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Connectedness locus for pairs of a�ne maps and zeros

of power series

Boris Solomyak1

Abstract. We study the connectedness locus N for the family of iterated function systems

of pairs of a�ne-linear maps in the plane (the non-self-similar case). First results on the set

N were obtained in joint work with P. Shmerkin [11]. Here we establish rigorous bounds

for the set N based on the study of power series of special form. We also derive some

bounds for the region of “�-transversality” which have applications to the computation of

Hausdor� measure of the self-a�ne attractor. We prove that a large portion of the set N

is connected and locally connected, and conjecture that the entire connectedness locus is

connected. We also prove that the set N has many zero angle “cusp corners,” at certain

points with algebraic coordinates.
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1. Introduction

Here we set the notation and discuss earlier results on the set N. �is section has

some overlap with the introductory part of [11]. Let E D E.T; b/ be the attractor

of the IFS ¹Tx; Tx C bº, i.e., the unique nonempty compact set in R
d satisfying

E D TE [ .TE C b/: (1.1)

Observe that

E.T; b/ D
° 1X

nD0

anT
n
b W an 2 ¹0; 1º

±
(1.2)

1 �e author was supported in part by NSF grants DMS-0968879 and DMS-1361424.
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since the right-hand side is well-de�ned (that is, the sums converge because T is

a contraction, and the set is compact and non-empty) and satis�es (1.1).

We can assume that all the eigenvalues of T have spectral (geometric) multi-

plicity one, and b is a cyclic vector for T , that is,H WD Span¹T k
b W k � 0º D R

d .

�ere is no loss of generality in making this assumption, since otherwise we can

replace T by the restriction of T to H and consider the corresponding IFS on H .

It is well-known (see [9]) that the set E D E.T; b/ is connected if and only if

TE\.TECb/ ¤ ;. �is easily implies the following criterion for connectedness.

Denote

B D
°
1C

1X

nD1

bnz
n W bn 2 ¹�1; 0; 1º

±
:

�e symbol D stands for the open unit disk.

Proposition 1.1 ([11]). Let T be a linear contraction with (possibly complex)

eigenvalues �j , for j D 1; : : : ; m, having algebraic multiplicities kj � 1, and

geometric multiplicities equal to one. Let b be a cyclic vector for T . �en E.T; b/

is connected if and only if there exists f 2 B such that

f .�j / D : : : D f .kj �1/.�j / D 0; j D 1; : : : ; m: (1.3)

In particular, connectedness does not depend on b.

From now on, we restrict ourselves to the case d D 2. Applying an invertible

linear transformation as a conjugacy, we can assume without loss of generality

that T is one of the following:

T D

"
a b

�b a

#
;(i)

T D

"

 0

0 �

#
;(ii)

T D

"
� 1

0 �

#
;(iii)

where �; 
; a; b are real, j�j; j
 j < 1, and a2 C b2 < 1. Note that � ¤ 
 by the

assumption that T has a cyclic vector. �e following corollary is immediate from

Proposition 1.1.
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Corollary 1.2 ([11]). Let E.T; b/ be the attractor of the IFS ¹T x; Tx C bº where

T is of the form (i), (ii), or (iii), and let b be a cyclic vector for T .

(a) In the case (i), the self-a�ne set E.T; b/ is connected if and only if there

exists f 2 B such that f .a C ib/ D 0.

(b) In the case (ii), the self-a�ne set E.T; b/ is connected if and only if there

exists f 2 B such that f .�/ D f .
/ D 0.

(c) In the case (iii), the self-a�ne set E.T; b/ is connected if and only if there

exists f 2 B such that f .�/ D f 0.�/ D 0.

Each of the cases leads to a set which we call the connectedness locus for the

corresponding family of self-a�ne sets. Let

M W D ¹z D a C ib 2 D W there exists f 2 B; f .z/ D 0º;

N W D ¹.
; �/ 2 .�1; 1/2 W there exists f 2 B; f .
/ D f .�/ D 0º;

O W D ¹� 2 .�1; 1/ W there exists f 2 B; f .�/ D f 0.�/ D 0º:

�us,M, N, andO are essentially the sets of parameters for which the attractors

in cases (i), (ii), (iii) are connected. �e only di�erence is that we allow b D 0 in

M and 
 D � in N to ensure that these sets are relatively closed in the unit disk.

�e set M has been extensively studied as the Mandelbrot set for the pair of

linear maps, see e.g. [4], [5], [1], [15], [14] and references therein.

Note that in case (i) the attractors are self-similar, which simpli�es some of

the considerations.

�is paper is devoted to the study of the set N, or rather, N \ .0; 1/2. (By

symmetry, we can assume that � > 0. However, the case of 
 < 0 does not reduce

to the case of � and 
 having the same sign and we leave it for a future study.) It

is easy to see ([11]) that

¹.�; 
/ 2 Œ0:5; 1/2 W �
 � 0:5º � N \ .0; 1/2 � Œ0:5; 1/2:

A picture of the set N is shown in Figure 1 (which also appears in [11]). It is

created by a program of Christoph Bandt, similar to the one used in [1] to draw

the set M. �e set ¹.�; 
/ 2 Œ0:5; 1/2 W �
 � 0:5º is shaded gray. �e algorithm

rigorously checks that a point is outside N and paints it “white.” �e points that

are not declared to be “white” after a certain number of iterations are declared to

be in N and painted “black.” �us the �gure should be viewed as an “outward

approximation” for N. However, this is not completely accurate; for instance, the

apparent disconnected pieces of N are a computing artifact, as we show below.



284 B. Solomyak

Figure 1. Connectedness locus for the family of self-a�ne sets.

Another remark is that the computation is very time-consuming near the diagonal,

so the picture is not accurate there.

Next we recall for completeness the results on the setN obtained in [11]. Denote

Diag.F / WD ¹.�; �/ W � 2 F º

for F � R. We see that the set N has an “antenna” �.N/, de�ned in [11] as

the connected component of Diag.Œ1
2
; 1// n Clos.N n Diag.R// containing .1

2
; 1

2
/.

In fact, we can consider the set of points on the diagonal which are limit points of

N n Diag.R/. By de�nition, this set consists of those .�; �/ for which there exist

fn 2 B with real zeros 
n < �n such that 
n ! �; �n ! �. By compactness

of B it follows that there exists f 2 B with a double zero at �, that is, � 2 O.

