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Abstract. We give a su�cient condition for the Fourier dimension of a countable union of

sets to equal the supremum of the Fourier dimensions of the sets in the union, and show by

example that the Fourier dimension is not countably stable in general. A natural approach

to �nite stability of the Fourier dimension for sets would be to try to prove that the Fourier

dimension for measures is �nitely stable, but we give an example showing that it is not

in general. We also describe some situations where the Fourier dimension for measures

is stable or is stable for all but one value of some parameter. Finally we propose a way

of modifying the de�nition of the Fourier dimension so that it becomes countably stable,

and show that for each s there is a class of sets such that a measure has modi�ed Fourier

dimension greater than or equal to s if and only if it annihilates all sets in the class.
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1. Introduction

Let A be a Borel subset of Rd . One way to prove a lower bound for the Hausdor�

dimension of A is to consider integrals of the form

Is.�/ D
“

jx � yj�s d� .x/ d� .y/I

if � is a Borel measure such that �.A/ > 0 and Is.�/ < 1 for some s, then

dimH A � s. For a �nite Borel measure �, the Fourier transform is de�ned as

O�.�/ D
Z

e�2�i� �x d� .x/;
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where � 2 Rd and � denotes the Euclidean inner product. It can be shown [13,

Lemma 12.12] that if � has compact support then

Is.�/ D const..d; s/

Z

j O�.�/j2j�js�d d�

for 0 < s < d , and thus Is0
.�/ is �nite if O�.�/ . j�j�s=2 for some s > s0 (here

and in the remainder, f .�/ . g.�/ means that there exists a constant C such that

jf .�/j � C jg.�/j for all �). �is motivates de�ning the Fourier dimension of A as

dimF A D sup¹s 2 Œ0; d �I O�.�/ . j�j�s=2; � 2 P.A/º;

where P.A/ denotes the set of Borel probability measures on Rd that give full

measure to A (it would not make any di�erence if the supremum was taken only

over such measures with compact support, for if O�.�/ . j�j�s=2 then there is

a compactly supported probability measure � that is absolutely continuous with

respect to � and satis�es O�.�/ . j�j�s=2 by Lemma 1 below). �us the Fourier

dimension is a lower bound for the Hausdor� dimension. �e Fourier dimension

of a �nite Borel measure � on Rd is de�ned as

dimF � D sup¹s 2 Œ0; d �I O�.�/ . j�j�s=2º;

or equivalently

dimF � D min

�

d; lim inf
j�j!1

�2 log j O�.�/j
log j�j

�

;

so that

dimF A D sup ¹dimF �I � 2 P.A/º :

If A � B then P.A/ � P.B/ and hence

dimF.A/ D sup¹dimF �I � 2 P.A/º � sup¹dimF �I � 2 P.B/º D dimF.B/;

showing that the Fourier dimension is monotone. It seems not to be previously

known whether the Fourier dimension is stable under �nite or countable unions,

that is, whether

dimF

�

[

k

Ak

�

D sup
k

dimF Ak; (1)

where ¹Akº is a �nite or countable family of sets. �e inequality � follows from

the monotonicity, but there might be sets for which the inequality is strict.

In Section 2 we show that (1) holds if for each n the intersection An \
S

k¤n Ak

has small “modi�ed Fourier dimension” (de�ned below), and in particular if all
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such intersections are countable. We also give an example of a countably in�nite

family of sets such that (1) does not hold.

�is still leaves open the question of �nite stability. �e most straightforward

approach would be to prove a corresponding stability for the Fourier dimension

of measures, namely that

dimF.� C �/ D min.dimF �; dimF �/: (2)

From this one could derive the �nite stability for sets, using that any probability

measure on A [ B is a convex combination of probability measures on A and B .

�e inequality � always holds in (2) since the set of functions that are . j�j�s=2 is

closed under �nite sums, but we give an example in Section 3 showing that strict

inequality can occur. We also describe some situations in which (2) does hold –

this seems to be the typical case.

To achieve countable stability, we consider the following modi�cation of the

Fourier dimension.

De�nition. �e modi�ed Fourier dimension of a Borel set A � Rd is de�ned as

dimFM A D sup¹dimF �I � 2 P.Rd /; �.A/ > 0º;

and the modi�ed Fourier dimension of a �nite Borel measure � is de�ned as

dimFM � D sup¹dimF �I � 2 P.Rd /; � � �º;

where � denotes absolute continuity.

�us

dimFM A D sup¹dimFM �I � 2 P.A/º:

In Section 4, we investigate some basic properties of the modi�ed Fourier di-

mension, and give examples to show that it is di�erent from the usual Fourier

dimension and the Hausdor� dimension.

In Section 5, we show that if � annihilates all the common null sets for the

measures that have modi�ed Fourier dimension greater than or equal to s, then

dimFM � � s. Other classes of measures that can be characterised by their null

sets in this way are the measures that are absolutely continuous to some �xed mea-

sure, and, less trivially, the measures � 2 P.Œ0; 1�/ such that limj�j!1 O�.�/ D 0

(see [12]). A necessary condition for such a characterisation to be possible is that

the class of measures be a band, meaning that any measure that is absolutely con-

tinuous to some measure in the class lies in the class. �e de�nition of the modi�ed

Fourier dimension is natural from this point of view, since the class of measures



312 F. Ekström, T. Persson, and J. Schmeling

that have modi�ed Fourier dimension greater than or equal to s is the smallest

band that includes the measures that have (usual) Fourier dimension greater than

or equal to s.

1.1. Previous work. Here we mention brie�y some of the previous work related

to the Fourier dimension that we are aware of. A Salem set is a set whose Fourier

dimension equals its Hausdor� dimension.

