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On the Hausdor� and packing measures

of slices of dynamically de�ned sets

Ariel Rapaport1

Abstract. Let 1 � m < n be integers, and let K � Rn be a self-similar set satisfying

the strong separation condition, and with dimK D s > m. We study the a.s. values of

the s � m-dimensional Hausdor� and packing measures of K \ V , where V is a typical

n �m-dimensional a�ne subspace.

For 0 < � < 1
2

let C� � Œ0; 1� be the attractor of the IFS ¹f�;1; f�;2º, where f�;1.t/ D

� � t and f�;2.t/ D � � t C 1 � � for each t 2 R. We show that for certain numbers

0 < a; b < 1
2
, for instance a D 1

4
and b D 1

3
, if K D Ca � Cb , then typically we have

Hs�m.K \ V / D 0.
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1. Introduction

Let 1 � m < n be integers, and given 0 � t � n letHt andPt be the t -dimensional

Hausdor� and packing measures in Rn respectively. Let s 2 .m; n/ be a real

number, and let K � Rn be compact with 0 < Hs.K/ < 1. Denote by � the

1 Supported by ERC grant 306494.
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restriction of Hs to K, by G the set of all .n � m/-dimensional linear subspaces

of Rn, and by �G the natural measure on G. For each V 2 G and x 2 Rn set

KV;x D K \ .x C V /:

It is well known that dimH .KV;x/ D s�m and Hs�m.KV;x/ < 1, for �� �G-a.e.

.x; V / 2 K � G (see �eorem 10.11 in [10]). It is also known that if s D dimP K,

then dimP .KV;x/ � s � m for every V 2 G and Hm-a.e. x 2 V ? (see Lemma 5

in [3]), where dimP stands for the packing dimension. In this paperK will denote

certain self-similar or self-a�ne sets, in which cases it will be shown that more

can be said about the � � �G-typical values of Hs�m.KV;x/ and Ps�m.KV;x/.

Assume that K is a self-similar set which satis�es the strong separation con-

dition (SSC), then since s > m we have PV ?� � Hm for �G-a.e. V 2 G (see

the proof of Lemma 3.2 below). Here PV ? is the orthogonal projection onto V ?.

Firstly we are interested in the validity of the condition

Hs�m.KV;x/ > 0 for � � �G-a.e. .x; V / 2 K �G: (1.1)

If m D 1 and K is rotation-free, then by a result by Kempton (�eorem 6.1 in [9])

it follows that (1.1) holds if and only if the density
dP

V ?�

dHm is bounded for �G-a.e.

V 2 G. In �eorem 2.1 below the case of a general 1 � m < n and a general

self-similar set K, satisfying the SSC, will be considered. Extending Kempton’s

result, a necessary and su�cient condition for (1.1) will be given. In order to state

this condition, let H be the closed group generated by the orthogonal parts of

the contracting similarities de�ning K (see Section 2), and let �H be the Haar

measure corresponding to H . We show that (1.1) holds if and only if for �G-a.e.

V the densities
dP

.hV /?�

dHm are �H -essentially bounded, i.e. there exists a constant

MV > 0 with
dP

.hV /? �

dHm � MV for �H -a.e. h 2 H . We also prove the analogous

statement, which says that Hs�m.KV;x/ D 0 for � � �G-a.e. .x; V / if and only if

for �G-a.e. V the densities
dP

.hV /? �

dHm are not �H -essentially bounded.

It is proven in [4] and independently in [16] that if � is a compactly supported

Radon measure on Rn with �nite 2m-energy, then PV ?� � Hm with continuous

density for �G-a.e. V 2 G. By combining this fact with �eorem 2.1, we prove in

Corollary 2.2 that (1.1) holds whenever s > 2m and H is �nite. Unfortunately, in

the general case, it seems out of reach to establish the �H -essential boundedness

of the densities by current methods. Hence whether or not (1.1) generally holds

remains an open problem, which is probably quite hard. �is is demonstrated

by Corollary 2.3, where it is shown that if (1.1) holds and H equals the entire

orthogonal group, then PV ?� � Hm for every V 2 G. Note that the validity of

the last statement is a major open problem.
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Next we describe our results regarding the s � m-dimensional packing mea-

sure of typical slices. We continue to assume that K is a self-similar set with the

SSC, and observe that dimP .KV;x/ D s � m for � � �G-a.e. .x; V /. �is follows

by Lemma 5 in [3], which was mentioned above, and since PV ?� � Hm for

�G-a.e. V . It will be shown in �eorem 2.4 that we always have Ps�m.KV;x/ > 0

for � � �G-a.e. .x; V /. We also prove that if for �G-a.e. V the densities
dP

.hV /? �

dHm

are not essentially bounded from 0, then

Ps�m.KV;x/ D 1 for � � �G-a.e. .x; V / 2 K �G: (1.2)

By using this, it is shown in Corollary 2.5 that if s > 2m, then (1.2) holds true.