Conversely, a point .�; �/, where � 2 .0; 2�1=2/ is a double zero of some power

series f 2 B, is in the closure of N if f has in�nitely many coe�cients not equal

to �1, since we can then make an arbitrarily small negative perturbation of f

staying in B, which will result in a pair of real zeros close to �. (Here we use the
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fact that � is necessarily a local minimum of f . It cannot be triple zero, since

the smallest triple zero of f 2 B is at least 0:72 > 2�1=2 by [3, �eorem 2]; see

more about this in the next section.) It follows from [11] that Clos.N n Diag.R//\

Diag.R/ is disconnected, and it is conjectured to have in�nitely many connected

components. �e “tip” of the antenna, that is, .ˇ; ˇ/ 2 � such that ˇ is maximal,

is found in [11, Cor.2.10] with high accuracy: ˇ D :6684756˙ 10�7.

Another interesting question concerns the topological structure of N. By anal-

ogy with the Bandt’s conjecture from [1], we expect that N n Diag.R/ is contained

in the closure of the set of its interior points. It is not obvious even that there exist

interior points in the nontrivial part of N n Nt , where

Nt D
°
.
; �/ 2 .�1; 1/2 W j
 jj�j �

1

2

±
:

However, in [11] it was shown that a small, but explicitly given, disk around

.2�1=2; 2�1=2/ is contained in N.

2. Statement of results

�ere is another method, which does not involve much computing, to show that

certain regions are disjoint from N. It is based on the idea that it is much easier

to estimate zeros of power series with “convex” restrictions on the coe�cients

and uses so-called .�/-functions, �rst introduced in [12]. We will also need their

generalizations from [3].

De�nition 2.1. A power series

h.x/ D 1C

1X

nD1

anx
n

is called an .m�/-function if there exist integers 1 � `1 < `2 < : : : < `m < 1

such that a`k
are any real numbers for k D 1; : : : ; m, and

an D �1; 1 � n � `1 � 1;

an D .�1/k; `k�1 C 1 � n � `k � 1; k D 2; : : : ; m;

an D .�1/mC1; n � `m C 1:

Moreover, we require that h has exactly .mC1/ coe�cient sign changes. (It is clear

from the assumptions on an that the number of sign changes is at most .mC 1/,

however, it could potentially be less, if for some j we have j̀ C1 D j̀ C1; j̀ C2 D

j̀ C 2.) A .1�/-function will be called a .�/-function, and a .2�/-function will be

called a .��/-function.
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Let

NC WD N \ ¹.
; �/ 2 .0; 1/2 W 
 < �º

D ¹.
; �/ W 0 < 
 < � < 1 and there is f 2 B; f .
/ D f .�/ D 0º:

Further, consider

BŒ�1;1� WD
°
1C

1X

nD1

anz
n W an 2 Œ�1; 1�

±
� B

and

�C WD ¹.
; �/ W 0 < 
 < � < 1 and there is f 2 BŒ�1;1�; f .
/ D f .�/ D 0º:

By de�nition, NC � �C. For a power series f with bounded real coe�cients, let

�1.f / � �2.f / � : : : denote its positive zeros ordered by magnitude and counted

with multiplicity (for convenience we let �k.f / D 1 if there are fewer than k

positive zeros). In [3, �eorem 3 and Section 2] it is proved that for any k � 2,

the smallest k-th order zero ˛k of a power series in BŒ�1;1� is algebraic, and the

corresponding power series is a .k�/-function. In particular, ˛2 � :649138 is the

positive zero of 2x5 � 8x2 C 11x � 4.

Proposition 2.2. (a) �e function

� W 
 7�! min¹�2.f / W f 2 BŒ�1;1�; f .
/ D 0º

is well-de�ned on .:5; ˛2/. It is continuous, decreasing, and satis�es

lim
t!:5C

�.t/ D 1; lim
t!˛2�

�.t/ D ˛2:

(b) For every 
 2 .:5; ˛2/ we have


 < � < �.
/ H) .
; �/ 62 �C:

(c) For every 
 2 .:5; ˛2/ there exists a unique function in BŒ�1;1� which van-

ishes at 
 and �.
/. Moreover, it is a .�/-function

h
.a/

k
.x/ D 1� x � : : :� xk�1 C axk C

xkC1

1 � x
2 BŒ�1;1� (2.1)

such that

h
.a/

k
.
/ D h

.a/

k
.�.
// D 0:

Moreover,

.h
.a/

k
/0.
/ < 0 and .h

.a/

k
/0.�.
// > 0:
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�e following table contains some values of the function � (rounded-o� in

such a way that the actual values are slightly larger):


 .51 .52 .53 .54 .55 .56 .57 .58 .59

�.
/ .862 .831 .811 .79 .77 .755 .742 .728 .716


 .6 .61 .62 .63 .64

�.
/ .703 .691 .68 .67 .658

Note that the .�/-function h
.a/

k
is in B if and only if a 2 ¹�1; 0; 1º. �us, we

get a countable set of points which belong to @�C \ NC. It turns out that the set

N has “cusp corners” at these points, as we show in our �rst main theorem. �is

property distinguishes N from the set M, which has spiral points and no corners

with interior angle less than 2�=3 (conjecturally, none at all), see [16].

�eorem 2.3. Suppose that 1
2
< 
0 < �0 < 1 and .
0; �0/ is such that there

is a unique function h 2 B which vanishes at 
0 and �0, and moreover, all the

coe�cients of h are eventually C1 and h0.
0/ < 0; h
0.�0/ > 0. �en z0 D .
0; �0/

is a “tip of a corner” of the set NC, with zero interior angle. More precisely, there

exist ı > 0 and positive constants C1 and C2, such that

Bı.z0/ \ NC � ¹.
; �/ W C1.
0 � 
/˛ < � � �0 < C2.
0 � 
/˛º

where ˛ D
log �0

log 
0
. In fact, we can take

C1 D
2jh0.
0/j

˛.1 � 
0/
˛

2˛3h0.�0/
and C2 D

3˛2jh0.
0/j
˛

2˛.1� �0/h0.�0/
:

In particular, these conditions are satis�ed if h is a .�/-function, i.e.

h.x/ D 1 � x � � � � � xk�1 C axk C
xkC1

.1 � x/

for some k � 1 and a 2 ¹�1; 0; 1º.

