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Abstract. The notion of hidden variable fractal interpolation provides a method to approx-
imate functions that are self-referential or non-self-referential, and consequently allows
great flexibility and diversity for the fractal modeling problem. The current article intends
to apply hidden variable fractal interpolation to associate a class of R2-valued continuous
fractal functions with a prescribed continuous function. Suitable values of the parameters
are identified so that the fractal functions retain positivity and regularity of the germ func-
tion. As an application of the developed theory, we obtain positive C1-cubic spline hidden
variable fractal interpolation functions corresponding to a prescribed set of positive data,
thus initiating a new approach to shape preserving approximation via hidden variable frac-
tal function. Depending on the values of the parameters, these positive interpolants can
reflect the self-referentiality or non-self-referentiality of the original data defining function
and fractality of its derivative. Therefore, the present scheme outperforms the traditional
nonrecursive positivity preserving C1-cubic spline interpolation scheme and its fractal ex-
tension studied recently in the literature.
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1. Introductory remarks

Fractal interpolation introduced by Barnsley [2, 3, 4] and followed in earnest by
a host of researchers (see, for instance, [8, 9, 10, 12, 18, 20, 23, 29]) is a relatively
recent technique of interpolation and approximation, which is more versatile than
the traditional nonrecursive approximation methods. Construction of interpola-
tion schemes that reflect the intrinsic shape (expressed mathematically in terms
of positivity, monotonicity, convexity, etc.) inferred by a prescribed set of data
points, which is generally referred to as shape preserving interpolation (isogeo-
metric interpolation), has received a great interest in the last decades (see, for
instance, [11, 13, 14, 24] and references quoted therein).

Ubiquity of fractal functions is claimed by the fractal researchers in various
contexts, inside the scope of pure mathematics and the real world applications.
One of the promising topic, at least in our opinion, in this regard is the demon-
stration that the fractal functions can be explored in the field of shape preserving
approximation, thus unifying the two fields that are otherwise developing inde-
pendently and in parallel. As a humble contribution to this goal, our group has
initiated a study on shape preserving fractal interpolation and approximation us-
ing Iterated Function Systems (IFSs) composed of suitable families of polynomial
and rational (see [10, 25, 27]) functions. These shape preserving fractal interpola-
tion schemes possess the novelty that the interpolants inherit the shape property
in question and at the same time the derivatives of these interpolants own irregu-
larity in a finite or dense subset of the interpolation interval. Consequently, these
schemes are relatively more amenable in the study of nonlinear and nonequilib-
rium phenomena, for instance, in electromechanical systems and fluid dynamics
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problems. However, these fractal functions are self-affine, self-similar or more
generally self-referential in the sense that the graph of the function is a union of
transformed copies of itself. This leads to the loss of flexibility and inadequacies
in approximation of a function that shows no self-similarity or less self-similarity.

Barnsley et al. [5] conceived the idea of hidden variable Fractal Interpolation
Functions (FIFs), which are more diverse, appealing and irregular than a tradi-
tional FIF. Hidden variable FIF are generally non-self-referential. For simulat-
ing curves that exhibit partly self-referential and partly non-self-referential nature,
Chand and Kapoor [9] introduced the notion of coalescence hidden variable FIF.
We shall supply more particulars – of a technical nature – concerning the hid-
den variable FIF in the next section soon after we finish discussing this general
introductory remarks.

Due to a seemingly complicated structure, it is a priori dubious whether a
useful and elegant theory of shape preserving interpolation can be built upon the
hidden variable or coalescence hidden variable FIF, and the current article is an
attempt in this direction. The primary intent of this article is to employ C1-cubic
spline hidden variable FIF for positivity preserving interpolation, thereby giving a
class of positive interpolants that include traditional positive C1-cubic spline [24]
and its fractal extension [10] studied recently as special cases. However, our meth-
ods are general enough in scope to enable one to carry out the analysis with dif-
ferent spline structures. A cheerful potent is that the current approach provides
more theoretical insights to the hidden variable fractal interpolation, making it
potentially applicable in approximation theory.

Using an IFS whose maps are chosen based on a given univariate continuous
function f defined on a compact real interval I , a family

¹f ˛ W ˛ 2 RM ; j˛nj < 1; n D 1; 2; : : : ; M º

of fractal functions associated with f can be constructed, where M depends upon
the number of points at which f is sampled. Navascués [19] introduced an operator

F˛ W C.I / �! C.I /

defined through

f 7�! f ˛

and developed properties of this operator. This enriched the fractal approximation
theory and facilitated the theory of fractal functions to interact with the fields such
as functional analysis and operator theory (see, for instance, [20, 21]).
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Following a similar rationale, we apply hidden variable FIF to associate a fam-
ily of R2-valued continuous fractal functions with a prescribed continuous func-
tion f W I ! R2, where R2 is endowed with the l1-norm (taxicab norm). To be
more precise, given a continuous function

f W I �! R2;

we obtain a family of continuous fractal functions f ŒA� parameterized by a block
matrix

A D ŒAn�MnD1;

where each An is a suitable matrix in M 2�2.R/, the space of all 2�2 matrices hav-
ing real entries. As the reader will discern, this is a natural extension of the notion
of ˛-fractal function f ˛. The advantage is that the function whose graph is the
orthogonal projection of graph.f ŒA�/ � I � R2 provides a non-self-referential
fractal function corresponding to a given real valued continuous function in con-
trast to the self-referential fractal generalizations obtained through ˛-fractal op-
erator. Furthermore, by a proper choice of elements of the hidden variable IFS,
the projection can be made self-referential as well, thus providing more flexibility
and diversity in the process of approximation. We may refer f ŒA� as the A-fractal
function corresponding to f or the fractal perturbation of f . Some properties of
the map f 7! f ŒA� are established; see Section 3.

The presence of the block matrix parameter A in the constructed function un-
doubtedly provides more flexibility, which may be exploited in various approxi-
mation problems. However, it is not devoid of interest to note that this flexibility
raises, quite naturally, the question of an “optimal” choice of parameter, which is
an “inverse problem” of fractal approximation. To this end, in Section 4 we prove
that given a continuous function ˆ W I ! R2 and its Lipschitz continuous approx-
imant f , the question of obtaining a hidden variable fractal analogue f ŒA� close
to ˆ reduces to a constrained nonlinear convex optimization problem. Though we
do not attempt to solve this optimization problem completely, it is worth to recall
here that a constrained optimization problem where the objective function and the
constraints are convex possesses nice theoretical properties and can be efficiently
solved numerically. By providing an estimate for the error caused by a perturba-
tion of the parameter A occurring in the fractal function f ŒA�, sensitivity analysis
is also broached.

As we alluded earlier, our own interest in the present formalism of the hid-
den variable FIF has been stimulated from the practical need to construct shape
preserving interpolants that are more flexible than the traditional non-recursive
C1-cubic interpolant and its fractal extension. To achieve this goal, we shall adopt
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a two step procedure as follows. The first step is intended to solve a generic prob-
lem wherein we identify suitable values of the parameters so that the perturbed
fractal function f ŒA� preserves order of regularity and positivity of the original
function f , where the positivity f is understood componentwise; see Section 5.
Next, we obtain C1-cubic hidden variable FIF as perturbation (i.e., A-fractal func-
tion) of the classical cubic interpolants of the extended data. Finally, in Section 6
we apply the developed theory so that C1-cubic hidden variable FIF arising out of
f ŒA� preserves positivity of the classical cubic spline; a procedure that culminate
with the shape preserving C1-cubic hidden variable FIF. Section 7 provides some
simple numerical examples and graphs.

2. Rudiments of fractal interpolation and hidden variable FIF

To make the article fairly self-contained we shall record here an abbreviated de-
velopment of the hidden variable FIF. The reader, if so inclined, may consult the
well-known treatises [3, 5] for a complete and rigorous treatment.