Salem [17] showed that for each s 2 .0; 1/ there is a compact Salem subset of

Œ0; 1� of dimension s (although this was shown for the restriction of the Fourier

transform to the integers). An explicit example of a Salem set of any prescribed

dimension in .0; 1/ is given by the set of ˛-well approximable numbers, namely

the set

E.˛/ D
1
\

nD1

1
[

kDn

¹x 2 Œ0; 1�I kkxk � k�.1C˛/º;

where k � k denotes the distance to the nearest integer. By a theorem of Jarník [7]

and Besicovitch [1] the set E.˛/ has Hausdor� dimension 2=.2C˛/ for ˛ > 0, and

Kaufman [11] showed that there is a measure in P.E.˛// with Fourier dimension

2=.2 C ˛/ (see also Bluhm’s paper [2]).

It was shown by Kaufman [10] that for any C 2-curve � in R2 with positive

curvature and any s � .0; 1/, there is a compact Salem set S � � of dimension

s. From this it can be deduced [5, Proposition 1.1] that for any s 2 Œ0; 1� there is

a continuous function Œ0; 1� ! R whose graph has Fourier dimension s. Fraser,

Orponen and Sahlsten [5] proved that the graph of any function Œ0; 1� ! R has

compact Fourier dimension (de�ned below) less than or equal to 1, and that the

set of continuous functions Œ0; 1� ! R whose graphs have Fourier dimension 0

is residual with respect to the supremum norm among all continuous functions

Œ0; 1� ! R.

Kahane showed that images of compact sets under Brownian motion and frac-

tional Brownian motion are almost surely Salem sets, see [9]. It was shown by

Fouché and Mukeru [4] that the level sets of fractional Brownian motion are al-

most surely Salem sets (in the special case of Brownian motion this follows from

a result of Kahane, see [4, Section 3.2]).

Jordan and Sahlsten [8] showed that Gibbs measures of Hausdor� dimension

greater than 1=2 (satisfying a certain condition on the Gibbs potential) for the

Gauss map x 7! 1=x .mod 1/ have positive Fourier dimension.

Wol�’s book [18] about harmonic analysis discusses some applications of the

Fourier transform to problems in geometric measure theory.
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1.2. Some remarks. It is not so di�cult to see that the Fourier dimension for

measures is invariant under translations and invertible linear transformations, and

thus the Fourier dimension and modi�ed Fourier dimension for sets are invariant

as well.

For any �nite Borel measure � on Rd ,

lim
T !1

1

.2T /d

Z

Œ�T;T �d
j O�.�/j2 d� D

X

x2Rd

�.¹xº/2

(this is a variant of Wiener’s lemma). If � has an atom it is thus not possible that

limj�j!1 O�.�/ D 0, so dimF � D 0, and also dimFM � D 0 since � has an atom

whenever � � �. It follows that dimF A D dimFM A D 0 for any countable set

A � Rd .

Suppose next that A is a countable union of k-dimensional hyperplanes in Rd

with k < d . If � gives positive measure to A, then there must be a hyperplane P

such that �.P / > 0. But then the projection of � onto any line L that goes through

the origin and is orthogonal to P has an atom, so O� does not decay along L. �is

shows that dimF A D dimFM A D 0. �us for example a line segment in R2 has

Fourier dimension 0 even though an interval in R has Fourier dimension 1.

From a special case of a theorem by Davenport, Erdős and LeVeque [3], it can

be derived [15, Corollary 7.4] that if � is a probability measure on R such that

O�.�/ . j�j�˛ for some ˛ > 0, then �-a.e. x is normal to any base (meaning

that .bkx/1
kD0

is uniformly distributed mod 1 for any b 2 ¹2; 3; : : :º). �us if

A � R does not contain any number that is normal to all bases, then dimF A D
dimFM A D 0. In particular this applies to the middle-third Cantor set, since it

consists of numbers that do not have any 1 in their ternary decimal expansion and

hence are not normal to base 3.

1.3. Other variants of the Fourier dimension. One alternative way of de�ning

the Fourier dimension of a Borel set A � Rd is to require the measure in the

de�nition to give full measure to a compact subset of A, rather than to A itself.

�is variant, which will here be called the compact Fourier dimension, is thus

de�ned by

dimFC A D sup¹s 2 Œ0; d �I O�.�/ . j�j�s=2; � 2 P.K/; K � A is compactº:

�e anonymous referee of this paper provided an argument showing that the com-

pact Fourier dimension is countably stable whenever all the sets in the union are

closed (see Proposition 5 below), and pointed out that this can be used to deduce

that the Fourier dimension and the compact Fourier dimension are not the same.
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Inspired by this, we then found an example that shows that the compact Fourier

dimension is not in general �nitely stable.

�e Hausdor� dimension is inner regular in the sense that

dimH A D sup
K�A

K compact

dimH K

for any Borel set A � Rd (this follows from [16, �eorem 48]), and the same is

true of the modi�ed Fourier dimension by inner regularity of �nite Borel measures

on Rd . Another way of expressing the fact that dimFC is di�erent from dimF is to

say that dimF is not inner regular.

One might consider to de�ne the Fourier dimension and the modi�ed Fourier

dimension of any B � Rd , by taking the supremum over all measures in P.Rd /

that give full or positive measure to some Borel set A � B , but then dimF and

dimFM are not even �nitely stable. For there is a construction by Bernstein (using

the well ordering theorem for sets with cardinality c) of a set B � R such that

any closed subset of B or Bc is countable [14, �eorem 5.3]. �us any non-atomic

measure � 2 P.R/ gives measure 0 to any compact subset of B or Bc , and by inner

regularity to any Borel subset of B or Bc. It follows that B and Bc have Fourier

dimension and modi�ed Fourier dimension 0, but B [ Bc D R has dimension 1.

�is can be modi�ed slightly to produce Lebesgue measurable sets C1; C2 � R

that would violate the �nite stability. For each natural number n, let An be a Salem

set of dimension 1 � 1=n and let

C1 D B \
1
[

nD1

An; C2 D Bc \
1
[

nD1

An:

�en C1 and C2 are Lebesgue measurable since each An has Lebesgue measure

0, and since they are subsets of B and Bc respectively they would have Fourier

dimension and modi�ed Fourier dimension 0. On the other hand,

dimF.C1 [ C2/ D dimF

�

1
[

nD1

An

�

D 1;

and thus also dimFM.C1 [ C2/ D 1.

