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Abstract. We generalize Milnor–�urston’s kneading theory to the setting of piecewise

continuous and monotone interval maps with a weight associated to each branch. We de-

�ne a weighted kneading determinant D.t/ and establish combinatorially two kneading

identities, one with the cutting invariant and one with the dynamical zeta function. For the

pressure log �1 of the weighted system, playing the role of entropy, we prove that D.t/ is

non-zero when jt j < 1=�1 and has a zero at 1=�1. Furthermore, our map is semi-conjugate

to every map in an analytic family St ; 0 < t < 1=�1 of piecewise linear maps with slopes

proportional to the prescribed weights and de�ned on a Cantor set. When the original map

extends to a continuous map f , the family St converges as t ! 1=�1 to a continuous piece-

wise linear interval map Qf . Furthermore, f is semi-conjugate to Qf and the two maps have

the same pressure.
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1. Introduction

Let I D Œa; b�. Let a D c0 < c1 < � � � < c`C1 D b. Set S D ¹0; 1; � � � ; `º. For

each i 2 S , set Ii D�ci ; ciC1Œ and let fi W Ii ! I be a strictly monotone continuous

map extending continuously to the closure, and �nally assign a constant weight

gi 2 C.

We say that .Ii ; fi ; gi /i2S is a weighted system. In the particular case that each

gi equals 1, we say also that the system is unweighted.

Milnor and �urston [6] developed a widely used kneading theory on un-

weighted systems so that the maps fi glue together to a single continuous map

f . Let us recall a list of their results (see also Hall, [5] for an enlightening intro-

duction to the subject).

Milnor and �urston introduced a power series matrix N.t /, called the knead-

ing matrix, which records combinatorially the forward orbits of the cutting points.

�ey establish two identities:

1. the main kneading identity, relating N.t / to the growth of the cutting points

of f n on any subinterval J , and taking the form

J .t / � N.t / D terms involving boundaries of J I
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2. the zeta-function identity, relating N.t / to a dynamical Artin-Mazur zeta

function that counts the global growth of the f n-�xed points, taking the form

�.t/ � detN.t / D 1:

Using these identities, Milnor–�urston derive the following important conse-

quences:

3. for log s the topological entropy of the map, the matrix N.t / is invertible

when jt j < 1=s. If s > 1 the matrix N.t / is singular at t D 1=s and the growth

rate of the periodic points is precisely s;

4. if s > 1, the map is semi-conjugate to a simple model dynamical system

which is a continuous PL (i.e. piecewise-linear) map of slope s.

Most of this theory has been extended by Preston [8] to the general unweighted

setting without the assumption of global continuity. An advantage to allow dis-

continuity at the cutting points is that one can treat tree and graph maps as interval

unweighted systems after edge concatenation. See for example Tiozzo [9]. �ere

exist also works that treat tree maps as they are. See for example Alves and Sousa-

Ramos [1], Baillif [2] and Baillif and de Carvalho [3].

An essential di�erence in Preston’s approach as compared to Milnor–�urston’s

lies in the proof of the zeta-function identity. Preston’s method is purely combi-

natorial whereas the original proof tests on a concrete example and then studies

behaviors under perturbations.

In this work we will generalize all four results above to weighted systems,

where the pressure log �1 will play the role of entropy. Points 1–4 will become

�eorems 2.1, 2.2, 2.3, and 2.5 below.

Our setting is identical to that of Baladi and Ruelle [4]. In their work they

de�ne a weighted kneading matrix B and a weighted zeta function, and establish

a version the zeta-function identity using a perturbative method similar to that of

Milnor–�urston. For our purpose we will de�ne a somewhat di�erent kneading

matrix R.

We will not rely on previous established results but instead provide self-con-

tained proofs. In a way our results recover partially results in [4, 6, 8].

Our proofs will be fairly elementary, with, as the only background, some basic

knowledge of complex analysis. �e rest is to play carefully with the combina-

torics of iterations, following mostly Milnor and �urston.
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�ere is however a notable exception, concerning the proof of the zeta-function

identity. For this we choose to follow the combinatorial method of Preston, along

with several signi�cant di�erences. Preston cuts o� the graph above the diagonal

in order to count the intersections, instead we keep the graph intact but change

signs across the diagonal. Preston’s kneading matrix is similar to that of Milnor–

�urston, by recording the sequence of visited intervals of a critical orbit. Instead

we take the kneading matrix B of Baladi-Ruelle, which records the orbit’s position

relative to every given critical point. We then add one more dimension to B to ob-

tain our kneading matrix R, by incorporating the in�uence of the boundary points

(with a somewhat di�erent choice of sign). �ese modi�cations are designed to

simplify, even in the unweighted case, Preston’s proof of the zeta-function iden-

tity. Preston’s idea is to express �.log �.t//0
t as the trace of a certain matrix F, and

then use repeatedly the main kneading identity to connect F with the derivative

of the kneading matrix. Here, many choices are possible but most give rise to

additional correcting terms. Having tested various possibilities we came up with

the current choice of the kneading matrix R and a matrix F for which we have the

simplest relation possible, i.e. FR D R
0 (see �eorem 4.1). Once this relation es-

tablished, the zeta-function identity will follow from a one-line computation (cf.

Section 4.1),

�
d

dt
log �.t/ D TrF D TrR0

R
�1 D

d

dt
log detR;

and the fact that �.0/ D detR.0/ D 1.

�e kneading matrix and its smallest positive zero cost relatively little to evalu-

ate. �is enables a fast and accurate computation of the pressure/entropy as well as

the semi-conjugacy and the PL model map. While experimenting these ideas we

noticed that the system is also semi-conjugate to a PL map for every 0 < t < �1,

although the conjugated system acts on a Cantor set instead of an interval. �is

numerical observation can easily be proved and has now become our �eorem 2.4.

To the best of our knowledge this statement is new, also in the unweighted setting,

even though its proof does not require any new ideas.

A further justi�cation of our choice of the kneading determinant detR as com-

pared to detB, is that the latter may have a spurious small zero unrelated to the

pressure (in Appendix C we give an example).

Another originality of this work is the systematic treatment of point-germs

relative to points. Each point x in the interior of the interval generates two point-

germs: x+ and x-. �ey have often distinct dynamical behavior and it is convenient

to treat the two germs independently. �e idea is certainly present to all the papers
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in the theory. But highlighting the notion transforms our computations in more

concise forms.

Why adding weights to piecewise continuous and monotone maps? One mo-

tivation is that one can prescribe slope ratios for the PL model maps, the other

is that one can choose to ignore some parts of a dynamical system by assigning

zero weights, so to reveal deeper entropies hidden for example in renormalisation

pieces.

A further application, not pursued in the current work, is to construct various

invariant measures by playing with weights and following Preston’s construction

of measures maximizing the entropy.

Acknowledgement. �is note originates from the second author’s lecture notes

for the ANR LAMBDA meeting in April 2014, organized by R. Dujardin. We

would also like to thank G. Tiozzo for enlightening discussions.

2. Notation and results

Let I D Œa; b�. Let a D c0 < c1 < � � � < c`C1 D b. Set Ii D�ci ; ciC1Œ and let

fi W Ii ! I be strictly monotone continuous maps for i D 0; � � � ; `. We write

f D .f0jI0
; � � � ; f`jI`

/

and let

si D C1 (respectively si D �1)

when fi is increasing (respectively decreasing). We consider f as unde�ned at

the cutting points. On the other hand, each fi extends to a continuous map from

the closed interval Œci ; ciC1� to Œa; b�.

We call

C.f / D ¹ci W 1 � i � `º

the interior cutting points of the interval. We write C�.f / for the set of cutting

points including c0 and c`C1.

