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�e in�nite derivatives of Okamoto’s self-a�ne functions:

an application of ˇ-expansions
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Abstract. Okamoto’s one-parameter family of self-a�ne functions Fa W Œ0; 1� ! Œ0; 1�,

where 0 < a < 1, includes the continuous nowhere di�erentiable functions of Perkins

(a D 5=6) and Bourbaki/Katsuura (a D 2=3), as well as the Cantor function (a D 1=2).

�e main purpose of this article is to characterize the set of points at which Fa has an

in�nite derivative. We compute the Hausdor� dimension of this set for the case a � 1=2,

and estimate it for a > 1=2. For all a, we determine the Hausdor� dimension of the sets

of points where: (i) F 0

a D 0; and (ii) Fa has neither a �nite nor an in�nite derivative.

�e upper and lower densities of the digit 1 in the ternary expansion of x 2 Œ0; 1� play an

important role in the analysis, as does the theory of ˇ-expansions of real numbers.
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1. Introduction

In 2005, H. Okamoto [22] introduced and studied a one-parameter family of self-

a�ne functions ¹Fa W 0 < a < 1º on the interval Œ0; 1� de�ned as follows. Let

f0.x/ D x, and inductively, for n D 0; 1; 2; : : : , let fnC1 be the unique continuous

function which is linear on each interval Œj=3nC1; .j C 1/=3nC1� with j 2 Z and

satis�es, for k D 0; 1; : : : ; 3n � 1, the equations

fnC1.k=3
n/ D fn.k=3

n/;

fnC1..k C 1/=3n/ D fn..k C 1/=3n/;

fnC1..3k C 1/=3nC1/ D fn.k=3
n/C a Œfn..k C 1/=3n/ � fn.k=3

n/� ;

fnC1..3k C 2/=3nC1/ D fn.k=3
n/C .1� a/ Œfn..k C 1/=3n/ � fn.k=3

n/� :

(See Figure 1.) �e sequence .fn/ thus de�ned converges uniformly on Œ0; 1�. Let

Fa WD lim
n!1

fn;

so Fa is a continuous function from the unit interval Œ0; 1� onto itself. �e idea

of this simple construction originated with Perkins [25], who considered the case

a D 5=6 and proved thatF5=6 is nowhere di�erentiable. �e case 2=3was similarly

treated by Bourbaki [2, p. 35, Problem 1-2] and later by Katsuura [12]. As shown

by Okamoto and Wunsch [23], Fa is singular when 0 < a � 1=2 and a ¤ 1=3;

in particular, F1=2 is the Cantor function. Note that F1=3.x/ D x. Figure 2 shows

the graph of Fa for several values of a.
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Figure 1. �e �rst two steps in the construction of Fa



�e in�nite derivatives of Okamoto’s functions 3

Let a0 � :5592 be the unique real root of 54a3 � 27a2 D 1. Okamoto [22]

showed that (i) Fa is nowhere di�erentiable if 2=3 � a < 1; (ii) Fa is nondi�er-

entiable at almost every x 2 Œ0; 1� but di�erentiable at uncountably many points

if a0 < a < 2=3; and (iii) Fa is di�erentiable almost everywhere but nondif-

ferentiable at uncountably many points if 0 < a < a0. Okamoto left open the

case a D a0, but Kobayashi [15] later showed, using the law of the iterated loga-

rithm, thatFa0
is nondi�erentiable almost everywhere. It is not di�cult to see that,

if a ¤ 1=3 and Fa has a �nite derivative at x, then F 0
a.x/ D 0; see Section 2.

Figure 2. Graph of Fa for several values of a. Top left: a D 5=6 (Perkins’ function); top

right: a D Oa � :5598; bottom left: a D 1=2 (the Cantor function); bottom right: a D 1=5

(a “slippery devil’s staircase”).
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�e main purpose of this article is to investigate the set D1.a/ of points at

which Fa has an in�nite derivative. In the parameter region 0 < a < 1=2, where

Fa is strictly increasing, the situation is straightforward: F 0
a.x/ D 1 if and only

if f 0
n.x/ ! 1. Since f 0

n.x/ is readily expressed in terms of the ternary expansion

of x, the Hausdor� dimension of D1.a/ can be calculated for a in this range by

relating this set to certain sets de�ned in terms of the upper and lower frequency

of the digit 1 in the ternary expansion of x 2 .0; 1/. Using the same ideas we also

obtain the Hausdor� dimensions of the exceptional sets in Okamoto’s theorem;

that is, the set of points where F 0
a.x/ D 0 (for a0 < a < 2=3), and the set of points

where Fa has neither a �nite nor an in�nite derivative (for 0 < a < a0).

More interesting is the characterization of D1.a/ in the parameter region

1=2 < a < 1. Here D1.a/ has strictly smaller Hausdor� dimension than the set

¹x W f 0
n.x/ ! ˙1º, though we are not able to compute the dimension of D1.a/

exactly. �eorem 2.3 below gives a precise, though somewhat opaque, descrip-

tion of D1.a/, which turns out to have surprising consequences. �e condition

for membership in D1.a/ suggests a connection with ˇ-expansions of real num-

bers, and indeed, we use the literature on ˇ-expansions (for instance, [9, 11, 24])

to show that D1.a/ is (i) empty if a � � WD .
p
5 � 1/=2 � :6180; (ii) count-

ably in�nite if Oa < a < �; and (iii) uncountable with strictly positive Hausdor�

dimension if 1=2 < a < Oa. Here Oa � :5598 is the reciprocal of the Komornik–

Loreti constant, which is intimately related to the famous �ue–Morse sequence;

see Section 2 below. Using very recent results on ˇ-expansions by Kong and Li

[18] and Komornik et al. [16], we conclude that the Hausdor� dimension ofD1.a/

is continuous on 1=2 < a < Oa and decreases on this interval in the manner of a

“reversed” devil’s staircase.

In the boundary case a D 1=2, we obtain Eidswick’s [6] characterization of

D1.a/ as a special case of our main theorem.

�e condition for Fa to have an in�nite derivative at x simpli�es when x is

rational. We make this precise in the �nal section of the paper.

We mention here some other known results about Okamoto’s functions. First,

Fa is self-a�ne. �e portions of the graph above the intervals Œ0; 1=3�, Œ1=3; 2=3�

and Œ2=3; 1� are a�ne images of the whole graph, contracted horizontally by 1=3

and vertically by a, j2a � 1j and a, respectively, with the middle one also being

re�ected vertically when a > 1=2. As a result, the box-counting dimension of the

graph of Fa follows by Example 11.4 in [7]. It is 1 if a � 1=2, and 1C log3.4a�1/
if a > 1=2. (Although the middle part of the graph is contracted more strongly in

the vertical direction than in the horizontal direction when a < 2=3, the formula

given in [7] is nonetheless applicable since the a�ne maps do not include shears.)
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�is result was also obtained by McCollum [21], who claims the same value for the

Hausdor� dimension of the graph. Unfortunately, his proof is incorrect. McCol-

lum attempts to apply the mass distribution principle, and seems to use the mass

distribution that assigns to each “basic rectangle” a measure proportional to its

height. But he then appears to incorrectly assume that within each basic rectangle

the mass is uniformly distributed. In fact, the Hausdor� dimension of the graph of

Fa seems rather more di�cult to determine than the box-counting dimension, and

it would not be surprising if the two dimensions were di�erent for certain values

of a.

Second, a very interesting paper by Seuret [26] shows howFa can be expressed

as the composition of a monofractal function and an increasing function, and also

computes the multifractal spectrum of Fa.