Here we again utilize the continuity of the densities obtained in [4] and [16]. �is

is related to a result by Orponen (Corollary 1.2 in [14]), which says that if n D 2,

s > m D 1, and K is rotation and re�ection free, then (1.2) holds.

Lastly we consider the case in which n D 2, m D 1 and K is a certain self-

a�ne set. For 0 < � < 1
2

let C� � Œ0; 1� be the attractor of the IFS ¹f�;1; f�;2º,

where

f�;1.t / D � � t

and

f�;2.t / D � � t C 1 � �

for each t 2 R. It will be assumed that

K D Ca � Cb;

where 0 < a; b < 1
2

are such that a�1 and b�1 are Pisot numbers,
log b

log a
is irrational,

and s D dimH .K/ > 1. Under these conditions it is shown in [13] that there exists

a dense Gı set, of 1-dimensional linear subspaces V � R2, such that PV� and

H1 are singular. By using this fact, it will be proven in �eorem 2.6 below that

Hs�1.KV;x/ D 0 for � � �G-a.e. .x; V /. �is result demonstrates some kind of

smallness of the slicesKV;x, hence it may be seen as related to a conjecture made

by Furstenberg (Conjecture 5 in [6]). In our setting this conjecture basically says

that for �G-a.e. V 2 G we have dimH .KV;x/ � s � 1 for each x 2 R2, which

demonstrates the smallness of the slices in another manner.

�e rest of this article is organized as follows: In Section 2 the results are

stated. In Section ?? the results regarding self-similar sets are proven. In Section

4 we prove the aforementioned theorem regarding self-a�ne sets.

Acknowledgment. I would like to thank my advisor Michael Hochman, for sug-

gesting to me problems studied in this paper, and for many helpful discussions.
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2. Statement of the results

2.1. Slices of self-similar sets. Let 0 < m < n be integers, let G be the Grass-

mannian manifold consisting of all n�m-dimensional linear subspaces of Rn, let

O.n/ be the orthogonal group of Rn, and let �O be the Haar measure correspond-

ing to O.n/. Fix U 2 G and for each Borel set E � G de�ne

�G.E/ D �O¹g 2 O.n/ W gU 2 Eº; (2.1)

then �G is the unique rotation invariant Radon probability measure on G. For a

linear subspace V of Rn let PV be the orthogonal projection onto V , let V ? be

the orthogonal complement of V , and set

Vx D x C V for each x 2 Rn.

Let ƒ be a �nite and nonempty set. Let ¹'�º�2ƒ be a self-similar IFS in Rn,

with attractor K � Rn and with dimH K D s > m. For each � 2 ƒ there exist

0 < r� < 1, h� 2 O.n/ and a� 2 Rn, such that '�.x/ D r� � h�.x/C a� for each

x 2 Rn. We assume that ¹'�º�2ƒ satis�es the strong separation condition, i.e. that

the sets ¹'�.K/º�2ƒ are pairwise disjoint. LetH be the smallest closed sub-group

of O.n/ which contains ¹h�º�2ƒ, and let �H be the Haar measure corresponding

to H . For each E � Rn set

�.E/ D
Hs.K \E/

Hs.K/
I

then � is a Radon probability measure which is supported on K.