In order to treat monotonicity and discontinuities in a consistent manner it is

convenient to extend our base interval I to its unit-tangent bundle, also denoted

the space of point-germs yI : each interior point x 2 I X¹a; bº generates two point-

germs denoted

x+ D .x; C1/ and x- D .x; �1/
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while the boundary points a; b each has only one point-germ associated, a+ and b-.
yI is the union of these point germs. We write

".x+/ WD 1 and ".x-/ WD �1

for the direction of a point germ. In order to make some formulae in Section 4

more concise, we set (arti�cially) c-
0 WD b-, so that ¹c+

0; c-
0º D ¹a+; b-º. For x 2 I

we denote by Ox D .x; �/ the point-germ based at x and in the direction � 2 ¹˙1º.

It is notationally convenient to de�ne an order < on the collection of point-

germs together with base points, I [ yI , by declaring that for two base points x < y

we have x < x+ < y- < y < y+. Given two point-germs Ou; Ov 2 yI with Ou < Ov,

we de�ne

h Ou; Ovi WD ¹x 2 I j Ou < x < Ovº

as a sub interval of I . It is then consistent to write e.g. Œu; vŒD hu-; v-i and �u; vŒD

hu+; v-i. Note that the boundary points a; b never belong to an interval of the form

h Ou; Ovi. When J D�u; vŒ is an open interval we set

yJ D ¹ Ox W u < x < vº [ ¹uCº [ ¹v�º:

In particular,

yIi D ¹ Ox W ci < x < ciC1º [ ¹cC
i º [ ¹c�

iC1º; 0 � i � `:

We observe that the yIi ’s are disjoint and their union is yI .

Our original map f induces a well-de�ned map

Of W yI �! yI :

When Ox D .x; �/ 2 yIi then f . Ox/ D .y; � 0/ is simply the germ based at y D

limt!0C fi .x C � t/ whose direction is � 0 D si� . Note that on each yIi , Of is

monotone because f is strictly monotone. We will usually write f also for the

extended map Of .

For each 0 � i � ` we let gi 2 C be a weight associated with the interval Ii .

Both gi and si gives rise to functions on yIi by declaring s. Ox/ D si and g. Ox/ D gi

whenever Ox 2 yIi . We may de�ne products along orbits, sn; gn; Œsg�n by setting

s0 D g0 D 1;
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and, for all n � 1,

sn. Ox/ WD

n�1
Y

kD0

s.f k. Ox//; gn. Ox/ WD

n�1
Y

kD0

g.f k. Ox//; Œsg�n WD sngn:

Note that sn. Ox/ is the sense of monotonicity of f n at Ox.

We de�ne a half-sign function

�. Ox; y/ WD
1

2
sgn. Ox � y/ D

8

<

:

C1=2 if Ox > y,

�1=2 if Ox < y,

for all Ox 2 yI ; y 2 I .

Concerning forward orbits of point-germs we set, for j; k D 0; � � � ; `,

�. Ox; t I ck/ D
X

m�0

tmŒsg�m. Ox/ � �.f m Ox; ck/;

so, in particular,

�. Ox; t I c0/ D
X

m�0

tmŒsg�m. Ox/ � �.f m Ox; c0/ D
1

2

X

m�0

tmŒsg�m. Ox/

"�. Oc/ D

8

<

:

". Oc/ if Oc ¤ c˙
0 ;

C1 if Oc D c˙
0 ;

Rjk.t / D
X

Ocj Dc+
j

;c�
j

"�. Ocj / � �. Ocj ; t I ck/;

R.t / D .Rjk.t //0�j;k�` (the kneading matrix)

B.t / D .Rjk.t //1�j;k�` (the reduced kneading matrix)

In particular, one has (note the signs)

Rjk.t / D �.c+

j ; t I ck/��.c-
j ; t I ck/ DW �cj

�.�; t I ck/ .j > 0/;

while

R0k.t / D �.a+; t I ck/C�.b-; t I ck/

(this choice of signs is designed to absorb boundary correcting terms in later cal-

culations).
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Regarding ’backward’-orbits we de�ne Z1 as the set of level-1 cylinders

.j / WD Ij D�cj ; cj C1Œ; j D 0; 1; � � � ; `:

De�ne then recursively Zn as the set of non-empty level-n cylinders of the form

.i0i1 � � � in�1/ WD Ii0 \ f �1
i0

.i1 � � � in�1/:

Each ˛ D .i0i1 � � � in�1/ is an open interval �u; vŒD hu+; v-i. We set

y@˛ D ¹u+; v-º:

For 0 � j < n, f j .˛/ � Iij . So f n maps ˛ homeomorphically onto its image, in

particular each of the functions sj and gj , 0 � j < n, is constant on ˛.

De�nition 2.1. We call .Ii ; fi/0�i�` expansive if

lim
n!1

sup
˛2Zn

diam .˛/ D 0:

For any y 2 I , set �0;y D ¹yº, and for p > 0,

�p;y D
°

x 2
[

˛2Zp

˛
ˇ

ˇ f p.x/ D y
±

:

Note that x 2 �p;y implies that gp.x-/ D gp.x+/, for which we simply write

gp.x/. �is is because g0.x/ � 1 and every j -iterate (0 � j < p) of a p-cylinder

˛ 2 Zp belongs to some level-1 cylinder. De�ne

y.t / D
X

p�0

X

x2�p;y

tpgp.x/

and

y;J .t / D
X

p�0

X

x2�p;y

tpgp.x/�J .x/; for J ��a; bŒ;

where �J is the characteristic function of the set J . �ese functions count the

(weighted) number1 of preimages of y.

Clearly when J and J 0 are disjoint subsets we have

y;J .t / C y;J 0.t / D y;J [J 0.t /:

1 In the case gi � 1, we have y;J .t/ D
X

p�0

#.�p;y \ J / tp.
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�eorem 2.1 (main kneading identity, or MKI in short). For any interval J D

h Ou; Ovi in I , for all k 2 ¹0; � � � ; `º,

X̀

j D1

cj ;J .t /Rjk.t / D �. Ov; t I ck/ � �. Ou; t I ck/ DW �J �.�; t I ck/

(the term j D 0 is not included in the sum, but we do allow k D 0).

We also need a particular way to count the �xed points of f n. Fix n � 1 and

an n-cylinder ˛. �e value of gn.x/ is a constant on ˛, denoted by gn
j˛

. We de�ne

a (�xed point counting) weight by

!.˛/ D �gn
j˛

X

Ox2y@˛

�.f n Ox; x/ � ".f n Ox/:

We refer to Appendix A for an account of the geometric meaning of this weight,

notably its relation to �xed points of f n. Introduce then

Nn D
X

˛2Zn

!.˛/ (1)

as well as the corresponding zeta-function

�.t/ D exp
�

X

n�1

1

n
Nntn

�

: (2)

�eorem 2.2. We have the identity (as formal power-series) between the zeta-

function and the (Milnor–�urston) determinant

�.t/ � detR.t / D 1:

De�nition 2.2. For every n � 0 we write

kgnk1 D sup
˛2Zn

jgn
j˛j and kgnk1 D

X

˛2Zn

jgn
j˛j:

We then set

�1 WD lim sup
n!1

kgnk1=n
1 � �1 WD lim sup

n!1
kgnk

1=n
1 :

We also call log �1 the pressure2 of the weighted system .Ii ; fi ; gi /i2S . �is is

consistent with usual "thermodynamic formalism" for dynamical systems.

2 In the case gi � 1, we have �1 D 1 and �1 is the growth rate of the n-cylinders. By

Misiurewicz-Szlenk ([7]) log �1 is equal to the topological entropy of the unweighted system.
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�eorem 2.3. (1) �e power series for �. Ox; t I ck/, Rjk.t / de�ne analytic functions

of t on the disc ¹jt j < 1=�1º.

(2) �e kneading matrix R.t / is invertible when jt j < 1=�1.

(3) Suppose that �1 > �1 and all gi � 0. �en R.t / is non-invertible at

t D 1=�1 and 1=�1 coincides with the radius of convergence of �.t/.