In recent years, there has been a great deal of interest in the non-di�erentiability

sets of singular functions. Much of the research concerns two main classes of

functions: Cantor-like functions, whose points of increase form a Lebesgue-null

set, on the one hand; and strictly increasing singular functions on the other. Fol-

lowing [14], let us call functions in the former class “ordinary devil’s staircases,”

and functions in the latter class “slippery devil’s staircases.” In most cases, for-

mulas are given for the Hausdor� dimension of the sets �1.f / and ��.f / of

points where the function f in question has, respectively, an in�nite derivative,

or neither a �nite nor an in�nite derivative. For the class of ordinary devil’s stair-

cases, this work was begun by Darst [4], who showed for f the classical Can-

tor function (F1=2 in our notation) that dimH ��.f / D .log 2= log 3/2. Suc-

cessive generalizations were obtained by Darst [5], Falconer [8], Kesseböhmer

and Stratmann [14], and, most recently, Troscheit [28]. Slippery devil’s staircases

were examined by Jordan et al. [10] and Kesseböhmer and Stratmann [13], among

others. Qualitatively, the results in the above papers suggest the following di-

chotomy: dimH ��.f / < dimH �1.f / for ordinary devil’s staircases, while

dimH ��.f / D dimH �1.f / for slippery devil’s staircases. �is is illustrated

by Okamoto’s functions Fa, which, for 0 < a < 1=2, belong to the family of

conjugacies of interval maps considered in [10]. (See �eorem 4.1 below.)

Finally, the in�nite derivatives of another famous continuous nowhere di�er-

entiable function, namely that of Takagi [27], were characterized by the present

author and Kawamura [1] and Krüppel [19].
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2. Notation and main results

�e following notation is used throughout. �e set of positive integers is denoted

by N, and the set of nonnegative integers by ZC. For x 2 Œ0; 1�, the ternary

expansion of x is the sequence �1; �2; : : : de�ned by

x D
1

X

nD1

�n=3
n;

and �n 2 ¹0; 1; 2º for all n. If x has two ternary expansions we take the one ending

in all 0’s, except when x D 1, in which case we take the expansion ending in all

2’s. For n 2 N, let

i.n/ WD #¹j W 1 � j � n; �j D 1º;

so i.n/ is the number of 1’s in the �rst n ternary digits of x. When ambiguities

may arise we write �n.x/ instead of �n, and i.nI x/ instead of i.n/. Let

N1.x/ WD sup
n
i.n/

be the total number of 1’s in the ternary expansion of x. Denote by C the ternary

Cantor set in Œ0; 1�. �e Hausdor� dimension of a set E will be denoted by

dimH E; see [7] for the de�nition and properties.

For a function h, let hC and h� denote the right-hand and left-hand derivatives

of h, respectively (assuming they exist). Note that

f C
n .x/ D 3nan�i.n/.1 � 2a/i.n/; x 2 Œ0; 1/; (2.1)

where following standard convention we set 00 D 1.

Proposition 2.1. If a ¤ 1=3 and Fa has a �nite derivative at x, then F 0
a.x/ D 0.

Proof. Since Fa.k=3
n/ D fn.k=3

n/ for n 2 N and k 2 ¹0; 1; : : : ; 3nº, it fol-

lows that if Fa has a derivative (�nite or in�nite) at x, its value must be F 0
a.x/ D

limn!1 f C
n .x/. If a 62 ¹1=3; 1=2º, then f C

nC1.x/=f
C

n .x/ 2 ¹3a; 3.1 � 2a/º for

each n, so limn!1 f C
n .x/, if it exists, can only equal 0 or ˙1. If a D 1=2, it is

immediate by (2.1) that f C
n .x/ cannot converge to a positive and �nite value.

�e next proposition identi�es situations where the derivative of Fa behaves

“as expected.” �e �rst statement was included in [22] without proof.
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Proposition 2.2. Let x 2 .0; 1/.
(i) If a ¤ 1=2 and f C

n .x/ ! 0, then F 0
a.x/ D 0.

(ii) If 0 < a < 1=2 and f C
n .x/ ! 1, then F 0

a.x/ D 1.

Proposition 2.1 indicates a natural partition of .0; 1/ into the three sets

D0.a/ WD ¹x 2 .0; 1/ W F 0
a.x/ D 0º;

D1.a/ WD ¹x 2 .0; 1/ W F 0
a.x/ D ˙1º;

and

N.a/ WD ¹x 2 .0; 1/ W Fa has no (�nite or in�nite) derivative at xº:

Let L denote Lebesgue measure on .0; 1/. By Okamoto’s theorem [22, �eo-

rem 4], L.D0.a// D 1 for 0 < a < a0, a ¤ 1=3, and L.D0.a// D 0 for a � a0.

By Proposition 2.2 and (2.1) it transpires that membership of a point x in D0.a/

is nearly determined by the (upper or lower) frequency of the digit 1 in the ternary

expansion of x. �is enables us to compute dimH D0.a/ when a0 � a < 2=3,

and similarly, dimH D1.a/ for 0 < a < 1=2, and dimH N.a/ for all a. �is is

undertaken in Section 4.

By contrast, it turns out that when a � 1=2, Fa may not have an in�nite deriv-

ative at x even if limn!1 f 0
n.x/ D ˙1. In fact, we will see in Section 5 that for

a > 1=2, dimH D1.a/ is strictly smaller than dimH ¹x 2 Œ0; 1� W f 0
n.x/ ! ˙1º.

�e main theorem below uses the following additional notation. For integers j

and k, let

ık.j / WD
´

1 if j D k;

0 if j ¤ k:

For d 2 ¹0; 1; 2º and n 2 N, let rn.d/ denote the run length of the digit d starting

with the .nC 1/th digit of x. �at is,

rn.d/ WD inf¹k > n W �k ¤ dº � n � 1:

�eorem 2.3. (i) Let 1=2 < a < 1. �en

F 0
a.x/ D ˙1

if and only if both

N1.x/ < 1
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and

.3a/n
�

1�
1

X

kD1

akıd .�nCk/
�

�! 1; d D 0; 2; (2.2)

in which case

F 0
a.x/ D

´

1 if N1.x/ is even,

�1 if N1.x/ is odd.

(ii) Let a D 1=2, and put

c WD log2 3� 1:

�en

F 0
a.x/ D 1

if and only if both

N1.x/ D 0

and

cn � rn.d/ �! 1; d D 0; 2: (2.3)

In fact, we shall see in Section 3 that condition (2.2) for d D 0 (resp., d D 2) is

necessary in order for Fa to have an in�nite left-hand (resp., right-hand) derivative

at x, and similarly for condition (2.3).

Note that (ii) speci�es the points of in�nite derivative of the Cantor function.

Such a characterization was given previously by Eidswick [6, Corollary 1], who

showed, as a consequence of a more general result, thatF 0
1=2
.x/ D 1 if and only if

lim
n!1

3z.n/

2z.nC1/
D lim

n!1

3t.n/

2t.nC1/
D 1; (2.4)

where z.n/ denotes the position of the nth 0, and t .n/ the position of the nth 2, in

the ternary expansion of x. (Of course, Eidswick did not use the notation F1=2.)

�e equivalence of (2.3) and (2.4) can be seen by taking logarithms in (2.4) and

using the relationships z.nC1/�z.n/ D rz.n/.2/�1, t .nC1/�t .n/ D rt.n/.0/�1.
We derive (ii) here quickly as a special case of (i).