2. Stability of the Fourier dimension for sets

In this section it is shown that the Fourier dimension is stable under �nite or count-

able unions of sets that satisfy a certain intersection condition, and that the com-

pact Fourier dimension is stable under �nite or countable unions of closed sets.
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�en examples are given, showing that the Fourier dimension is not countably sta-

ble, that the compact Fourier dimension is di�erent from the Fourier dimension

and that the compact Fourier dimension is not �nitely stable.

�e following lemma is used in the proofs of �eorem 2 and Proposition 5,

and also in Section 3 and Section 5.

Lemma 1. Let � be a �nite Borel measure on Rd and let f be a non-negative

C m-function with compact support, where m D d3d=2e. De�ne the measure � on

Rd by d� D f d� . �en

O�.�/ . j�j�s=2 H) O�.�/ . j�j�s=2

for all s 2 Œ0; d �, and in particular

dimF � � dimF �:

Proof. Since f is of class C m and has compact support, there is a constant M

such that

j Of .t/j � M

1 C jt jm

for all t 2 Rd . In particular Of is Lebesgue integrable, and from this it also follows

that the Fourier inversion formula holds pointwise everywhere for f . �us

O�.�/ D
Z

e�2�i� �xf .x/ d� .x/

D
Z

e�2�i� �x

�Z

e2�it �x Of .t/ dt

�

d� .x/

D
Z �Z

e�2�i.��t/�x d� .x/

�

Of .t/ dt

D
Z

O�.� � t / Of .t/ dt :

Now,

Z

¹j��t j<j�j=2º

j O�.� � t / Of .t/j dt �
Z

¹jt j�j�j=2º

�.Rd /M

1 C jt jm dt

� �.Rd /M

Z

¹jt j�j�j=2º

jt j�m dt

D const. � j�jd�m

. j�j�d=2;
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and if O�.�/ � C j�j�s=2 for all � 2 Rd then

Z

¹j��t j�j�j=2º

j O�.� � t / Of .t/j dt � C 2s=2

j�js=2

Z

j Of .t/j dt . j�j�s=2:

�us

O�.�/ . j�j�d=2 C j�j�s=2

whenever O�.�/ . j�j�s=2, which proves the lemma.

�eorem 2. Let ¹Akº be a �nite or countable family of Borel subsets of Rd such

that

sup
n

dimFM

�

An \
[

k¤n

Ak

�

< dimF

�

[

k

Ak

�

:

�en

dimF

�

[

k

Ak

�

D sup
k

dimF Ak:

Proof. �e inequality � is immediate from the monotonicity of dimF. To see the

other inequality, take an arbitrary � 2 P.
S

k Ak/ such that

sup
n

dimFM

�

An \
[

k¤n

Ak

�

< dimF �

and let n be such that �.An/ > 0. �en by the de�nition of the modi�ed Fourier

dimension,

�
�

An \
[

k¤n

Ak

�

D 0 and thus �
�

An n
[

k¤n

Ak

�

> 0:

Let f be a non-negative C 1-function that is 0 on
S

k¤n Ak and positive ev-

erywhere else. �en �.f / > 0, and there is a non-negative C 1-function g with

compact support such that �.fg/ > 0 as well. �e measure � de�ned by

d� D fg

�.fg/
d�

is a probability measure on An, so

sup
k

dimF Ak � dimF An � dimF � � dimF �;

where the last inequality is by Lemma 1. Taking supremum on the right over all

� 2 P.
S

k Ak/ gives the inequality � in the statement.
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Corollary 3. Let ¹Akº be a �nite or countable family of Borel subsets of Rd such

that

sup
n

dimFM

�

An \
[

k¤n

Ak

�

� sup
k

dimF Ak:

�en

dimF

�

[

k

Ak

�

D sup
k

dimF Ak:

Proof. If the conclusion does not hold then neither does the assumption, since

then

sup
k

dimF Ak < dimF

�

[

k

Ak

�

� sup
n

dimFM

�

An \
[

k¤n

Ak

�

;

where the second inequality is by �eorem 2.

Corollary 4. Let ¹Akº be a �nite or countable family of Borel subsets of Rd such

that

An \
[

k¤n

Ak

is countable for all n. �en

dimF

�

[

k

Ak

�

D sup
k

dimF Ak:

Proof. �is follows from Corollary 3 since any countable set has modi�ed Fourier

dimension 0.

�e proof of the following proposition was provided by the anonymous ref-

eree, who also noted that the statement can be applied to the sets constructed in

Example 7 below to show that the compact Fourier dimension is di�erent from the

Fourier dimension. Another application is Example 8 below, which shows that the

compact Fourier dimension is not �nitely stable.

Proposition 5. Let ¹Akº be a �nite or countable family of closed subsets of Rd .

�en

dimFC

�

[

k

Ak

�

D sup
k

dimFC Ak:

Proof. �e inequality � holds since dimFC is monotone. To see the other inequal-

ity, let � be any Borel probability measure whose topological support K is a subset

of
S

k Ak. By Baire’s category theorem the complete metric space K cannot be

expressed as a countable union of nowhere dense sets, and since

K D
[

k

K \ Ak
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it follows that there must be some n such that K \ An D K \ An has non-empty

interior in K. �us there is an open subset V of Rd such that

; ¤ K \ V � K \ An:

Let f be a non-negative C 1-function that is 0 outside of V and satis�es �.f / > 0,

and de�ne the probability measure � by

d� D f

�.f /
d� :

�en

dimF � � dimF � � dimFC An � sup
k

dimFC Ak ;

where the �rst inequality is by Lemma 1 and second inequality holds since � gives

full measure to An. Taking the supremum over all probability measures � such

that supp � �
S

k Ak completes the proof.

Example 7 below shows that the Fourier dimension is not countably stable, and

also that the strict inequality in the assumption of �eorem 2 cannot be changed to

a non-strict inequality. �e following lemma is used in Example 7 and Example 8.