Let .X; dX/ be a complete metric space with metric dX . If

fn W X �! X; n D 1; 2; : : : ; N;

are continuous mappings, then

I D ¹X I fn W n D 1; 2; : : : ; N º
is called an iterated function system (IFS for short). If, in addition, each fn is a
contraction, then I is referred to as a hyperbolic IFS. Denote by H.X/, the hyper-
space of all nonempty compact subsets of X . There is a natural metric, called the
Hausdorff metric, which completes H.X/. Associated with the IFS I, there exists
a set-valued Hutchinson map F on H.X/ defined by

F.B/ D
N[

nD1

fn.B/ for all B 2 H.X/:

Given a hyperbolic IFS I and any set B 2 H.X/, there exists a unique set A, called
the attractor of the hyperbolic IFS, such that

A D F.A/ D lim
n!1F n.B/;

where F n denotes the n-fold autocomposition of F and the limit is taken in the
Hausdorff metric. In what follows, we consider suitable IFS whose attractor is the
graph of a continuous function interpolating a prescribed data set.
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Given a set of interpolation points

� D ¹.xn; yn/ 2 R2 W n D 1; 2; : : : ; N º
with strictly increasing abscissae, set

I D Œx1; xN � and In D Œxn; xnC1� for n 2 J D ¹1; 2; : : : ; N � 1º.
Define contraction homeomorphisms un W I ! In satisfying

un.x1/ D xn; un.xN / D xnC1:

Consider bivariate mappings vn W I �R ! R that are continuous in the first argu-
ment, contraction in the second argument, and fulfilling

vn.x1; y1/ D yn; vn.xN ; yN / D ynC1; n 2 J:

Let X WD I � R and consider the IFS

I D ¹X I wn D .un; vn/ W n 2 J º:
The attractor G D G.f / of this IFS is the graph of a continuous map f W I ! R

satisfying
f .xn/ D yn; for n D 1; 2; : : : ; N .

Further, f is the fixed point of the operator defined by

.Tg/.x/ D vn.u�1
n .x/; g ı u�1

n .x//; x 2 In; n 2 J:

The function f is referred to as the fractal interpolation function (FIF) corre-
sponding to �. Since G.f / is the union of transformed copies of itself, specifi-
cally

G.f / D
[
n2J

wn.G.f //;

the map f is a self-referential function.
The non-self-referential functions can be approximated by using the notion of

hidden variable FIF, which we shall succinctly review in the following.
For the data set �, by introducing a set of real parameters ¹zn W n D 1; 2; : : : ; N º

whose selection is highly subjective, we define a generalized set of data to be
y� D ¹.xn; yn; zn/ 2 I � R2 W n D 1; 2; : : : ; N º:

The idea is to construct a fractal interpolation function for y�, and project its graph
into I �R in such a way that the projection is the graph of a function that interpo-
lates �. To this end, one proceeds as follows. For n 2 J , let the affine functions
Ln W I ! In be defined so as to satisfy

Ln.x/ D anx C bn; Ln.x1/ D xn; Ln.xN / D xnC1: (1)
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Let R2 be endowed with the Manhattan metric

dM ..x1; y1/; .x2; y2// D jx1 � x2j C jy1 � y2j;

which is induced by the l1-norm. Here we note that an element in R2 may be
regarded as an ordered pair .a1; a2/ or as a column matrix .a1; a2/T which will
be clear from the context. Let Fn W I � R2 ! R2:

Fn.x; y/ D Fn.x; y; z/

D .F 1
n .x; y; z/; F 2

n .x; z//T

WD An.y; z/T C .pn.x/; qn.x//T ;

(2)

where T denotes the transpose, An are upper-triangular matrices
�
˛n ˇn

0 �n

�
, and pn,

qn are suitable real valued Lipschitz continuous functions so that the following
conditions are satisfied for all n 2 J :

(1) dM .Fn.x; y; z/; Fn.x�; y; z// � cjx � x�j, for some constant c > 0;

(2) dM .Fn.x; y; z/; Fn.x; y�; z�// � s dM ..y; z/; .y�; z�//, for 0 � s < 1;

(3) join-up conditions:

Fn.x1; y1; z1/ D .yn; zn/ and Fn.xN ; yN ; zN / D .ynC1; znC1/:

Here the variables ˛n, �n, and ˇn are selected such that kAnk1 < 1 for all n 2 J .
That the functions

wn W I � R2 �! I � R2;

.x; y; z/ 7�! .Ln.x/; Fn.x; y; z//;

are contraction maps with respect to the metric d �
M defined by

d �
M ..x; y; z/; .x�; y�; z�// D jx � x�j C � dM ..y; z/; .y�; z�//

for a suitable value of � follows from the conditions on maps Ln and Fn. Conse-
quently, the IFS ¹I � R2I wn W n 2 J º admits an attractor A 2 H.I � R2/. Fur-
ther, the attractor A is the graph of a continuous function g W I ! R2 such that
g.xn/ D .yn; zn/ for all n 2 J . Letting g D .g1; g2/ it follows that g1 W I ! R is
a continuous function interpolating �. The aforementioned function g1 W I ! R

is called (coalescence) hidden variable fractal interpolation function associated
with the set of data � (see, for instance, [9]).
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Let

G WD ¹h W I ! R2 W h is continuous on I; h.x1/ D .y1; z1/; h.xN / D .yN ; zN /º
be endowed with the metric

d.h; h�/ D max¹dM .h.x/; h�.x// W x 2 I º:
To obtain a functional equation for g we recall that g is the fixed point of the
operator

T W G �! G; .Th/.x/ D Fn.L�1
n .x/; h.L�1

n .x///; for x 2 In; n 2 J:

Whence, the vector-valued function g enjoys the functional equation

g.Ln.x// D Ang.x/ C .pn.x/; qn.x//T ; x 2 I:

Consequently, the component functions g1 and g2 obey the following coupled
functional equations.

g1.Ln.x// D ˛ng1.x/ C ˇng2.x/ C pn.x/;

g2.Ln.x// D �ng2.x/ C qn.x/; x 2 I:

μ
(3)

Remark 2.1. The projection G.g1/ of the attractor G.g/ is not always the union of
transformed copies of itself. Hence, g1 is, in general, non-self-referential. It can
be observed that

G.g2/ D
[
n2J

w2
n.G.g2//;

where

w2
n.x; z/ WD .Ln.x/; F 2

n .x; z// D .anx C bn; �nz C qn.x// for all n 2 J:

Thus, g2 is a self-referential fractal function interpolating

¹.xn; zn/ W n D 1; 2; : : : ; N º:
If the elements of the hidden variable IFS are chosen such that zn D yn for all
n D 1; 2; : : : ; N , ˛n C ˇn D �n, and pn D qn for all n 2 J , then g1 coincides
with g2, and hence in this case one obtains a self-referential hidden variable FIF.
Similarly, if ˇn D 0 for all n 2 J , then

G.g1/ D
[
n2J

w1
n.G.g1//;

where

w1
n.x; y; z/ WD .Ln.x/; F 1

n .x; y; z// D .anx C bn; ˛ny C pn.x// 8 n 2 J:

Ergo, we infer that g1 is self-referential in this case as well.
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Let us close this section with a word on notation. Throughout the rest of the
paper, we use the block matrix A D ŒA1 A2 : : : AN �1� D ŒAn�n2J to collectively
represent the parameters involved in the definition of the hidden variable FIF.

3. Continuous R2-valued functions as special cases of hidden variable FIFs

Having dispensed with an overall flavor of the hidden variable FIF, in this section,
we enunciate that a continuous function f W I ! R2 provides a family of fractal
functions f ŒA� parameterized by a certain block matrix A D ŒAn�n2J with

An D
�
˛n ˇn

0 �n

�
;

where f Œ0� D f . We shall also consider certain properties of the corresponding
map f 7! f ŒA� for a fixed A. The researches of Navascués and collaborators
(see, for instance, [20, 21]) influenced our work in this section. While the results
herein share a natural kinship with the corresponding results for a real valued
fractal function, the reader will also discern a considerable degree of disparity
due to the vector valuedness considered here.

Let R2 be endowed with the l1-norm that induces the Manhattan metric and
f D .f1; f2/ 2 Lip.I;R2/, the space of all Lipschitz R2-valued functions on
I D Œx1; xN �. Choose a partition ¹x1; x2; : : : ; xN º of I with increasing abscissae,
and consider the data set � D ¹.xn; f1.xn/; f2.xn// W n D 1; 2; : : : ; N º.