Remark 2.4. Since .3a/n ! 1 when a > 1=2, it is su�cient for (2.2) that

lim sup
n!1

1
X

kD1

akıd .�nCk/ < 1; d D 0; 2;

and necessary that

lim sup
n!1

1
X

kD1

akıd .�nCk/ � 1; d D 0; 2:
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An interesting question, which the author has been unable to answer, is whether

there exist values of a and ternary sequences .�n/ such that

lim sup
n!1

1
X

kD1

akıd .�nCk/ D 1

but (2.2) holds for d D 0 or d D 2.

Example 2.5. Let x D 0:022.02/022.02/2022.02/3 : : : 022.02/n : : : . �en

lim sup
n!1

1
X

kD1

akı2.�nCk/ D aC a2 C a4 C a6 C � � � D aC a2

1 � a2
;

and this is less than 1 if and only if a C 2a2 � a3 < 1. On the other hand,

lim sup
n!1

1
X

kD1

akı0.�nCk/ D a C a3 C a5 C � � � D a

1 � a2
< aC a2

1 � a2
:

Hence, the condition for d D 2 is more stringent. Let a�.x/ � :5550 be the unique

root in .0; 1/ of a C 2a2 � a3 D 1. By Remark 2.4, F 0
a.x/ D 1 for 1=2 < a <

a�.x/, but x 62 D1.a/ when a > a�.x/, despite the fact that f 0
n.x/ D .3a/n ! 1

for every a > 1=3. (In fact, F 0
a.x/ D 1 for 1=3 < a < a�.x/. For 1=3 < a < 1=2

this follows by Proposition 2.2(ii), and for a D 1=2 it follows by �eorem 2.3(ii),

since rn.d/ � 2 for all n and d 2 ¹0; 2º). �e author conjectures that F 0
a.x/ D 1

also when a D a�.x/.

We next examine the size of D1.a/ for 1=2 < a < 1. Let

� WD
p
5� 1
2

� :6180

be the golden ratio, and recall that the �ue–Morse sequence is the sequence

.tj /
1
j D0 of 0’s and 1’s given by tj D sj mod 2, where sj is the number of 1’s

in the binary representation of j . �us,

.tj /
1
j D0 D 0110 1001 1001 0110 1001 0110 0110 1001 : : : : (2.5)

Let Oa � :5598 be the unique root in .0; 1/ of the equation
P1

j D1 tja
j D 1.

�e reciprocal of Oa is known as the Komornik–Loreti constant, introduced in [17].
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�eorem 2.6. �e set D1.a/ is

(i) empty if a � �I

(ii) countably in�nite, containing only rational points, if Oa < a < �I

(iii) uncountable with strictly positive Hausdor� dimension if a < Oa and a ¤ 1=3.

Moreover, on the interval 1=2 < a < Oa, the function a 7! dimH D1.a/ is

continuous and nonincreasing in the manner of a devil’s staircase; that is, there

is a countable family .Ij /j 2N of disjoint subintervals of .1=2; Oa/ whose union has

full Lebesgue measure in .1=2; Oa/ and such that dimH D1.a/ is constant on Ij

for each j .

�is result is a consequence of �eorem 2.3 and the literature on ˇ-expansions

of real numbers [9, 11, 16, 18, 24]. �e idea is that the set D1.a/ is very closely

related to the set of points which have a unique ˇ-expansion, where ˇ D 1=a.

To give the reader a �avor of the arguments, we show here that D1.a/ ¤ ; if and

only if a < � and a ¤ 1=3. �e remainder of �eorem 2.6 is proved in Section 5.

Partial proof of �eorem 2.6. Suppose a � �. �en aCa2 � 1, so condition (2.2)

clearly fails if the ternary expansion of x contains either 00 or 22 in�nitely often.

�is leaves points with ternary expansions ending in .20/1. But for such points,

1
X

kD1

akı2.�nCk/ D aC a3 C a5 C � � � D a

1� a2
� 1

for in�nitely many n, so (2.2) fails again.

On the other hand, if a < �, then a=.1 � a2/ < 1, and so any point x whose

ternary expansion ends in .20/1 satis�es (2.2) in view of Remark 2.4.

Remark 2.7. (a) In fact, a fairly explicit description of points in D1.a/ can be

given when Oa < a < �. For example, if a is such that

aC a2 < 1 � aC a2 C a4;

then D1.a/ consists exactly of those points whose ternary expansion ends in

.20/1, as ternary expansions containing one of the words 222, 000, 2202 or 0020

in�nitely often will be forbidden, as are expansions ending in .2200/1. �is sim-

ple combinatorial idea illustrates �eorem 2.6(ii); we elaborate on it further in the

proof of �eorem 2.6, in Section 5.

(b) It is unclear whether D1. Oa/ is countable or uncountable, but it will be

shown in Remark 5.6 that its Hausdor� dimension is zero.
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(c) It is interesting to observe that, for � � a < 2=3, Fa has a �nite derivative

at in�nitely many points but an in�nite derivative nowhere.

To end this section, we mention that triadic rational points in .0; 1/, that is,

points in the set

T WD ¹j=3n W n 2 N; j D 1; 2; : : : ; 3n � 1º;

are of some special interest. At such points, depending on the value of a, Fa may

have a vanishing derivative, an in�nite derivative, a cusp, or a “cli�” (with one

one-sided derivative equal to zero and the other equal to 1).

Proposition 2.8. Let x 2 T.

(i) If 1=2 < a < 1, then Fa has a cusp at xI that is, either

FC
a .x/ D �F�

a .x/ D 1

(if N1.x/ is even) or

FC
a .x/ D �F�

a .x/ D �1

(if N1.x/ is odd).

(ii) If a D 1=2, then either

� F 0
a.x/ D 0, or

� FC
a .x/ D 1 and F�

a .x/ D 0,

� or FC
a .x/ D 0 and F �

a .x/ D 1.

(iii) If 1=3 < a < 1=2, then F 0
a.x/ D 1.

(iv) If 0 < a < 1=3, then F 0
a.x/ D 0.

Moreover,

FC
a .0/ D F�

a .1/ D
´

1 if a > 1=3;

0 if a < 1=3:
(2.6)

�e remainder of this article is organized as follows. Proposition 2.2, �eo-

rem 2.3 and Proposition 2.8 are proved in Section 3. In Section 4 we compute the

Hausdor� dimensions of D0.a/ and N.a/, and that of D1.a/ for 0 < a � 1=2.

In Section 5 we review basic facts about ˇ-expansions and prove �eorem 2.6.

Finally, in Section 6, we simplify the condition (2.2) for the case of rational x,

using ideas from Section 5.
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3. Vanishing and in�nite derivatives

In this section we prove Proposition 2.2, �eorem 2.3 and Proposition 2.8. We use

two key observations. First, for any triadic interval Œun; vn� D Œj=3n; .j C 1/=3n�

(where n 2 N and j D 0; 1; : : : ; 3n � 1),

un � x � vn H) min¹Fa.un/; Fa.vn/º � Fa.x/

� max¹Fa.un/; Fa.vn/º:
(3.1)

Second, if a ¤ 1=2 and sn;j denotes the slope of fn on Œj=3n; .j C 1/=3n�, then

sn;j C1

sn;j

2
° a

1 � 2a ;
1� 2a

a

±

; j D 0; 1; : : : ; 3n � 1: (3.2)

�is can be checked by using an inductive argument.

Proof of Proposition 2.2. (i) Fix a 2 .0; 1/n¹1=2º, and suppose f C
n .x/ ! 0.