Lemma 6. For any " 2 .0; 1�,

inf
�

sup
j �1

j O�.j /j � �"

8 C 2�"

�

� "

5

�

;

where the in�mum is over all � 2 P.Œ"; 1�/ and the supremum is over all positive

integers j .

Proof. Fix " > 0 and take any � 2 P.Œ"; 1�/. If ' is a real-valued continuous

function supported on Œ0; "� such that

Z

'.x/ dx D 1 and

1
X

kD�1

j O'.k/j < 1

then

0 D �.'/ D
1

X

kD�1

O'.k/ O�.k/ D 1 C 2 Re
�

1
X

kD1

O'.k/ O�.k/
�

;

and thus
1

2
�

1
X

kD1

j O'.k/j j O�.k/j �
�

1
X

kD1

j O'.k/j
�

sup
j �1

j O�.j /j:
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Now let � be the indicator function of Œ0; "=2� and take ' to be the triangle

pulse

' D
�2�

"

�

�
�2�

"

�

;

where � denotes convolution. �en

j O'.k/j D
ˇ

ˇ

ˇ

ˇ

2 O�.k/

"

ˇ

ˇ

ˇ

ˇ

2

D sinc2
�k�"

2

�

� min
�

1;
4

k2�2"2

�

;

so that

1
X

kD1

j O'.k/j �
�

2

�"

�

C 4

�2"2

1
X

d 2
�"

eC1

1

k2
� 2

�"
C 1 C 4

�2"2

Z 1

2
�"

1

x2
dx D 4 C �"

�"
:

It follows that

sup
j �1

j O�.j /j � 1

2
� �"

4 C �"
:

Example 7. Let .lk/1
kD1

be a strictly increasing sequence of natural numbers such

that

lim
k!1

lk

k
D 1:

De�ne the compact sets

Ak D ¹x 2 Œ0; 1�I xlkC1 : : : xlkCk ¤ 0kº;

where x D 0:x1x2 : : : is the binary decimal expansion of x, and let

Bn D
1
\

kDn

Ak:

Take any measure � 2 P.Bn/ and let �k be the image of � under the map

x 7! 2lk x .mod 1/. If k � n then �k gives full measure to Œ2�k; 1�, so by

Lemma 6 there is some jk � 1 such that

O�.2lk jk/ D O�k.jk/ � 2�k

5
:

�us for any s > 0,

lim sup
�!1

j O�.�/j j�js=2 � lim
k!1

j O�.2lk jk/j.2lk jk/s=2 � lim
k!1

2slk=2�k

5
D 1:

It follows that dimF.Bn/ D 0 for all n.
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Let � be Lebesgue measure on Œ0; 1�. �en for each n

�
�

1
[

nD1

Bn

�

� �.Bn/ � 1 �
1

X

kDn

2�k D 1 � 2�.n�1/;

so that �
�
S1

nD1 Bn

�

D 1 and hence dimF

�
S1

nD1 Bn

�

D 1. �is shows that the

Fourier dimension is not countably stable, and that dimFC is di�erent from dimF

since dimFC

�S1
nD1 Bn

�

D 0 by Proposition 5.

For d � 2, the sets
®

Bn � Œ0; 1�d�1
¯

give a counterexample to countable sta-

bility of the Fourier dimension in Rd . Moreover, these sets do not satisfy the

conclusion of �eorem 2, but they would satisfy the assumption if the strict in-

equality was replaced by a non-strict inequality. �us it is not possible to weaken

the assumption of �eorem 2 in that way.

�e following variation of Example 7 shows that the compact Fourier dimen-

sion is not �nitely stable.

Example 8. Let s 2 .
p

3 � 1; 1/ and choose b such that

1 � s

s
< b <

s

2

(this is possible since s >
p

3 � 1). Let .lk/1
kD1

be a strictly increasing sequence

of natural numbers and let mk D dblke. De�ne the compact sets

Ak D ¹x 2 Œ0; 1�I xlkC1 : : : xlkCmk
¤ 0mk º;

where x D 0:x1x2 : : : is the binary decimal expansion of x, and let

Bn D
1
\

kDn

Ak:

Take any measure � 2 P.Bn/ and let �k be the image of � under the map

x 7! 2lk x .mod 1/. If k � n then �k gives full measure to Œ2�mk ; 1�, so by

Lemma 6 there is some jk � 1 such that

O�.2lk jk/ D O�k.jk/ � 2�mk

5
:
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�us

lim sup
�!1

j O�.�/jj�js=2 � lim
k!1

j O�.2lk jk/j.2lk jk/s=2 � lim
k!1

2slk=2�mk

5
D 1;

and it follows that dimF.Bn/ � s for all n. Consequently dimFC

�
S1

nD1 Bn

�

� s

by Proposition 5.

Next consider the complement C of
S1

nD1 Bn in Œ0; 1�, that is,

C D Œ0; 1� n
1
[

nD1

Bn D
1
\

nD1

1
[

kDn

.Œ0; 1� n Ak/ :

For each k the set Œ0; 1� n Ak is a union of 2lk intervals of length 2�.lkCmk/, and

thus

Hs
ı.Œ0; 1� n Ak/ � 2lk � 2�s.lkCmk/;

whenever k is so large that lk C mk � � log2 ı. �us for all large enough n,

Hs
ı.C / � Hs

ı

�

1
[

kDn

.Œ0; 1� n Ak/
�

�
1

X

kDn

2.1�s/lk�smk :

�e sum converges by the choice of .mk/, and since n can be taken arbitrarily large

it follows that

Hs
ı.C / D 0:

for all ı > 0. �us

dimFC C � dimH C � s;

so that Œ0; 1� is the union of two sets with compact Fourier dimension strictly less

than 1.