�eorem 2.4. Assume �1 > �1 and all gi > 0. For each 0 < t < 1=�1 there is a

monotone (non-continuous) map

�t W yI �! Œ0; 1�

with the following properties.

A. For 0 � i � `, let
zIt;i D Œ�t .c

C
i /; �t .c

�
iC1/�

(which is an interval or a point). �e collection zIt;i , 0 � i � ` is pairwise

disjoint.

B. For each i there is an a�ne map

Qft;i W zIt;i �! Œ0; 1�

of slope si=.tgi / such that

Qft;i .�t .x// D �t .f .x//; x 2 yIi :

C. Let

St W
[

i

zIt;i �! Œ0; 1�

be given by

St .�/ D Qft;i .�/

when � 2 zIt;i . �en St is uniformly expanding (cf. Lemma 5.4) and its maxi-

mal invariant domain is

�t D �t . yI /:

Remark. �us, �t is semi-conjugating the dynamical system . yI ; f / to the uni-

formly expanding map St restricted to �t . Often, �t is a Cantor set but in some

cases it is not, as it may contain isolated points. In particular, a subset �t . yIi / is

trivial, i.e. reduced to an isolated point, precisely when the forward orbit of Ii
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never encounters a cutting point. �is does not happen if the original system is

expansive.

�e proof will show that the semi-conjugacy �t can be explicitly expressed as

h. Ox/ � h.a+/

h.b-/ � h.a+/
with h. Ox/ D .�. Ox; t I ck//kD0;���` � R�1 �

0

B

B

B

B

@

0

G.c1; t /
:::

G.c`; t /

1

C

C

C

C

A

;

where G.x; t/ is the average of the generating functions for gn.x-/ and gn.x+/

(see (6), (10) and (13)). If ` D 1, one can replace h. Ox/ by �. Ox; t I c1/, which is

particularly simple to implement numerically.

When taking the limit as t % 1=�1 we obtain a di�erent type of semi-conjugacy.

�eorem 2.5. Assume �1 > �1 and all gi � 0. �ere is a monotone continuous

surjective map

� W I �! Œ0; 1�

with the following properties. Denote by

zS � S WD ¹0; � � � ; `º

the subset of i’s for which zIi D Int �.Ii / is non-empty.

A. For every i 2 zS , there is an a�ne map Qfi of slope si �1=gi such that

Qfi .�.x// D �.fi .x//; x 2 Ii :

B. �e two weighted systems .Ii ; fi ; gi /i2S and . zIi ; Qfi ; gi/i2 zS have equal pres-

sures.

C. If the sytem f D .Ii ; fi /i2S extends to a continuous map on Œa; b� then

so does Qf D . zIi ; Qfi/i2 zS on Œ0; 1� and � gives a genuine topological semi-

conjugacy. We have in this case, for every x 2 Œa; b�,

Qf .�.x// D �.f .x//:

Furthermore, the map Qf is uniformly expanding.

For the last theorem, some intervals may disappear under the semi-conjugacy,

i.e. the set zS becomes a strict subset of S . �is happens in particular, when the

original system is not transitive and contains sub-systems of a smaller pressure.

�e set zS may even depend on the choice of the weights gi . In particular, intervals

for which gi D 0 disappear under the conjugacy.
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3. �e main kneading identity

Lemma 3.1. We have R.0/ D id.

Proof. Note that

Rjk.t / D
X

Ocj Dc+
j

;c-
j

"�. Ocj / � �. Ocj ; t I ck/

D
X

n�0

tn
X

Ocj Dc+
j

;c-
j

"�. Ocj /Œsg�n. Ocj / � �.f n Ocj ; ck/

By convention f 0 D id. Recall that "�. Ocj / D ". Ocj / if j ¤ 0 and "�. Oc0/ D 1.

Assume �rst j > 0. �en, for all k D 0; � � � ; `,

Rjk.0/ D
X

Ocj Dc+
j

;c-
j

"�. Ocj / � Œsg�0. Ocj / � �.f 0 Ocj ; ck/

D
X

Ocj Dc+
j

;c-
j

". Ocj / � �. Ocj ; ck/

D ıjk:

Also,

R0k.0/ D �.a+; 0I ck/ C �.b-; 0I ck/

D �.a+; ck/ C �.b-; ck/

D ı0k :

Proof of �eorem 2.1. Consider �rst an open interval J D�u; vŒ��a; bŒ, and a ck

for some k 2 ¹0; � � � ; `º. For each n � 0 and each .n C 1/-cylinder ˛ 2 ZnC1, the

functions

Œsg�n. Ox/ D

n�1
Y

j D0

s.f j Ox/g.f j Ox/

and �.f n Ox; ck/, Ox 2 Ǫ are constants. When ˛ 2 ZnC1 and ˛ \ J ¤ ;, then

obviously
X

Ox2y@.J \˛/

". Ox/ D 1 C .�1/ D 0:
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So the following power series vanishes identically:

X

n�0

tn
X

˛2ZnC1; Ox2y@.J \˛/

". Ox/ � Œsg�n. Ox/ � �.f n Ox; ck/ D 0:

In this sum, Ox D u+; v- appears for every n � 0. Extracting their contributions we

write
X

Ox2y@J

�. Ox; t I ck/ � ". Ox/

C
X

n�0

tn
X

˛2ZnC1; Ox2y@˛

�J .x/ � ". Ox/ � Œsg�n. Ox/ � �.f n Ox; ck/ D 0:
(3)

Now when ˛ 2 ZnC1; Ox 2 y@.J \ ˛/, there is a unique minimal integer 0 � p � n

for which f p. Ox/ D Oc for some c 2 ¹c1; � � � ; c`º DW C.f / and Oc D c+ or c- (note

that the boundary points a; b are excluded here, since for an interior point to be

mapped to them, it has to pass an interior cutting point just before). Recall that

�p;c D ¹x 2
S

˛2Zp
˛ j f px D cº and �0;c D ¹cº. When x 2 �p;c and f p Ox D Oc,

then

gp. Ox/ D gp.x/;

�.f n Ox; ck/ D �.f n�p Oc; ck/;

and also (the essential point here is that the sign sp. Ox/ is absorbed in ". Oc/)

". Ox/ � Œsg�n. Ox/ D gp.x/.". Ox/sp. Ox//Œsg�n�p. Oc/

D gp.x/ � ". Oc/ � Œsg�n�p. Oc/:

So we obtain, for the second term in (3) (writing tn D tptq),

X

c2C.f /

h�

X

p�0

tp
X

x2�p;c

gp.x/�J .x/
�

�
X

OcDc˙; q�0

tq � ". Oc/ � Œsg�q. Oc/�.f q Oc; ck/
i

D
X

c2C.f /

J;c.t / � �c�.�; t I ck/:

Combining with (3) we get the Main kneading Identity when J is an open interval.

It remains to prove the case that J is half closed or closed. Consider for ex-

ample J D hu-; v-i with a < u < v � b. We have ha+; v-i D ha+; u-i t J and

the additivity c;ha+;v-i D c;ha+;u-i C c;J . �e result then follows by applying the

identity to the two intervals ha+; u-i and ha+; v-i and subtracting.
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4. Zeta functions and kneading determinants

In this section we prove �eorems 2.2 and 2.3.

Set

yC.f / WD ¹a+ D cC
0 ; c-

1; c+

1; � � � ; c-
`; c+

`; b- D c�
0 º;

�0; Oc D ¹ Ocº; for all Oc 2 yC.f /,

and

�p; Oc D ¹ Ox 2 yI j f p Ox D Oc; f j Ox … yC.f / for 0 � j < pº; for p � 1.

If Oc ¤ c˙
0 , then for any Ox 2 �p; Oc we have x 2 �p;c . Conversely for any x 2 �p;c

exactly one of x˙ belongs to �p; Oc .

Notice that if Oc D c˙
0 then �p; Oc D ; when p � 1: due to the forward invariance

of I we have f �1.¹a; bº/ � ¹a; b; c1; � � � ; c`º, so every orbit passing though ¹a; bº

must pass through ¹c1; � � � ; c`º just before.

