfies the strong localization estimate instead.
Since this does not change any of the statements, sometimes the dependence of
parameters E, A, «, 6 will be ignored in the following. Assume H¢ = E¢ with
¢(0) = 1 and |¢p (k)| < 1 + |k|. Our objective is to prove

()] < C(g)e 8!,

Without loss of generality, assume 0 < A < 1 (for A < 0, note that H P =
ﬁ—)&,a,9+%)' By Theorem 2.1, the Lyapunov exponent of S, -1 g satisfies L =
—InA, where E € X1 ,.
Define
H; = RiHRy,

where
R; = coordinate restriction to I = [x1, x3] C Z,

and denote by
Gr=(H—E)™!

the associated Green function, if H; — E is invertible. Denote by Gr(x,y) the
matrix elements of the Green function G;.

Definition 3.2. Fix m > 0 and 1/10 < § < 1/2. A point y € Z will be called
(m, k)-regular with § if there exists an interval [x;, x;] containing y, where x, =
x1 + k — 1 such that

Glxy ] (0, Xi)| < e 7%l and  dist(y, x;) > 6k fori =1,2;  (3.7)
otherwise, y will be called (m, k)-singular with §.
It is easy to check that [13, p. 61]

P (x) = =Glx; xo] (X1, X)P(x1 — 1) = Gxy 2] (X, X2)P (x2 + 1), (3.3)

where x € I = [x1,x3] C Z.
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Lemma 3.4. For any m > 0 and any § with 1/10 < § < 1/2, Ois (m, k)-singular
with § if k > k(m).

Proof. Otherwise, 0 is (m, k)-regular with some 1/10 < § < 1/2,i.e.,
Gxy 0] (0, x;)| < eV =¥il < =10k fori = 1,2, (3.9)
since |y — x;| > 1k_o- In (3.8), let x = 0 and recall that

pxi =D =<1+[|x;—-1=1+k
and

P+ D) <1+ |x2+1<1+k.
Thus

|¢(0)| = IG[xl,xz](xls 0)¢(X1 - 1) + G[xl,xz](os X2)¢(X2 + l)l

(3.10)
< 2(1 + ke~ ok,

This implies |¢(0)| < 1 if k& > k(m), which is contradicted to the hypothesis
$(0) = 1. O

Let us denote
Pr(0) = det(Rpo k—1)(Hi 0.0 — E)Rjo x—17):

and
A == SA_I,E'

Then the k-step transfer-matrix Az (0) given by (2.2) can be written as [13, p. 14]

(3.11)

Aﬂﬁz(fum —m4w+M)

Pr—1(0) —Pr—2(0 +a)

By Cramer’s rule [13, p.15] for given x; and x; = x; + k — 1, withy € I =
[x1,x2] C Z, one has

Pe,—y(0+ (y+ Do)
Gr(x1,y)| = | == 3.12
|G (x1, )l ‘ Pe(d + x1a) (3.12)
and
Py_ (0 +XIOl)
Gr(y, == 7 3.13
|1@xg|‘ AR (3.13)
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The numerators in (3.12) and (3.13) can be bounded uniformly with respect to 8
by (2.4) and (3.11), i.e., for any ¢ > 0,

|Pr(0)] < | Ak (0)|| < eLT9%  for sufficiently large k and all 6.  (3.14)

In fact, (3.14) can be also uniform with respect to £ € X, -1 , by the compactness
of ¥,-1, and subadditivity of In || A || (see the proof of Theorem 4.2).

Following [21], P (@) is an even function of 6 + %(k — 1) and can be written
as a polynomial of order k in cos 27 (6 + %(k — Da):

k
Pr(9) = ch cos’ 27 (0 + %(k —1a)
Jj=0 (3.15)

1
£ Ox(cos2r(6 + 5k = Da)).
Let
Ak, = {0 € R: |Qx(cos27)| < e*FVry
with k € N and r > 0.

Definition 3.3. We say that the set {01, ..., 0x4+1} is y-uniform if
pas |x —cos2m 0| ky

max max l_[ <e
x€[-1,1]i=1,..k+1 ki | cos 2m; — cos 2w b |
J=1,j#i

(3.16)

The next two lemmas are from [4], for self-contain we give the proof.

Lemma 3.5 ([4, Lemma 9.2]). Suppose that y € Z is (L — p, k)-singular with
1/10 < 6 < 1/2, then for any ¢ > 0 and any x € Z such that y — (1 — 8)k <
x <y — 8k, we have that 0 + (x + %(k — 1)) belongs to Ak, 1—ps+¢ for k large
enough.

Proof. Otherwise, there exist ¢ > 0 and x; satisfying y — (1 —§)k < x; <y —k
and 6 + (x; + %(k — D)o ¢ Ak L—ps+e> 1.€., Pr(0 + x1a) > ekt D(L—pi+e)
by (3.15). Let I = [x1, x2] with x, = x; + k — 1, then y € I and dist(y, x;) > §k
fori = 1,2. By (3.12), (3.13), and (3.14), we have

|G1 (v, xi)| < L8 k—|y—x;)—(k+1)(L—pS+e)

(3.17)
< e L=Pb=xil fori = 1,2,

This implies y is (L — p, k)-regular, contradicting to the hypothesis. U
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Lemma 3.6 ([4, Lemma 9.3]). Let yy < y. If 01,...,0k41 € Ag,p—y, then
{61, ..., 011} is not yr-uniform for k > k(y,y1, 1).

Proof. If Lemma 3.6 is false, then
s |x —cos2m0;|

max
xe[-1,1] . l_[ | cos2m8; — cos2m 0|
J=Lj#i

< i =12, k+1.

By (3.15), we can write polynomial Qg (x) in the Lagrange interpolation form at
points cos 27 6;,i = 1,2,...,k + 1, thus

k1 [1;2;(x —cos2zb;)
= 276; J7! ’
Q)| ;Qk(cos g )]_[j7éi(0052n6i—cos2n0j)

< (k + 1)e* DL k0

_ ekL(k + l)e—k(y—y1)+L—y

< kL

for all x € [—1,1] and k > k(y,y1.4). By (3.15) again, |Px(x)| < e for all
x € R. However, by Herman’s subharmonic function methods (see [13, p.16],
or [20, p.46l]),

/ In|Pr(x)ldx > kL.
R/Z
This is impossible. O

Without loss of generality, assume

741l

3ni|l<y<
Inj| <y 3

Select n such that
4n = < dn+1
8
and let s be the largest positive integer satisfying

Sqn < %
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Set I1,1, C Z as

I =[-2sqn+1,0] and I =[y —2sq, + 1,y + 25¢4], (3.18)
ifnj <0, and
I =100,25q, —1]  and Db =[y—2sq, + 1,y +2sqs],  (3.19)

if nj > 0. In either case, the total number of elements in /; U I is 6sg,. Let
0y =0+ j'a forj €l UI.

Lemma 3.7. Under the condition of Theorem 3.1, the set {0;/}; c1,u1, constructed
as (3.18) or (3.19) is Ceg-uniform for y > y(«) (or equivalently n > n()).