In the IFS ¹I � R2I .Ln; Fn/ W n 2 J º defined through (1) and (2), we consider
the following special choice

pn.x/ D f1 ı Ln.x/ � ˛nb1.x/ � ˇnb2.x/;

qn.x/ D f2 ı Ln.x/ � �nb2.x/;

where b D .b1; b2/ 2 Lip.I;R2/ satisfies b.x1/ D f .x1/ and b.xN / D f .xN /.
In this case, the IFS provides an attractor that is the graph of a continuous function
denoted here as f ŒA� D .f1ŒA�; f2ŒA�/. The fixed point f ŒA� also depends on the
choice of b 2 Lip.I;R2/, although we suppress this dependence in our notation.
We christen this function f ŒA� as A-fractal function of f with respect to the par-
tition � and the function b. Let f be a Lipschitz continuous classical interpolant
for the data set � D ¹.xn; yn; zn/ W n D 1; 2; : : : ; N º. Since f ŒA�.xn/ D f .xn/

for all n D 1; 2; : : : ; N , for any choice of A D ŒAn�n2J and any choice of b satis-
fying the conditions specified earlier, the fractal function f ŒA� can be regarded as
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“fractal generalization” of the classical interpolant f . Following (3), we stipulate
that f ŒA� satisfies

f ŒA�.x/ D f .x/ C An.f ŒA� � b/.L�1
n .x//; x 2 In; n 2 J: (4)

We may also assume that b depends linearly on f , that is to say,

b�f Cg D �bf C bg

or
b D Lf ; where L W Lip.I;R2/ ! Lip.I;R2/

is a linear operator which is bounded with respect to the norm

kf k1 WD sup¹kf .x/kl1 W x 2 I º D sup¹jf1.x/j C jf2.x/j W x 2 I º:

For a fixed partition �, parameter matrix A, and Lipschitz function b, let us con-
sider the (fractal) operator

FŒA� W Lip.I;R2/ � C.I;R2/ ! C.I;R2/I .FŒA�/.f / D f ŒA�:

It is worth pointing out that for a prescribed Lipschitz function f W I ! R, we
can select f D .f; f /, b D .b; b/ satisfying b.x1/ D f .x1/ and b.xN / D f .xN /,
and ˛n C ˇn D �n to construct A-fractal function for f . In this case, we obtain
f ŒA� D .f ŒA�; f ŒA�/, where f ŒA� coincides with the standard �-fractal function
f � corresponding to f with � D .�1; �2; : : : ; �N �1/.

Let us recall that a linear operator T W X0 � X ! Y is a closed operator if for
every sequence ¹xnº in X0 that satisfies xn ! x and T xn ! y for some x 2 X

and y 2 Y , we have
x 2 X0 and T x D y:

Note that, in general, a closed linear operator need not be a bounded operator and
vice versa. If Y is a Banach space, then a bounded linear operator T W X0 � X ! Y

is closed if and only if X0 is a closed subspace of X . The book [1] is a good refer-
ence on closed operators and their properties.

In what follows, we shall establish certain properties of the function f ŒA� and
the operator FŒA�. Before embarking on this project let us note that the block
matrix A can be viewed as an element in M 2�2.N �1/.R/ and

kAk1 D max
n2J

¹j˛nj; jˇnj C j�njº < 1:
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Theorem 3.1. The following holds:

(1) f Œ0� D f . Consequently, if A D 0, then the fractal operator FŒA� is the
identity operator on Lip.I;R2/I

(2) if b D f , then f ŒA� D f ;

(3) the fractal function f ŒA� corresponding to f satisfies the inequality

kf ŒA� � f k1 � kAk1

1 � kAk1

kf � bk1I

(4) for suitable choices of parameters, the fractal function f ŒA� simultaneously
interpolates and approximates f I

(5) if the vector-valued function b depends linearly on f , then the operator

FŒA� W Lip.I;R2/ � C.I;R2/ �! C.I;R2/;

f 7�! f ŒA�;

is linear;

(6) if b D Lf , where L W Lip.I;R2/ ! Lip.I;R2/ is a bounded linear map and
the parameters are chosen so that kAk1 < kLk�1, then the fractal operator

FŒA� W Lip.I;R2/ � C.I;R2/ �! C.I;R2/;

f 7�! f ŒA�;

is bounded, but not closed;

(7) with assumptions as in the previous item, the fractal operator FŒA� is injec-
tive. Denoting by Rg.FŒA�/, the range of FŒA�, the inverse

FŒA��1 W Rg.FŒA�/ �! Lip.I;R2/

is a bounded and closed operator.

Proof. (1) Follows directly from the functional equation for f ŒA� (cf. (4)).

(2) Let b D f . In this case, the functional equation (4) for f ŒA� reads

f ŒA�.x/ D f .x/ C An.f ŒA� � f /.L�1
n .x//; x 2 In; n 2 J;

which is obviously satisfied by f ŒA� D f . Since f ŒA� is obtained as a fixed
point of the map T , from the uniqueness of the fixed point it follows that
f ŒA� D f .
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(3) By definition

kf ŒA� � f k1 D sup¹kf ŒA�.x/ � f .x/kl1 W x 2 I º;
D max

n2J
sup¹k.f ŒA� � f /.x/kl1 W x 2 Inº;

D max
n2J

sup¹kAn.f ŒA� � b/.L�1
n .x//kl1 W x 2 Inº:

Letting f ŒA� D .f1ŒA�; f2ŒA�/ and performing the matrix multiplication,
through a series of self-explanatory steps we obtain

kf ŒA� � f k1
D max

n2J
sup¹j˛n.f1ŒA� � b1/.L�1

n .x// C ˇn.f2ŒA� � b2/.L�1
n .x//j

C j�n.f2ŒA� � b2/ ı L�1
n .x/j W x 2 Inº;

� max
n2J

sup¹j˛njj.f1ŒA� � b1/.L�1
n .x//j

C .jˇnj C j�nj/j.f2ŒA� � b2/.L�1
n .x//j W x 2 Inº;

� max
n2J

kAnk1 sup¹j.f1ŒA� � b1/.L�1
n .x//j

C j.f2ŒA� � b2/.L�1
n .x//j W x 2 Inº;

D kAk1kf ŒA� � bk1;

� kAk1.kf ŒA� � f k1 C kf � bk1/;

from which the desired estimate can be deduced.
(4) For an arbitrary selection of the partition, parameters, and function b, the

interpolation property of f ŒA�, i.e., f ŒA�.xn/ D f .xn/ is evident and it is
in fact a content of the construction.

Let � > 0. To show kf ŒA� � f k1 < �, it suffices to show, thanks to
part (3) of this theorem, that

kAk1

1 � kAk1

kf � bk1 < �:

Choose the parameters ˛n, ˇn, and �n such that

kAk1 <
�

� C kf � bk1
< 1:

With this selection, it is a matter of direct verification that
kAk1

1 � kAk1

kf � bk1 < �;

whence the stated result follows.
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(5) Let f , g be in Lip.I;R2/ and �; � 2 R. We have

.FŒA�/.f / D f ŒA� and .FŒA�/.g/ D gŒA�:

We have to prove .FŒA�/.�f C �g/ D �f ŒA� C �gŒA�. Recall that, for all
x 2 In,

f ŒA�.x/ D f .x/ C An.f ŒA� � bf /.L�1
n .x//;

gŒA�.x/ D g.x/ C An.gŒA� � bg/.L�1
n .x//;

and then

.�f ŒA� C �gŒA�/.x/

D .�f C �g/.x/ C An.�f ŒA� C �gŒA� � b�f C�g/.L�1
n .x//:

Therefore, �f ŒA� C �gŒA� is the fixed point of the operator

.T h/.x/ D Fn.L�1
n .x/; h.L�1

n .x///

D .�f C �g/.x/ C An.h � b�f C�g/.L�1
n .x//:

From the uniqueness of the fixed point we gather that

.�f C �g/ŒA� D �f ŒA� C �gŒA�;

demonstrating the linearity of FŒA�.