Fix n � 1 and an n-cylinder ˛. Note that for each Ox 2 y@˛, we have

gn
j˛ � ".f n Ox/ D Œsg�n. Ox/ � ". Ox/;

so

�!.˛/ WD gn
j˛

X

Ox2y@˛

�.f n Ox; x/ � ".f n Ox/

D
X

Ox2y@˛

�.f n Ox; x/Œsg�n. Ox/ � ". Ox/:

To each Ox 2 y@˛, there is a unique Oc 2 yC.f / and 0 � p < n such that x 2 �p; Oc .

Schematically,

Ox
f p

������!
p minimal

Oc
f qC1

����! f n Ox D f qC1 Oc:

Setting q such that p C q D n � 1, we have the “co-cycle” properties:

sn. Ox/". Ox/ D sqC1. Oc/". Oc/;

g0. Ox/ D 1;

gn. Ox/ D gqC1. Oc/gp. Ox/:
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Recalling the de�nitions (1) and (2) we then for the zeta-function we get (as formal

power-series):

�0.t /=�.t/

D
X

n�1

tn�1Nn

D
X

n�1

tn�1
X

˛2Zn

!.˛/

D �
X

n�1

tn�1
X

˛2Zn; Ox2y@˛

�.f n Ox; x/Œsg�n. Ox/ � ". Ox/

D �
X

Oc2yC.f /

X

q�0

tqŒsg�qC1. Oc/ � ". Oc/
X

p�0; Ox2�p; Oc

tpgp. Ox/�.f qC1 Oc; x/

D �
X

Oc2yC.f /X¹c˙
0

º

X

q�0

tqŒsg�qC1. Oc/ � ". Oc/
�

X

p�0; Ox2�p; Oc

tpgp. Ox/�.f qC1 Oc; x/
�

�
X

OcDc˙
0

X

q�0

tqŒsg�qC1. Oc/ �
�

". Oc/
X

p�0; Ox2�p; Oc

tpgp. Ox/�.f qC1 Oc; x/
�

:

Note that the ". Oc/ factor in the last expression is treated di�erently for

Oc D c˙
1 ; : : : ; c˙

`
and Oc D c˙

0 . �e reason for this is that we want the two ex-

pressions in the parenthesis to be independent of the direction of Oc. Indeed, for

any Ou 2 yI ,

m Oc. Ou; t/ WD
X

p�0; Ox2�p; Oc

tpgp. Ox/�. Ou; x/

D
X

p�0; x2�p;c

tpgp.x/�. Ou; x/; for Oc D c˙
1 ; � � � ; c˙

` ;

and

m Oc. Ou; t/ WD ". Oc/
X

p�0; Ox2�p; Oc

tpgp. Ox/�. Ou; x/

D ". Oc/�. Ou; c/

�
1

2
; for Oc D c˙

0 ;
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where we have used the facts that

�
p;c˙

0

D ; for p > 0,

g0. Ox/ � 1;

and

gp.x+/ D gp.x-/ DW gp.x/ for x 2 �p;cj
, j > 0.

In both cases m Oc. Ou; t/ is independent of ". Oc/ D C or �, so we may safely

write mc. Ou; t/ for this quantity. To compactify the two cases we set C�.f / D

¹c0; c1; � � � ; c`º. Recall that c+

0 D a+, c-
0 D b- and "�. Oc/ WD ". Oc/ if Oc ¤ c˙

0 and

"�. Oc/ D 1 otherwise. We then have

�0.t /=�.t/ D �
X

c2C�.f /

X

OcDc˙; q�0

tqŒsg�qC1. Oc/ � "�. Oc/ � mc.f qC1 Oc; t /: (4)

A central idea (due to Preston) is to consider the right hand side as the trace of

an .`C1/�.`C1/ matrix F D .Fij /, and to de�ne F in a way so that FR becomes

related to R
0. �ere are many choices suitable for this purpose with most choices

giving rise to additional correcting terms. �ere is, however, a choice for which

the relationship becomes particularly simple (note the � in the epsilon factor).

For i; j 2 ¹0; 1; � � � ; `º, de�ne

Fij .t / D
X

q�0; Oci Dc˙
i

tqŒsg�qC1. Oci / � "�. Oci / � mcj
.f qC1 Oci ; t /: (5)

�eorem 4.1. We have

�0.t /=�.t/ C TrF D 0 and FR D R
0:

Proof. �e �rst follows from expressions (4) and (5):

TrF D
X̀

iD0

Fi i D ��0.t /=�.t/:

For the second we �rst establish a consequence of the main kneading identity.

Claim. For every Ow 2 yI , k D 0; 1; � � � ; `,

X̀

j D0

mcj
. Ow; t/Rjk.t / D �. Ow; t I ck/:
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Proof. By the main kneading identity, we sum �rst over interior cutting points:

X̀

j D1

mcj
. Ow; t/Rjk.t /

D
X̀

j D1

X

p�0; x2�p;cj

tpgp.x/�. Ow; x/ � Rjk.t /

D
X̀

j D1

X

p�0; x2�p;cj

tpgp.x/
1

2
.�.a+; Ow/.x/ � �. Ow;b-/.x//Rjk.t /

D
1

2
.2�. Ow; t I ck/ � �.a+; t I ck/ � �.b-; t I ck//:

Adding the boundary term

mc0
. Ow; t/R0k.t / D

1

2
.�.a+; t I ck/ C �.b-; t I ck//

we get the desired result and end the proof of the claim.

Now, for i; k 2 ¹0; � � � ; `º,

X̀

j D0

Fij Rjk

D
X

q�0; Oci Dc˙
i

tqŒsg�qC1. Oci / � "�. Oci / �
X̀

j D0

.mcj
.f qC1 Oci ; t /Rjk/

D
X

q�0; Oci Dc˙
i

tqŒsg�qC1. Oci / � "�. Oci / � �.f qC1. Oci /; t I ck/

D
X

q�0; Oci Dc˙
i

tqŒsg�qC1. Oci / � "�. Oci /
X

p�0

tpŒsg�p.f qC1 Oci /�.f p.f qC1 Oci /; ck/

D
X

Oci Dc˙
i

X

p;q�0

tpCq Œsg�pCqC1. Oci / � �.f pCqC1 Oci ; ck/ � "�. Oci /

D
X

Oci Dc˙
i

�

X

n�1

n � tn�1Œsg�n. Oci / � �.f n Oci ; ck/
�

"�. Oci /
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D
X

Oci Dc˙
i

� d

dt
�. Ocj ; t I ck/

�

"�. Oci /

D
d

dt
Rik.t /

in which we recall that

Rjk.t / D
X

Ocj Dc˙
j

�. Ocj ; t I ck/ � "�. Ocj /:

4.1. Proof of �eorem 2.2. Our version of the kneading matrix, R.t /, is a ma-

trix valued formal power series in t starting with the identity matrix. �en D.t/ D

detR.t / is a formal power series starting with D.0/ D 1. As formal power series

one has the relation d
dt

log D.t/ D Tr R0.t /R.t /�1. �is is certainly true for a

truncated power series (e.g. by using standard analytic methods valid for jt j small

enough) and then holds in general by a degree argument which allows the identi-

�cation of terms with the same degree.