Proof. Firstly we estimate the numerator in (3.16). In (3.16), let x = cos2mwa and
take the logarithm. We have

Z In|cos2mwa —cos2m0;/|
J'enUIy, j #i

= Z In|sinm(a + ;)|
J'€I1Uls, ' #i (3.20)
+ Z In|sinm(a —0;/)| + (6sq, —1)In2
J €U, j #i

=Z4+ X+ (65¢n — 1) In2,

where
Sy= > In|sinm(a+6)l, (3.21)
J'€N UL, j #i
and
o= Y  In|sinz(a—6)l. (3.22)
J'€n UL, j #i
Both ¥ and X_ consist of 6s terms of the form of (3.6), plus 6s terms of the
form

In  min |sinm(x + j'a)l, (3.23)
J'=0,1,...gn—1

minus In | sin 7 (a &+ 6;)|. Since there exists a interval of length ¢, in sum of (3.21)
and (3.22) containing i, thus the minimum over this interval is not more than
In|sinm(a £ 6;)| (by the minimality). Thus, by (3.6) one has

Z In|cos2ma —cos2mb;/| < —6sq,In2 + Cslng,. (3.24)
J' €U, j #i
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The estimate of the denominator of (3.16) requires a bit more work. In (3.20),
let a = 6;, we obtain

> In|cos2m; —cos2mfj| = Ty + = + (6sgn — 1)In2, (3.25)
j'eUlL,j #i

where
Sy= > In[sinw20 + (i + j)a)l, (3.26)

Jj'elUly,j #i

and
o= Y In|sina(—j)el (3.27)
J' €U, j #i
Firstly, X_ consists of 6s terms of the form of (3.6) plus 6s — 1 minimum terms
like (3.23) (since there exists a interval of length ¢, containing i, the sum over this
interval is exactly of the form (3.6)). By (2.11) and (3.3),
e_2ﬂ dn ,

min | j'allg/z = llgnellr/z =
0<lj’l1<gn+1

for n > n(«). Therefore, for n > n(x),

max{In |sin x|, In | sin(x + 7j'@)|} > —CBq,, forx e Rand 0 < |j'| < gn+1-
(3.28)
By known condition sq, < ¢n+1, then there exist at most 6 minimum terms
smaller than —Cf¢,. Next we estimate the minimum terms. Obviously, |i — j/| <
Csqy, fori, j' € Iy U I,. By (3.2),

min  In|sinz(i — j)a| > —Csq,p for n > n(a). (3.29)
jleUlL,j' #i

By (3.6), (3.28), and (3.29), we obtain
Y_ > —6sq,In2 — Csqnp. (3.30)

Similarly, ¥ consist of 6s terms of the form of (3.6) plus 6s minimum terms
and minus In |sin 27 6;|, and there exist at most 6 minimum terms smaller than
—CpBqn by (3.28). Thus we only need estimate the minimum term. By the defi-
nition of /; and /5, one easily verifies i + j’ # —n; and |i + j'| < |nj41]. By
Lemma 3.8 below, one has

min 20 + (i + j)a|g/z > e 0, (3.31)
J' €NV, j #i
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Replacing (3.29) with (3.31), and following the discussion of ¥_, we have
Y4 > —6sqnIn2 — Csqyeo, (3.32)
for n > n(a) or y > y(«). Putting (3.24), (3.30), and (3.32) together,

|x —cos 26|
max J < eCOsan<o, (3.33)
ie[ Ul . |cos2mb; —cos2mb;|
J'€NUIs,j' #i

fory > y(a). 0
Lemma 3.8. Under the condition of Lemma 3.7, suppose i + j' # —nj and
li +j'| < |njs1], wherei, j' € Iy U I, then

126 + (i + j)allr/z = e, (3.34)

for n > n(a) (or equivalently y > y(a)).

Proof. Let |ko| < |i + j’| be such that

||20 + koOl”]R/Z = mjn ) ||20 + ka”]R/Z-
lkl<li+J’|

We have two cases.
Casg 1. ko # i+ j'. If |20 + koat||r/z > e~ %<0 by the minimality of ko, we
have
126 + (i + j)ellr/z > 120 + koat||rjz > e~ €5,
If 126 + koot ||ryz < e~C*9n<0, by (3.1)
120 + (i + jallryz = G + ' —ko)alryz — 1120 + koct|| gz
> c(a)e 2Pliti"~kol _ o=Csaneo (3.35)

> ¢~ CsanB
for n > n(a), since |i + j' —ko| < Csqn.

Case 2. kg =i + j'. If —kg is not an resonance for 6, then by the definition of
resonance
126 4 (i 4+ j)a|lgz = e 0ol > g=Csanco,

If —ko is an resonance for 0, therefore |ko| < |n;| (otherwise —ko = n,41). Next
we discuss [|20—nja|r/z > e €590 and |20 —n;a||r/z < e =€ respectively.
Following the proof of case 1, we also have, for n > n(x)

120 + (i + j)et||gyz > e C5n€o, (3.36)

Putting all cases together, we complete the proof of this lemma. O
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Remark 3.3. Note that (3.34) holds if n is large enough, which only depends on
a, does not depend on 6. By the way, all estimates in the present paper is uniform
with respect to 6 and E € X, ,. This is important.

By Lemma 3.6 and 3.7, there exists at least one of 8;, with jo € I; U I, such
that 6;, ¢ Aesg,—1,L—Ce,- We Will prove that for all j' € Iy, 0;: € Agsq,—1,1L—Ceo
if A < e 28 with C, large enough, thus there exists some j, € [, such that
0jo ¢ Aésqn—l,L—Ceo~

Lemma 3.9. There exists some absolute constant Co such that for all j' € I,
0jr € Agsgn—1.L—Ceo If 0 < A < e 2B andn > n(A,a).

Proof. Recall that by Lemma 3.4, y = 0 is (m, k)-singular with any § satisfy-

ing &5 < § < 1 if k is large enough. In Lemma 3.5, let y = 0, § = 2,

p =1L, e =1L and k = 6sg,—; — 1. One easily checks that for all j’ € I,
0jr € Agyq,—1,3079 .- Obviously, Z[TFHL < L —Ceoif 0 < A < e~ 28 because of
L=—InA. |

Proof of Theorem 3.1. Let jo € I> be such that 0;, ¢ Aesq,—1,L—Cey- Set
I = [jo—3sqn + 1, jo + 3sgn — 1] = [x1, x2].

Let ¢ = €¢ in (3.14), combining with (3.12) and (3.13),
|G1 (v, xi)| < o (L+€0)(65gn—1—|y—x;)=65¢n (L—Ce0)

< e Ly=xil+Csaneo  for i — 1,2,

By a simple computation |y — x;| > sq, —2 > 13’—6. Recall that L = —1In A, thus

1G1(y, x1)| < e~ T6L=Ce0) < =Y for; = 1,2, (3.37)

if |[A| < e€28 with C, large enough. By (3.8), we obtain that for y > y(1, ),
lp(y)| < e~3Y with y satisfying 3|n;| < y < |nj4+1|/3. This implies |¢(y)| <
C(/\,a)e_&y for all y with 3|nj| < y < |nj41|/3. For y < 0, the proof is
similar. ]

We actually have proved a slightly more precise version of Theorem 3.1.
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Theorem 3.2. Let ¢ = C1f and |A| € (0,e=C2B) where Cy, C, are the con-
stants in Theorem 3.1, and let i be a solution of the equation H ra0d = Eu
satisfying g = 1 and |ig| < 1 + |k|, where E € X, ,. Then we have that
x| < e dalkl if3|nj| < |k| <37 njq1| and |k| > C(A, @), or equivalently, that
[ty | < C(/\,a)e_GL?f|k|forallk satisfying 3|n;| < |k| < 37 |nj41|, where set {n;}
is the eg-resonance for 0.