(6) From part (3) of this theorem, we have

k.FŒA�/.f /k1 D k.FŒA�/.f / � f C f k1;

� kf ŒA� � f k1 C kf k1;

�
� kAk1

1 � kAk1

kf � bk1 C kf k1
�
;

�
� kAk1

1 � kAk1

kId � Lk C 1
�
kf k1;

where Id is the identity operator on Lip.I;R2/. This shows that the linear
map FŒA� is bounded, and the operator norm satisfies

kFŒA�k � kAk1

1 � kAk1

kId � Lk C 1:
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Note that Lip.I;R2/ is a proper dense subspace of C.I;R2/, with details
supplied in due course. Therefore, the bounded linear operator FŒA� is not
closed follow at once from the result quoted elsewhere. However, we shall
provide the details in the following. We have proved already that FŒA� is
bounded. Let us assume, contrariwise, that FŒA� is closed as well. Let
f 2 C.I;R2/ n Lip.I;R2/. By the denseness, there exists a sequence ¹fnº
in Lip.I;R2/ such that fn ! f . Since FŒA� is bounded, ¹.FŒA�/.fn/º
is a Cauchy sequence in C.I;R2/. Consequently, by the completeness of
C.I;R2/, .FŒA�/.fn/ ! g for some g 2 C.I;R2/: Using the assumption that
FŒA� is a closed operator, we obtain f 2 Lip.I;R2/ and .FŒA�/.f / D g,
contradicting the choice of f . Hence the assertion.

(7) It is patent from a moment’s reflection on the proof of part (3) of this theorem
that

kf ŒA� � f k1 � kAk1kf ŒA� � bk1 D kAk1kf ŒA� � Lf k1:

Assume .FŒA�/.f / D f ŒA� D 0. Then, we have

kf k1 � kAk1kLkkf k1:

Since kAk1 < kLk�1, it is manifest that kf k1 D 0. That is f D 0, yielding
injectivity of the operator FŒA�. Again using part (3)

kf k1 � kf ŒA� � f k1 C kf ŒA�k1 � kAk1kf ŒA� � Lf k1 C kf ŒA�k1:

By some simple manipulations on the above inequality we obtain

kf k1 � 1 C kAk1

1 � kAk1kLkkf ŒA�k1;

from which we see that the inverse operator FŒA��1 is bounded.
Let ¹gnº be a sequence in Rg.FŒA�/ be such that gn ! g in C.I;R2/ and
.FŒA��1/.gn/ ! f in Lip.I;R2/. Letting

fn D .FŒA��1/.gn/;

we get
fn �! f and .FŒA�/.fn/ �! g:

By the boundedness of the map FŒA� and uniqueness of limit, we infer that
g D .FŒA�/.f / 2 Rg.FŒA�/ and f D .FŒA��1/.g/. In particular, it follows
that FŒA� has a closed range. This concludes the proof.
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For the remaining part of this section, let us assume that the function b used to
generate f ŒA� from f satisfies b D Lf , where L is a bounded linear operator on
Lip.I;R2/. As indicated at the beginning of this section, we now turn to the task
of obtaining fractal analogue of a vector-valued function f 2 C.I;R2/. Since
we have already accomplished the fractal analogue of a vector-valued function
f 2 Lip.I;R2/, what remains is just to adapt the following elementary theorem
on the extension of a bounded linear map.

Theorem 3.2 ([6]). Let V0 � V be a dense subspace of a normed linear space V

and W be a Banach space. Let T W V0 ! W be a bounded linear operator. Then
there is a unique bounded linear operator

xT W V �! W

such that
xT v D T v; for all v 2 V0,

and
k xT k D kT k:

The following remark sheds some light on this extension.

Remark 3.3. Given v 2 V , by density of V0 in V there exists a sequence ¹vnº in
V0 such that lim vn D v. We define xT .v/ D lim T .vn/.

To apply the aforementioned extension theorem in the present setting we need
denseness of Lip.I;R2/ in C.I;R2/, which can be deduced from the Weierstrass
theorem for uniform approximation as follows. Let f D .f1; f2/ 2 C.I;R2/ and
� > 0. Since fi W I ! R, i D 1; 2; are continuous, by the Weierstrass theorem,
there exist polynomials pi , i D 1; 2; such that jfi .x/ � pi .x/j <

�

2
for all x 2 I .

Consider p D .p1; p2/ 2 Lip.I;R2/. We have

kf � pk1 D sup¹k.f � p/.x/kl1 W x 2 I º

D sup¹
2X

iD1

jfi .x/ � pi .x/j W x 2 I º

< �;

demonstrating the denseness of Lip.I;R2/ in C.I;R2/.
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Consider f 2 C.I;R2/. For the bounded linear map

FŒA� W Lip.I;R2/ ! C.I;R2/;

consider the extension

SFŒA� W C.I;R2/ ! C.I;R2/

and let
Nf ŒA� D .SFŒA�/.f /:

The function Nf ŒA� is defined as the A-fractal function associated with f . The
following diagram epitomizes the extension procedure.

¹fnº � Lip.I;R2/
k:k1 ��

FŒA�

��

f 2 C.I;R2/

NFŒA�
��

¹fnŒA�º � C.I;R2/
k:k1 �� Nf ŒA� 2 C.I;R2/

Thus, for a given R2-valued continuous function f , we produce a class of fractal
functions parameterized by a block matrix A, the germ being f and the “base
function” being b, as promised earlier.

On lines similar to Theorem 3.1, some elementary properties of the operator
SFŒA� can be established, for instance, we have the following.

Theorem 3.4. For the variables ˛n, ˇn, and �n, n 2 J selected so that kAk1 <

.1 C kId � Lk/�1, the corresponding fractal operator SFŒA� is a topological auto-
morphism on C.I;R2/:

Proof. With stated assumptions, SFŒA� is a bounded linear map. Let xL be the norm
preserving extension of L to C.I;R2/. Consider f 2 C.I;R2) and let ¹fnº be a
sequence in Lip.I;R2/ such that fn ! f . Then

k.SFŒA�/.f / � f k1 D lim k.FŒA�/.fn/ � fnk1;

� kAk1 lim k.FŒA�/.fn/ � Lfnk1;

D kAk1 lim k.SFŒA�/.fn/ � xLfnk1;

D kAk1k.SFŒA�/f � xLf k1;

� kAk1.k.SFŒA�/f � f k1 C kf � xLf k1/:

Hence,
k.SFŒA�/.f / � f k1 � kAk1

1 � kAk1

kf � xLf k1:
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Consequently,

kId � SFŒA�k � kAk1

1 � kAk1

kId � xLk:

It is straight forward to see that extension of Id � L is Id � xL and

kId � Lk D kId � xLk;

where Id stands for identity operator on appropriate spaces (see, for instance,
[20, 21]). The hypothesis kAk1 < .1 C kId � Lk/�1 now yields kId �SFŒA�k < 1.
That the operator SFŒA� D Id � .Id � SFŒA�/ has bounded inverse follows from the
standard theorem which reads: if T is a bounded linear operator from a Banach
space into itself such that kT k < 1, then I � T has bounded inverse and the

Neumann series
1P

kD0

T k converges in operator norm to .I � T /�1: This completes

the proof.

4. On perturbation in parameter matrix and an optimal choice

The process of associating a parameterized family of fractal functions f ŒA� with
a function f clearly offers flexibility, and the parameters may be selected so as to
cater to the situations one encounters in practice. The dependence of fractal func-
tion on the parameter matrix A and the vast diversity in the choice of parameters
raise the question of quantification of the error caused in the fractal function f ŒA�

due to a perturbation in A and also an “optimal” choice of A. In this section, we
make an earnest attempt to address these questions. To avoid technicalities, we
shall assume that the germ f of the family of fractal functions ¹f ŒA�º belongs to
the function class Lip.I;R2/.

Let the fractal function corresponding to f 2 Lip.I;R2/ with respect to an
arbitrary partition � of I , base function b 2 Lip.I;R2/, and the parameters ˛n,
ˇn, �n, n 2 J satisfying j˛nj < 1, jˇnj C j�nj < 1 be denoted by f ŒA�, where
A D ŒAn�n2J ,

An D
�
˛n ˇn

0 �n

�
:

Suppose that the parameters are perturbed slightly, say to Q̨n D ˛n C �n, Q̌
n D

ˇn C ın, and Q�n D �n C 	n so that

j Q̨nj < 1 and j Q̌
nj C j Q�nj < 1; for n 2 J ,
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keeping other elements in the IFS unaltered. We denote the corresponding matrix
by zA D Œ zAn�n2J , where

zAn D
� Q̨n

Q̌
n

0 Q�n

�
:

Let us denote the fractal function associated with f generated via this perturbed
IFS by f Œ zA�. Both f ŒA� and f Œ zA� interpolate f at the partition points in �.
With these notation we have the following theorem that analyzes the perturbation
error.