Remarks. 1. Note that all the points described in the theorem are algebraic, since

the function h is rational over Z. �e �rst “tips of the corners” to which the theo-

rem applies, for an appropriate .�/-function, are as follows (given with 5-6 digit

accuracy):
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� .0:618034; 0:68232/, which is a pair of zeros of

1 � x � x2 � x3 C
x5

.1� x/

(incidentally, the reciprocals of this pair are the golden ratio and the 4th Pisot

number);

� .0:550607; 0:7691/, which is a pair of zeros of

1 � x � x2 � x3 � x4 C
x5

.1� x/
I

� .0:532958; 0:804916/, which is a pair of zeros of

1 � x � x2 � x3 � x4 C
x6

.1� x/
I

� .0:519703; 0:83221/, which is a pair of zeros of

1 � x � x2 � x3 � x4 � x5 C
x6

.1� x/
I

� .0:513951; 0:85068/, which is a pair of zeros of

1� x � x2 � x3 � x4 � x5 C
x7

.1 � x/
:

2. �e “cusp corners” obtained from .�/-functions are only the “most outward”

cusp corners of NC. �ere are many others visible in Figures 1 and 2, which are

probably pairs of zeros of power series h 2 Bwith all but �nitely many coe�cients

equal to 1, as in �eorem 2.3. For instance, it appears that there is a corner at

.0:645200; 0:68232/ (with the second zero again the reciprocal of the 4th Pisot

number), which is a pair of zeros of h.x/ D 1�x�x2 �x3 Cx4 Cx6 Cx8=.1�x/.

In order to prove this rigorously, one only needs to check that h is the unique

function in B with this pair of zeros, but we haven’t done this.

Our second main result is concerned with connectedness properties of the

set N. Let

eNC WD ¹.
; �/ 2 NC W there exists f 2 B; f .
/ D f .�/ D 0; �3.f / � �º :

Recall that Nt D ¹.
; �/ 2 .�1; 1/2 W j
�j � 1
2
º is the “trivial” part of N.
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Figure 2. �e setNC\Œ0:647; 0:661��Œ0:677; 0:691�, with several prominent “cusp corners”.

�eorem 2.4. �e set NC n .eNC [ Nt / is locally connected. Moreover, there is

no connected component of NC that is disjoint from eNC [ Nt .

We were not able to prove the connectedness of the entire set N, but conjecture

that this is the case. �e next proposition shows that the last theorem is non-

vacuous, in fact, NC n .eNC [Nt / contains a substantial portion of the set NC nNt .

In particular, the set N is connected near the “cusp corners” from �eorem 2.3.

Let

z�C WD
®
.
; �/ 2 �C W there exists f 2 BŒ�1;1�; f .
/ D f .�/ D 0; �3.f / � �

¯
:

Clearly, eNC � z�C. Recall that ˛3 denotes the smallest triple zero of a power

series in BŒ�1;1�; in [3, Section 2] it is shown that ˛3 � :727883 is a zero of a

polynomial with integer coe�cients of degree 12.
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Proposition 2.5. (a) �e function

 W 
 7�! min¹�3.f / W f 2 BŒ�1;1�; f .
/ D 0º

is well-de�ned on .:5; ˛3/. It is continuous, decreasing, and satis�es

lim
t!:5C

 .t/ D 1; lim
t!˛3�

 .t/ D ˛3:

(b) For every 
 2 .:5; ˛3/ we have


 < � <  .
/ H) .
; �/ 62 z�C:

(c) For every 
 2 .:5; ˛3/ there exists a unique .��/-function

H
.a;b/

k;`
.x/ D 1�

k�1X

iD1

xi C axk C

`�1X

iDkC1

xi C bx` �
x`C1

1� x
2 BŒ�1;1� (2.2)

such that

H
.a;b/

k;`
.
/ D H

.a;b/

k;`
. .
// D .H

.a;b/

k;`
/0. .
// D 0:

�e following table contains some values of the function  (rounded-o� in

such a way that the actual values of  are slightly larger):


 .53 .55 .57 .59 .61 .63

 .
/ .877 .85 .832 .815 .799 .785


 .65 .67 .69 .71 .7278

 .
/ .771 .759 .747 .736 .7278

Propositions 2.2 and 2.5 are illustrated in Figure 3, which shows the region

obtained from the tables. For .
; �/ in the region below the lower broken line,

the corresponding self-a�ne set is totally disconnected. �eorem 2.4 implies that

the part of NC between the broken lines and outside Nt is locally connected and

there are no components of N entirely contained between the broken lines and the

diagonal. We also show several points which are known to belong to NC (these

are some of the “cusp corners” from �eorem 2.3).

Another application of the bounds on the set eNC comes from the paper by

P. Shmerkin [10]. Following [10, De�nition 4.10], we say that R is a region of

�-transversality if for all .
; �/ 2 R there is f 2 B such that f .
/ D f .�/ D 0

but f 0.
/ ¤ 0; f 0.�/ ¤ 0. It is clear NC n eNC is a region of �-transversality. It

is proved in [10] that for Lebesgue-a.e. .�; 
/ with 
� < 1=2 < 
 the self-a�ne

attractorK
;� has Hausdor� dimension 1C log.2�/= log.1=
/, and if R is a region

of �-transversality contained in ¹.
; �/ W 
� < 1=2º, thenK
;� has zero Hausdor�

measure in its dimension for Lebesgue-a.e. .
; �/ 2 R.
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3. Proofs

Proof of Proposition 2.2. Consider the family of .�/-functions h
.a/

k
with k � 1

and a 2 Œ�1; 1�, given by (2.1), and equip it with a total order as follows:

h
.u/

k
> h

.v/

`
if k < ` or k D `; u > v:

Obviously,

h
.u/

k
> h

.v/

`
H) h

.u/

k
.x/ > h

.v/

`
.x/ for all x 2 .0; 1/:

�e set BŒ�1;1� is a normal family of analytic functions in the unit disk; therefore,

it is compact in the uniform topology on any compact subset of .0; 1/. We can

also identify BŒ�1;1� with the in�nite product Œ�1; 1�1 equipped with the product
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topology. Observe that u 7! h
.u/

k
is a continuous function from Œ�1; 1� to BŒ�1;1�

for all k � 1. It is strictly decreasing in the order de�ned above, and moreover,

h
.�1/

k
D h

.1/

kC1
for all k � 1:

By [12, Section 3] and [3, Section 2], there is a .�/-function h
.b/
4 having a double

zero at ˛2, with b � :0875294.