Remark 3.4. If 6 is not ey-resonant, and a solution H ra0U = Eu satisfying
o = 1 and |dg| < 1 + |k|, then by Theorem 3.2, || < C()L,a)e_&”" with
\k| > 3|nj,|, since nj,+1 = oo, where L = —InA.

4. The estimate of rotation number for resonant phase

It is well known that for almost every E € X, ,, there exists a solution % of
the equation Hi = Efi with fig = 1 and |fig] < (1 + |k|)€.See for the proof of
continuous-time Schrodinger operator. The proof of discrete Schrodinger operator
is similar, see [27]. Generally, it does not hold for every E € X, 4. Such exclusion
is inherent to Gelfand—Maurin theorem. Avila and Jitomirskaya in [5] conquer
this difficulty by changing the phase 6. This is a starting point of the quantitative
version of Aubry duality.

Lemma 4.1 ([5, Theorem 3.3]). If E € X, o, then there exists 0 € R and a
bounded solution Ofﬁl’a’gﬁ = Eu withig = 1 and |1 | < 1.

Fix o such that 0 < B(a) < oo, and fix C; in Theorem 3.1. Without loss of
generality, assume A > 0. By Theorem 3.1 or Theorem 3.2, there exists an absolute
constant C, such that, for 0 < A < =2 H 2.0,0 satisfies a strong localization
estimate with parameters €y, €; = 2wh and Cyp, where ¢ = C18, h = C;€p and
Co = 3. This is because 27h < _612)‘ in view of 0 < A < e~28 with C, large
enough. Given E € X, 4, let 6 = 6(E) and 1y be given by Lemma 4.1. In this

section, assume 0(E) is €op-resonant with the infinite set of €g-resonances {n; }]?";1.

Let || - || be the Euclidean norms, and denote
£l = sup [ f()l
|Im x|<n
and

I/ o = sup [ F(x)].
x€R
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Below, unless stated otherwise, set

1 0

A=Sp= (E —2Acos2mx —1)

with0 <A <e C2B and E € Y3, Note that in Section 3, 4 = S, -1 g.

Lemma 4.2. For |n;| large enough (depending on o),
120 — njal|g/z > e S+, (4.1)
in particular,

c
njeil > 2l (4.2)

Proof. By (3.2),
120 —njo|r/z = |(nj+1 —nj)allr/z — 120 —njiio|r/z
> ¢~6BInj+1l _ p=eolnjil 4.3)

> e—8ﬂ|nj+1|

This implies (4.1). Combining with the fact ||20 — nja|r/z =< ecolnjl one
has (4.2). O

We will say that a trigonometrical polynomial
p:R/Z — C

has essential degree at most k if its Fourier coeflicients outside an interval / of
length k (for I = [a, D], k = b — a) are vanishing.

Lemma 4.3 ([5, Theorem 6.1]). Let 1 < r < |gn+1/qn]. If p has essential degree
atmostk = rq, — 1 and xo € R/Z, then

Ipllo < Cqsyy sup [p(xo+ jo)l. (4.4)

0<j<k
In the present paper, under condition
In
B(@) = lim sup —2n+1

n—o00 qn

equation (4.4) becomes

Ipllo < Ce€mMan+1 sup |p(xo + jo)l
0<j<k
4.5)

<e“P% sup |p(xo + ja)l,

0<j<k

for n > n(a) or equivalently k > k().
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For any n with 9|n;| < n < §lnj41| of the form n = rqp — 1 < gi4
(by Lemma 4.2, there exists such n if |n;| is large enough depending on «), let

ull (x) — Z ﬁkeZHikx

kel

A P 1

Recall that 7 is given by Lemma 4.1 and satisfies the estimate in Theorem 3.2.

Define
eZnieull (x)
ult (x —a) )

with

U (x) = (

by direct computation
AUI] (X) — eZniGUll (x + Ol) + lefz’O(g(Ox))7 (46)

and the Fourier coefficients of g(x) satisfy

& = 1, ()(E —2cos2m(0 + ka)ig =AYy, (k — Pi—j. (A7)
]E{—l,l}

where y; is the characteristic function of /. Since Hi=E u, we also have

— &k = 1o (O)(E —2c0os21(0 + ke 3y (k= Jitg—s. (4.8)
]E{—l,l}

By (4.7) and (4.8), gx # 0, only at four points x;, x», x; — 1 and x, + 1. By the
strong localization estimate

liig| < C(A, @)e™ 2Nk,
itis easy to see ||g||% < C(A,@)e™3" in particular ||g||% <e M forn > n(h, ),
since C(A, &) < e forn > n(A, ).
Lemma 4.4 ([2, Theorem 10]). Ifa € R\Q, A # 0, E € R and € > 0, then
L(, A%<y = max{L(x, AE), In|A| + 27€),

where
AE€ _ (E —2)1cos2m(x +i€) —1)
= 1 . )

and AE = AEO,



24 W. Liu and X. Yuan
Corollary 4.1. Ifo € R\Q, |A| < 1 and B2 < ¢ < =24 1pep

L(a, A€y =0 forE € Z) 4.

Proof. By Theorem 2.1, if |A| < 1 and E € X, 4, then L(a, AZ) = 0. If we
suppose 0 < € < %ﬂ'”, i.e.,In|A|4+27we <0, then L(a, AZ) = 0 by Lemma4.4.
By symmetry L(x, AF€) = 0 for B4l < ¢ < =AL O

Next we will set up the priori estimate of transfer matrix, precisely,

145 (x)|| = @
through band |Imx| < %ﬂlll uniformly, where A = S, g and A4, is given
by (2.2). This can be done by Furman’s uniquely ergodic theorem and vanish-
ing Lyapunov exponent (Corollary 4.1).

Theorem 4.1 ([16, Theorem 1]). Let{ f,,} be a continuous subadditive cocycle on a
uniquely ergodic system (X, u, T), i.e., X is a compact metric space, T: X +— X
is a homeomorphism with | being the unique T -invariant probability measure on
X, and f, € C(X) with fr4m(x) < fu(x) + fm(T"x) for all x € X. Then, for
every x € X and uniformly on X,

1 1
limsup — f,,(x) < lim —/fndpc. 4.9)
n n—oon

n—>oo

Theorem 4.1 is usually called Furman’s uniquely ergodic theorem.

Theorem 4.2. Forall E € X, ,,

IAE ()|, < C(, a)ePk,

—In|A|
2m

where n =

Proof. By Corollary 4.1, L(at, AE€) = O forany — < ¢ < nand E € X, ,.
In Theorem 4.1, let f, = In||AZ€||, X = R/Z, Tx = x + « and p is Lebesgue
measure. Since irrational rotations are uniquely ergodic, then there exists some
ko(A, a, E, €) such that

In|lAZ ()|l < Bk

for all x satisfying Im x = € with |¢| < %ﬂlll and k > ko(A, «, E, €).
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By continuity and compactness of R/Z, there exists §(A, «, E, €) such that if
|[E' — E| < §and |[Imx’ — €| < §, then

In||AE"(x")|| < Bk (4.10)

for every ko(A, o, E,€) <k <2ko(A,a, E,€) + 1.
For any k > 2ko(A,a, E,€), let k = sko + r, where kg < r < 2k, then by
subadditivity,

InAE' () <5 max  InfAE (xp)]+  max In[AE (x)] < Bk.
|Im x; —e€|<8 | Imx;—e|<8

Thus (4.10) holds for all k > k¢(A, «, E, €). By the compactness of {|¢| < n} and
X« there exists ko(A, @), such that

InflAF ()| < Bk
for every x satisfying |Imx| <5, E € £, 4 and k > ko(A, ). It follows that
I4E (Olly < CA, a)ePE. O
Remark 4.1. In fact, our proof suggests that for any § > 0,
JAE @)y < CG. A e
with n = —% In |A|. This verifies a claim by Avila in [1, footnote 5].