�eorem 4.1 yields as identities between formal power-series

�
d

dt
log �.t/ D ��0.t /=�.t/ D T rF.t / D T rR0.t /R.t /�1:

If one truncates to a �nite order N in t then R.t / becomes analytic in t and when

R.t / is invertible a standard calculation gives

d

dt
log det.R.t // D lim

h!0

1

h
log det.R.t C h/R.t /�1/ D TrR0.t /R.t /�1:

When the constant term R.0/ is invertible, this identity is naturally graded in the

degree of t so is valid also in the case of a formal power-series. Here we have

by Lemma 3.1 detR.0/ D 1 and since �.0/ D 1 we get log Œ�.t / det .R.t //� D 0,

or equivalently,

�.t/ det .R.t // D 1:

as claimed.
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4.2. Weighted lap function and proof of �eorem 2.3. Let us consider the

generating function of gn. Ox/,

G. Ox; t/ D
X

n�0

tngn. Ox/; for Ox 2 yI ; (6a)

and then

G.x; t/ D
1

2
.G.x-; t / C G.x+; t //; when a < x < b: (6b)

Let J D h Ou; Ovi ��a; bŒ be an (open, closed or half-closed) interval or a point.

We de�ne the weighted lap function3

L.J; t/ WD
1

2

X

n�0

tn
X

˛2ZnC1

X

Ox2y@˛

gn. Ox/�J .x/:

Repeating the calculation in our proof of the main kneading identity without the

sign factors s; " and � , it follows easily that

L.J; t/ D
X̀

j D1

�

X

p�0; x2�p;cj

tpgp.x/�J .x/
��

X

OcDc˙
j

1

2

X

q�0

tq � gq. Oc/
�

D
X̀

j D1

cj ;J .t / � G.cj ; t / (7)

In particular, for a one-point set J D ¹xº we have simply

L.¹xº; t / D

8

<

:

tpgp.x/ � G.ci ; t / for x 2 �p;ci
; p � 0; 1 � i � `;

0 otherwise.
(8)

Lemma 4.2. Fix any subinterval J D h Ou; Ovi. �e functions G, � , �J � , Rjk

are all analytic functions of t on the disc ¹jt j < 1=�1º. �e kneading matrix is

invertible when jt j < 1=�1. �e function L.J; t/ is meromorphic on ¹jt j < 1=�1º

and analytic on ¹jt j < 1=�1º.

3 If gi � 1 the G-functions are
1

1 � t
and the function L.J; t/ is the generating function for

the numbers of .n C 1/-cylinders in J , and L.�a; bŒ; t/ has radius of convergence equal to 1=�1.
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Proof. �e �rst claim follows from the de�nition of �1 and the following esti-

mates:

jG. Ox; t/j �
X

n�0

jt jnkgnk1 < 1 for jt j < 1=�1; for all Ox 2 yI :

Similarly, for all k,

j�J �.�; t I ck/j �
X

n�0

jt jnkgnk1 < 1 for jt j < 1=�1:

To see that the kneading matrix is invertible when jt j < 1=�1 we use the rela-

tionship to the zeta function. By �eorem 2.2 we have �.t/ � detR.t / D 1, where

�.t/ D exp
�

X

n�1

Nn

n
tn

�

and each jNnj � kgnk1: So �.t/ is analytic and non-zero for jt j < 1=�1 whence

R.t / is invertible for jt j < 1=�1.

We have

jL.J; t/j �
X

n�0

jt jn
X

˛2ZnC1

jgn
j˛j

�
X

n�0

jt jn
X

˛2Zn

jgn
j˛j.` C 1/

D .` C 1/
X

n�0

jt jnkgnk1;

(9)

which shows that L.J; t/ has radius of convergence at least 1=�1.

Using the MKI itself for the  factor in (7) we get

L.J; t/ D
X̀

kD0

�J �.�; t I ck/
�

X̀

j D1

R
�1.t /kj � G.cj ; t /

�

: (10)

�e above identities are valid as formal power series but also when the functions

involved are analytic and R.t / is invertible. As 1=�1 � 1=�1, so when jt j < 1=�1,

the identity (10) is valid.
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Proof of �eorem 2.3. Both (1) and (2) have already been proved in Lemma 4.2.

We proceed to prove (3). When all gi ’s are positive and t � 0 we have

L.�a; bŒ; t / C G.aC; t / C G.b�; t / D
X

n�0

tn
X

˛2ZnC1

gn
j˛

�
X

n�0

tnkgnk1:

By de�nition the RHS has radius of convergence equal to 1=�1. Being a power-

series with positive coe�cients it follows that the RHS diverges as t % 1=�1.

Under the further assumption 1=�1 < 1=�1, the functions t 7! G. Ox; t/, in

particular G.aC; t / and G.b�; t /, remain bounded at t D 1=�1. So L.�a; bŒ; t / must

diverge as t % 1=�1. Combining with (9) we know that the radius of convergence

of L.�a; bŒ; t / is equal to 1=�1. Now, the functions �J � and G involved in (10)

remain bounded on jt j � 1=�1. Letting t % 1=�1 in (10) we conclude that R.t /

must be non-invertible at t D 1=�1.

5. Semi-conjugacies to piecewise linear models

In this section we prove �eorems 2.4 and 2.5.

Lemma 5.1. Fix J D h Ou; Ovi � Ij D�c+

j ; c-
j C1Œ. For k D 0; � � � ; ` and jt j < 1=�1,

�. Ov; t I ck/ � �. Ou; t I ck/ D t � sj gj .�.f Ov; t I ck/ � �.f Ou; t I ck// (11)

When also jt j < 1=�1 we have for the weighted lap function

L.J; t/ D t gj � L.fj J; t/ (12)

Proof. Let us �x k 2 ¹0; � � � ; `º. By de�nition, we have the following relation for

�.�; t I ck/ when applied to Ox and f Ox:

�. Ox; t I ck/ D
X

m�0

tmŒsg�m. Ox/ � �.f m Ox; ck/

D �. Ox; ck/ C t � Œsg�. Ox/ � �.f Ox; t I ck/; for all Ox 2 yI :
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�is implies (11) when restricting to yIj . Now,

�J �.�; t I ck/ D �. Ov; t I ck/ � �. Ou; t I ck/

and (as f may reverse the orientation)

�fj J �.�; t I ck/; D sj .�.f Ov; t I ck/ � �.f Ou; t I ck//;

so

�J �.�; t I ck/ D tgj �fj J �.�; t I ck/:

�e result for L.J; t/ now follows by linearity in equation (10) which is valid

when jt j < 1=�1.

5.1. Proof of �eorem 2.4. We assume here that all gi > 0 and that �1 > �1.

Fix 0 < t < 1=�1 < 1=�1. Noting that 0 < L.�a; bŒ; t / < C1 we de�ne our

conjugating map

�t W yI �! R

by setting

�t . Ox/ D
L.haC; Oxi; t /

L.�a; bŒ; t /
; Ox 2 yI : (13)

Notice that �t maps point-germs to genuine real numbers.

Figure 1. Left: Example of a piecewise continuous map f and the graph restricted to �t of

its conjugated map Qft . Right: �e graph of �t . Here, t D 0:2 < 1=�1 D 0:2684. �e ratio

of slopes of the two branches is 3 W 2 (coming from the choice of weights).
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Part A. Using (12) we get for any Ox1; Ox2 2 yIj (the sign enters again)

�t . Ox2/ � �t . Ox1/ D t sj gj .�t .f Ox2/ � �t .f Ox1//: (14)

Similarly, we get by iterating this argument for Ox1; Ox2 2 Ǫ with ˛ 2 Zn

�t . Ox2/ � �t . Ox1/ D tn sn
j˛ gn

j˛.�t .f
n Ox2/ � �t .f

n Ox1//: (15)

When the gi ’s are non-negative, we clearly have L.J; t/ � 0 for any inter-

val J so by set-additivity with respect to J it follows that �t is monotone in-

creasing and takes values in Œ0; 1�. Let �t D �t . yI / � Œ0; 1� and set �t;i D �t . yIi /.

By monotonicity of �t the convex hull of �t;i is the closed interval (or a one-point

set) zIt;i D Œ�t .c
C
i /; �t .c

�
iC1/�

Let now a < x < b. As all gi > 0, by (8)

�t .x
C/ � �t .x

�/ D
L.¹xº; t /

L.�a; bŒ; t /
> 0 (16)

precisely when x is a cutting point or a pre-image of such (also called an eventual

cutting point). We have in particular L.¹ciº; t / � 1 so that sup �t;i < inf �t;iC1

and also sup zIt;i < inf zIt;iC1, so the intervals are pairwise disjoint, proving

Part A.