3. Stability of the Fourier dimension for measures

As mentioned in the introduction, �nite stability of the Fourier dimension for sets

would follow if it could be shown that

dimF.� C �/ D min.dimF �; dimF �/ (3)

for all �nite Borel measures � and �. �e inequality � always holds, but Exam-

ple 10 below shows that strict inequality is possible. �e following lemma is used

in that example.
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Lemma 9. Let ˛ and ˇ be two distinct real numbers. �en

ˇ

ˇ

ˇ

ˇ

Z 1

0

e2�i˛x sin.2�ˇx/ dx

ˇ

ˇ

ˇ

ˇ

� 1
ˇ

ˇj˛j � jˇj
ˇ

ˇ

:

Proof. For any 
 > 0,

ˇ

ˇ

ˇ

ˇ

Z 1

0

e2�i
x dx

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

Z
b
c



0

e2�i
x dx C
Z 1

b
c



e2�i
x dx

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

Z 1

b
c



e2�i
x dx

ˇ

ˇ

ˇ

ˇ

ˇ

� 1 � b
c



� 1



:

From this together with the identity

e2�i˛x sin.2�ˇx/ D i

2
.e2�i.˛�ˇ/x � e2�i.˛Cˇ/x/;

it follows that

ˇ

ˇ

ˇ

ˇ

Z 1

0

e2�i˛x sin.2�ˇx/ dx

ˇ

ˇ

ˇ

ˇ

� 1

2

ˇ

ˇ

ˇ

ˇ

Z 1

0

e2�i j˛�ˇ jx dx

ˇ

ˇ

ˇ

ˇ

C 1

2

ˇ

ˇ

ˇ

ˇ

Z 1

0

e2�i j˛Cˇ jx dx

ˇ

ˇ

ˇ

ˇ

� 1

2

� 1

j˛ � ˇj C 1

j˛ C ˇj
�

� 1

j j˛j � jˇj j :

Example 10. �is example shows that the Fourier dimension for measures is not

in general �nitely stable.

Let

g.x/ D 1 C
1

X

kD1

2�k sin.2� � 2k2

x/I

this is a continuous non-negative function. De�ne the probability measure � on

Œ0; 1� by d� D g dx . Using that

Z 1

0

e�2�ilx sin.2�lx/ dx D
Z 1

0

cos.2�lx/ sin.2�lx/ dx � i

Z 1

0

sin2.2�lx/ dx

D �i

2
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for l 2 N, one sees that for n � 1

j O�.2n2

/ C i � 2�.nC1/j �
X

k�1
k¤n

2�k

ˇ

ˇ

ˇ

ˇ

Z 1

0

e�2�i �2n2
x sin.2� � 2k2

x/ dx

ˇ

ˇ

ˇ

ˇ

�
�

X

k�1
k¤n

2�k

j2n2 � 2k2 j

�

1
X

kD1

2�k

2n2 � 2.n�1/2

� 2

2n2
;

where the inequality at � is by Lemma 9. �us for any s > 0,

lim sup
j�j!1

j O�.�/j j�js=2 � lim sup
n!1

j O�.2n2

/j � 2sn2=2

� lim
n!1

�

2�.nC1/ � 2

2n2

�

� 2sn2=2

D 1;

and it follows that dimF � D 0.

Next, let

h.x/ D 1 �
1

X

kD1

2�k sin.2� � 2k2

x/

and de�ne the probability measure � on Œ0; 1� by d� D h dx . �en dimF � D 0 as

well, but � C � is twice Lebesgue measure, which has Fourier dimension 1.

Even though (3) does not hold in general, it does hold if � and � have di�erent

Fourier dimensions. For suppose that, say, dimF � < dimF �. �en for every

s 2 .dimF �; dimF �/ there is a sequence .�k/ with j�k j ! 1 such that

lim
k!1

j O�.�k/j j�k js=2 D 1 and lim
k!1

j O�.�k/j j�k js=2 D 0;
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so that

lim sup
j�j!1

j O�.�/ C O�.�/j j�js=2 D 1

and hence dimF.� C �/ � s. �us

dimF.� C �/ � inf¹s 2 .dimF �; dimF �/º D dimF � � dimF.� C �/:

For the same reason, any convex combination of � and � satis�es

dimF..1 � �/� C ��/ D min.dimF �; dimF �/:

Next suppose that dimF � D dimF � D s and that there is some �0 2 Œ0; 1� such

that

dimF..1 � �0/� C �0�/ > s:

�en for any � 2 Œ0; 1� n ¹�0º, the measure .1 � �/� C �� is a convex combination

of .1 � �0/� C �0� and one of �; �, so it has Fourier dimension s. �us there is at

most one convex combination of � and � that has Fourier dimension greater than

s.

�e results in the rest of this section describe situations where (3) holds, or

where it fails for at most one value of some parameter.

Proposition 11. Let � and � be �nite Borel measures on Rd whose supports are

compact and disjoint. �en

dimF.� C �/ D min.dimF �; dimF �/:

Proof. Let f be a non-negative, smooth and compactly supported function that

has the value 1 on supp � and the value 0 on supp �. �en f d.� C �/ D d� , so

dimF � � dimF.� C �/

by Lemma 1. Similarly,

dimF � � dimF.� C �/;

and thus

dimF.� C �/ � min.dimF �; dimF �/:

�e proposition now follows since the opposite inequality always holds.
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Proposition 12. Let � be a �nite Borel measure on Rd with compact support and

let �t be the translation of � by t 2 Rd . �en

dimF.� C �t / D dimF �:

Proof. Since the Fourier dimension is translation invariant,

dimF.� C �t / � min.dimF �; dimF �t / D dimF �:

�e opposite inequality clearly holds if t D 0, so assume that t ¤ 0 and let n be

an odd integer so large that supp � \ supp �nt D ;. Note that

j O� C �t .�/j D j.1 C e�2�it ��/ O�.�/j D 2 j cos.�t � �/jj O�.�/j;

and similarly

j O� C �nt .�/j D 2 j cos.�nt � �/j j O�.�/j:

Since cos.nx/= cos x is bounded, this gives

j O� C �nt .�/j D 2

ˇ

ˇ

ˇ

ˇ

cos.�nt � �/

cos.�t � �/

ˇ

ˇ

ˇ

ˇ

j cos.�t � �/j j O�.�/j . j O� C �t .�/j:

�us

dimF.� C �t / � dimF.� C �nt / D min.dimF �; dimF �nt / D dimF �;

where the �rst equality is by Proposition 11.