For more subtle estimate of the transfer matrix, a couple of lemmata and the-
orems are necessary.

Theorem 4.3. Forn > n(A, @),

inf U (x)|| = e CP™. (4.11)

[Imx|<%
Proof. If (4.11) is false, then let xo with Imxy = ¢ and |¢| < % such that
1U" (xo) | < e,
By (4.6) and Theorem 4.2,
U (xo + ja)| <", 0<j<n,
since ||g||% < e 2" for n > n(A, ). This implies, for n > n(A, a),

u't (xo + je)l <P 0<j<n.
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Thus
luy lo < =P
by (4.5), contradicting to
u,l1 (x)dx =1
(since 19 = 1), where ufl (x) = ult (x +ti). O

Theorem 4.4 ([1, Theorem 2.6]). Let U: R/Z — C? be analytic in |Im x| < n.
Assume that §; < |U(x)| < 851 holds for all x satisfying | Im x| < 1. Then there

exists
B:R/Z — SL(2,C)

being analytic in | Im x| < n with first column U and
By < C87%85 (1 —1n(8182)).

Lemma 4.5.
max || A (x)]| < C(A,a)mC. (4.12)
xX€E

Proof. The estimate |iix| < 1 implies U1 g < eCPn_ Let B(x) € SL(2,C) be
the matrix, whose first column is U1 (x), given by Theorem 4.4 with n = g, then
IBllg < eP" for n > n(A,«). Combining with (4.6), one easily verifies

2mi6
B(x + ) A(x) B(x) = (e : e‘g”'e) i (g;g; Z(;)) (4.13)

where 6] < P, and [|B1llg. [IB2llg, 1Bslp < e, since gl = e,

Taking ® = DB(x)~!, where
d 0
D =
(6 1)

. _hn
withd = e~ 4, we get

2mif
D(x + ) A(x)D(x)" = (e . e_gm.e) + H(), (4.14)

where |H||g < e~ ¥ and ||®[|g < ™. Thus

sup [ As(x)]lg < 3. (4.15)
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If m > C(A,a), we can select n with

clnTm <n< czh’Tm
of the form

n=rqr—1<qrq
and .

njl <n < §|”lj+1|,
thus

1Amllp < m©
by (4.15). That is
|Amllg < C(A,@)m®€ for all m. O

Fix some n = |n;| and let N = |n;41|. Construct new function u?2(x) with

n=[-[5[5]]

and a vector-valued function

eZnieulz(x))

ul2(x —a)

U2(x) = (
as before.

Theorem 4.5. Forn > n(A, a),

inf U2 (x)|| > e CP". (4.16)

[Imx|<Z3

Proof. Let rqy be the minimal such that rgx > 9|n;| and rgx — 1 < qx+1, and let

= ([ B 1-[2])

Define U7 (x) as before. By the estimates |fiy| < e 27"kl for 3n < |k| < % and
lug| < 1 for others (since n > n(A, a)), we have

||U12 _ UJH% < e—hn‘
By (4.11) and a simple fact rq; < Cn, one has

inf ||U7 (x)|| = e ",

[Imx|<%
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This implies

inf  |U2(x)|| > e=CP. 4.17)
|Imx|<%
We finish the proof of the theorem. O
Let
[7()6) — eninijlz(x)
and nio
6=60-—-L—.
2

Note that U (x) depends on I, for simplicity we drop the dependence, since below

the interval is always NN
n=-[5l5l

Let B(x) be the matrix with columns U (x) and U (x), where U (x) is the complex
conjugate of U (x), and let

P_1 = ||20 — I’lel”]R/Z.

By the same arguments of (4.6)—(4.8), forn > n(A, o),
AT (x) = ™90 (x + a) + (g(ox)) with [[g]l; < eV, (4.18)

By the definition of resonance and Lemma 4.2,
e < P < e forn > n(a). (4.19)
Theorem 4.6. Forn > n(A, a),
xéﬁﬁzldew(")' > pC. (4.20)
Proof. By the proof of [5, Lemma 8.1], for any complex matrix M with columns

Vand W,
|det M| = |V | min |[W — AV || “4.21)
AeC

and the minimizing A satisfies ||AV| < ||[W]. Suppose (4.20) would not hold.
By Theorem 4.5, infycr ||U(x)|| = e~A”; then there exists xo € R and 1y € C
(JAo| < 1) such that

1T (x0) — AoU (x0)| < P7€.
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By (4.12) and (4.18), we have
16270 (xg + ja) — 25000 (xo + ja)| < PC,0<j <P.  (4.22)
That is
1T (xo + jor) — 64”ij§/\0(7(xo +ja) <P C0<j<P (4.23)
Note the simple fact that
418 _ 1| < C||2jf||gjz < P~¢. for0<j < P

since ||25||]R/Z = P~!. Combining with (4.23) and noting 1Tllo < C(A,)n by
the strong localization estimate, one has

U (xo + ja) — AoU (x0 + ja)] < P7¢,0< j < P'™°. (4.24)

Let Uy (x) obtained by truncating the Fourier coefficients of U(x) atscale k =
%ln P. By (4.19), one has 9n < k < %N . By the strong localization estimate in

Theorem 3.2 and the definition of U (x),
1T — Tillo < e 8*P < p=e, (4.25)

Therefore, we may assume the essential degree of U is % In P. By (4.5) and (4.24),
we have (first replacing U (x) with U (2x) so that U (2x) is well defined in R/Z)

sup |U(x) — Aol (x)| < e“PEINP p—c < p=c, (4.26)
x€R/Z
In (4.23), let
=]
J=17l
We get
iU (x1) +iroU (x1)| < P, (4.27)
where

P
X1 =Xo + [Z]“-

By (4.26) and (4.27), |U(x1)| < P~¢. Recall that inf,cg | U (x)|| > e~€F", thus
we get P < ¢€Bn This contradicts to (4.19) P > 0" since ¢ = C1 and we
assume C; is much larger than any absolute constant C emerging in this paper. [

The following theorem gives a sharp estimate of the rotation number if phase
O(E) is €p-resonant.
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Theorem 4.7. Fixn = |nj| (large enough depending on A and o) and N = |nj 4|,
then there exists m; with |m;| < Cn such that

12p(ct, A) —mjo £+ (20 —nja)|r/z < ehN.