It is easy to see that every h
.u/

k
< h

.b/
4 has exactly two distinct positive zeros.

Indeed, since h
.u/

k
.0/ D 1, limx!1� h

.u/

k
.x/ D C1, and h

.u/

k
.˛2/ < h

.b/
4 .˛2/ D 0,

h
.u/

k
has at least two positive zeros. On the other hand, the derivative .h

.u/

k
/0.x/

has only one coe�cient sign change, so it has at most one positive zero by the

Descartes Rule of Signs, hence h
.u/

k
has at most two positive zeros. Clearly, the

zeros (when they exist) continuously depend on u.

Claim 1. For every 
 2 .0:5; ˛2/ there exists a .�/-function h
.u/

k
such that

h
.u/

k
.
/ D 0:

Indeed, h
.b/
4 .
/ > 0, and for k su�ciently large we have h

.1/

k
.
/ < 0, since

limk!1 h
.1/

k
.
/ D 1 � 
 � 
2 � : : : D 1�2


1�

. By continuity, there exist k and u

such that h
.u/

k
.
/ D 0, and of course, h

.u/

k
< h

.b/
4 . Since h

.u/

k
.˛2/ < 0, there is

another zero � > ˛2 > 
 . �e claim is proved.

Claim 2. We have

�.
/ D �;

and h
.u/

k
is the unique function in BŒ�1;1� with zeros at 
 and �.

Indeed, suppose f 2 BŒ�1;1� is such that f .
/ D 0 and f 6� h
.u/

k
. Consider

g.x/ D f .x/ � h
.u/

k
.x/. �en g.x/ is a power series with at most one coe�cient

sign change and g.
/ D 0. It follows that 
 is the only positive zero of g. �e �rst

nonzero coe�cient of g is positive, so it is positive for small positive x. It follows

that g.x/ < 0 for all x > 
 , hence f .x/ D g.x/ C h
.u/

k
.x/ < 0 for all x 2 .
; ��.

So, for all f 6� h
.u/

k
2 BŒ�1;1�, �2.f / > �, and the claim is proved.

�e claims show that the function � is well-de�ned on .1
2
; ˛2/. �e remain-

ing statements of part (a) are now easy to derive. In fact, one can obtain sharp

asymptotics for �.t/ as t ! 1
2
C and t ! 1�, but we do not pursue this.

(b) �is statement is immediate from the de�nition of �.
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(c) �e formula for the “optimal” function and its uniqueness are already

proved. �e statement about the derivative of h
.a/

k
is also clear: as already men-

tioned, .h
.a/

k
/0 has only one sign change and its zero (which the minimum of h

.a/

k
)

must lie in .
; �.
//.

�e table of � values is obtained from Claims 1 and 2 above. See the appendix

for details.

Proof of �eorem 2.3. Suppose that zn D .
n; �n/ 2 NC are such that

zn 7�! z0 D .
0; �0/:

Consider functions (maybe non-unique) hn 2 B such that

hn.
n/ D hn.�n/ D 0:

Since B is compact, there is a subsequence of hn converging to some Qh 2 B, with
Qh.
0/ D Qh.�0/ D 0. By the assumption of uniqueness of such a function, we have
Qh D h. Since convergence in B is coe�cientwise, it follows that for any N 2 N

there is n0 2 N such that hn agrees with h in the �rst N terms for all n � n0.

�is already implies that z0 is a “corner” with interior angle at most �=2.

Indeed, if hn agrees with h in the �rstN � N0 terms, whereN0 �1 is the last term

of h with a coe�cient di�erent from C1, then h� hn has only non-negative coef-

�cients and hence hn.x/ < h.x/ for all x 2 .0; 1/. Since h.x/ � 0 for x 2 Œ
0; �0�

we obtain that the zeros of hn must satisfy 
n < 
0; �n > �0. For the more

delicate estimate we need the following lemma:

Lemma 3.1. Suppose that 1
2
< 
0 < �0 < 1 are such that 
0 and �0 are zeros

of h 2 B, as in the statement of �eorem 2.3, and let f .x/ D h.x/ � xNR.x/,

where R is a power series with coe�cients 0; 1. �en for N su�ciently large,

f has zeros Q
 and Q� satisfying

2
0
NR.
0/

3jh0.
0/j
� 
0 � Q
 �

2
0
NR.
0/

jh0.
0/j
;

and

2�0
NR.�0/

3h0.�0/
� Q� � �0 �

2�0
NR.�0/

h0.�0/
:

Recall that h0.
0/ < 0 and h0.�0/ > 0 by assumption.
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First we deduce the theorem, assuming the lemma. �e argument at the be-

ginning of the proof shows that for any N 2 N there exists ı > 0 such that for

all z D .
; �/ 2 NC \ Bı.z0/ (where z0 D .
0; �0/), if f 2 B is such that

f .
/ D f .�/ D 0, then f agrees with h in the �rst N coe�cients. (Note that

z 2 NC implies there does indeed exist f 2 B such that f .
/ D f .�/ D 0.) Let

N0 2 N be such that h has only coe�cients equal to C1 starting from N0. Let

ı > 0 be so small that N � N0. �en f .z/ D h.z/ � zNR.z/ for some power

series R with coe�cients 0; 1 and we obtain from Lemma 3.1:

2
0
NR.
0/

3jh0.
0/j
� 
0 � 
 �

2
0
NR.
0/

jh0.
0/j
;

and

2�0
NR.�0/

3h0.�0/
� � � �0 �

2�0
NR.�0/

h0.�0/
:

Let

˛ D
log�0

log 
0

:

Note that 
0
˛ D �0, so

�
2

3

�˛
�0

NR.
0/
˛

jh0.
0/j˛
� .
0 � Q
/˛ �

2˛�0
NR.
0/

˛

jh0.
0/j˛
:

�us we have that

2R.�0/jh
0.
0/j

˛

2˛3R.
0/˛h0.�0/
�

Q� � �0

.
0 � Q
/˛
�
3˛2R.�0/jh

0.
0/j
˛

2˛R.
0/˛h0.�0/
:

Now,

1 � R.
0/ �
1

1 � 
0

and

1 � R.�0/ �
1

1 � �0

;

whence

2jh0.
0/j
˛.1� 
0/

˛

2˛3h0.�0/
�

Q� � �0

.
0 � Q
/˛
�

3˛2jh0.
0/j
˛

2˛.1 � �0/h0.�0/
;

as desired. �e claim that the conditions on h are satis�ed wheneverh is a .�/-func-

tion is immediate from de�nitions and Proposition 2.2.
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Proof of Lemma 3.1. �is is standard, but we provide the argument for complete-

ness. We will only prove the estimate for Q�, since the one for Q
 is obtained in

exactly the same way. We will need an easy inequality:

jg00.x/j � 2.1� x/�3 for all g 2 B and x 2 .0; 1/: (3.1)

Recall that h.�0/ D 0 and h0.�0/ > 0, so h.x/ > 0 to the right of �0. �us,

it is clear that for largeN there will be a zero of f .x/ D h.x/�xNR.x/ in a small

neighborhood .�0; �0 C t �. Since the claim is local, we can assume that �0 C t �

1 � ı < 1 for some ı > 0 (independent of N , e.g. we can take ı D .1� �0/=2).

We have

f .�0 C t / D h.�0 C t / � .�0 C t /NR.�0 C t /:

Recall that f .�0/ < 0, and we want to make sure that f .�0 C t / � 0. By Taylor’s

formula,

h.�0 C t / � h0.�0/t �
C2t

2

2
;

where, in view of (3.1),

C2 WD 2.1� ı/�3 � max¹jh00.x/j W x 2 Œ�0; �0 C t �º:

We can assume that N is large enough, so that

t WD
4ı�1�N

0

h0.�0/
<
4h0.�0/

C2

:

�en

h0.�0/t �
1

2
C2t

2 >
1

2
h0.�0/t:

We claim that
1

2
h0.�0/t � .�0 C t /NR.�0 C t /

for N su�ciently large. By the de�nition of t ,

.�0 C t /NR.�0 C t / �

�
�0 C

4ı�1�N
0

h0.�0/

�N

R.1� ı/

� �N
0

�
1C

4ı�1�N �1
0

h0.�0/

�N

ı�1:
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Since

lim
N !1

.1C 4ı�1�N �1
0 =h0.�0//

N D 1;

we conclude that

.�0 C t /NR.�0 C t / � 2ı�1�N
0 D

1

2
h0.�0/t

for N su�ciently large, as desired. �us we have shown that f has a zero
Q� 2 .�0; �0 C t �, where t D 4ı�1�N

0 =h
0.�0/ and N is large enough.

By the Mean Value �eorem, there exists c 2 .�0; Q�/ such that

�N
0 R.�0/ D f . Q�/ � f .�0/ D . Q� � �0/f

0.c/;

so that

Q� � � D
�N

0 R.�0/

f 0.c/
: (3.2)

In view of (3.1),

jf 0.c/ � f 0.�0/j � jc � �0j � 2ı�3 < t � 2ı�3 D
8ı�4�N

0

h0.�0/
:

�us we can choose N su�ciently large, so that

jf 0.c/ � f 0.�0/j <
1

4
h0.�0/:

Next,

jf 0.�0/ � h0.�0/j D j�N
0 R

0.�0/CN�N �1
0 R.�0/j � �N

0 ı
�2 CN�N �1

0 ı�1;

which is also less than 1
4
h0.�0/ for N su�ciently large. �en

jf 0.c/ � h0.�0/j <
1

2
h0.�0/;

whence f 0.c/ 2
�

1
2
h0.�0/;

3
2
h0.�0/

�
, and so we have from (3.2):

2�0
NR.�0/

3h0.�0/
�
�0

NR.�0/

f 0.c/
D Q� � �0 �

2�0
NR.�0/

h0.�0/
;

as desired.



Connectedness locus for pairs of a�ne maps 297

Proof of �eorem 2.4. �is proof is a modi�cation of the argument by Bandt [1,

Section 11], which is, in turn, based on [5]. Let

� WD
®
.
; �/ 2 .0; 1/2 W 
 < �; 
� < 1=2

¯

and consider the quotient space

X WD Clos.� n eNC/=@.� n eNC/ (3.3)

with induced topology. Denote by ! the point corresponding to the contracted

boundary.

Recall that B is the set of all power series of the form

f .x/ D 1C

1X

nD1

anx
n;

with an 2 ¹�1; 0; 1º. We can identify B with the space ¹�1; 0; 1ºN equipped with

the product topology. Observe that this topology coincides with the topology of

uniform convergence on compact subsets of the unit disk.

Claim 1. eNC is relatively closed in �.

Indeed, let .
n; �n/ ! .
; �/ 2 � and .
n; �n/ 2 eNC. �en there exist fn 2 B

with fn.
n/ D fn.�n/ D 0 and �3.fn/ � �n. �is means that there exist ˛n � �n

such that fn.˛n/ D 0 (if ˛n is equal to 
n or �n this is understood as having the

corresponding zero of multiplicity 2). By compactness, without loss of generality,

we can assume that fn ! f 2 B and ˛n ! ˛. �en f .
/ D f .�/ D f .˛/ D 0

and ˛ � � (again using our convention concerning double zeros). �us .
; �/ 2
eNC, and Claim 1 is proved.

We will also need the following fact (see [3, �eorem 2] and [10, �. 2.4]): if

f 2 B and ˛1; : : : ; ˛k are (some) complex roots of f in the unit disk, counted

with multiplicity, then j˛1 � � �˛kj � .1C k�1/�k=2.k C 1/�1=2: Taking k D 4, we

obtain

j˛1˛2˛3˛4j � 16 � 5�5=2 > 1=4: (3.4)

Let � W B ! X be the function de�ned as follows: If f 2 B is such that


 D �1.f / < �2.f / D � and .
; �/ 2 � n eNC, then �.f / WD .
; �/; otherwise,

�.f / WD !.
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Claim 2. � W B ! X is continuous.