Proposition 13. Let � and � be �nite Borel measures on Rd with compact sup-

ports, and for t 2 Rd let �t be the translation of � by t . �en there is at most one

t such that

dimF.� C �t / > min.dimF �; dimF �/:

Proof. It shall be shown that

min.dimF.� C �t1/; dimF.� C �t2// � min.dimF �; dimF �/

whenever t1 ¤ t2. By the translation invariance of dimF, this is equivalent to

min.dimF.� C �/; dimF.� C ��// � min.dimF �; dimF �/;
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where � is the translation of � by �t1 and � D t2 � t1. Suppose that s is less than

the expression on the left – then s < d and

8

<

:

O�.�/ C O�.�/ . j�j�s=2

O�.�/ C e�2�i��� O�.�/ . j�j�s=2:
(4)

Let n be an integer so large that supp � \ supp �n� D ;. Subtracting the second

relation in (4) from the �rst gives

sin.�� � �/ O�.�/ . .1 � e�2�i���/ O�.�/ . j�j�s=2;

and since sin.nx/= sin x is bounded it follows that

.1 � e�2�in���/ O�.�/ .
sin.�n� � �/

sin.�� � �/
sin.�� � �/ O�.�/ . j�j�s=2:

Subtracting this from the �rst relation in (4) then gives

O�.�/ C e�2�in��� O�.�/ . j�j�s=2;

and thus

s � dimF.� C �n�/ D min.dimF �; dimF �n�/ D min.dimF �; dimF �/;

where the �rst equality is by Proposition 11.

Lemma 14. Let B 2 Rd�d be an invertible matrix such that j�j ¤ 1 for all

eigenvalues � of B , and let f W Rd ! R be a function such that limj�j!1 f .�/ D 0

and

jf .�/ � f .B�/j . j�j�˛

for some ˛ > 0. �en

f .�/ . j�j�˛ :

Proof. Using that jB�1�j � kBk�1j�j one sees that

jf .B�1�/ � f .�/j . jB�1�j�˛ . j�j�˛;

and thus there is a constant C such that

jf .�/ � f .B�/j � C j�j�˛ and jf .�/ � f .B�1�/j � C j�j�˛

for all �.
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Let

Vu D
M

j�j>1

E� and Vs D
M

j�j<1

E�;

where E� denotes the (generalised) eigenspace of B corresponding to the eigen-

value �. �en there is some c > 1 and an m such that if k � m then jBk�j � ck j�j
for all � 2 Vu and jB�k�j � ckj�j for all � 2 Vs (this need not be true with

m D 1, for instance if B is a large Jordan block with diagonal entries slightly

larger than 1).

Take any � 2 Rd n ¹0º and write it as � D �u C �s with �u 2 Vu and �s 2 Vs.

Suppose �rst that j�uj � j�s j, or equivalently that j�uj � j�j=
p

2. �en for any

n � m,

jf .�/ � f .Bn�/j �
n�1
X

kD0

jf .Bk�/ � f .BkC1�/j

� C

n�1
X

kD0

jBk�j�˛

� C

n�1
X

kD0

jBk�uj�˛

� C
�

m�1
X

kD0

kB�1kk˛ C
1

X

kDm

c�k˛
�

j�uj�˛

� C
�

m�1
X

kD0

kB�1kk˛ C
1

X

kDm

c�k˛
�

2˛=2 j�j�˛:

Letting n ! 1 shows that jf .�/j � Dj�j�˛ with

D D 2C
�

max
�

m�1
X

kD0

kB�1kk˛;

m�1
X

kD0

kBkk˛
�

C
1

X

kDm

c�k˛
�

2˛=2:

Similarly, if j�s j � j�uj then for any n � m,

jf .�/ � f .B�n�/j � � � � � C
�

m�1
X

kD0

kBkk˛ C
1

X

kDm

c�k˛
�

2˛=2 j�j�˛;

and letting n ! 1 shows that jf .�/j � Dj�j�˛ in this case as well.
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Proposition 15. Let � be a �nite Borel measure on Rd with limj�j!1 O�.�/ D 0,

and let A 2 Rd�d be an invertible matrix such that j�j ¤ 1 for all eigenvalues �

of A. �en

dimF.� C A�/ D dimF �:

Proof. Since the Fourier dimension is invariant under invertible linear transfor-

mations,

dimF.� C A�/ � min.dimF �; dimF.A�// D dimF �;

and in particular the lemma is true if dimF.� C A�/ D 0. To see the opposite

inequality when dimF.� C A�/ > 0, take any s 2 .0; dimF.� C A�// and let

B D AT , so that
OA�.�/ D O�.AT �/ D O�.B�/:

�en
ˇ

ˇj O�.�/j � j O�.B�/j
ˇ

ˇ � j O�.�/ C O�.B�/j . j�j�s=2;

so Lemma 14 applied to f .�/ D j O�.�/j says that O�.�/ . j�j�s=2 and therefore

s � dimF �.