Given h > 0, let n be the integer such that 3�n�1 < h � 3�n. Let un D .j �1/=3n,

vn D j=3n andwn D .jC1/=3n, where j 2 Z andun � x < vn. �en xCh < wn,

so a double application of (3.1) gives

jFa.x C h/ � Fa.x/j � jFa.vn/ � Fa.un/j C jFa.wn/ � Fa.vn/j

D 3�njf C
n .x/j C 3�njf C

n .vn/j

� 3�n.1C C/jf C
n .x/j;

where

C D max¹a=j2a � 1j; j2a � 1j=aº;

and the last inequality follows by (3.2). Since h > 3�n�1, we obtain
ˇ

ˇ

ˇ

ˇ

Fa.x C h/ � Fa.x/

h

ˇ

ˇ

ˇ

ˇ

� 3.1C C/jf C
n .x/j;

and hence FC
a .x/ D 0. Now (3.2) implies that f �

n .x/ ! 0 as well, so by symme-

try, F�
a .x/ D 0. �us, F 0

a.x/ D 0.

(ii) �e second statement follows by the more general result below by taking

K D 3 and C D max¹a=.1� 2a/; .1� 2a/=aº.

Lemma 3.1. LetK > 1 be an integer. Let .gn/ be a sequence of strictly increasing

continuous functions on Œ0; 1� such that

(i) gn is linear in .j=Kn; .j C 1/=Kn/ for j D 0; 1; : : : ; Kn � 1,
(ii) gnC1.j=K

n/ D gn.j=K
n/ for all n 2 N and j 2 ¹0; 1; : : : ; Knº; and
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(iii) gn converges pointwise in Œ0; 1� to a function g.

Let

sn;j WD gC
n .j=K

n/;

and suppose there is a constant C > 1 such that

C�1 � sn;j C1

sn;j

� C for all n and all j : (3.3)

�en for x 2 .0; 1/,

g0.x/ D 1 () gC
n .x/ �! 1:

Proof. Fix x 2 .0; 1/ and suppose gC
n .x/ ! 1. Given h > 0, let n 2 N such that

K�n�1 < h � K�n;

and let j be the integer such that

.j � 1/=KnC2 < x � j=KnC2:

�en

x C h > .j C 1/=KnC2;

and since g is nondecreasing,

g.x C h/ � g.x/ � g
�j C 1

KnC2

�

� g
� j

KnC2

�

D K�.nC2/gC
nC2

� j

KnC2

�

� C�1K�.nC2/gC
nC2.x/;

so that

g.x C h/ � g.x/
h

� Kn.g.x C h/ � g.x//

� C�1K�2gC
nC2.x/:

�is shows that gC.x/ D 1. Since (3.3) implies that g�
n .x/ � C�1gC

n .x/ for all

n, a similar argument gives g�.x/ D 1. �us, g0.x/ D 1.

Conversely, suppose g0.x/ D 1. By hypothesis (ii) of the lemma,

g.j=Kn/ D gn.j=K
n/ for all n 2 N and j 2 ¹0; 1; : : : ; Knº.

�erefore, gC
n .x/ must tend to 1.
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�e next lemma and its proof represent the core of the investigation of the

in�nite derivatives of Fa.

Lemma 3.2. Let 1=2 � a < 1. Let x 2 Œ0; 1/ with ternary expansion .�n/ and

assume �n 2 ¹0; 2º for each n. �en FC
a .x/ D 1 if and only if

.3a/n
h

1�
1

X

kD1

akı2.�nCk/
i

�! 1: (3.4)

Proof. We use the following explicit expression for Fa.x/ (see [15]):

Fa.x/ D
1

X

kD1

ak�1�i.k�1/.1� 2a/i.k�1/q.�k/;

where q.0/ D 0, q.1/ D a and q.2/ D 1�a. Since we assume here that �n 2 ¹0; 2º
for each n, this simpli�es to

Fa.x/ D
1

X

kD1

ak�1.1� a/ı2.�k/: (3.5)

Suppose �rst that FC
a .x/ D 1. For n 2 N, let

xn WD .j C 1/=3n;

where j is the integer such that .j � 1/=3n � x < j=3n. Clearly,

Fa.xn/ � Fa.x/

xn � x �! 1: (3.6)

Fix n. If �n D 0, then xn D 0:�1�2 : : : �n�1200 : : : , so (3.5) gives

Fa.xn/ � Fa.x/ D an�1.1� a/ �
1

X

kDnC1

ak�1.1� a/ı2.�k/

D an�1.1� a/
h

1�
1

X

kD1

akı2.�nCk/
i

:

(3.7)

�is expression results also when �n D 2, because regardless of whether

�n D 0 or 2, the slope of fn on Œ.j � 1/=3n; j=3n� is .3a/n, and the slope of fn on

Œj=3n; .jC1/=3n� is 3nan�1.1�2a/ in view of (3.2). Since 1=3n < xn�x � 2=3n,

it follows by (3.7) that (3.6) is equivalent to (3.4).
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Conversely, suppose we have (3.4). Given h > 0, let n 2 N be such that

3�n�1 < h � 3�n, let j be the integer such that .j �1/=3n � x < j=3n, and de�ne

xn as above. �en (3.6) holds, so in particular Fa.xn/ > Fa.x/ for all su�ciently

large n. Since f 0
n D .3a/n > 0 on ..j � 1/=3n; j=3n/, (3.2) implies that f 0

n � 0

on .j=3n; .j C 1/=3n/ (with equality if a D 1=2). �us, if x C h � j=3n, we have

immediately by (3.1) that

Fa.x C h/ � Fa.x/

h
� Fa.xn/ � Fa.x/

h
� Fa.xn/ � Fa.x/

xn � x
;

for n large enough.

On the other hand, if x C h < j=3n, then �nC1 D 0 by the hypothesis of

the lemma, so .j � 1/=3n � x < .3j � 2/=3nC1. Now f 0
nC1 > 0 on the inter-

vals ..j � 1/=3n; .3j � 2/=3nC1/ and ..3j � 1/=3nC1; j=3n/, and f 0
nC1 � 0 on

..3j � 2/=3nC1; .3j � 1/=3nC1/. �us, again by (3.1),

Fa.x C h/ � Fa..3j � 1/=3nC1/ D Fa.xnC1/:

Since xnC1 � x > 3�n�1 � h=3, it follows that

Fa.x C h/ � Fa.x/

h
� Fa.xnC1/ � Fa.x/

h
� Fa.xnC1/ � Fa.x/

3.xnC1 � x/
;

for su�ciently large n. �us, by (3.6), FC
a .x/ D 1.

Proof of �eorem 2.3. Fix x 2 .0; 1/nT. (�e case x 2 T is addressed in the proof

of Proposition 2.8 below.) Observe that it is su�cient to determine whetherFa has

an in�nite right-hand derivative at x. Since Fa.1�x/ D 1�Fa.x/, it follows that

F �
a .x/ D FC

a .1� x/ when at least one of these quantities exists, so the results for

an in�nite left-hand derivative follow by interchanging 0’s and 2’s in the ternary

expansion of x.

Assume �rst that a > 1=2. It is clear by (2.1) and (3.1) that FC
a .x/ can not be

in�nite if �n D 1 for in�nitely many n, so we need only consider the case when

m WD N1.x/ < 1. Ifm D 0, then (2.1) and (3.1) imply thatFC
a .x/ cannot take the

value �1, and by Lemma 3.2, FC
a .x/ D 1 if and only if (2.2) holds for d D 2.