Indeed, if �.f / D .
; �/, then f has simple zeros at 
 and �, hence a small

perturbation of f will result in a small perturbation of these zeros. Suppose that

�.f / D !. We need to show that if Qf is a small perturbation of f , then �. Qf / is

close to !. We have the following possibilities:

(a) f has no positive zeros;

(b) f has one simple positive zero;

(c) �1.f / < �2.f / < �3.f / but .�1.f /; �2.f // 2 eNC;

(d) �1.f / D �2.f / < �3.f /;

(e) �1.f / < �2.f / D �3.f /;

(f) �1.f / D �2.f / D �3.f /, that is, f has a triple zero.

It is not hard to see that for any " > 0 there exists ı > 0 such that if the

distance from Qf to f in B is less than ı, then every zero of Qf in .0; 1 � 2"/ is

"-close to a zero of f . Another general fact is useful: for a small perturbation of

a real-analytic function, new real zeros cannot appear; zeros can only disappear

(i.e. become non-real).

In cases (a) and (b), either Qf has the same property, hence �. Qf / D !, or new

zeros appear near 1, which could result in �. Qf / D .
; �/with � near 1, that is, .
; �/

is close to ! in the topology of X. In the case (c), a small perturbation Qf will have

�. Qf / D ! or �. Qf / D .�1. Qf /; �2. Qf //, which is close to .�1.f /; �2.f // 2 eNC,

hence close to ! in the topology of X. Suppose that case (d) holds. If the double

zero at �1.f / D �2.f / doesn’t disappear, then we either still have a double zero for
Qf , or two real zeros close to each other. In the former case we have �. Qf / D !, and

in the latter case �. Qf / D .�1. Qf /; �2. Qf // is close to the diagonal, that is, close to !

in the topology of X. If, on the other hand, the double zero disappears (becomes

non-real) and �. Qf / ¤ !, then �. Qf / D .�1. Qf /; �2. Qf //, which is close to .
; �/

where 
 � � are zeros of f and �1.f / D �2.f / < 
 . However, in the latter case

we have 
� > 1=2 by (3.4), hence .
; �/ 62 � and so .�1. Qf /; �2. Qf // is still close to

!. If (e) or (f) holds, we have a similar argument: assuming �. Qf / D . Q
; Q�/ ¤ !,

this point is either close to one in eN, or close to the diagonal, or close to @�, in

view of (3.4). �is concludes the proof of Claim 2.

Now we essentially repeat the argument from [5]. For a �nite word u D

u1 : : : un in the alphabet ¹�1; 0; 1º let

Bu D
°
1C u1x C : : :C unx

n C

1X

kDnC1

bkx
k 2 B

±
:
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Denote by u; ˛ the word of length n C 1 obtained by adding the symbol ˛ to u.

Let

f D 1C u1x C : : :C unx
n 2 Bu;0:

We have f .1 � xnC1/�1 2 Bu;1; f .1 � xnC1/�1 2 Bu;�1. Observe that these

three functions have the same set of zeros in .0; 1/, hence they are mapped into

the same point by �. It follows that

�.Bu;�1/ \ �.Bu;0/ \ �.Bu;1/ ¤ ;

for an arbitrary u. �is property is called recursive connectedness in [5]. It is

proved in [5] (and quite easy to see) that this property implies that �.B/ is con-

nected and locally connected in X. Note that

�.B/ D �.� \ NC n eNC/ [ ¹!º

where

� W Clos.� \ NC n eNC/ �! X

is the natural projection associated with the quotient map. (We know that ! 2

�.B/ since, for instance, there are power series in B with no positive zeros.) �is

immediately implies the statement of the theorem.

Proof of Proposition 2.5. By [11, Cor. 2.5.], for any 
 > 1
2

there exists f 2 B �

BŒ�1;1� such that f .
/ D 0 and f has at least three zeros in .0; 1/ (for example, we

may take the zeros of f to be 
 with multiplicity one, and
q

1
2


with multiplicity

two). �us the set in the de�nition of the function  is non-empty; it has a min-

imum by compactness of the class BŒ�1;1�. �e statement (b) is immediate from

the de�nitions. �e remaining statements of (a) will easily follow from part (c).

Its proof is divided into several lemmas.

Lemma 3.2. Suppose that h is a .��/-function such that h0.x0/ D 0 and

h.t/ > 0; h0.t / < 0 for all t 2 .0; x0/. �en there is no f 2 BŒ�1;1� such that

�3.f / D x0, unless h D f , and x0 is a triple zero of f D h.

Proof. Suppose that f 2 BŒ�1;1� violates the assertion of the lemma. Let

g.x/ D f .x/ � h.x/:
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By the de�nition of a .��/-function, we have

g.x/ D A1.x/ � A2.x/C A3.x/;

where A1.x/ and A2.x/ are polynomials and A3.x/ is a power series, all three

with non-negative coe�cients, such that the highest power in Ai is less than the

lowest power in AiC1. �us, g and g0 have at most two coe�cient sign changes

each.

Since x0 is the third zero of f and f .0/ D 1, we have f 0.x0/ � 0. (Indeed,

otherwise f is negative in a left neighborhood of x0, but on an interval where

a real-analytic function changes its sign it must have an odd number of zeros,

counting with multiplicities.) �us, g0.x0/ D f 0.x0/ � h0.x0/ D f 0.x0/ � 0.

Observe that there must be a zero �1 of f 0 between the �rst and second zeros of f

(if these two zeros of f coincide, that is, it is a double zero, which is equal to �1).

We have f .�1/ � 0, hence g.�1/ D f .�1/� h.�1/ < 0, and g0.�1/ D �h0.�1/ > 0.

By the Descartes Rule of Signs, g0 can have at most two positive zeros. �ere has

to be a zero of g0 in .�1; x0/. �ere also have to be another zero of g0 in .0; �1/,

since g.0/ D 0, g.�1/ < 0, and g0.�1/ > 0. �us, g0 has exactly two coe�cient

sign changes, hence A1.x/ 6� 0. But then g increases su�ciently close to zero,

whence g0 must have at least two zeros in .0; �1/. �is is a contradiction.