Proposition 16. Let �, � be �nite Borel measures on Rd such that limj�j!1 O�.�/ D
limj�j!1 O�.�/ D 0; and let A 2 Rd�d be a matrix such that Re � ¤ 0 for all eigen-

values � of A. For t 2 R, let �t D exp.tA/�. �en there is at most one t such

that

dimF.� C �t / > min.dimF �; dimF �/:

Proof. �e statement is trivially true if � and � have di�erent Fourier dimensions,

so assume that dimF � D dimF �. Take any distinct t1; t2 and suppose that

s < min.dimF.� C �t1/; dimF.� C �t2//

D min.dimF.� C �/; dimF.� C �t2�t1//;

where � D exp.�t1A/�. �en s < d and
8

<

:

O�.�/ C O�.�/ . j�j�s=2

O�.�/ C O�.B�/ . j�j�s=2;

where B D exp..t2 � t1/A/T , and subtracting the second relation from the �rst

gives

j j O�.�/j � jO�.B�/j j � jO�.�/ � O�.B�/j . j�j�s=2:

�e matrix B has no eigenvalue on the unit circle, so O�.�/ . j�j�s=2 by Lemma 14

applied to f .�/ D jO�.�/j. �us s � dimF �, which concludes the proof.
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4. �e modi�ed Fourier dimension

Recall that the modi�ed Fourier dimension of a Borel set A � Rd is de�ned by

dimFM A D sup¹dimF �I � 2 P.Rd /; �.A/ > 0º:

�eorem 17. �e modi�ed Fourier dimension is monotone and countably stable,

and satis�es dimF A � dimFM A � dimH A for any Borel set A � Rd .

Proof. If A � B then ¹� 2 P.Rd /I �.A/ > 0º � ¹� 2 P.Rd /I �.B/ > 0º, so

dimFM A D sup¹dimF �I � 2 P.Rd /; �.A/ > 0º

� sup¹dimF �I � 2 P.Rd /; �.B/ > 0º

D dimFM B:

�us dimFM is monotone.

Let ¹Akº be a �nite or countable family of Borel sets. For any � 2 P.Rd / such

that �.
S

Ak/ > 0 there must be some n such that �.An/ > 0, and thus

sup
k

dimFM Ak � dimFM An � dimF �:

Taking the supremum on the right over ¹� 2 P.Rd /I �.
S

Ak/ > 0º shows that

sup
k

dimFM Ak � dimFM

�

[

k

Ak

�

:

�e opposite inequality holds by monotonicity.

It is obvious that dimF A � dimFM A since any � 2 P.Rd / that gives full

measure to A in particular gives positive measure to A. �e proof outlined in the

introduction of the inequality dimF A � dimH A works without modi�cation if

dimF is replaced by dimFM.

�e following two examples show that dimFM is not the same as either of dimF

and dimH.

Example 18. �e sets Bn de�ned in Example 7 were shown to have Fourier dimen-

sion 0 but positive Lebesgue measure, and hence modi�ed Fourier dimension 1.

Example 19. �e middle-third Cantor set has modi�ed Fourier dimension 0 (see

the introduction), but Hausdor� dimension log 2= log 3.
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5. Null sets of s-dimensional measures

Let

Ms D ¹� 2 P.Rd /I dimFM � � sº:
In this section it will be shown that Ms is characterised by its class of common

null sets, or more precisely that

� 2 Ms () �.E/ D 0 for all E 2 Es; (5)

where

Es D ¹E 2 B.Rd /I �.E/ D 0 for all � 2 Msº:
For C � P.Rd / and E � B.Rd / let

C? D ¹E 2 B.Rd /I �.E/ D 0 for all � 2 Cº

E? D ¹� 2 P.Rd /I �.E/ D 0 for all E 2 Eº:

�en Es D M?
s and the condition (5) can be expressed as Ms D E?

s , or equiva-

lently as M??
s D Ms .

It is also natural to consider the sets

Cs D ¹� 2 P.Rd /I there exists � 2 P.Rd / such that � � � and O�.�/ . j�j�s=2º:

For s 2 .0; d � they are related to Ms by

Ms D
\

t<s

Ct

(this is also true for s D 0 if one allows negative t :s in the intersection).

�e goal of this section is to prove the following theorem.

�eorem 20. �e sets Cs and Ms satisfy

C??
s D Cs ; for 0 � s;

M??
s D Ms ; for 0 � s � d:

�e theorem is trivial for s D 0 since

C0 D M0 D P.Rd /

and

C?
0 D M?

0 D ¹;º:

For general s, the �rst step in the proof is to reduce the problem using some prop-

erties of ? that are collected in the next lemma.
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Lemma 21. Let D, D1, D2 and ¹D˛º˛2I be subsets of either P.Rd / or B.Rd /.

�en

(i) D � D??I

(ii) D1 � D2 H) D?
2 � D?

1 I

(iii) D??? D D?I

(iv)
S

˛2I D?
˛ �

�
T

˛2I D˛

�? I

(v)
T

˛2I D?
˛ D

�
S

˛2I D˛

�?
.

Property (iii) implies that D?.kC2/ D D?k for any k � 0, as illustrated by the

following diagram.

D � D?? D D???? � � �

D? D D??? D � � �

Proof. Let X be the space that the D:s are subsets of and let Y be the “dual” space,

that is,

Y D

8

<

:

B.Rd / if X D P.Rd /;

P.Rd / if X D B.Rd /:

If x 2 X and y 2 Y, then the equation ¹x; yº D ¹�; Eº determines uniquely a

measure � and a set E. �us it is possible to de�ne

.x; y/ D �.E/; where ¹x; yº D ¹�; Eº:

(i) Let x 2 D. �en .x; y/ D 0 for any y 2 D?, which by de�nition of D??

means that x 2 D??.

(ii) Let y 2 D?
2 . �en .x; y/ D 0 for all x 2 D2, and thus .x; y/ D 0 for all

x 2 D1 since D1 � D2. Hence y 2 D?
1 .

(iii) Applying (ii) to the statement of (i) shows that D??? � D? and apply-

ing (i) to D? shows that D? � D???.
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(iv) By (ii) it follows that

D?
˛ �

�

\

˛02I

D˛0

�?

for any ˛ 2 I , and hence

[

˛2I

D?
˛ �

�

\

˛02I

D˛0

�?

:

(v) �e de�nition of D? can be expressed as

D? D
\

x2D

¹y 2 YI .x; y/ D 0º D
\

x2D

¹xº?;

and thus

�

[

˛2I

D˛

�?

D
\

x2
S

˛2I D˛

¹xº? D
\

˛2I

\

x2D˛

¹xº? D
\

˛2I

D?
˛ :

Once it is proved that C??
s D Cs it follows by Lemma 21 that M??

s D Ms as

well, for then

M??
s D

�

\

t<s

Ct

�??