Suppose now that m > 0. Choose n0 2 N so that �n 2 ¹0; 2º for all n � n0. Let j

be the integer such that j=3n0 � x < .j C 1/=3n0 , and put

Qx WD j=3n0 :



16 Pieter C. Allaart

Now we can write x D Qx C 3�n0x0, where N1. Qx/ D N1.x/ D m, and x0 2 Œ0; 1/

satis�es the hypothesis of Lemma 3.2. Observe that (3.4) holds for x0 if and only if

it holds for x, because the condition is invariant under a shift of the sequence .�n/.

�e graph of Fa above the interval

I0 WD Œj=3n0 ; .j C 1/=3n0 � D Œ Qx; Qx C 3�n0 �

is an a�ne copy of the whole graph of Fa. Speci�cally, for z 2 I0,

Fa.z/ D Fa. Qx/C 3n0f C
n0
.x/Fa.z

0/;

where z0 2 Œ0; 1� is such that z D Qx C 3�n0z0. �is shows that

FC
a .x/ D f C

n0
.x/FC

a .x
0/

when the quantity on the right hand side exists. Since f C
n0

is positive on I0 if m is

even, and negative ifm is odd, we conclude that Fa has an in�nite derivative at x if

and only if (3.4) holds, in which case FC
a .x/ D 1 ifm is even, andFC

a .x/ D �1
if m is odd.

Next, assume a D 1=2. In order for FC
a .x/ to be in�nite, it is necessary that

�k 2 ¹0; 2º for all k, in view of (2.1). Assuming this, Lemma 3.2 implies that

FC
a .x/ D 1 if and only if (3.4) holds (with a D 1=2). Since

1�
�1

2

�rn.2/

�
1

X

kD1

�1

2

�k

ı2.�kCn/ � 1 �
�1

2

�rn.2/C1

;

this is the case if and only if

3n
�1

2

�nCrn.2/

�! 1;

and taking logarithms, this reduces to the case d D 2 in (2.3).

Proof of Proposition 2.8. Fix x 2 T. Assume �rst that a > 1=2. Since �n D 0

for all su�ciently large n, (3.4) clearly holds, and by the argument in the proof of

�eorem 2.3, Fa has an in�nite right derivative at x. Applying this to 1�x shows

(via the relation F �
a .x/ D FC

a .1 � x/) that Fa also has an in�nite left derivative

at x. By (3.2), f C
n .x/ and f �

n .x/ have opposite signs for all su�ciently large n,

and hence, so do FC
a .x/ and F �

a .x/. �is proves (i).

Next, let a D 1=2. If x lies in the interior of one of the removed intervals in

the construction of the ternary Cantor set C, then F 0
a.x/ D 0. Otherwise, x is

an endpoint of a removed interval, say it is a right endpoint. �en F �
a .x/ D 0,

and �n 2 ¹0; 2º for all n, so by Lemma 3.2, FC
a .x/ D 1. By symmetry, if x is
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the left endpoint of a removed interval, then FC
a .x/ D 0 and F�

a .x/ D 1. �is

establishes (ii).

Statements (iii) and (iv) follow directly by Proposition 2.2. Essentially the

same arguments establish (2.6).

4. Frequency of digits and Hausdor� dimension

In this section we determine the Hausdor� dimensions of the setsD0.a/ andN.a/,

as well as that of D1.a/ for 0 < a � 1=2. We also examine how these sets vary

with the parameter a.

De�ne the auxiliary functions

�.a/ WD log.3a/

log a � log j2a � 1j ; a 2 .0; 2=3�n¹1=3; 1=2º;

and

h.p/ WD �p logp � .1 � p/ log.1� p/C .1� p/ log 2

log 3
; 0 � p � 1;

where, following standard convention, we set 0 log 0 � 0. We extend � continu-

ously to Œ0; 2=3� by setting

�.0/ WD lim
a#0

�.a/ D 1;

�.1=3/ WD lim
a!1=3

�.a/ D 1=3;

and

�.1=2/ WD lim
a!1=2

�.a/ D 0:

Note that �.2=3/ D 1. It can be shown that � is strictly decreasing on Œ0; 1=2�, and

strictly increasing on Œ1=2; 2=3�. �e function h is maximized at p D 1=3, with

h.1=3/ D 1. See Figure 3 for graphs of � and h. Finally, let

d.a/ WD h.�.a//; 0 � a � 2=3:

�e graph of d is shown in Figure 4. Note that, since �.a0/ D 1=3, d.a/ attains its

maximum value of 1 at both a D 1=3 and a D a0. (Recall from the Introduction

that a0 � :5592 is the unique real root of 54a3 � 27a2 D 1.)
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Figure 3. Graphs of � (left) and h (right)

Figure 4. Graph of d.a/. Note that d.0/ D 0 and d.1=2/D log3 2.

�eorem 4.1. (i) �e sets D0.a/ are descending in a on .0; 1=3/, ascending on

.1=3; 1=2/, and descending on Œ1=2; 2=3�. Furthermore,

dimH D0.a/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if 0 < a � a0, a ¤ 1=3;

d.a/ if a0 � a � 2=3;

0 if a � 2=3:

(ii) �e sets D1.a/ are ascending in a on .0; 1=3/, descending on .1=3; 1=2�,

and descending on .1=2; ��, with a discontinuity at 1=2 in the sense that

D1.1=2/ 6� D1.a/ for 1=2 < a < �.

Furthermore,

dimH D1.a/ D d.a/; 0 < a � 1=2; a ¤ 1=3:
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(iii) �e sets N.a/ are ascending in a on .1=2; 1/, and

dimH N.a/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

d.a/ if 0 < a � a0, a 62 ¹1=3; 1=2º;
.log3 2/

2 if a D 1=2;

1 if a � a0:

Note that dimH N.a/ is discontinuous at a D 1=2, since d.1=2/ D log3 2.

It seems di�cult to compute the exact Hausdor� dimension of D1.a/ for

1=2 < a < Oa. We observe here that, since D1.a/ is covered by countably

many a�ne copies of C, its dimension is at most log3 2. In the next section

(see Remark 5.7) we will derive signi�cantly tighter upper and lower bounds for

dimH D1.a/.

In order to prove �eorem 4.1, some more notation is needed. Let

u1.x/ WD lim sup
n!1

i.nI x/
n

; l1.x/ WD lim inf
n!1

i.nI x/
n

;

for x 2 Œ0; 1�, where i.nI x/ is as de�ned at the beginning of Section 2. For p 2
Œ0; 1�, de�ne the sets

Rp WD ¹x 2 Œ0; 1� W u1.x/ < pº; xRp WD ¹x 2 Œ0; 1� W u1.x/ � pº;

Rp WD ¹x 2 Œ0; 1� W l1.x/ > pº; xRp WD ¹x 2 Œ0; 1� W l1.x/ � pº;

Sp WD ¹x 2 Œ0; 1� W u1.x/ > pº; xSp WD ¹x 2 Œ0; 1� W u1.x/ � pº;

Sp WD ¹x 2 Œ0; 1� W l1.x/ < pº; xSp WD ¹x 2 Œ0; 1� W l1.x/ � pº:

(Note that these sets satisfy pairwise complementary relationships; for example,

Sp D Œ0; 1�n xRp, etc.)