Proof. Let S = Re U , T =1Im U , and let W be the matrix with columns S and
4T so that det W > 0. Then by (4.18)

AW (x) = W(x +a) R+ 0™, x e R/Z. (4.28)
Let W(x) = |%|_1/2W(x), it is easy to verify det W = 1. By Theorem 4.6,

|det B(x + a)|'/2

AW = =4 B2

W(x +a) R+ 0(™™), xeR/Z. (429)

By (4.18) and det A = 1, | det B(x + a)| — | det B(x)| = O(e~¢""), thus we have

AW(x) = W(x +a)-Reg+ 0(™"Y), xeR/Z. (4.30)

Since det W =1 and
det B(x)|”"/? ~
Wix) = | 2(x) \W(x), forxeR/Z,
we have
w1 < P€.

Then

W(x +a) "AW(x) = R5+ 0(e™"Y), x eR/Z. (4.31)

Since W(x) is well defined in R/2Z, combing with (2.6),
12p(et, A) — ma £ 26]|gjz < eV,
where m = deg(W). Thus, to prove this theorem, we only need prove
| deg(W)| < Cn.

Next we will estimate the degree of W. The degree of W is the same as the
degree of any of its columns.” It is enough to estimate the degree of % for

M = Sor M = T. Note that

I e T (S(x) +iT(x))dx|| = V2.
R/Z

7Let S: R/27 — R?\0, we say degree of S is k, denoted by deg(S) = k, if S is homotopic
to (cgskx/Z)
sinkx/2/*
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Without loss of generality, assume
[ 1s@lax = Va2
R/Z

By (4.28),
AS(x) = S(x+a)cos2nf FT(x+a)sin2n0+ 0(e~"N), x e R/Z. (4.32)
Combining with ||2é||R/Z < e €0" we have

AS(x) = S(x + @) + O(e™ ™),
or
AS(x) = =S(x + @) + O(e™ o).

Following the proof of Theorem 4.5, we have the similar estimate

inf [|S(x)]| > e~<P". (4.33)
x€R

Denote S(x) by truncating the Fourier series of S at scale Cn, then

15() = S| < ™€ < M

for x € R/2Z and n > n(A, «). Thus the degree of S is equal to the degree of S.
Now we estimate the degree of S(x). Let

S (X))'

S(2x) = (52 )

Then S (x), S, (x) only have Fourier series at scale Cn. Note that S (x) 4 i S>(x)
can be written as a polynomial of z and z~!, where z = ¢2™'*. More precisely,
there exists a polynomial f(z) of order less than Cn and k € IN such that

f(e27rix)

T = S1(x) +iS>(x), where k < Cn.
e

It is a well known fact that the degree of S (x) is equal to the zeros of f(z) in disk
D = {z: |z| < 1} minus k. Then |deg S| < Cn, i.e.,|degW| < Cn. O

Remark 4.2. From (4.31), it is easy to see that S, g is almost reducible to R4,
if 8 = O(F) given by Lemma 4.1 is €p-resonant. Combining with Theorem 5.2 in
the next section, we have for every E € X, ,, S, g is almost reducible.
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5. Reducibility for non-resonant phase

In §4, we obtain sharp estimate of the rotation number p(«, A) when 8(E) is €o-res-
onant. In this section, we will set up reducibility for A = Sy g with £ € X 4
when 6(E) is not €p-resonant.

Lemma 5.1. Let W: R/27Z + C? be an real analytic vector in |Imx| < n.
Assume that inf |1y x|<y |W(x)|| > & with some § > 0, then there exists

B: R/27Z > SL(2,R)
being real analytic in | Im x| < n with first column W .

Proof. Let
W(x) = (wl(x))‘

w2 (x)

By Theorem 4.4 there exist b; and b, being analytic in | Im x| < 5 such that

w1b1 — w2b2 = 1.

Let?
. bi(z) + b1(2)
wi(z) = ————
2
and )
. ba(z) + ba(2)
wa(z) = - 5
Then y
B = (wl ’“f’z); R/2Z > SL(2, R)
Wy W1
is real analytic in | Im x| < 7. ]

Remark 5.1. Given a non-zero real analytic vector-valued function
wi(x ))
W(x) =
) (wz(x )

Wx +1) = £W(x),

with

8a(z)isdefined by a(z) = Y a,z", ifa(z) = > a,z". Note that a(z) is the complex
conjugate of a(z), however a(z) is not.
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all of Avila, Jitomirskaya, Puig and so on construct B as follows:

B - (wl(x) —wz(x))'

wi + wjy \wa(x)  wi(x)

Since both w; and w, are real analytic, w? + w? > 0 for x € R. By continuity,
w? + w2 # 0in a neighbor of real axis and B: R/Z > PSL(2, R) is real analytic
in a neighbor of real axis (this process is a key step to set up reducibility for cocycle
A = S g. See the proof of Theorem 5.2). Usually, B(x) is not real analytic in
the given strip. In the present paper, since W(x) is well defined in R/2Z, we can
use Lemma 5.1 to construct a cocycle B: R/2Z + SL(2,R) with first column
W so that B is real analytic in the given strip. However, we do not have a map
B: R/Z +— PSL(2,R) in general. Fortunately, the following theorem suggests
that it does not matter whether B: R/2Z +— SL(2,R) or B: R/Z — PSL(2,R)
in defining reducibility.

Theorem 5.1. If
B: R/27Z — SL(2,R)
is analytic in | Im x| < n and B(x + a)~' A(x) B(x) is constant, then there exists
B': R/Z — PSL(2,R)
being analytic in | Im x| < n such that B'(x + a)~ ' A(x)B'(x) is constant.
Proof. STep 1. We will prove that there exists
Bi:R/47Z — SL(2,R)
being analytic in | Im x| < 5 such that

Bi'(x + 0)A(x)Bi(x) =V
and
Bi(x + 1)"'By(x) = D,

where V', D are constant and commute (i.e., VD = DV).
By hypothesis there exists B: R/27Z +— SL(2, R) such that

B '(x + a)A(x)B(x) = Vi,
with V; being constant. Let

Di(x) = B(x + )" 'B(x).
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Then
Di(x +2) = D{(x)
and
ViDi(x)Vi' =B(x+14+a) 'A(x + DB(x + )B(x + 1)~!
B(x)B(x)"'A(x) ' B(x + @)
=B(x+14+a)'B(x +a) G-
= Di(x + o).

Assume that V; is not conjugate to a rotation Ry with 26 € %aZ +7. Write D (x)
in the Fourier series (note that D (x) is well defined in R/27Z)

Dy(x) =Y Di(k)e™**. Dy (k) € M(2,C), (5.2)
keZ
then
Di(k)e™** = vi Dy (k)v". (5.3)

If D; (k) # 0 for some k # 0, then e™*® is an eigenvalue of
Ad(Vy): M(2,C) — M(2,C),
where
Ad(Vy)- F = ViFV ! for F e M(2,0).

This implies that V; is conjugate to some rotation Ry with 20 = + "2—"‘ + £ for some
£ € 7 (see Lemma 5.2 below), contradicting to our assumption. Thus we deduce
that D;(x) = 131(0) is a constant. Let B1(x) = B(x), D = Dy and V = V.
Then

VD =DV

by (5.1) and
By ' (x + a)A(x) B (x) = V.

Assume that V; is conjugate to some rotation Ry with 260 = %"‘ + £, where
k.t eZ,ie., Vi =URgU~! with U € SL(2,R). Let

Bi(x) = B(x)UR%xU_l.

Then
Bl(x + 4) = Bl(x),

and
Bi(x +a) A(x)B1(x) = £I, (5.4)

where I is the identity of 2 x 2 matrix.
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Let
Ds(x) = By(x + )71 By (x).