�
�

[

t<s

C?
t

�?

D
\

t<s

C??
t D

\

t<s

Ct D Ms

by (ii), (iv), and (v), and the opposite inclusion holds by (i). Moreover, if D has

the form D D D0?? then (iii) gives

D?? D D0???? D D0?? D D:

To prove �eorem 20, it thus su�ces to show that Cs D C0??
s , where

C0
s D ¹� 2 P.Rd /I O�.�/ . j�j�s=2º:

It is easy to see that Cs � C0??
s (see the �rst part of the proof of �eorem 20,

on page 335), but the other inclusion takes a bit of work. �e idea is to take an

arbitrary measure � 2 C0??
s and decompose it as � D �1 C �2 such that �1 is

absolutely continuous to some measure in C0
s (thus �1 2 Cs) and �2 is singular to

all measures in C0
s , and then show that �2 D 0 so that � D �1 2 Cs .
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5.1. Decomposition of � with respect to C
0

s

De�nition. A set C � P.Rd / is countably quasiconvex if for any �nite or in�nite

sequence .�k/ in C there is a sequence .pk/ of positive numbers such that

X

k

pk D 1

and
X

k

pk�k 2 C:

�us any countable convex combination of measures in a countably quasicon-

vex set C is equivalent to some measure in C.

Lemma 22. For any s 2 R, the set C0
s is countably quasiconvex.

Proof. If �1; �2; : : : 2 C0
s, then there are constants C1; C2; : : : � 1 such that for

each k

j O�k.�/j � Ck j�j�s=2 for all �:

Now set

ak D 1

2kCk

and pk D ak
P1

iD1 ai

:

�en the probability measure

� D
1

X

kD1

pk�k

satis�es

j O�.�/j �
1

X

kD1

pk j O�k.�/j �
1

X

kD1

pkCk j�j�s=2 . j�j�s=2;

so � 2 C0
s .

Lemma 23. Let C � P.Rd / be countably quasiconvex and let � 2 P.Rd /. �en

there is a set E 2 B.Rd / such that

�
ˇ

ˇ

E
� � for some � 2 C;

and

�
ˇ

ˇ

Ec ? � for all � 2 C:
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Proof. Let

r D sup¹�.F /I F 2 B.Rd / and �
ˇ

ˇ

F
� � for some � 2 Cº;

and for k D 1; 2; : : : let �k 2 C and Fk 2 B.Rd / be such that �
ˇ

ˇ

Fk
� �k and

�.Fk/ � r � 1=k. Set

E D
1
[

kD1

Fk :

By assumption, there is a sequence .pk/ of positive numbers such that

1
X

kD1

pk�k 2 C;

and since all pk are positive, �
ˇ

ˇ

E
is absolutely continuous with respect to this

measure.

Suppose towards a contradiction that there is some � 2 C such that �
ˇ

ˇ

Ec 6? �.

�en by Lebesgue decomposition of �
ˇ

ˇ

Ec with respect to � there is a Borel set

S � Ec such that

�
ˇ

ˇ

S
� � and �.S/ > 0:

For each k, there is a �k 2 .0; 1/ such that

.1 � �k/� C �k�k 2 C;

and �
ˇ

ˇ

S[Fk
is absolutely continuous with respect to this measure. Moreover,

�.S [ Fk/ D �.S/ C �.Fk/ � �.S/ C r � 1

k

which is greater than r for large enough k – this is a contradiction.

5.2. Proof of �eorem 20. �e following theorem by Goullet de Rugy [6] is

used in the proof.

�eorem 24 (Goullet de Rugy). Let T be a compact Hausdor� space and let A

and B be subsets of P.T / of the form

A D
1
[

kD1

Ak and B D
1
[

kD1

Bk ;

where the Ak and Bk are weak-� compact and convex, such that � ? � for all

� 2 A, � 2 B. �en there exist disjoint F�ı -sets T1; T2 � T such that �.T1/ D 1

for all � 2 A and �.T2/ D 1 for all � 2 B.
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Proof of �eorem 20. As remarked in the beginning of the section, it su�ces to

show that C0??
s D Cs. For any � 2 Cs there is some � 2 C0

s such that � � �. �en

any E 2 C0?
s is a null set for � and hence also for �, which means that � 2 C0??

s .

�us Cs � C0??
s .

To see the other inclusion, take any � 2 C0??
s . By Lemma 22 and Lemma 23,

it is possible to write � D �1 C �2 such that �1 is absolutely continuous to some

measure in C0
s (hence �1 2 Cs) and �2 is singular to all measures in C0

s . It will be

shown that �2 D 0, from which it follows that � D �1 2 Cs .

For N; R 2 ¹1; 2; : : :º let

BN
R D ¹� 2 P.Œ�R; R�d/I O�.�/ � N j�j�s=2 for all �º:

�ese sets are weak-� compact and convex, so �eorem 24 applied to

AR D ¹�2

ˇ

ˇ

Œ�R;R�d
º and BR D

1
[

N D1

BN
R

gives for each R a Borel set ER such that �2.ER/ D 0 and

�.Rd n ER/ D �.Œ�R; R�d n ER/ D 0 for all � 2 BR:

Let

E D
1
[

RD1

ER:

�en �2.E/ D 0 and �.Ec/ D 0 for all � 2 C0
s that have compact support.

If � is any measure in C0
s , de�ne the measure �R by d�R D 'R d� , where 'R

for each R is a smooth function such that �Œ�R;R�d � 'R � �Œ�2R;2R�d . �en each

�R lies in C0
s by Lemma 1 and �R has compact support, so

�.Ec/ D lim
R!1

�.Ec \ Œ�R; R�d/ � lim
R!1

�R.Ec/ D 0:

�is shows that Ec 2 C0?
s and hence �.Ec/ D 0. Since also �2.E/ D 0, this

implies that �2 D 0.
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