Lemma 4.2. We have

dimH Rp D dimH
xRp D dimH Sp D dimH

xSp D
´

h.p/ if 0 � p � 1=3;

1 if 1=3 � p � 1;

(4.1)

dimH Rp D dimH
xRp D dimH Sp D dimH

xSp D
´

1 if 0 � p � 1=3;

h.p/ if 1=3 � p � 1;

(4.2)

and

dimH .Sp \ Sp/ D dimH . xSp \ xSp/ D h.p/; 0 � p � 1: (4.3)



20 Pieter C. Allaart

Proof. We �rst prove (4.1). Let

N
.n/

d
.x/ WD #¹j W 1 � j � n; �j D dº; d D 0; 1; 2

(so N
.n/
1 .x/ D i.nI x/). De�ne the sets

F.p0; p1; p2/ WD ¹x 2 Œ0; 1� W lim
n!1

n�1N
.n/

d
.x/ D pd ; d D 0; 1; 2º;

for p0; p1; p2 2 Œ0; 1� such that p0 C p1 C p2 D 1. It is well known (see, for

instance, [7, Proposition 10.1]) that

dimH F.p0; p1; p2/ D � 1

log 3

2
X

iD0

pi logpi : (4.4)

If p > 1=3, then all four sets in (4.1) contain the set F.1=3; 1=3; 1=3/, so their

Lebesgue measure is 1 by Borel’s normal number theorem. Assume now that

0 < p � 1=3. Since xRp contains the set

F

�1 � p
2

; p;
1 � p
2

�

;

equation (4.4) gives dimH
xRp � h.p/, and then of course also dimH

xSp � h.p/.

ButRp � xRp�" and Sp � xSp�" for all " > 0, so by the continuity of h, dimH Rp �
h.p/ and dimH Sp � h.p/.

For the reverse inequality, by monotonicity of the Hausdor� dimension it is

enough to show that dimH
xSp � h.p/. �is follows by a slight modi�cation of the

proof of Proposition 10.1 in [7]. For a k-tuple .i1; : : : ; ik/ 2 ¹0; 1; 2ºk, let

Ii1;:::;ik D ¹x 2 Œ0; 1� W �1.x/ D i1; : : : ; �k.x/ D ikº;

so Ii1;:::;ik is a triadic interval of length 3�k . For x 2 Œ0; 1� and k 2 N, let Ik.x/

be the unique interval Ii1;:::;ik which contains x. De�ne a probability measure �

on Œ0; 1� by

�.Ii1;:::;ik / D pn1.i1;:::;ik/
�1 � p

2

�k�n1.i1;:::;ik/

;

for each k 2 N and .i1; : : : ; ik/ 2 ¹0; 1; 2ºk, where

n1.i1; : : : ; ik/ WD #¹j W 1 � j � k; ij D 1º:
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Let x 2 xSp, and s > h.p/. �en

1

k
log

�.Ik.x//

jIk.x/js
D

°

logp � log
�1� p

2

�± i.k/

k
C log

�1� p

2

�

C s log 3;

where jIk.x/j D 3�k denotes the length of Ik.x/. Since p � 1=3 and

lim inf i.k/=k � p;

it follows that

lim sup
k!1

1

k
log

�.Ik.x//

jIk.x/js
� p

°

logp � log
�1 � p

2

�±

C log
�1� p

2

�

C s log 3

D .s � h.p// log 3 > 0;

and hence,

lim sup
k!1

�.Ik.x//

jIk.x/js
D 1:

�us, by the mass distribution principle (see for instance [7, Proposition 4.9], and

note that balls there may be replaced by triadic intervals), dimH
xSp � h.p/. �is

concludes the proof of (4.1) for 0 < p � 1. �e case p D 0 follows by mono-

tonicity in p of the sets involved and the continuity of h. �e proof of (4.2) is

analogous.

As for (4.3), note �rst that (4.1) and (4.2) immediately give the upper bound

dimH . xSp \ xSp/ � min¹dimH
xSp; dimH

xSpº D h.p/:

To establish the lower bound, de�ne the sets

E
q
p WD ¹x 2 Œ0; 1� W l1.x/ D p; u1.x/ D qº; 0 < p � q < 1:

A modi�cation of the proof of �eorem 6 of Carbone et al. [3] yields

dimH E
q
p D min¹h.p/; h.q/º: (4.5)

Since Sp \ Sp � E
pC"
p�" for each " > 0, this implies, by the continuity of h, that

dimH .Sp \ Sp/ � h.p/:

�is completes the proof, because Sp \ Sp � xSp \ xSp.

Proof of �eorem 4.1. (i) Proposition 2.2(i) implies that

R�.a/ � D0.a/ � xR�.a/; 0 < a < 1=3; (4.6)

R�.a/ � D0.a/ � xR�.a/; 1=3 < a < 2=3; a ¤ 1=2: (4.7)
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Since the setsRp and xRp are ascending inp and � is strictly decreasing on Œ0; 1=2�,

it follows by (4.6) that D0.a/ is descending in a on .0; 1=3/. Likewise, since Rp

and xRp are descending in p, (4.7) yields that D0.a/ is ascending on .1=3; 1=2/.

But � is strictly increasing on Œ1=2; 2=3�, so D0.a/ is descending on .1=2; 2=3�.

Finally, we may include the left endpoint 1=2 in this last interval since

D0.a/ � Œ0; 1�nC D D0.1=2/; a > 1=2; (4.8)

a consequence of the fact that f C
n .x/ D .3a/n ! 1 for x 2 C and a > 1=2. �e

only dimension statement in (i) that requires an argument is that dimH D0.a/ D
d.a/ for a0 � a � 2=3; this follows by (4.7) and Lemma 4.2 in view of the

monotonicity of Hausdor� dimension.

(ii) By Proposition 2.2(ii) we obtain that

R�.a/ � D1.a/ � xR�.a/; 0 < a < 1=3; (4.9)

R�.a/ � D1.a/ � xR�.a/; 1=3 < a < 1=2: (4.10)

�ese inclusions imply, via an argument similar to the one in the proof of part (i)

above, that D1.a/ is ascending in a on .0; 1=3/ and descending on .1=3; 1=2/.

Since by Proposition 2.8(ii),

D1.1=2/ � CnT � D1.a/; 1=3 < a < 1=2; (4.11)

it follows that D1.a/ is in fact descending on .1=3; 1=2�. �at D1.a/ is descend-

ing on .1=2; �� follows by Remark 2.4. But D1.a/ is not descending on the entire

interval .1=3; ��, since D1.1=2/ does not contain any points with at least one ‘1’

in their ternary expansion, whereas D1.a/ contains in�nitely many such points

when 1=2 < a < �.

�at dimH D1.a/ D d.a/ for a 2 .0; 1=2/n¹1=3º follows by (4.9), (4.10), and

Lemma 4.2. Finally, that dimH D1.1=2/ D d.1=2/ D log3 2 follows since �eo-

rem 2.3(ii) and the Borel–Cantelli lemma imply that �.D1.1=2// D 1, where �

is the Cantor measure determined by �.Œ0; x�/ D F1=2.x/ for x 2 Œ0; 1�.
(iii) Taking complements in (4.7) and using �eorem 2.3(i), we have

S�.a/ \ S0 � N.a/ � xS�.a/; 1=2 < a < 2=3; (4.12)

which shows that N.a/ is ascending in a on .1=2; 2=3/. For a � 2=3, N.a/ D
.0; 1/, soN.a/ is in fact ascending on .1=2; 1/. �e dimension ofN.1=2/was com-

puted by Darst [4]. �at dimH N.a/ D d.a/ for a 2 .1=2; a0/ follows by (4.12)

and Lemma 4.2, noting that �.a0/ D 1=3. (For the lower estimate, observe that
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Sp \ S0 � ¹x 2 Œ0; 1� W l1.x/ D u1.x/ D p � "º for 0 < " < p < 1, and use (4.5)

and the continuity of h.) For a 2 .0; 1=2/n¹1=3º, the same expression follows

by (4.3) and the inclusions

S�.a/ \ S�.a/ � N.a/ � xS�.a/ \ xS�.a/; 0 < a < 1=2; a ¤ 1=3; (4.13)

obtained by taking complements in (4.6), (4.7), (4.9), and (4.10).