As in (5.1), we have
Ds(x + @) = Da(x).

By the minimality of x — x + «, D5 is constant. Let

V=41 and D = D,.

Then
VD = DV
and
Bi'(x + 0)A(x)Bi(x) =V
by (5.4).
STEP 2. Let

1

d =—
2mi

/ Al—eD) 'InAdA
r

where I' is a closed cure in complex plane, contains all spectra of ¢D and 0 ¢ T,
and ¢ € {—1, 1} (¢ = 1 if the spectra of D are positive, otherwise ¢ = —1). It is
easy to check that D = ¢e? and d € sl(2, R) commutes with V and D, where
d € s1(2, R) means the trace of matrix d (denote trd) is 0. Let

B'(x) = By(x)e*?.

then
B(x+1)'B(x)=c¢l,

ie., B': R/Z +~ PSL(2,R). Moreover, B'(x + &) 'A(x)B'(x) = e %V is
constant. U

Lemma 5.2. Iffor some k € Z\{0} and 2 x 2 matrix D 5 0, the following holds,
De ke — ypy 1, (5.5)

where V is a real constant cocycle. Then V is conjugate to a rotation Rg with
20 = :I:kz—“ + € for some £ € 7.
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Proof. Without loss of generality, assume V is the form of

((t) [91) withr # +1and € R,

or

+1 a .
(O :I:l) witha # 0and a € R,

or
2mif
(e . e_fm.e) with 6 € R,

since detV = 1.
If

eZni@ 0
V= ( 0 e—27ri9)'

D = (Djj)i,j=1,,

by a simple computation in (5.5), we have

Write

(Dll Dlz)em'ka _ ( Dn €4ni9D12) (5.6)
D>y D2 e~*mi0 D, Dy, ) :
Thus,

Dllv D22, D21 =0 and e4rzi0 — erzika
and

D11, D22, D12 =0 and €_4ni9= e”ik“.

In either case

k
29:17064—{ for some £ € Z.
For
t 0 .
V = (0 t_l) with t # +£1,
or

+1 a .
V—(O :I:l) with a # 0,

we can prove that those two cases can not happen by a similar discussion as the
above. O
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Remark 5.2. By Theorem 5.1, it does not matter whether B: R/2Z + SL(2, R)
or B: R/Z — PSL(2,R) in the definition of reducibility. The basic idea of the
proof in Theorem 5.1 is due to Avila and Krikorian [6], where they deal with an-
other problem [6, Lemma 4.3].

Lemma 5.3. Cocycle A = S) g can not be analytically reducible to %1.

Proof. Otherwise, without loss of generality, we can assume that there exists an
analytic function

B:R/Z —s PSL(2, R)

such that
B(x + ) 'A(x)B(x) =L

Since B(x) € PSL(2, R),
B(x + 1) = £B(x).

When B(x + 1) = B(x) the proof is simpler, see Remark 5.3. Here we give the
proof only for B(x + 1) = —B(x). Since

B(x +a) 'A(x)B(x) =1,

it is easy to see that B must be with the form

B(x):( e - ue )

up(x — o) up(x — )

and
(E — 24 cos 2x)uy (x) — uy (x — ) = uy (x + @),
(E — 24 cos 2 x)u (x) — uz(x — @) = ua(x + ).

By comparing the Fourier coefficients (note that both u; and u, are well defined
in R/27Z), we obtain

(E — 2 cos(rka))iiy (k) = A1 (k +2) + i (k — 2)), (5.7)
(E — 2 cos(wka))iia(k) = A(fia(k + 2) + fia(k —2)), (5.8)

where 1; (k) is the Fourier coefficients of u;, i = 1, 2.
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Let 7 be a new self-adjoint operator on ¢2(Z), with

(f)k) = flk+2)+ fk—2) + %cos(nka) fk), forall f e (3(Z). (5.9)

After a simple computation
> (fr8 —8t)() = Walf.8) — W1 (. 8).
j=m

where

Wa(f.g) = fm)gn +2) + f(n —T)gn + 1)
—gmfin+2)—gn—1)f(n+1).

In (5.10), let
f={(k)}kez and g ={l2(k)}rez-
Combining with (5.7) and (5.8), one has

Wa(ly, ti2) = W, (i1, 112).
Since u; is analytic,
lim #;(n) =0 fori =1,2
n—>o0
and
lim Wm(ﬁl, ﬁz) =0.
m—00
By (5.12),
Wy (i1, fiz) = G (n)iia(n + 2) + 611 (n — Diia(n + 1)
—da(n)iy(n +2) —ila(n — Dity(n + 1)
=0.
Moreover, i; (k) = 0 for even k because of
ui(x +1)=—u;(x), i=12.
In (5.13), let n = 2k, we have

112k — D)iip(2k 4+ 1) — 622k — 1)i, 2k + 1) = 0.

This implies #; and #, are linear related, contradicting to det B = 1.

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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Remark 5.3. For another case B(x + 1) = B(x), i.e.,, B: R/Z ~ SL(2, R), the
proof is simper. We only need replace (5.9) with

@f)k) = flk+1)+ flk=1)+ %cos(brka) f(k)
and (5.11) with
Wa(f.8) = f(m)g(n +1) —g(n) f(n + 1).

If E € X, 4 such that (E) is not €g-resonant, by Remark 3.4, there exists a
non-zero exponentially decaying solution of Hii = Ei. Next we will set up the
reducibility of cocycle A = S, g via constructing reducible matrix.

Theorem 5.2. Given a € R\Q, 0 € Rand E € X, 4, suppose there exists a
non-zero exponentially decaying eigenfunction i = {liy }xez, i.e., H) 401 = Ell
with || < e 2""%l for k large enough, then the following hold.

(1) If 20 ¢ oZ + Z, then there exists
B: R/Z — SL(2,R)
being analytic in | Im x| < n, such that
B(x + &) ' A(x) B(x) = Rug,

i.e., (a0, A) is analytically reducible in strip |Im x| < n, where A = S, g. In this
case "
pla, A) = 0 + 5a mod Z,

where®m = deg(B) and 2p(a, A) ¢ aZ + Z.
(1) If 20 — ka € Z for some k € Z. and n > 8B(a), then there exists

B:R/Z —s PSL(2, R)

. . . 1
being analytic in | Im x| < 7, such that

B(x + ) " A(x)B(x) = (f)l ﬁl),

with a # 0, i.e., (o, A) is analytically reducible in strip | Im x| < 7. In this case
p(a, A) = ma mod Z,

where m = deg(B), i.e., 2p(«, A) € aZ + Z.

9 Since B is well defined in R/Z, m = deg(B) must be even.
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Proof. Since [i;| < e>*"kl for k large enough, u(x) = Y fize?™*k* is analytic

in [Imx| < n. Let
_ eZm’Gu(x)
Ulx) = (u(x —a) )

Then (see §2.4)
Ax)-Ux) = 20U (x + ). (5.15)

Let B (x) be a matrix with columns U(x) and U (x), i.e.,
B(x) = (U(x). U(x)).

Note that U (x) is given by footnote 6. By the minimality of x — x +« and (5.15),
det B is a constant.