Lemma 3.3. ˛3 D min¹�3.f / W f 2 BŒ�1;1�º.

Proof. Suppose there exists f 2 BŒ�1;1� such that

� WD �3.f / < ˛3:

It is proved in [3, Section 2] that there is a .��/-function H D H
.u;v/

k;`
such that

H.˛3/ D H 0.˛3/ D H 00.˛3/ D 0:

(In fact, k D 4 and ` D 10.) Consider the function

h.x/ D H.x/C sx`; with s D �
H 0.�/

`�`�1
:

�is is a .��/-function, though not necessarily in BŒ�1;1�, since the x`-coe�cient

may exceed 1 in absolute value. We have H.x/ > 0; H 0.x/ < 0 for x 2 .0; ˛3/,

hence h.x/ > 0 for all x 2 .0; �/ and h0.�/ D 0 by de�nition. We claim that

h0.x/ < 0 for all x 2 .0; �/. Indeed, h0 has two coe�cient sign changes, hence

at most two positive zeros. We know that h0 is negative near zero, h0.�/ D 0,

h0.˛3/ D s`˛`�1
3 > 0, and h0 is negative su�ciently close to 1. It follows that h0



Connectedness locus for pairs of a�ne maps 301

has a zero in .˛3; 1/, so it does not vanish in .0; �/, implying the claim. �us, h

is a .��/-function satisfying the assumptions of Lemma 3.2 for x0 D �, so the

existence of f is a contradiction.

Lemma 3.3 implies that  .
/ � ˛3 > 
 for 
 2
�

1
2
; ˛3

�
. Fix 
 2

�
1
2
; ˛3

�
. Re-

call that  .
/ is well-de�ned, which means that there exists a function

f 2 BŒ�1;1� such that  .
/ D �3.f /. Such a function will be called “optimal”

(for a given 
).

Lemma 3.4. An optimal function f for 
 2
�

1
2
; ˛3

�
has a double zero at � D

�3.f /, that is,

f .�/ D f 0.�/ D 0:

Proof. Suppose f 0.�/ ¤ 0. Since f .0/ D 1 and � is the third positive zero

of a real analytic function, f is strictly decreasing in a neighborhood of �. By

Descartes Rule of Signs, f has at least three coe�cient sign changes. �erefore,

we can �nd integers 0 < `1 < `2 < `3 such that a`1
< 0; a`2

> 0; and a`3
< 0,

where a`i
is the coe�cient of x`i in f . Consider

Qf .x/ WD f .x/C ".
`2�`1x`1 � x`2/:

�en Qf 2 BŒ�1;1� for su�ciently small " > 0. Moreover, Qf .
/ D f .
/ D 0 and
Qf .x/ < f .x/ for x 2 .
; 1/. �us, for su�ciently small " > 0, the function Qf

has a zero close to � which is less than �. We claim that this zero is �3. Qf /, which

contradicts � D  .
/. Indeed, if the �rst two positive zeros of f are distinct (and

they are smaller than �), this property will persist for Qf . If 
 is a double zero,

then Qf has a second zero 
 0 close to 
 . �is proves the claim, and the lemma

follows.

Lemma 3.5. �e optimal function f for 
 2
�

1
2
; ˛3

�
is unique; it is a .��/-function

h
.a;b/

k;`
for some 1 � k < ` < 1 and a; b 2 Œ�1; 1�.

Proof. Let f .x/ D 1 C
P

1

nD1 anx
n be optimal, and suppose that it is not a

.��/-function (see (2.2)). Let `1 � 1 be minimal such that a`1
> �1. �en

choose `2 > `1 minimal such that a`2
< 1 (note that `2 exists since f must have

at least three coe�cient sign changes). If f is not a .��/-function, then we can

�nd `3 > `2 such that a`3
> �1. Let c2; c3 2 R be such that

g.x/ WD �x`1 C c2x
`2 C c3x

`3

satis�es g.
/ D g.�/ D 0. (�is is a linear system of equations with determinant


`2�`3 �
`3�`2 ¤ 0, so there is a unique solution.) Notice that c2 > 0 and c3 < 0,
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since there must be two coe�cient sign changes in g. Clearly, � is a simple zero

for g, and it is a double zero for f by Lemma 3.4. �us, there exist b1; b2 > 0

such that

jf .x/j � b1jx � �j2; jg.x/j � b2jx � �j

for x near �. Consider
Qf .x/ WD f .x/C "g.x/:

�en Qf 2 BŒ�1;1� for su�ciently small " > 0. Observe that Qf .
/ D Qf .�/ D 0

by construction. Recall that f .0/ D 1; f .
/ D 0, and f .�/ D f 0.�/ D 0, hence

minŒ
;�� f < 0. We can make sure that " > 0 is so small that minŒ
;��
Qf < 0. On

the other hand,

Qf
�
� � "

n

�
D f

�
� � "

n

�
C "g

�
� � "

n

�
� �b1

�
"
n

�2
C "b2

�
"
n

�
> 0

provided that n > b1=b2. �en Qf has a zero in .
; �/which implies that �3. Qf / � �.

Since � D  .
/, we have �3. Qf / D �, so Qf is optimal for 
 (as well as f ). �is

contradicts Lemma 3.5 since � is not a double zero of Qf . It remains to verify

that the optimal function is unique. Assuming that we have two distinct optimal

functions, we take their di�erence, which has at most two coe�cient sign changes,

since both are .��/-functions. �is leads to a contradiction since the di�erence

has at least three positive zeros.

�is concludes the proof of the lemma and of the claim (c) in Proposition 2.5.

�e remaining statements of the proposition follow easily.

4. Appendix: how to compute the functions � and  

We �rst explain how the function � was computed, using Mathematica. Consider

the .�/-function

h.x/ D 1� x � � � � � xk�1 C axk C
xkC1

1� x
;

where a 2 Œ�1; 1�. First, we �x k. �e algorithm takes 
 as an input. �en,

a D F.
/ is determined so that h.
/ D 0. We must check that �1 � a � 1, so

that h is indeed a member of BŒ�1;1�. Next, we �nd the second root of h using

the FindRoot command with an appropriate starting point. We choose the starting

point to guarantee that we �nd � rather than 
 (FindRoot uses Newton’s method to

�nd the root of a function. It will �nd the root closest to the starting point. Recall

the shape of the .�/-function h. We must choose a starting point to the right of

the minimum of h to guarantee that Mathematica �nds � rather than 
 . We know
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our choice of starting point works as long as the output of FindRoot is not equal

to our input 
).