Part B. Given y 2 �t suppose that y D �t . Ox1/ D �t . Ox2/ with Ox1 < Ox2. By the

previous paragraph Ox1 and Ox2 must belong to the same yIj . So by the identity (14)

we must have �t .f Ox2/ � �t .f Ox1/ D 0. We may then de�ne a map

Qft W �t �! �t

by

Qft .y/ WD �t .f Ox/; y D �t . Ox/ 2 �t

since the value is independent of the choice of Ox in the pre-image of y.

Now, either �t;j D �t . yIj / is reduced to a point (when Ij contains no pre-

image of a critical point) or, by equation (14), the conjugated map . Qft /j�t;j
has

slope .tsj gj /�1 D sj =tgj . �is map then extends to a unique a�ne map

Qft;j W zIt;j �! Œ0; 1�

which coincides with Qft on �t;j D �t . yIj / D �t \ zIt;j , thus proving Part B.
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Part C. �e collection of closed disjoint intervals and associated a�ne maps,

. zIt;i ; Qft;i /0�i�`, de�nes a partially dynamical system (as there are "holes" in the

domain of de�nition for the iterated map)

St W Dt WD
[

i

zIt;i �! Œ0; 1�; St j zIt;i
D Qft;i :

Its maximal invariant set is given by
T

n�0 .St /
�k

Dt . �e claim is that this in-

variant set is precisely �t D �t . yI /. �e proof is hampered by the fact that �t is

neither continuous nor injective.

For an open interval J D�u; vŒ��a; bŒ we will use the short-hand notation

„t .J / WD Œ�t .u
C/; �t .v

�/�:

De�nition 5.1. We say that J D�u1; u2Œ��a; bŒ is a cutting interval i� each of u1

and u2 is an eventual cutting point, i.e. is either a cutting point or a pre-image of

such.

Note that if J D�u1; u2Œ is a cutting interval then because of (16) and mono-

tonicity of �t , zJ D „t .J / D Œ�t .u
C
1 /; �t.u

�
2 /� is disjoint from Cl.�t n zJ /.

Lemma 5.2. Given 0 � i; j � `, let J � Ij be a cutting interval and set

K D Ii \ f �1
i J and zK D „t .Ii / \ S

�1
t „t .J /:

�en, either K and zK are both empty, or K is a cutting interval and zK D „t .K/.

Proof. We consider the case si D C1 (the case si D �1 being treated in a similar

way). We write J D�u1; u2Œ and set zJ D „t .J /. If K were empty, then e.g.

fi .ciC1/ � u1. As u1 is assumed to be an eventual cutting point, we have

St�t .c
�
iC1/ D �t .fic

�
iC1/ < �t .u

C
1 /:

�en St„t .Ii / \ „t .J / is empty and so is zK.

Suppose then K D�w1; w2Œ non-empty. �ere are two options. Either

u1 � fici < u2

or

fici < u1 < ficiC1:
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In the �rst case, w1 D inf K D ci (so is a cutting point) and we have �t .w
C
1 / D

min „t .Ii /. As also St�t .w
C
1 / D �t .fiw

C
1 / D �t .fic

C
i / 2 „t .J / we conclude

that zK is non-empty and that min zK D �t .w
C
1 /.

In the second case, w1 2 Ii with fiw1 D u1 so w1 is an eventual cutting point,

since u1 is. We have St�t .w
C
1 / D �t .fiw

C
1 / D �t .u

C
1 / and as �t .w

C
1 / 2 „.Ii /

we have again min zK D �t .w
C
1 /. In either case, min zK D �t .w

C
1 / and w1 is an

eventual cutting point. �e same is true for the right end-point so we conclude

that K is a cutting interval and that „t .K/ D zK.

For 0 � i � `, set zIt .i/ D zIt;i D „t .Ii / and de�ne recursively

zIt .i0; : : : ; in�1/ D zIt;i0 \ S
�1
t

zIt .i1; : : : ; in�1/

which is either empty, a point or a closed interval. We write zZt;n for the collection

of non-empty sets of this form. �ey constitute the n-cylinders for the system

.Dt ; St /. �e n-cylinders are pairwise disjoint (shown by induction) and form

a partition for the domain of de�nition of .St /
n. �ey are closely related to the

cylinders of the original map since

Lemma 5.3. zZt;n D ¹„t .˛/ W ˛ 2 Znº.

Proof. For n D 1 this is the very de�nition: Z1 consists of the intervals

¹Ii W 0 � i � `º and zZt;1 is the collection of zIt .i/ D „t .Ii / D Œ�t .c
C
i /; �t.c

�
iC1/�,

0 � i � `.

Suppose the claim is true for a given n and pick ˇ 2 Zn, Q̌ D „t .ˇ/ (using the

induction hypothesis) and Ii 2 Z1. As ˇ is bounded by eventual cutting points

the previous lemma shows that either ˛ D Ii \f �1
i ˇ and Q̨ D „t .Ii /\S

�1
t „t .ˇ/

are both empty or they are both non-trivial .n C 1/-cylinders with Q̨ D „t .˛/.

�e claim follows.

Returning to the proof of Part C. By part B, the future St -orbit of every � D

�t . Ox/ exists so the point � belongs to the maximal invariant domain of St . To see

that there are no more points, consider � 2
T

n

S

zZt;n which veri�es Qf k
t .�/ 2 zIt;ik

for k � 0. �en by the previous lemma, � 2 Q̨k D zIt .i0; : : : ; ik�1/ D „t .˛k/ for

all k (a nested sequence of intervals). If � is a boundary point of such an inter-

val for some k D k0 then it is in fact a boundary point for all k � k0 and clearly

in the image of �t . So assume that � is in the interior of Q̨k D „t .˛k/ for all k � 0.
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Let ˛k D�uk ; vkŒ. �en uk % u� and vk & v� with u� � v�. By hypothesis,

�t .u
C
k

/ < � < �t .v
�
k

/ and

0 < �t .v
�
k / � �t .u

C
k

/ � tkgk
j˛k

=L.�a; bŒ; t / �! 0 as k ! 1.

Given any x 2 Œu�; v�� we conclude by monotonicity of �t that

�t .x
C/ D �t .x

�/ D �:

So �t . yI / D �t is indeed the maximal invariant domain for St .

For the uniform expansion let us state more precisely what we mean.

Lemma 5.4. �e system .St ;Dt /, is uniformly expanding in the following sense.

�ere is n0 � 1 and � > 1 so that for all n � n0, every n-cylinder ˛ 2 zZt;n and

all �1; �2 2 ˛,

jSn
t .�1/ � S

n
t .�2/j � �j�1 � �2j:

Proof. Either ˛ is reduced to a point (so the inequality is trivially true) or it is an

interval for which the identity (15) implies

S
n
t .�2/ � S

n
t .�1/ D

sn
j˛

tngn
j˛

.�2 � �1/:

Given � > 1 it then su�ces to �nd n0 > 1 so that, for n � n0, sup˛2Zn
gn

j˛
� �n

1=�

and this is possible since t < 1=�1 < 1=�1.

In order to prove �eorem 2.5 we consider the limit t % 1=�1. As the function

L.�a; bŒ; t / diverges the situation is a bit di�erent. By Lemma 4.2 the lap-function

L.�a; bŒ; t / is meromorphic in the disc ¹jt j < 1=�1º and has a pole of some order

m � 1 at t D 1=�1. By positivity of L.�a; bŒ; t / for t > 0 there is c > 0 so that

L.�a; bŒ; t / D
c

.1 � �1t /m
C .lower order terms/:

For any interval J ��a; bŒ we have 0 � L.J; t/ � L.�a; bŒ; t /. An eventual pole

of L.J; t/ at 1=�1 is therefore of order at most m so L.J; t/=L.�a; bŒ; t / extends

analytically to t D 1=�1 (the singularity is removable here). We denote the limit

ƒ.J / WD lim
t%1=�1

L.J; t/

L.�a; bŒ; t /
2 Œ0; 1�:
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Figure 2. �e same example as before but at the critical value t D 1=�1 D 0:2684. Note

that �t is no longer a Cantor set and that �t is continuous.