For each 0 � t < 1, � a Radon probability measure on Rn, and x 2 Rn set

‚�t .�; x/ D lim sup
�#0

�.B.x; �//

.2�/t
and ‚t

�.�; x/ D lim inf
�#0

�.B.x; �//

.2�/t
; (2.2)

where B.x; �/ is the closed ball in Rn with center x and radius �. It holds that

‚�t .�; �/ and ‚t
�.�; �/ are Borel functions (see remark 2.10 in [10]). For V 2 G

de�ne

FV .x; h/ D ‚m
� .P.hV /?�;P.hV /?.x// for .x; h/ 2 K �H I

then FV is a Borel function from K �H to Œ0;1�. In what follows the collection

¹FV ºV 2G will be of great importance for us.
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Let V be the set of all V 2 G with

�H .H n ¹h 2 H W P.hV /?� � Hmº/ D 0I

then in Lemma 3.2 below it will be shown that �G.G n V/ D 0. Note that by

�eorem 2.12 in [10] it follows that for each V 2 V

FV .x; h/ D
dP.hV /?�

dHm
.P.hV /?.x// for � � �H -a.e. .x; h/ 2 K �H:

First we state our results regarding the Hausdor� measure of typical slices of K.

�eorem 2.1. (i) Given V 2 V, if kFV kL1.���H / < 1, then

Hs�m.K \ .x C hV // > 0 for � � �H -a.e. .x; h/ 2 K �H:

(ii) Given V 2 V, if kFV kL1.���H / D 1, then

Hs�m.K \ .x C hV // D 0 for � � �H -a.e. .x; h/ 2 K �H:

(iii) Hs�m.K \ Vx/ > 0 for � � �G-a.e. .x; V / 2 K �G if and only if

kFV kL1.���H / < 1 for �G-a.e. V 2 G:

(iv) Hs�m.K \ Vx/ D 0 for � � �G-a.e. .x; V / 2 K �G if and only if

kFV kL1.���H / D 1 for �G-a.e. V 2 G :

By �eorem 2.1 we can derive the following corollaries.

Corollary 2.2. Assume that s > 2m and H is �nite; then

Hs�m.K \ Vx/ > 0 for � � �G-a.e. .x; V / 2 K �G.

Corollary 2.3. Assume that H D O.n/ and

� � �G¹.x; V / 2 K � G W Hs�m.K \ Vx/ > 0º > 0I

then there exists 0 < M < 1 such that for each V 2 G we have

PV ?� � Hm

with












dPV ?�

dHm













L1.Hm/

� M:
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Remark. It is known that under the assumptions of Corollary 2.3 we have

dim.PV ?�/ D m for each V 2 G

(see �eorem 1.6 in [7]). It is not known however if PV ?� � Hm for each V 2 G,

which is in fact a major open problem. Hence Corollary 2.3 implies that determin-

ing whether

� � �G¹.x; V / 2 K �G W Hs�m.K \ Vx/ > 0º > 0

is probably quite hard.

Next we state our results regarding the packing measure of typical slices.

�eorem 2.4. (i) For � � �G-a.e. .x; V / 2 K � G,

Ps�m.K \ Vx/ > 0:

(ii) Given V 2 V, if






1
FV







L1.���H /
D 1, then

Ps�m.K \ .x C hV // D 1 for � � �H -a.e. .x; h/ 2 K �H:

(iii) If






1
FV







L1.���H /
D 1 for �G-a.e. V 2 G, then

Ps�m.K \ Vx/ D 1 for � � �G-a.e. .x; V / 2 K �G:

By �eorem 2.4 the following corollary can be derived.

Corollary 2.5. Assume s > 2mI then

Ps�m.K \ Vx/ D 1 for � � �G-a.e. .x; V / 2 K �G.

Remark. In the proofs of Corollaries 2.2 and 2.5, we use the fact that if s > 2m,

then
dP

V ? �

dHm is a continuous function for �G-a.e. V (see Lemma 3.8 below). It is

not known whether this is still true if m < s � 2m, hence we need the assumption

s > 2m. Note also that the densities
dP

V ? �

dHm are in L2.Hm/ for �G-a.e. V (see

�eorem 9.7 in [10]), but it seems di�cult to make any use of this.
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2.2. Slices of self-a�ne sets. Assume n D 2 and m D 1. Given 0 < � < 1
2

de�ne

f�;1; f�;2 W R ! R

by

f�;1.x/ D � � x

and

f�;2.x/ D � � x C 1 � �

for all x 2 R. Let C� � Œ0; 1� be the attractor of the IFS ¹f�;1; f�;2º. Set

d� D dimH C�;

so that

d� D
log 2

log ��1
;

and, for each E � R, set

��.E/ D
Hd�.C� \E/

Hd�.C�/
:

�eorem 2.6. Let 0 < a < b < 1
2

be such that 1
a

and 1
b

are Pisot numbers,
log b

log a

is irrational and da C db > 1I then

HdaCdb�1..Ca � Cb/ \ V.x;y// D 0

for �a � �b � �G-a.e. .x; y; V / 2 Ca � Cb �G.