Remark 4.3. Okamoto [22, Remark 1] incorrectly states (in our notation) that

S�.a/ � D0.a/ for 0 < a < 1=3, instead of the �rst inclusion in (4.6).

Remark 4.4. For a < 1=2, Fa belongs to the class of functions considered by

Jordan et al. [10]. �eir �eorem 1.1 implies immediately that dimH D1.a/ D
dimH N.a/, and gives an implicit formula for the value of this dimension in terms

of pressure functions. However, it seems di�cult to obtain the dimension ex-

plicitly by their formula as this involves solving a transcendental equation. For

this speci�c case, considering the simple self-a�ne structure of Fa, our approach

above is easier and quite natural.

5. Beta-expansions and the size of D1.a/

�e purpose of this section is to prove �eorem 2.6, and to examine the set D1.a/

in more detail when 1=2 < a < �. We will mostly work on the symbol space

� WD ¹0; 1ºN. Denote a generic element of � by ! D .!1; !2; : : : /. We equip �

with the family of metrics ¹%�º0<�<1 de�ned by %�.!; �/ D �inf¹n W !n¤�nº. Since

the Hausdor� dimension of a subset of� depends on the metric used, we will let

dim
.�/
H E denote the Hausdor� dimension of E � � induced by the metric %�. It

is straightforward to verify that, for 0 < �1; �2 < 1,

dim
.�1/
H E D log�2

log�1

dim
.�2/
H E; E � �: (5.1)

Let � denote the (left) shift map on �, �.!/ D .!2; !3; : : : /. For 0 < � < 1

and ! 2 �, let

…�.!/ WD
1

X

nD1

!n�
n:
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Let a bar denote re�ection: N0 D 1, N1 D 0, and for ! D .!1; !2; : : : / 2 �,

N! D . N!1; N!2; : : : /. De�ne the sets

U� WD ¹! 2 � W …�.�
k.!// < 1 and …�.�

k. N!// < 1 for all k 2 ZCº;

and

zU� WD
[

ı>0

zU�;ı ;

where

zU�;ı WD ¹! 2 � W …�.�
k.!// < 1� ı and …�.�

k. N!// < 1 � ı for all k 2 ZCº:

Let ˆ W � ! C be given by

ˆ.!/ WD 2…1=3.!/; ! 2 �:

Finally, introduce the family of a�ne maps

 n;k.x/ WD 3�n.x C k/; n 2 N; k D 0; 1; : : : ; 3n � 1:

It follows by �eorem 2.3(i) that

[

n;k

 n;k.ˆ.zUa// � D1.a/ �
[

n;k

 n;k.ˆ.Ua//; (5.2)

where the union is overn 2 N and k D 0; 1; : : : ; 3n�1. Since Hausdor� dimension

is countably stable and una�ected by a�ne transformations, it is therefore enough

to investigate the cardinality and Hausdor� dimension of the sets Ua and zUa. For

this we can use the theory of ˇ-expansions, in particular, [9, 11, 24]. For 1 < ˇ < 2

and a real number 0 < x < 1, a ˇ-expansion of x is a representation of the form

x D
1

X

nD1

!nˇ
�n D …1=ˇ .!/; (5.3)

where ! D .!1; !2; : : : / 2 �. In general, ˇ-expansions are not unique. �e

greedy ˇ-expansion of x is the lexicographically largest ! satisfying (5.3), which

chooses a 1 whenever possible; and the lazy expansion is the lexicographically

smallest such !, which chooses a 0 whenever possible. A number x has a unique

ˇ-expansion if its greedy and lazy ˇ-expansions are the same.
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Let 1=2 < � < 1 and ˇ D 1=�. Let V� be the set of ! 2 � such that

2� � 1
1 � � < …�.!/ < 1

and …�.!/ has a unique ˇ-expansion. Note that for such !, …�. N!/ also lies in

..2�� 1/=.1� �/; 1/, since …�.!/C…�. N!/ D �=.1� �/. Let 1 D
P1

nD1 dnˇ
�n

be the greedy ˇ-expansion of 1; but if there is an n such that dn D 1 and dj D 0

for all j > n, we replace .dj / by the sequence

.d 0
j / WD .d1 : : : dn�10/

1

and rename this new sequence again as .dj /. Put d D .d1; d2; : : : /. It is well

known (see, for instance, [9, Lemma 4]) that

V� D ¹! 2 � W �k.!/ � d and �k. N!/ � d for all k 2 ZCº;

where � denotes the (strict) lexicographic order on �.

Lemma 5.1. Let 1=2 < � < 1. �en U� D V�.

Proof. Let �, ˇ and d have the relationships outlined above. �e lemma will

follow once we establish the equivalence

…�.�
k.!// < 1 for all k 2 ZC () �k.!/ � d for all k 2 ZC: (5.4)

Assume that…�.!/ < 1, and suppose that ! � d . Since…�.d/ D 1 by de�nition,

! ¤ d and hence there is n 2 N such that !1 : : : !n�1 D d1 : : : dn�1 and !n D 1,

dn D 0. De�ne now the �nite sequence . Qdj /
n
j D1 by Qdj D dj for j D 1; : : : ; n� 1,

and Qdn D 1. �en . Qdj / can be extended to a (nonterminating) ˇ-expansion of 1

which is greater than d in the lexicographic order. �is contradicts d being the

greedy expansion of 1. �us, ! � d . Since this argument holds for arbitrary

! 2 �, the forward direction of (5.4) follows. �e converse is proved in [24,

Lemma 1].

�e next lemma is the key to the proof of �eorem 2.6.

Lemma 5.2 (Glendinning and Sidorov [9]). �e set V� is countable for � > Oa,

but has positive Hausdor� dimension for 1=2 < � < Oa.

�e next two lemmas collect some more useful results from the literature. �ey

are due to Jordan et al. [11], whose primary objective was to analyze the multifrac-

tal spectrum of Bernoulli convolutions.
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Lemma 5.3 ([11], Lemma 2.3). If �1 < �2, then U�1
� zU�1

� U�2
.

Lemma 5.4 ([11], Lemma 2.7). For � > 1=2, the restriction of …� to U� is bi-

Lipschitz with respect to the metric %�.

Let

A� WD …�.U�/:

�e following crucial result, which was already stated in [9] without proof, was

proved only very recently by Komornik et al. [16].

Lemma 5.5 ([16], �eorems 1.3, 1.4). (i) Let Nn.�/ denote the number of words

in ¹0; 1ºn that can be extended to a sequence in U�. �e limit

h.U�/ WD lim
n!1

logNn.�/

n
(5.5)

exists, and

dimH A� D �h.U�/

log�
:

(ii) �e function � 7! dimH A� is continuous in � on 1=2 < � < Oa.