Lemma 5.5. We have the following properties for ƒ.

(1) For any x 2 I , ƒ.¹xº/ D 0.

(2) For all ˛ 2 Zn, ƒ.˛/ D
1

�n
1

gn
j˛ ƒ.f n˛/ .

(3) ın D sup
˛2Zn

ƒ.˛/ ����!
n!1

0.

Proof. �e expression (8) shows that the function L.¹xº; t / is analytic on

¹jt j < 1=�1º in particular remains bounded on ¹jt j � 1=�1º. As t % 1=�1,

the denominator L.�a; bŒ; t / diverges, the �rst claim follows.

For J � Ij for some j we divide (12) by L.�a; bŒ; t / and take the limit t % 1=�1

to obtain

ƒ.J / D
1

�1

gj ƒ.fj J /:

In particular, for ˛ D .i0i1 � � � in�1/ 2 Zn we have ˛ 2 Ii0 so that

ƒ.˛/ D
1

�1

gi0 � ƒ.f ˛/:

Iterating this we get the formula.

�e last claim follows from

ƒ.˛/ D
1

�n
1

gn
j˛ ƒ.f n˛/ �

�n
1

�n
1

�1>�1
�����!

n!1
0:
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Lemma 5.6. �e map � W Œa; b� ! Œ0; 1� de�ned by

�.x/ D ƒ.�a; xŒ/; x 2 Œa; b�

is non-decreasing, continuous and surjective. For x 2�a; bŒ,

�.x/ D lim
t%1=�1

�t .x
�/ D lim

t%1=�1

�t .x
C/ (17)

Proof. Monotonicity follows from positivity and additivity of ƒ.J /, J ��a; bŒ.

Let x 2 Œa; b� and " > 0. Choose n so that ın < "=2 (ın from the previous lemma).

Either x is inside some n-cylinder or on the boundary of two such cylinders.

In any case, we may �nd at most two n-cylinders ˛1; ˛2 with ˛1 \ ˛2 D ¹x0º

so that J D ˛1 [ ¹x0º [ ˛2 is an open neighborhood of x and ƒ.J / < ". For

h > 0 small enough �.x C h/ � �.x � h/ � ƒ.J / < ". As �.a/ D ƒ.;/ D 0

and �.b/ D 1 the map is surjective. �e �rst equality in (17) is essentially the

de�nition of � and the second follows from the continuity just shown.

We write

Qci D �.ci /; i D 0; � � � ; ` C 1

and let
zS � S WD ¹0; � � � ; `º

denote the (possibly strict) subset of indices i for which

0 < QciC1 � Qci D ƒ.�ci ; ciC1Œ/:

For i 2 zS we set
zIi D� Qci ; QciC1Œ:

5.2. Proof of �eorem 2.5

Part A. For Ox1; Ox2 2 Ij , taking the limit t % 1=�1 in the identity (14) yields

�. Ox2/ � �. Ox1/ D t sj gj .�.fj Ox2/ � �.fj Ox1//: (18)

Continuity of � and fj shows that this identity is independent of the direction of

the point-germs. If gj D 0 then this identity shows that Qci D QciC1 so j … zS and

otherwise the a�ne map

Qfj .y/ D Ocj C
sj

tgj

.y � Ocj /

will satisfy the required identity.
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Part B. Recall that Zn consists of the non-empty n-cylinder for .Ii ; fi/i2S .

Let zZn be the collection of non-empty open intervals of the form Q̨ D Int �.˛/

where ˛ D .i0 � � � in�1/ 2 Zn. Here each ik 2 zS , 0 � k < n (or else Q̨ is a fortiori

empty) and Qf k Q̨ � zIik . �erefore Q̨ is contained in an n-cylinder for the dynam-

ical system . zIi ; Qfi /i2 zS . We claim that Q̨ is actually equal to an n-cylinder for that

system and zZn is precisely the set of non-empty n-cylinders for the same system.

To see this note that

1 D
X

˛2Zn

ƒ.˛/ D
X

Q̨2 zZn

j Q̨ j; (19)

where j � j denotes the length of intervals. �ere is no room for any other or any

larger open cylinder.

Now, by Lemma 5.5 we have

j Q̨ j D ƒ.˛/ D
gn

j˛

�n
1

ƒ.f n˛/ �
gn

j˛

�n
1

:

So using (19) we get

�n
1 D

X

Q̨2 zZn

j Q̨ j�n
1

D
X

Q̨2 zZn

ƒ.˛/�n
1

D
X

Q̨2 zZn

gn
j˛ƒ.f n˛/

�
X

Q̨2 zZn

gn
j˛

�
X

˛2Zn

gn
j˛

D kgnk1:

So

�1 D lim sup
n!1

�

X

Q̨2 zZn

gn
j˛

�1=n

:

�e pressures of .Ii ; fi ; gi /i2S and . zIi ; Qfi ; gi /i2 zS are therefore the same.
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Part C. We assume here that f extends to a continuous map of Œa; b�. When

J � Œa; b� is an interval then f .J / n
S

i f .J \ Ii / consists of a �nite number of

points. By Lemma 5.5 this set di�erence has zero mass. By the same lemma we

get

ƒ.J / D
X̀

iD0

1

�1

gi ƒ.fi .J \ Ii //:

�us,
�

min
i

gi

1

�1

�

ƒ.fJ / � ƒ.J / �
�

X

i

gi

1

�1

�

ƒ.fJ /:

In particular

ƒ.J / D 0 () ƒ.fJ / D 0:

(Note, however, that ƒ.J / > 0 does not imply ƒ.f �1J / > 0 as the latter set

might be empty).

Let us write x � x0 if �.x/ D �.x0/,

When x; x0 2 I and x � x0 then ƒ.Œx; x0�/ D 0 so also ƒ.f Œx; x0�/ D 0.

As we have assumed f continuous, f .Œx; x0�/ is connected and contains f .x/,

f .x0/. �erefore, �.f .x// D �.f .x0//, i.e. f .x/ � f .x0/. For y 2 Œ0; 1�, we may

thus de�ne Qf .y/ D �.f .x// with x 2 ��1.y/ (independent of the choice of x).

�en for every x 2 Œa; b�,

Qf .�.x// D �.f .x//:

�e same argument also shows that for any two x; x0 2 I we have

j Qf .�.x// � Qf .�.x0//j � max
i2 zS

�1

gi

j�.x/ � �.x0/j

so Qf is a continuous endomorphism of Œ0; 1�. Uniform expansion should be under-

stood as eventual uniform expansion on cylinders as in Lemma 5.4 and is proved

in the same way.

Remark 1. �e set zS may depend upon the weights gi . If, however, f is transitive

then zS D S for any choice of non-zero weights and zZn D Zn for all n. We leave

the exercise to the reader.
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A. Geometry of the weight function !.˛/

Fix n � 1 and an n-cylinder ˛ 2 Zn. Recall that we have associated a weight

!.˛/ D � gn
j˛

X

Ox2y@˛

�.f n Ox; x/ � ".f n Ox/:

Set

�.˛/ WD �
X

Ox2y@˛

�.f n Ox; x/ � ".f n Ox/:

�is quantity depends only on the boundary values and their positions relative to

the diagonal. Let h be an a�ne map on ˛ coinciding with f n on the boundary.