Theorem 4.1. Let f 2 Lip.I;R2/ be the original function for which f ŒA� and
f Œ zA� are the fractal functions corresponding to two different sets of parameters
as specified above. Then

kf Œ zA� � f ŒA�k1 � k zA � Ak1

.1 � kAk1/.1 � k zAk1/
kf � bk1:

Proof. We begin by noting that for x 2 In, n 2 J , the following functional equa-
tions hold:

f ŒA�.x/ D f .x/ C An.f ŒA� � b/.L�1
n .x//; (5a)

f Œ zA�.x/ D f .x/ C QAn.f Œ zA� � b/.L�1
n .x//: (5b)

Denoting f ŒA� componentwise by .f1ŒA�; f2ŒA�/ we obtain

kf Œ zA� � f ŒA�k1

D sup¹jf1ŒA�.x/ � f1Œ zA�.x/j C jf2ŒA�.x/ � f2Œ zA�.x/j W x 2 I º:
Writing the functional equations expressed in (5) componentwise and performing
calculations similar to that in part (3) of Theorem 3.1 we infer that

kf Œ zA� � f ŒA�k1 � k zA � Ak1

1 � kAk1

kf Œ zA� � bk1;

� k zA � Ak1

1 � kAk1

.kf Œ zA� � f k1 C kf � bk1/;

� k zA � Ak1

1 � kAk1

� k zAk1

1 � k zAk1

kf � bk1 C kf � bk1
�
;

D k zA � Ak1

.1 � kAk1/.1 � k zAk1/
kf � bk1:
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Second step in the preceding analysis uses the triangle inequality, penultimate step
employs Theorem 3.1, part (3), and the last step is a matter of direct verification,
finishing the proof.

Remark 4.2. The foregoing theorem illustrates that a small perturbation in vari-
ables ˛n, ˇn, �n, n 2 J leads to small change in the corresponding members of
the parameterized family ¹f ŒA�º, as expected.

The parameters involved in the defining IFS possess a decisive influence on the
closeness of fit of the corresponding FIF. Different approaches have been sug-
gested to find optimum values of these parameters (see, for instance, [15, 16, 17])
in the case of a FIF. However, our search for a method of selecting optimum param-
eters in the case of hidden variable FIF came up empty-handed. In what follows,
we set out some facts on the optimal choice of parameters (i.e., the partition ma-
trix A) from an approximation point of view. To be precise, given a R2-valued
Lipschitz continuous function ˆ D .ˆ1; ˆ2/ and a Lipschitz continuous approxi-
mant f , we prove that finding a block matrix A of parameters for which f ŒA� is
close to ˆ is a nonlinear constrained convex optimization problem with a solution.

Let

B� WD
²

A D ŒAn�n2J W An D
�
˛n ˇn

0 �n

�
W kAk1 � 
 < 1

³
:

The problem is to find A 2 B� for which kˆ � f ŒA�k1 is minimum. Recalling
that f ŒA� is the fixed point of the contraction operator TA (to emphasize the de-
pendence of T on A), in view of the collage theorem (see, for instance, [2]), the
problem reduces to that of finding an A� 2 B� for which

F.A�/ D min
A2B�

kTAˆ � ˆk1:

We do not provide a complete implementation of this convex optimization prob-
lem, however, the philosophy is that there are great advantages, both theoretical
and practical, to recognize or formulate a problem as a convex optimization prob-
lem. The reference [22] provided us with an insight to the problem and an array
of basic tools which we have modified and adapted. Let us note also that the set
B� is convex and parameter (block) matrix A may be treated as an element in
M 2�2.N �1/.R/ equipped with the matrix norm corresponding to the 1-norm for
vectors.

Theorem 4.3. There exists an optimal selection of parameters for which the cor-
responding matrix A� is such that

F.A�/ WD min
A2B�

kTAˆ � ˆk1:



100 A. K. B. Chand, S. K. Katiyar, and P. V. Viswanathan

Finding such an optimal A� is a convex optimization problem.

Proof. Consider
F W B� �! RC [ ¹0º

defined by
F.A/ D kTAˆ � ˆk1:

Firstly, let us prove that F is a convex function on

B D
²

A D ŒAn�n2J W An D
�
˛n ˇn

0 �n

�
W kAk1 < 1

³
:

Choose elements A D ŒAn�n2J and B D ŒBn�n2J in B, where An D �
˛n ˇn

0 �n

�
and

Bn D �˛0

n ˇ 0

n

0 � 0

n

�
. Let 0 < � < 1, and let us denote a generic R2-valued function g

by .g1; g2/. Recall that

.TAˆ/.x/ D f .x/ C An.ˆ � b/.L�1
n .x//; x 2 In; n 2 J:

We have

kTAˆ � ˆk1
D sup¹j.TAˆ/1.x/ � ˆ1.x/j C j.TAˆ/2.x/ � ˆ2.x/j W x 2 I º;
D max

n2J
sup¹jf1.x/ C ˛n.ˆ1 � b1/.L�1

n .x// C ˇn.ˆ2 � b2/.L�1
n .x// � ˆ1.x/j

C jf2.x/ C �n.ˆ2 � b2/ ı L�1
n .x/ � ˆ2.x/jº

Applying the above equations for �A C .1 � �/B in place of A and using

fi .x/ D .�fi C .1 � �/fi/.x/

and
ˆi .x/ D .�ˆi C .1 � �/ˆi /.x/;

for i D 1; 2, a routine calculation yields

kT�AC.1��/Bˆ � ˆk1 � �kTAˆ � ˆk1 C .1 � �/kTBˆ � ˆk1:

Thus, F is a convex map on B. Since a real valued convex function on an open
convex set in a normed linear space is continuous, F is continuous onB and hence
on the subset B� . The finite dimensionality of M 2�2.N �1/.R/ yields compactness
to the closed and bounded set B� . Now it follows from a standard theorem in
analysis that B� admits a point A� at which the continuous function F is mini-
mum. Further, detecting such an A� is a convex optimization problem since F is
a convex function and B� is convex.
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5. Fractal function f ŒA� preserving some properties
of the original function f

In this section our perspective changes slightly, as we begin to perceive the hid-
den variable fractal perturbation process, that is the process of obtaining fractal
function f ŒA� from f , as a key to develop a new approach to shape preserving
interpolation. Towards this goal first we shall identify suitable parameters in the
IFS so that f ŒA� preserves the properties (for instance, positivity and regularity)
inherent in f . The elements of the IFS that may require appropriate selection for
this “property preserving fractal perturbation” are function b, matrix A containing
parameters, and perhaps partition �. The purpose of this section is to elaborate
upon this sentiment.

For the sake of simplicity of presentation, let us introduce the following nota-
tion. For a given f D .f1; f2/ 2 Lip.I;R2/ and b D .b1; b2/ selected to construct
the corresponding A-fractal function f ŒA� D .f1ŒA�; f2ŒA�/, let

Mi D max
x2I

bi .x/; min D min
x2I

fi .Ln.x//; for i D 1; 2; n 2 J:

Note that the existence of these parameters follows from the continuity of func-
tions involved in their definition and the compactness of the domain.

Theorem 5.1. Let f D .f1; f2/ 2 Lip.I;R2/ be such that f � 0, i.e.,

f1.x/ � 0 and f2.x/ � 0 for all x 2 I .