Now, as was seen in [12, 3], there is a .�/-function h
.b/
4 having a double zero

at ˛2. �erefore we begin by �xing k D 4. Consider the .�/-function

h1.x/ D 1 � x � x2 � x3 � F.
/x4 C
x5

1 � x
:

We solve for F.
/ to ensure that h1.
/ D 0 and obtain

F.
/ D
1 � 2
 C 
4 C 
5


4 � 
5
:

We �nd that 0.8 works as a starting point for FindRoot. Using NSolve, we �nd

that jaj D jF.
/j � 1 for 
 2 .0:550607; 0:7691/, approximately. However, recall

that

� W .0:5; ˛2/ �! .0; 1/:

�us we are only interested in looking at 
 2 .0:550607; ˛2 D 0:649138/. Figure 4

shows a plot of �.
/ for 
 2 .0:550607; 0:649138/.

Figure 4. �.
/ from h1.

Now, note that when 
 D 0:550607, F.
/ � 1. �us at 
 D 0:550607, the

coe�cient of x4 is �1. �us this is a “switching point,” that is, at this point, h1

switches to a .�/-function with k D 5. �is is one of the points we are interested

in, because it will be in the set N.
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Next we consider the .�/-function

h2.x/ D 1� x � x2 � x3 � x4 �G.
/x5 C
x6

1� x
;

so that k D 5. We solve for G.
/ so that 
 is indeed a root of h2.x/, and �nd

G.
/ D
1 � 2
 C 
5 C 
6


5 � 
6
:

We again check the range for which jG.
/j � 1, and �nd that the inequality holds

for 
 2 .0:519703; 0:832218/.

Figure 5. �.
/ from h2.

Figure 5 shows a plot of �.
/ for 
 2 .0:519703; 0:550607/. Note that

G.0:529703/ � 1, so that at 
 D 0:529703 h2 becomes a .�/-function with k D 6.

�us we continue similarly by setting k D 6. Let

h3.x/ D 1� x � x2 � x3 � x4 � x5 �K.
/x6 C
x7

1� x
;

and solve for K.
/ so that h3.
/ D 0 to obtain

K.
/ D
1 � 2
 C 
6 C 
7


6 � 
7
:

Using NSolve, we �nd that jK.
/j � 1 for 
 2 .0:508831; 0:866368/. We may

continue in this manner in order to obtain �.
/ for 
 ! 0:5. Note, however, that

the process does not terminate.
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Now we explain how the function  may be computed. Recall that

 W .0:5; ˛3/ �! Œ0; 1�;

where ˛3 � 0:727883. Consider the .��/-function

Hk;`.x/ D 1 �

k�1X

iD1

xi C axk C

`�1X

iDkC1

xi C bx` �
x`C1

1 � x
;

where a; b 2 Œ�1; 1�. Recall that we would like to �nd Hk;`.x/ such that

Hk;`.
/ D Hk;`.�/ D H 0

k;`.�/ D 0:

Since we have two unknowns a and b, for this algorithm we will start with � and

obtain a D Fa.�/ and b D Fb.�/ such that Hk;`.�/ D H 0

k;`
.�/ D 0, and use

FindRoot to �nd 
 such that Hk;`.
/ D 0. In [3] it was proved that there is a

.��/-function H=H4;10 such that

H.˛3/ D H 0.˛3/ D H 00.˛3/ D 0:

�us we begin by considering the function

F.x/ D 1� x � x2 � x3 C x5 C x6 C x7 C x8 C x9 �
x11

1 � x
:

�en we let

H1.x/ D F.x/C Fa.�/x
4 C Fb.�/x

10:

Note that

F 0.x/ D �1� 2x � 3x2 C 5x4 C 6x5 C 7x6 C 8x7 C 9x8 �
11x10

1� x
�

x11

.1 � x/2
:

We solve the system of equations

H1.�/ D F.�/C Fa.�/�
4 C Fb.�/�

10 D 0

H 0

1.�/ D F 0.�/C 4Fa.�/�
3 C 10Fb.�/�

9 D 0

for Fa.�/ and Fb.�/ and �nd that

Fa.�/ D
�F 0.�/ � 10F.�/

6�4

and

Fb.�/ D
4F.�/ � �F 0.�/

6�10
:
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In this case, we need to have both jFa.�/j � 1 and jFb.�/j � 1. We �nd that

jFa.�/j � 1 for � 2 .0:606471; 0:83611/,

(note that Fa.0:606471/ D Fa.0:83611/ D �1) and

jFb.�/j � 1 for � 2 .0:692945; ˛3/

(where Fb.0:692945/ D �1). So, the �rst coe�cient that “switches” is at k D 10,

when Fb.�/ D �1. Next we use FindRoot to �nd 
 . So this algorithm takes � as

an input and outputs 
 , so this is e�ectively  �1.

Next, we use our “switching point.” We let

F1.x/ D F.x/C x10 C x11

and

G1.x/ D F1.x/C Fa1
.�/x4 C Fb1

.�/x11

and solve for Fa1
.�/ and Fb1

.�/ so that

G1.�/ D G0

1.�/ D 0:

We �nd that

Fa1
.�/ D

�F 0

1.�/ � 11F1.�/

7�4

and

Fb1
.�/ D

��F 0

1.�/C 4F1.�/

7�11
:

Again we check for which � we have jFa1
.�/j � 1 and jFb1

.�/j � 1 and continue

in this way.

Update (April 2015). After the paper was submitted, we became aware of [6],

where it is shown that for all 1 < ��1 < 
�1 < 1:05 the self-a�ne attractor K
;�

contains .0; 0/ in its interior. �is was improved by K. Hare and N. Sidorov [7],

who demonstrated the same under the bounds 1 < ��1 < 
�1 < 1:202 and

obtained other interesting results on the family K
;� and the connectedness locus

N. In particular, they proved that N is not simply connected. �eir research of

these sets was continued in [8].
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