Lemma A.1. We have

�.˛/ D �
X

Ox2y@˛

�.h. Ox/; x/ � ".h. Ox//

and

� �.˛/ D �1 if 0 < slope.h/ � 1 and h.˛/ touches the diagonal;

� �.˛/ D 1 if h.˛/ transverses the diagonal with slope either > 1 or < 0;

� �.˛/ D 0 in all other cases, namely

– either h.˛/ does not touch the diagonal

– or h.˛/ touches the diagonal at one end only, with slope > 1 or < 0.

b b

�.˛/ D C1
�.˛/ D �1

�.˛/ D 0

Figure 3. �xed points counting
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Proof. Since f nj˛ is a continuous strictly monotone map, we have

�.f n Ox; x/ D �.h. Ox/; x/

and

".f n Ox/ D ".h. Ox//

at the two ends of ˛. So we can replace f n by h in �.˛/.

Extend h continuously to the boundary points. Let Ox be a boundary germ.

We check case by case the value of

��.h. Ox/; x/ � ".h. Ox// D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1

2
if h.x/ < x and h. Ox/ > h.x/,

or if h.x/ > x and h. Ox/ < h.x/,

�
1

2
if h.x/ D x,

or h.x/ > x and h. Ox/ > h.x/,

or if h.x/ < x and h. Ox/ < h.x/.

Adding the values at the two ends, we get the lemma.

�e quantity �.˛/ counts the number of ’e�ective’ �xed points of f n
j˛

. If e.g.

f n has 3 �xed points in ˛ then they only count as one provided the middle is given

the opposite sign of the two others.

We also notice that if f is Lipschitz-expanding then �.˛/ is either 0 or C1 for

all n and ˛ 2 Zn. So in that case Nn � 0 for all n.

B. Relation between detR, detB,

and Milnor–�urston’s kneading determinant

We relate here our de�nition of the kneading determinant to that of Milnor and

�urston (modi�ed by adding weights) and that of Baladi and Ruelle [4]. We write

Ik D�ck; ckC1Œ; 0 � k � `
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and de�ne

�k. Ox; t/ D

8

<

:

�. Ox; t I ck/ � �. Ox; t I ckC1/; 0 � k < `;

�. Ox; t I c`/ C �. Ox; t I c0/; k D `;

or

�k. Ox; t/ D
X̀

j D0

�. Ox; t I cj /Qjk (20)

with

Q D

0

B

B

B

B

B

B

@

1 0 0 � � � 0 1

�1 1 0 � � � 0 0

0 �1 1 � � � 0 0
:::

0 0 0 � � � �1 1

1

C

C

C

C

C

C

A

:

For further use we note that by adding the �rst line in Q to the second, the resulting

second line to the third, etc., one obtains a triangular matrix with 1 in the diagonal

except for the bottom right element which becomes 2. �erefore, det Q D 2.

As

�. Ox; ck/ � �. Ox; ckC1/ D �Ik
. Ox/; 0 � k � `;

we may also write

�k. Ox; t/ D
X

m�0

tmŒsg�m. Ox/�Ik
.f m Ox/:

We have the following identity.

Lemma B.1. We have

X̀

kD0

�k. Ox; t/.1 � t skgk/ � 1 for all aC � Ox � b�.

Proof. Using

�Ik
.f m Ox/ skgk D Œsg�.f m Ox/�Ik

. Ox/;
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we get

X̀

kD0

�k. Ox; t/ D
X

m�0

tmŒsg�m. Ox/

D 1 C
X

m�0

tmC1Œsg�mC1. Ox/

D 1 C
X̀

kD0

X

m�0

tmC1Œsg�mC1. Ox/�Ik
.f m Ox/

D 1 C
X̀

kD0

X

m�0

tmŒsg�m. Ox/�Ik
.f m Ox/ tskgk

D 1 C
X̀

kD0

�k. Ox; t/ tskgk:

Consider now the cutting point increments. For every 0 � i; k � `, let

�ci
�k.t / D

8

<

:

�k.a+; t / C �k.b-; t /; i D 0;

�k.c+

i ; t / � �k.c-
i ; t /; 0 < i � `;

(21)

and de�ne the augmented Milnor–�urston kneading matrix

N.t / D .�ci
�k.t //0�i;k�` :

Now, Milnor and �urston originally de�ned their kneading matrix as the `�.`C1/

sub-matrix consisting of N.t / without the �rst line:

yN.t / D .�ci
�k.t //iD1;��� ;`; kD0;1;��� ;` :

Denote by Dj .t / the determinant of yN.t / after deleting the j -th column. Baladi

and Ruelle [4] used another matrix B.t / obtained from

R.t / D .�ci
�.�; t I ck//0�i;k�`

by deleting the �rst line and the �rst column.



Kneading with weights 373

Proposition B.2. �e quantity

DMT.t / WD
.�1/j Dj .t /

1 � sj gj t

is independent of j . Setting

H.t/ D 1 � t .s0g0 C s`g`/=2;

we have
1

2
detN.t / D DMT.t / D detR.t / D

detB.t /

H.t/
: (22)

Proof. Let

v D

0

B

@

1 � s0g0t
:::

1 � s`g`t

1

C

A

and let .e0/i D ıi;0 be the canonical �rst base vector in C
`C1. By Lemma B.1,

P`
kD0 �k. Ox; t/vk D 1: In view of the signs in (21) with the �rst line having a

plus sign and the rest a minus sign, we get N.t /v D 2e0. By Cramer’s solution

for a linear system, vj D 1 � sj gj t D 2.�1/j Dj .t /=detN.t / which implies the

�rst statement as well as the �rst equality in (22). From de�nitions (20) and (21)

we see that N.t / D R.t /Q. As det Q D 2 we obtain the second equality. For

the last, note that the vector Qv has v0 C v` D 2H.t/ as its �rst row. Since

R.Qv/ D RQv D Nv D 2e0 we obtain again by Cramer’s formulae (eliminating

the �rst row and the �rst line in R): 2H.t/ D v0 C v` D 2 detB.t /= detR.t /.

Corollary B.3. If all the weights gi are equal to 1, all three determinants DMT,

detR, detB have the same zeros in D.

Proof. In this case H.t/ D 1 � t .s0 C s`/=2 D 1 or 1 � t so H.t/ has no zeros in

¹jt j < 1=�1º D D.

C. �e �rst zero of detB may not correspond to the pressure

We have shown in �eorem 2.3, Part 3, that the �rst zero of detR corresponds to

the pressure. And in case all the weights gi are 1, one can also use the �rst zero of

detB (Corollary B.3). �is need not, however, be true with more general weights.

Here is a counter example.
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Let

I D Œa; b� D Œ0; 3�; I0 D�0; 1Œ; I1 D�1; 2Œ; I2 D�2; 3Œ:

We have

f .x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2x; 0 � x � 1;

2 � 2.x � 1/; 1 � x � 2;

2.x � 2/; 2 � x � 3:

Let us assign weights g0 D g1 D 1 and g2 D M .

Note that f .I2/ D Œ0; 2� and that

f W Œ0; 2� �! Œ0; 2�

is the full tent map. �ere is no periodic points in I2. Using Lemma A.1 and the

de�nition one obtains

�.t/ D exp
�

X

n�1

tn

n
2n

�

D .1 � 2t/�1:

So by (22) and �eorem 2.2 we have

DMT.t / D detR.t / D
1

�.t/
D 1 � 2t:

�e �rst zero being 1=2 one obtains that the pressure is log 2 (this pressure can

also be computed directly). It is easily seen that the topological entropy is also

log 2.

On the other hand,

H.t/ D 1 �
t

2
.s0g0 C s2g2/ D 1 �

t

2
.1 C M/:

So by (22) again

detB.t / D H.t/ detR.t / D
�

1 �
t

2
.1 C M/

�

.1 � 2t/:

If M > 3, then detB.t / has a ’spurious’ zero at 2=.1 C M/ smaller than 1=2.

So the �rst positive zero of B.t / does not correspond to the pressure in this

case. By increasing M , one can make this �rst zero arbitrarily small without

changing the pressure.
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