Consider an arbitrary partition ¹x1; x2; : : : ; xN º of I D Œx1; xN � satisfying

x1 < x2 < � � � < xN

and a function b D .b1; b2/ satisfying

b.x1/ D f .x1/ and b.xN / D f .xN /:

Further, let the block matrix A D ŒAn�n2J , with An D �
˛n ˇn

0 �n

�
, be selected such

that the entries ˛n; ˇn; �n that lie in Œ0; 1/ satisfy

�n � m2n

M2

; ˇn C �n < 1; ˛nM1 C ˇnM2 � m1n:

Then the corresponding fractal function f ŒA� preserves the positivity of f , that
is to say,

f1ŒA�.x/ � 0 and f2ŒA�.x/ � 0 for all x 2 I .
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Proof. Note that the fractal function f ŒA� D .f1ŒA�; f2ŒA�/ is constructed by
iteration via the functional equations

f1ŒA�.Ln.x// D F 1
n .x; f1ŒA�.x/; f2ŒA�.x//;

D ˛nf1ŒA�.x/ C ˇnf2ŒA�.x/ C f1.Ln.x// � ˛nb1.x/ � ˇnb2.x/;

and
f2ŒA�.Ln.x// D F 2

n .x; f2ŒA�.x//;

D �nf2ŒA�.x/ C f2.Ln.x// � �nb2.x/:

Thus the self-referential function f2ŒA� is obtained recursively by inserting new
points between existing data points, iterations being initialized with the node points
¹.xn; f2ŒA�.xn// W n D 1; 2; : : : ; N º, where f2ŒA�.xn/ D f2.xn/ � 0. Therefore,
to prove that f2ŒA�.x/ � 0 for all x 2 I , it is enough (by induction) to prove
that f2ŒA� evaluated at points in .k C 1/-th iteration is positive whenever f2ŒA� at
distinct points in k-th iteration is known to be positive. This is equivalent to prove
that

F 2
n .x; z/ D �nz C f2.Ln.x// � �nb2.x/ � 0; for all n 2 J;

whenever .x; z/ 2 I �R and z � 0. Again for �n � 0, the conditions F 2
n .x; z/ � 0

for all .x; z/ 2 I � R and z � 0 are met if

f2.Ln.x// � �nb2.x/ � 0:

By the definition of m2n and M2, we have

f2.Ln.x// � �nb2.x/ � m2n � �nM2:

With the aforementioned points one can deduce that f2ŒA�.x/ � 0 for all x 2 I is
satisfied if �n 2 Œ0; 1/ is selected so that �n � m2n

M2

for all n 2 J . Note also that if
M2 D 0, then no additional constraint on �n needs to be imposed.

Having selected �n, n 2 J according to the above prescription, by similar
arguments it can be seen that f1ŒA�.x/ � 0 for all x 2 I is fulfilled, if

˛n � 0; ˇn � 0 and f1.Ln.x//�˛nb1.x/�ˇnb2.x/ � 0; for all x 2 I; n 2 J:

Note that

f1.Ln.x// � ˛nb1.x/ � ˇnb2.x/ � m1n � ˛nM1 � ˇnM2:

Consequently, the desired condition turns out to be true if ˛nM1 C ˇnM2 � m1n.
This completes the proof.
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The selection of parameters may seem to be computationally demanding due to
the presence of many inequality constraints in the above theorem, but in actuality
it is easy to select the parameter values satisfying all the required conditions. It is
also worth to mention that our intention here is to provide (sufficient) conditions
on parameters that ensure the positivity. Automatic strategy for a clever selection
of the parameters, i.e., finding “optimum” values of parameters is indeed a diffi-
cult problem for which one approach in approximation point of view is via convex
optimization stated previously. However, the particular nature of the problem dic-
tates what type of optimization needs to be employed and exploring various other
approaches deserves further research.

The next theorem points to the conditions on the elements of the (hidden vari-
able) IFS so that the fractal function f ŒA� retains the C1-continuity of f .

Theorem 5.2. Let f D .f1; f2/ W I ! R2 be a continuously differentiable func-
tion. Let � D ¹x1; x2; : : : ; xN º be an arbitrary partition on I satisfying

x1 < x2 < � � � < xN :

Consider a block matrix A D ŒAn�n2J , An D �
˛n ˇn

0 �n

�
whose parameters satisfy

j˛nj < an; jˇnj C j�nj < an; for all n 2 J .

Let b D .b1; b2/ be a continuously differentiable function satisfying

b.j /.x1/ D f .j /.x1/; b.j /.xN / D f .j /.xN /; for j D 0; 1.

Then the correspondingR2-valued fractal function f ŒA� is continuously differen-
tiable, and

f ŒA�.j /.xn/ D f .j /.xn/ for j D 0; 1 and n D 1; 2; : : : ; N .

Proof. Consider

D1.I;R2/ WD ¹h 2 C1.I;R2/ W h.j /.x1/ D f .j /.x1/;

h.j /.xN / D f .j /.xN /; j D 0; 1º

endowed with the metric induced by the C1-norm

khkC1 WD khk1 C kh.1/k1:
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Note that .D1.I;R2/; k:kC1/ is a complete metric space. Define a map

TA W D1.I;R2/ �! D1.I;R2/

via
.TAh/.x/ D Fn.L�1

n .x/; h.L�1
n .x///;

D f .x/ C An.h � b/.L�1
n .x//; x 2 In; n 2 J:

From the conditions on f and b it can be seen that TAh is continuously differen-
tiable on .xn; xnC1/. We prove that TA maps D1.I;R2/ into D1.I;R2/. With the
choice of b, we have

.TAh/.x1/ D f .x1/ and .TAh/.xN / D f .xN /:

Next we verify

.TAh/.1/.x�
n / D .TAh/.1/.xC

n / for all n 2 J: (6)

Differentiating the expression for TAh , and writing the conditions prescribed
in (6) componentwise we obtain the equations

f
.1/

1 .xn/ C a�1
n�1¹˛n�1h

.1/
1 .xN / C ˇn�1h

.1/
2 .xN /

� ˛n�1b
.1/
1 .xN / � ˇn�1b

.1/
2 .xN /º

D f
.1/

1 .xn/ C a�1
n ¹˛nh

.1/
1 .x1/ C ˇnh

.1/
2 .x1/ � ˛nb

.1/
1 .x1/ � ˇnb

.1/
2 .x1/º;

(7)

and
f

.1/
2 .xn/ C a�1

n�1�n�1¹h.1/
2 .xN / � b

.1/
2 .xN /º

D f
.1/

2 .xn/ C a�1
n �n¹h.1/

2 .x1/ � b
.1/
2 .x1/º:

(8)

Since h 2 D1.I;R2/ and b satisfies the conditions

f .1/.xj / D b.1/.xj /; for j D 1; N ,

both sides of (7) coincide with f
.1/

1 .xn/ and both sides of (8) reduce to f
.1/

2 .xn/.
This establishes (6), and consequently TA is well-defined. Using the conditions
on entries of matrix An, from calculations similar to that in Theorem 4.3, we infer
that TA is a contraction map. The corresponding fixed point f ŒA� is C1-continu-
ous. Our analysis also reveals that f ŒA�.1/ interpolates to f .1/ at the knots of the
partition.

Remark 5.3. By a similar rendition of the arguments as in the foregoing theo-
rem, it can be shown that f ŒA� preserves r-smoothness of f , if the parameters
satisfy the following conditions: (i) j˛nj < ar

n, jˇnj C j�nj < ar
n for all n 2 J ,

(ii) b 2 Cr .I;R2/ and (iii) the derivatives up to the order r of b at the extremes of
the interval coincide with the derivatives of f .
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6. Positivity of C1-cubic spline hidden variable FIF

The purpose of the current section is twofold. First is to illustrate the fractal per-
turbation process and its positivity aspect enunciated in the previous sections by
taking cubic spline as an example. Secondly and most importantly, to develop a
positivity preserving cubic spline interpolation scheme that extends and supple-
ments the methods described in the references [10, 24]. Let us elaborate this a
little more. Schmidt and Heß [24] have established the condition on the deriva-
tive parameters so that the C1-cubic spline reflect the positivity property inherent
in a prescribed data set. However, the derivatives of these traditional positive cu-
bic splines are always smooth, except possibly at a finite number of points. To
improve the situation and to represent a positive function ˆ with derivative ˆ.1/

being irregular in a dense subset of the interval, positivity of C1-cubic spline FIF
is studied recently in [10]. These interpolants represent self-referential functions.
The aforementioned limitations of the positive cubic spline and its fractal analogue
recommended our attention to the C1-cubic spline hidden variable FIF for the pos-
itivity preserving interpolation. That is, the C1-cubic spline hidden variable FIF
in this section can be employed to represent self-referential or non-self-referential
positive function ˆ with derivative ˆ.1/ having irregularity in a finite or dense
subset of the interpolation interval.