Cask A. If det B # 0, we have
- . - e2mif 0
B(x+o) ' A0 B(x) = ( . e—zm'e)'

It is easy to see that det B = +¢i for some ¢ > 0. If we take
1 - .
B=— g =)
o)'/27\1 Fi

B(x + )" A(x) B(x) = Ryg.

then

and
pla, A) = +6 + %a mod 7,

where m = deg(B).
Now we are in position to prove 20 ¢ aZ + Z. Otherwise, there exists some
k € Z such that 20 — ka € Z. Let B'(x) = B(x)Rika, we have
B'(x +a) 'A(x)B'(x) =1
or

B'(x +a) 'A(x)B'(x) = —1.

This is impossible by Lemma 5.3.
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Cask B. If det B = 0. By the minimality of x — x + « and (5.15), U(x) % 0 for
all x with | Im x| < n. Thus we have U(x) = ¥ (x)W(x) with W(x +1) = £W(x)
and W(x) being real analytic in |Imx| < 5, and |y (x)| = 1 for x € R (see
Lemma 5.4 below).

There exists § > 0 such that |W(x)|| > § in [Im x| < 7, since W(x) # 0 for
all x with [Im x| < n. Let B; be given by Lemma 5.1 with first column W, then
Bi: R/2Z + SL(2,R) is analytic in | Im x| < 7, and

Bi(x + ) A(x) By (x) = (dgx) d‘;f)‘ll),
v Y+ Q) g
dx) = s
Since |d(x)| = 1 and d(x) is real for x € R, d(x) = £1, i..,
Bi(x + @) L A(x) By (x) = (j;l "i‘)).

Moreover, 2p(a, A) = mya mod Z since the degree of (%! "fi)) is 0, where m; =
deg(B).

If n > 88, we can further conjugate A to a constant parabolic matrix by solving
(comparing Fourier coefficients) the homological equation

2
To(x +a) Fo(x) :K(x)—/ k(x)dx
0

in R/2Z with ¢¢ = 0. More precisely,

A Kx

o =F k #0,

1 — emika’
thus ¢ is analytic in | Im x| < 7 because of k(x) being analytic in |[Im x| < 7 and

small divisor condition (3.1). Let

Ba(x) = Bl(x)(1 ‘“”)

0 1

Thew get

2
Ba(x +)7 A(¥) Ba(x) = (il I K(X)dx),
0 +1

and Bj is well defined in R/27Z.
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By Theorem 5.1 (let B = B, in Theorem 5.1), there exists
B3: R/Z — PSL(2,R)

such that B3(x + o)1 A(x)Bs(x) is a constant cocycle C. We will prove that C
is conjugate to (¥! £ ) with a a constant. Otherwise, C is conjugate to rotation
Ry with 20" € aZ + 7 (since 2p(a, A) € aZ + Z), this is impossible by the
discussion in Case A; or C is conjugate to (3 1_01) with ¢ # =1, this is impossible
since E € X4 (Si,g is not uniformly hyperbolic!® for E € X, 4, see [24]).

Therefore, there exists a cocycle U such that
Uy = (3 £).
Let B(x) = Bz(x)U, then
B(x +a) 'A(x)B(x) = (B &)

This implies that 2p(«, A) = ma mod Z, where m = deg(B). Note that a # 0
by Lemma 5.3.
Now we prove that

20 = ka mod Z.

Since
W(X + C() eZn’iG

d==+1 and d(x) = 700 ,

we get
V(x4 @)™ = Ly (x).

This implies (comparing Fourier coefficients) that ¥ (x) = e~ "** (note that v/
is well defined in R/2Z) and ¢271% = +e™* for some k € Z, that is 20 = ka
mod Z.

Putting case A and B together, we finish the proof. U

Remark 5.4. In above discussion, we have proven that if («, A) is reducible and
2p(a, A) € aZ + 7, where A = S, g with E € X, 4, then («, A) must be conju-

gate to (£! ¢), with a # 0.

10 We say that the cocycle («, A) is uniformly hyperbolic if there exist constants ¢ > 0, y > 1
such that |4, (x)|| > cy” forevery x € Rand n > 0.
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Lemma 5.4. Under the notation of Theorem 5.2, if det B = 0, we have
Ux) = ¢ (x)W(x)
with W(x) being real analytic in | Im x| < n and
W(x+1) = £W(x),

and
[v(x)]=1 forxeR.

UGz) = (3;8)
|Im z| < 7. By condition det B = 0, then there exists k(z) such that
u1(z) = k(2)u1(z) and uz(z) = k(2)uz(z). (5.16)
By minimality of z — z + « and (5.15), U(z) # 0 for | Imz| < 5. Thus k(z) # 0

for all |Im z| < 5. Moreover,

k(z) =

Proof. Let

WE) e - 120)
ui(z) u2(2)
which implies k(z) can be selected so that k(z) is analytic in |[Imz| < 7 and
lk(x)] =1 for x € R.

We will prove that there exists ¢ being analytic in | Im z| < 7 such that 92 = k
and ¢ is well defined in R/2Z with |p(x)| = 1 for x € R (i.e., o = 1). Fix a
point zo € R, and solve

p'(2)

'(2)
~ k(@)
(selecting a branch). We have p(z) is analytic in | Im z| < n and e?® = k(z). Let

0(z) = 274,

with p(z9) = Ink(zo)

Then ¢? = k. By the uniqueness theorem of analytic function in Complex Anal-
ysis, it’s easy to verify ¢ is well defined in R/27Z and |p(x)| = 1| for x € R.
Combining with (5.16), for x € R,
e(Xui(x) = (Ui (x), i =12
which implies both ¢u; and ¢u, are real analytic in [Im z| < 5. Letting
Puy
W=\ and =0,
(90142) v=e

we prove the lemma. O
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Theorem 5.3. For0 < f(a) < oo and || < e=2P let A = Sy g with E € 3 4.
If2p(a, A) e aZ + Z (i.e., Ny o (E) € aZ + Z by (2.10)), then there exists

B: R/Z —s PSL(2, R),

analytically extending to | Im x| < %, such that

B(x + ) " A(x)B(x) = (f)l ﬁl),

with a # 0.

Proof. Let E € X, 4, we first prove that if 2p(a, A) € aZ + Z, then 6(E) given
by Lemma 4.1 is not ep-resonant. Otherwise, by Theorem 4.7, there exists m; such
that

|mj| < C|n;j|
and
120(a, A) —mja + (20 — nja)|gyz < e <Hni+il,
By (4.3),
12p(c, A) —mjo|gyz = 1120 —njo|r/z — e—Chinjt1l

> e 8BInj 1l _ o—chinj i1l (5.17)
> 0,

and

120(a, A) — mja|gyz < 1120 —nja|g/z + e ctni+l
< e—eolnjl +e—ch|nj+1| (5.18)

< e—C€0|mj|_

It follows from (5.18) that p(«, A) has a ceg-resonance at m; if |m; | is large enough
by Lemma 3.2. If the set of ceg-resonance for p(«, A) is finite, i.e., {m;} is finite,
by (5.17), there exists some § > 0 such that

12p(a, A) —mja| > 8 forall j,
which is contradicted to the fact

lp(a, A) —mjalr/z — 0 as j — oo
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by the second inequality in (5.18). Thus p(«, A) is cep-resonant, this is impossible
because of 2p(«, A) € aZ + 7.