Proof of �eorem 2.6. Let Oa < a < �. �en by Lemma 5.1, Lemma 5.2 and (5.2),

D1.a/ is countable. In fact, we can give a very explicit description of D1.a/ in

this case. For n 2 N, let Oan be the root in .1=2; 1/ of
P2n

j D1 tja
j D 1, where .tj /

is the �ue–Morse sequence; see (2.5). �en Oa1 D � and Oan & Oa as n ! 1,

so for given a 2 . Oa; �/, there is n 2 N such that a 2 Œ OanC1; Oan/. As shown

in [9, Proposition 13], Ua then contains only sequences ending in .vm Nvm/
1 for

some m < n, where vm D t1 : : : t2m . Since such sequences lie in zUa if they

lie in Ua, it follows that in fact zUa D Ua. We now see by (5.2) that D1.a/

consists exactly of those points whose ternary expansions are obtained by taking

an arbitrary sequence from � ending in .vm Nvm/
1 for some m < n, replacing

all 1’s by 2’s, and appending the resulting sequence to an arbitrary �nite pre�x

of digits in ¹0; 1; 2º. In particular, D1.a/ is countably in�nite and contains only

rational points.

Next, let 1=2 < a < Oa. Combining Lemmas 5.3, 5.4, and 5.5 it follows that

dim
.�/
H

zU� D dim
.�/
H U� D �h.U�/

log�
;

and this dimension is continuous in �. Moreover, by Lemmas 5.1 and 5.2, it is

strictly positive for 1=2 < � < Oa. By (5.1) we then have

dim
.1=3/
H

zU� D dim
.1=3/
H U� D h.U�/

log 3
: (5.6)
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Now …1=3 is bi-Lipschitz even on the full domain � with respect to the metric

%1=3 (the proof of this is essentially the same as that of [11, Lemma 2.7]), so (5.6)

and (5.2) give

dimH D1.a/ D h.Ua/

log 3
: (5.7)

�is shows that dimH D1.a/ is strictly positive and continuous in a on 1=2 <

a < Oa. �at it is nonincreasing in a is immediate by �eorem 4.1(ii). �e �nal

statement of �eorem 2.6, that dimH D1.a/ decreases in the manner of a devil’s

staircase, follows by (5.7) in conjunction with �eorems 2.5 and 2.6 of Kong and

Li [18], which imply the existence of a countable collection ¹Ij ºj 2N of disjoint

subintervals of .1=2; Oa/ such that
S

j Ij has full Lebesgue measure in .1=2; Oa/
and h.U�/ is constant on Ij for each j . (It is the topological entropy of a certain

subshift of �nite type.)

Finally, that dimH D1.a/ > 0 for 0 < a � 1=2 with a ¤ 1=3 follows by

�eorem 4.1.

Remark 5.6. It is shown in [9] that U Oa is uncountable with zero Hausdor� dimen-

sion. �is implies that dimH D1. Oa/ D 0, but it remains unclear whether D1. Oa/
is countable or uncountable.

Remark 5.7. In principle, using (5.7) and (5.5) the Hausdor� dimension ofD1.a/

can be estimated to any desired accuracy for any given a 2 .1=2; Oa/. But a closed-

form expression in terms of a appears to be out of reach. However, we can obtain

fairly tight and simple bounds for dimH D1.a/ as follows. For k 2 N, let ak be

the root in .1=2; 1� of
Pk

j D1 a
j D 1 (so a1 D 1, a2 D �, and more generally, ak

is the kth multinacci number). Note that ak & 1=2, so for a 2 .1=2; Oa/ there is k

such that a 2 ŒakC1; ak/. Let Qk be the set of sequences in � that do not contain

1k or 0k as a sub-word. It is not di�cult to see that

a 2 ŒakC1; ak/ H) Qk � zUa � Ua � QkC1: (5.8)

(To see the �rst inclusion, note that the sequence in Qk with the largest value under

…a is ! WD .1k�10/1, and …a.!/ D .a C a2 C � � � C ak�1/=.1 � ak/ < 1.) �e

Hausdor� dimension of Qk can be calculated exactly: it is

dim
.1=3/
H Qk D � log.ak�1/

log 3
; k � 2:

(�is can be seen, for instance, by using the graph directed construction of Mauldin

and Williams [20]; alternatively, see [9, Example 17] for a sketch of a proof.)
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It therefore follows by (5.2), (5.8), and the bi-Lipschitz property of ˆjUa
under

the metric %1=3, that

a 2 ŒakC1; ak/ H) � log.ak�1/

log 3
� dimH D1.a/ � � log.ak/

log 3
:

Since ak converges to 1=2 very rapidly, these bounds are quite tight even for mod-

erate values of k. Moreover, they show that dimH D1.a/ is continuous at a D 1=2

(see �eorem 4.1(ii)), and also that

dimH D1.a/ < log3 2 D dimH ¹x W f 0
n.x/ �! ˙1º

when a > 1=2.

6. �e case of rational x

In this �nal section we examine what the condition in �eorem 2.3(i) means for

(nontriadic) rational x. To keep the presentation simple, we consider only points

in C, which have a ternary expansion with �n 2 ¹0; 2º for all n. �e straightforward

generalization to arbitrary rational points is left to the reader. For x 2 Q \ .0; 1/,
there exists m 2 N such that the ternary expansion .�n/ of x satis�es �kCm D �k
for all su�ciently large k; call the smallest suchm the period of .�n/.

�eorem 6.1. Let x 2 Q \ C have ternary expansion .�n/ with period m � 2.

Write x as x D 0:�1 : : : �k0
.�1 : : : �m/

1, where k0 is chosen so that � WD �1 : : : �m is

lexicographically largest among all its cyclical permutations. For j D 1; : : : ; m,

set �j WD �j =2. �en �m D 0, and FC
a .x/ D 1 if and only if

m�1
X

j D1

�ja
j C am < 1: (6.1)

Proof. �at �m D 0 is an immediate consequence of �1 : : : �m being the lexico-

graphically largest cyclical permutation of the period of .�n/. Condition (6.1) is

necessary because there exist in�nitely many n 2 N such that

1
X

kD1

ı2.�nCk/a
k D

m
X

j D1

�ja
j .1C am C a2m C � � � / D 1

1 � am

m�1
X

j D1

�ja
j :
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Su�ciency follows from the ideas of the previous section, in particular the equiva-

lence (5.4). If we have (6.1), then �1 : : : �m�11 � d1 : : : dm, where 1 D
P1

nD1 dna
n

is the greedy expansion of 1 in base ˇ WD 1=a. But then p WD .�1 : : : �m/
1 � d ,

and since � is lexicographically largest among its cyclical shifts, it follows that

�k.p/ � d for all k 2 ZC. �us,…a.�
k.p// < 1 for all k 2 ZC. �is implies that

lim sup
n!1

1
X

kD1

akı2.�nCk/ < 1;

and hence (see Remark 2.4), that FC
a .x/ D 1.

Recall that F �
a .x/ D 1 if and only if FC

a .1�x/ D 1, so whether F 0
a.x/ D 1

can be determined by applying �eorem 6.1 �rst to x and then to 1 � x.

Example 6.2. Let x D 0:0220.2000202/1. �en m D 7, and the lexicograph-

ically largest cyclical permutation of the repeating part is � D 2200020, so � D
1100010. �us, FC

a .x/ D 1 if and only if a C a2 C a6 C a7 < 1. On the other

hand, them-tuple � corresponding to 1�x D 0:2002.0222020/1 is � D 1110100,

so F �
a .x/ D 1 if and only if a C a2 C a3 C a5 C a7 < 1. �e latter condition is

more stringent, so F 0
a.x/ D 1 if and only if 1=3 < a < a�, where a� � :5261 is

the unique positive root of a C a2 C a3 C a5 C a7 D 1.
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