Consider a set of data points

� D ¹.xn; yn; dn/ W n D 1; 2; : : : ; N º;
where yn denotes the function value and dn denotes the derivative value of an
unknown function ˆ1 at the knot point xn. To obtain a C1-cubic spline hidden
variable interpolant corresponding to �, we extend it to a generalized data set

y� D ¹.xn; yn; dn; y�
n ; d �

n / W n D 1; 2; : : : ; N º;
where y�

n and d �
n are real parameters that are assumed to be the function values

and the derivative values of a function ˆ2 at the knot point xn. A natural way
of constructing a C1-cubic spline hidden variable FIF corresponding to � is to
employ the general theory given in Section 2 coupled with conditions of differ-
entiability by taking pn and qn as cubic polynomials. However, to fit the cubic
spline hidden variable FIF to the realm of positivity preserving interpolation via
the theory developed in previous sections, we shall obtain it as A-fractal function
corresponding to f D .f1; f2/ 2 Lip.I;R2/. Here f1 and f2 are the traditional
nonrecursive C1-cubic splines corresponding to the data sets

� D ¹.xn; yn; dn/ W n D 1; 2; : : : ; N º
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and
z� D ¹.xn; y�

n ; d �
n / W n D 1; 2; : : : ; N º;

respectively. With

hn D xnC1 � xn and � WD x � x1

xN � x1

;

the traditional nonrecursive cubic interpolant corresponding to � and z� can be
represented as

f1.Ln.x// D ¹hn.dn C dnC1/ � 2.ynC1 � yn/º�3

C ¹�hn.2dn C dnC1/ C 3.ynC1 � yn/º�2 C hndn� C yn;
(9a)

f2.Ln.x// D ¹hn.d �
n C d �

nC1/ � 2.y�
nC1 � y�

n /º�3

C ¹�hn.2d �
n C d �

nC1/ C 3.y�
nC1 � y�

n /º�2 C hnd �
n � C y�

n :
(9b)

To obtain a continuously differentiable fractal perturbation for f D .f1; f2/ 2
C1.I;R2/, we have to select the parameter matrix A and function b D .b1; b2/

according to the specifications in Theorem 5.2. A natural choice of b D .b1; b2/

is the one in which b1 and b2 are the two-point Hermite interpolants (with knots
at x1 and xN ) corresponding to f1 and f2 respectively. That is,

b1.x/ D Œ.xN � x1/.d1 C dN / � 2.yN � y1/��3

C Œ�.xN � x1/.2d1 C dN / C 3.yN � y1/��2 C d1.x � x1/ C y1;

(10a)

b2.x/ D Œ.xN � x1/.d �
1 C d �

N / � 2.y�
N � y�

1 /��3

C Œ�.xN � x1/.2d �
1 C d �

N / C 3.y�
N � y�

1 /��2 C d �
1 .x � x1/ C y�

1 :

(10b)

With these choices of component functions and with A D ŒAn�n2J , where An D�
˛n ˇn

0 �n

�
, n 2 J satisfy j˛nj < an, jˇnj C j�nj < an, we obtain A-fractal function

f ŒA� D .f1ŒA�; f2ŒA�/ 2 C1.I;R2/

corresponding to f D .f1; f2/ 2 C1.I;R2/ defined as

f1ŒA�.Ln.x// D f1.Ln.x// C ˛n.f1ŒA� � b1/.x/ C ˇn.f2ŒA� � b2/.x/; (11a)

f2ŒA�.Ln.x// D f2.Ln.x// C �n.f2ŒA� � b2/.x/; x 2 I; n 2 J: (11b)
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The function f1ŒA� W I ! R enjoying the Hermite interpolation conditions

f1ŒA�.xn/ D yn and f1ŒA�.1/.xn/ D dn

is the desired C1-cubic spline hidden variable FIF corresponding to �. If we
choose the “hidden variables” y�

n and d �
n such that y�

n D yn and d �
n D dn for

all n 2 J , and the parameters according to the relation ˛n C ˇn D �n for all
n 2 J , then the cubic hidden variable FIF f1ŒA� coincides with f2ŒA�, repre-
senting a self-referential C1-cubic FIF approached constructively by Chand and
Viswanathan [10]. For other choices of the hidden variables and parameters, f1ŒA�

is, in general, non-self-referential. Thus, the method is suitable for representing
both self-referential and non-self-referential function, hence referred to as cubic
spline coalescence hidden variable FIF, see also [28].

The preceding discussion accomplishes the first half of what we set about to
do in this section. The rest of this section is devoted to study positivity aspects
of the C1-cubic spline hidden variable FIF. Most of our work has already been
accomplished; what remains is to recast the findings in Theorem 5.1 to the present
context. We quote the following result from the reference [24] as an overture.

Proposition 6.1 (Schmidt and Heß [24]). For the data set ¹.xn; yn; dn/ W n D
1; 2; : : : ; N º, consider the traditional C1-cubic spline s defined as

s.x/ D ¹hn.dn C dnC1/ � 2.ynC1 � yn/ºt3

C ¹�hn.2dn C dnC1/ C 3.ynC1 � yn/ºt2 C hndnt C yn;

with t D x�xn

hn
, where x 2 Œxn; xnC1�. The cubic spline s is nonnegative on In D

Œxn; xnC1� if and only if .dn; dnC1/ 2 Wn, where

Wn W D ¹.x; y/ W hnx � �3yn; hny � 3ynC1º
[ ¹.x; y/ W 36ynynC1.x2 C xy C y2 � 3�n.x C y/ C 3�2

n/

C 3.ynC1x � yny/.2hnxy � 3ynC1x C 3yny/

C 4hn.ynC1x3 � yny3/ � h2
nx2y2 � 0º:

Remark 6.2. The above result gives rise to some simpler conditions for the posi-
tivity of the cubic spline s on In. That is, s is positive on In if .dn; dnC1/ belongs
to one of the following subregions of Wn:

Tn WD ¹.x; y/ W hnx � �3yn; hny � 3ynC1º;

Sn WD
°
.x; y/ W x � �2.yn C p

ynynC1/

hn

; y � 2.yn C p
ynynC1/

hn

±
:
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Coupling Theorem 5.2 with Proposition 6.1, we obtain the following algorithm for
constructing positive (nonnegative) C1-cubic hidden variable FIF corresponding
to � D ¹.xn; yn; dn/ W n D 1; 2; : : : ; N º, where yn � 0 for all n D 1; 2; : : : ; N .

6.1. An Algorithm for positive C1-cubic spline hidden variable FIF.
Step 1 . Given a data set � D ¹.xn; yn/ W n D 1; 2; : : : ; N º wherein yn � 0, extend
it to y� D ¹.xn; yn; y�

n/ W n D 1; 2; : : : ; N º by augmenting real parameters (hidden
variables) y�

n such that y�
n � 0 for n D 1; 2; : : : ; N .

Step 2. Choose the derivative pairs such that .dn; dnC1/ 2 Tn and .d �
n ; d �

nC1/ 2
T �

n for all n 2 J , where

Tn D
°
.x; y/ W x � �3yn

hn

; y � 3ynC1

hn

±
;

T �
n D

°
.x; y/ W x � �3y�

n

hn

; y � 3y�
nC1

hn

±
:

Further, construct the corresponding positive cubic splines fi , i D 1; 2; (cf. (9))
and the functions bi , i D 1; 2 (cf. (10)).

Step 3. For fi and bi , i D 1; 2; as obtained at the end of the previous step,
compute the constants Mi D max

x2I
bi .x/; min D min

x2I
fi .Ln.x// for i D 1; 2:

Choose variables satisfying the constrains

0 � ˛n < an; ˇn � 0; �n 2 Œ0;
m2n

M2

�; ˇn C �n < an; ˛nM1 C ˇnM2 � m1n:

Step 4. Input the derivative values chosen in Step 2 and parameters as prescribed
by Step 3 in the functional equations represented by (11) whereupon the points of
the graph of f1ŒA� and f2ŒA� are computed.