Now that 6(E) is not eop-resonant, by Remark 3.4 there exists a non-zero expo-
nentially decaying solution # of [:\I,\,ajgﬁ = Eu with |ug| < e 27" for |k| large
enough, where & = CZf by our hypothesis in the beginning of §4. Combining
with Theorem 5.2, we finish the proof. O

Theorem 5.4 ([4, Theorem 4.1]). For B(a) = 0 and |A| < 1, let A = S g with
E € X, 4, there exists a small constant c(A, ) such that, if 2p(o, A) € «Z + Z
then there exists B: R/Z +— PSL(2, R) being analytic in |Im x| < c(A, «) such
that B(x + a) ' A(x)B(x) is constant.

Remark 5.5. Avila and Jitomirskaya prove Theorem 5.4 only for « € DC, in fact,
their proof suggests it holds for all 8(«r) = 0 (after carefully checking their proof).

6. Proof of the main theorem

Theorem 6.1. If Eq € X, o such that 2p(a, Ag,) € aZ + Z, and (o, AE,) is
analytically reducible in |Imx| < n with n > 68(ax) (0 < B(a) < o), where
AEy = Si,E, then Eq is an endpoint of some gap.

Proof. Here we only give the proof if 0 < B(«) < oo. For o with S(«) = 0, the
proof is similar. Let
B:R/Z — PSL(2,R)

be analytic in | Im x| < 5 such that B(x + &)~ A, (x) B(x) is a constant cocycle.
Since 2p(a, Ag,) € aZ + 7, combining with Remark 5.4, we have

B(x + o) 'Ag, (x)B(x) = (j;l £1) (6.1)

with a # 0. Without loss of generality, assume

1 a

B+ g B0 = () ]

)éz with a < 0.

Writing B = (B;j);,j=1,2, one easily obtains
Byi(x +a) = Bi1(x) and Bo(x +a) = Bia(x) —aBai(x +a).  (6.2)
Below, let ¢ > 0 be small. After carefully computing,

B(x +a) " Agy+e(x)B(x) = Z + ¢P, (6.3)
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where
p— (BllBlz—aBlzl —aB11Bi1x + 3122)

6.4
—B% —B11B12 ©4

We will prove that for an appropriate cocycle By : R/Z — SL(2, R), one has
Bi(x + ) N Z + eP(x))B1(x) = Z + ¢[P] + O(¢?), (6.5)

where [-] denotes the average of a matrix-valued function over R/Z. This can be
done by a step KAM iteration (or averaging theory). Refer to [18]. Namely, we
will look for a cocycle B; with the form of

By =¢Y, where Y: R/Z — sl(2,R)
(.e.,Y(x+1) =Y(x)and tr(Y(x)) = 0). Clearly,
Bi(x +a) Y (Z + eP(x))B;(x)
=(I—e¥Y(x +a)+ 0E))(Z + eP)A + &Y + 0(c?)) (6.6)
=Z+e(ZY(x)+ P(x)—Y(x +a)Z) + O(£?).

Let )
Z7'P
T(x)=Z"'P(x) - %1
and solve the homological equation
Y(x +a)Z — ZY(x) = Z(T(x) — T(0)) in R/Z (6.7)
with ¥ (0) = 0. We get, for k # 0,
~ *
Yiilk) = ———F——,
11( ) (1 o e27rzk(x)2
Yia(k) = (1= o2nika)s’
~ *
Y k - - T
21( ) (1 _ e27”ka)
V2o (k) =

(1 _ eZnika)Z ’

where 17, (k) is the Fourier coefficients of matrix elements Y;; of Y, i, j = 1,2,
and * may be different. Using small divisor condition (3.1), Y is analyticif n > 68.
Since Y is a solution of the equation

Yx+a)—ZY(x)Z™ ' = Z(T(x)-T©O)Z",
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we deduce that
tr(Y (x + ) — tr(Y(x)) = tr(T(x) — T(0)) = 0,

i.e., tr Y(x) is constant for x € R/Z. Note that 17(0) = 0, then tr(Y(x)) = 0 for
x € R/Z,ie., By = e°Y is indeed a cocycle.
By (6.3) det(Z + ¢P) = 1, it is straightforward to compute

tr(Z7'P) = —edet P,

thus the coefficients of ¢ in (6.6) satisfy

ZY(x)+ P(x)—Y(x +a)Z = [P] + O(s), (6.8)
which implies (6.5).
Moreover,
Z + e[P] + O(e?) = exp(Zo + £Z, + O(?)), (6.9)
where
_ (0 a _ ([Bu1B12] — §[B}] —a[B11B12] + [BE, )
“o= (O O) and 21 = ( —[B3] —[B11B12] + £[B{1)°
(6.10)
Let

D= (d3 —d1) =Zo+¢Zy,
whose determinant is
d = —d} —dyds = ae[B}] + 0(*) <0

for small & > 0, since [B%] > 0 (otherwise B1; = 0, by (6.2) By = 0, this is
impossible). Now we let

(ot am)
“\ea+v=d -4 -v=d)

which has determinant —2a \/—ag[B?#,] + O(e), then
IFl =o0@), [F'|=0@"),
and

F7IDF = (Jg_d _\/O__d) 2 H.
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Moreover,

exp(Zo + £Z1 + 0(e?)) = exp(F(H + 0(£*?))F~1) 610
= Fexp(H + 0(83/2))F_1. '

Note that

H+ 0(%?) = —ae[Blzl](((l) _01) + 0(8))-
Therefore, if ¢ is small enough, the cocycle A, 4. has an exponential dichotomy
(i.e., AEy+¢ is uniformly hyperbolic), which implies Eg + ¢ ¢ X, 4, i.e., Eg is an
endpoint of some gap. O

Remark 6.1. In [30], Puig proves Theorem 6.1 for « € DC, we extend his result
to all o with B(x) < oo.

Combining with Avila and Jitomirskaya’s work [4, 5], we give a summary of
the dry version of the Ten Martini Problem.

Theorem 6.2. For every a € R\Q, let B(«) be given by (1.1), then the following
statements hold:

(1) if B(a) = oo, then X o has all gaps open for all A # 0;

(2) if 0 < B(a) < oo, then X, o has all gaps open for 0 < |A| < e~ C2B or
e B <A <eb, or|A| > €28, where C, is a large absolute constant,

(3) if B(a) = 0, then X, 4, has all gaps open if A # 0,—1, 1.

Proof. If B(a) = oo, this case has already been proved by Avila and Jitomirskaya
[4, Theorem 8.2].

If 0 < B() < oo, Avila and Jitomirskaya [4, Theorem 8.2] have proved that
X, o has all gaps open for e P < [A] < eP. Fix ¢ = C18, h = Cy¢9, Where
C, is a large absolute constant given in Theorem 3.1. Let C; be a large absolute
constant also given in the beginning of §4. If |A| < e~€28 by Theorem 5.3, for
any spectrum E satisfying Ny o (Eo) € aZ +Z,i.e., 2p(a, Ag,) € aZ + Z, there
exists a morphism B: R/Z — PSL(2, R) being analytic in | Im x| < % such that
B(x 4+ a)"1Ag,(x)B(x) is constant. Note that % > 60, since C; is large. By
Theorem 6.1, Ey is an endpoint of some gap. For |A| > ¢©2# note that Alag =
A1) o and Nj—1 4 (AT1E) = Ny o(E) (Aubry duality).

If B(«) = 0, we only need replace Theorem 5.3 with Theorem 5.4. U
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