Remark 6.3. If we take the auxiliary variables y�
n and d �

n such that y�
n D yn � 0

and d �
n D dn for all n D 1; 2; : : : ; N , then the fractal function f2ŒA� provides

a self-referential positive function corresponding to ¹.xn; yn/ W n D 1; 2; : : : ; N º.
Therefore the algorithm presented above provides, in particular, an alternative to
the positivity preserving C1-cubic FIF scheme given in the reference [10]. Ad-
vantage of the method in [10] is that it allows both positive and negative values
of the scaling factors for generating positive C1-cubic FIF. On the other hand, the
present approach provides a more general method wherein any suitable positive
cubic spline scheme (see, for instance, [7]), can be employed as an interlude (al-
though we used a very special case of Schmidt and Heß algorithm), and a family
of more diverse and flexible positive fractal curves can be obtained by using the
(hidden variable) fractal perturbation process.
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7. Numerical illustration
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(a) Nonpositive cubic spline HVFIF.
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(b) Positive nonrecursive cubic spline
interpolant.
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(c) Positive non-self-referential cubic
spline HVFIF.
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(d) Positive non-self-referential cubic
spline HVFIF.
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(e) Positive self-referential cubic spline
HVFIF.
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(f) Positive self-referential cubic spline
HVFIF.

Figure 1. Cubic spline hidden variable fractal interpolation functions (HVFIFs) (the in-
terpolating data points are given by the circles and the relevant hidden variable fractal
interpolants by the solid lines).
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Purpose of this section is to illustrate the positivity preserving C1-cubic spline
hidden variable FIF scheme with some simple examples. To this end, let us take
a set of positive data � D ¹.0; 2/; .1; 0:07/; .2; 4/; .3; 7/º reported in [24].

We have written a simple computer program in MatLab for plotting the graphs
of C1-cubic spline hidden variable FIFs. One inputs the data points, derivative
values, hidden variables, and scaling parameters, whereupon points on the graph
are recursively generated. Theoretically, to obtain the actual fractal interpolant,
one needs to continue the iterations indefinitely. However, in practice, computa-
tion is very fast (note that for a data set with N points exactly .N �1/rC1C1 points
with distinct x-coordinate are obtained at the r-th iteration) and a good view of
the whole function is quickly obtained and may be printed with a graphics printer.

Extend the given data set to

¹.xn; yn; y�
n/ W n D 1; 2; 3; 4º D ¹.0; 2; 1/; .1; 0:07; 3/; .2; 4; 2/; .3; 7; 5/º:

Note that for the implementation of the C1-cubic spline hidden variable FIF scheme
one requires in input the values of the derivatives at the knot points. Therefore,
in the absence of other conditions/information, estimates of derivatives are neces-
sary. Values (rounded off to two decimal places) of dn, d �

n , n D 1; 2; 3; 4 estimated
using the arithmetic mean method are d1 D �4:86, d2 D 1, d3 D 3:47, d4 D 2:54,
d �

1 D 3:5, d �
2 D 0:5, d �

3 D 1, and d �
4 D 5. The C1-cubic spline hidden variable

FIF f1ŒA� displayed in Figure 1(a), which is obtained by taking parameters values
as ˛1 D �0:2, ˛2 D �3 D 0:2, ˛3 D 0:4, ˇ1 D 0:3, ˇ2 D �2 D 0:6, ˇ3 D 0:8,
�1 D �0:4 and iterating the functional equations given in (11) via (9) and (10) is
nonpositive. This illustrates the importance of the positivity preserving C1-cubic
spline hidden variable FIF algorithm developed in the previous section. Taking
˛n D ˇn D �n D 0 for all n D 1; 2; 3, and the derivatives parameters as rec-
ommended by Schmidt and Heß (see Step 2 of our algorithm), we recover a pos-
itive nonrecursive C1-cubic spline in Figure 1(b). Selecting ˛1 D 0:3, ˇ1 D 0:2,
˛2 D ˇ2 D 0:01, ˛3 D ˇ3 D 0, �1 D 0:1, and �2 D �3 D 0:3 arbitrarily from
the range of permissible values given in Step 3, and the derivative parameters as
in Figure 1(b), we obtain Figure 1(c). Note that Figure 1(c) represents a non-self-
referential cubic spline hidden variable FIF. Again, taking a different set of values
for the variables, namely, ˛1 D 0:2, ˇ1 D 0:1, ˛2 D ˇ2 D 0:01, ˛3 D ˇ3 D 0,
�1 D 0:1, and �2 D �3 D 0:3 and iterating the corresponding functional equations,
we obtain a non-self-referential cubic spline hidden variable FIF f1ŒA� plotted in
Figure 1(d) (see also Remark 2.1). With derivative parameters dn, d �

n , and vari-
ables ˛n, �n, n D 1; 2; 3 as in Figure 1(d), and ˇn D 0 for all n D 1; 2; 3, we
construct a positivity preserving self-referential C1-cubic spline hidden variable
FIF of Figure 1(e). Finally, we take the “hidden variables” y�

n and corresponding
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derivative parameters d �
n such that y�

n D yn, d �
n D dn for n D 1; 2; 3. Further,

the parameters are selected to satisfy ˇn C �n D ˛n for n D 1; 2; 3, apart from the
conditions stated in Step 3, for instance, ˛1 D 0:2, ˛2 D 0:02, ˛3 D ˇ3 D �3 D 0,
ˇ1 D �1 D 0:1, and ˇ2 D �2 D 0:01. The corresponding functional equations
are iterated to obtain a good approximation for the positive self-referential hidden
variable FIF corresponding to the data set �, which we display in Figure 1(f). Note
that due to the fractal nature of the corresponding derivative functions, the graphs
of FIFs depicted in Figure 1 themselves have some artifacts when compared with
the classical counterpart.

By plotting the derivatives of these hidden variable fractal interpolants, it can
be observed that the derivatives may have irregularity in finite number of points or
on dense subsets of the interpolation interval I D Œ0; 3�. Thus the flexibility in the
selection of parameters can be aptly used to find an interpolant satisfying chosen
properties such as self-referentiality or non-self-referentiality, regularity or frac-
tality in the derivative, recursiveness or nonrecursiveness, locality or nonlocality,
and positivity. As mentioned elsewhere, finding optimal values of the parameters
may be considered for a future investigation.

8. Concluding remarks

In this paper we have presented hidden variable fractal interpolation function as a
tool to associate a family of R2-valued continuous functions f ŒA� parameterized
by a suitable block matrix A with a given continuous R2-valued function f . De-
pending on the choice of parameters, the members of the family may be smooth
(even infinitely differentiable), piecewise smooth (differentiable except at finite
number of points), irregular (even nowhere differentiable), self-referential, or non-
self-referential, thus yielding more diversity in the process of approximation. This
may explain why the present method performs rather well than the family of fractal
functions f ˛ associated with a real-valued continuous function f studied earlier
in the literature. We have derived estimate for the approximation of function f by
their fractal analogue f ŒA�. Suitable values for the parameters are identified so
that the function f ŒA� preserves the positivity and C1-continuity of f . Thus the
paper proposes a novel approach to shape preserving approximation using hidden
variable fractal interpolation functions. Our method is general enough in scope
to yield hidden variable fractal function analogue of any traditional nonrecursive
positivity preserving polynomial interpolation scheme. For our part, we have cho-
sen positivity preserving C1-cubic spline for illustrative purpose. The positivity
preserving cubic FIF scheme studied recently in [10], though conceptually quite
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general than the corresponding traditional counterpart, work better in certain situ-
ations, for instance for approximating a self-referential curve, than they do in some
others. The positivity preserving C1-cubic hidden variable FIFs obtained in this
paper supplements and extends that in [10]. Further, using a family of functions
¹bm D .bm1; bm2/ W m 2 J º instead of a single function b in the fractal perturba-
tion process developed herein and modifying Theorem 5.2 accordingly, positivity
preserving hidden variable corresponding to the traditional nonrecursive rational
splines with shape parameters whose fractal extensions are studied in [26, 27] can
be obtained.
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