Remark. Recall that every integer greater than 1 is a Pisot number, hence �eo-

rem 2.6 applies for instance in the case a D 1
4

and b D 1
3
.

Remark. Note that

0 < HdaCdb .Ca � Cb/ < 1

and

�a � �b.E/ D
HdaCdb .E/

HdaCdb .Ca � Cb/

for each Borel set E � Ca �Cb (see Lemma 4.4 below). Hence by �eorem 10.11

in [10] we get

dimH ..Ca � Cb/ \ V.x;y// D da C db � 1

for �a � �b � �G-a.e. .x; y; V / 2 Ca � Cb �G.
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3. Proof of the results regarding self-similar sets

3.1. Preliminaries. �e following notation will be used in the proofs of �eo-

rems 2.1 and 2.4. For each � 2 ƒ set

p� D rs
�:

�en � is the unique self-similar probability measure corresponding to the IFS

¹'�º�2ƒ and the probability vector .p�/�2ƒ, i.e. � satis�es the relation

� D
X

�2ƒ

p� � � ı '�1
� :

Letƒ� be the set of �nite words overƒ; then given �1 � � � � ��l D w 2 ƒ� we write

pw D p�1
� � � � � p�l

;

rw D r�1
� � � � � r�l

;

hw D h�1
� � � � � h�l

;

'w D '�1
ı � � � ı '�l

and

Kw D 'w.K/:

For each l � 1 and x 2 K, let wl.x/ 2 ƒl be the unique word of length l which

satis�es x 2 Kwl.x/. Set also

� D min¹d.'�1
.K/; '�2

.K// W �1; �2 2 ƒ and �1 ¤ �2ºI (3.1)

then � > 0 since ¹'�º�2ƒ satis�es the strong separation condition. Given V1; V2 2

G set

dG.V1; V2/ D kPV1
� PV2

k

(where k � k stands for operator norm); then dG is a metric on G. Recall that for a

Radon measure � on Rn and t > 0 the t -energy of � is de�ned to be

It .�/ D

“

jx � yj�t d�.x/ d�.y/:
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�e following dynamical system will be used in the proofs of �eorems 2.1

and 2.4. Set

X D K �H

and for each .x; h/ 2 X let

T .x; h/ D .'�1
w1.x/x; h

�1
w1.x/ � h/:

It is easy to check that the system .X; � � �H ; T / is measure preserving, and by

Corollary 4.5 in [15] it follows that it is ergodic. We also have

T k.x; h/ D .'�1
wk.x/x; h

�1
wk.x/ � h/ for each k � 1 and .x; h/ 2 X:

Let R be the Borel �-algebra of Rn. For each V 2 G set

RV D P�1
V ?.R/;

and let ¹�V;xºx2Rn be the disintegration of � with respect to RV (see Section 3

of [5]). For �-a.e. x 2 Rn the probability measure �V;x is de�ned and supported

on K \ Vx. Also, for each f 2 L1.�/ the map that takes x 2 Rn to
R

f d�V;x is

RV -measurable, the formula

Z

f d� D

“

f .y/ d�V;x.y/ d�.x/

is satis�ed, and for PV ?�-a.e. x 2 V ? we have

Z

f d�V;x D lim
�#0

1

PV ?�.B.x; �//
�

Z

P �1

V ?
.B.x;�//

f d� :

For more details on the measures ¹�V;xºx2Rn see Section 3 of [5] and the refer-

ences therein.

3.2. Auxiliary lemmas. We shall now prove some lemmas that will be needed

later on. �e following lemma will be used with �H in place of �, where �H is

considered as a measure on O.n/ (which is supported on H ).

Lemma 3.1. LetQ be a compact metric group, and let � be its normalized Haar

measure. Let � be a Borel probability measure on QI then for each Borel set

E � Q

�.E/ D

Z

Q

�.E � q�1/ d�.q/:



42 A. Rapaport

Proof. For each Borel set E � Q de�ne

�.E/ D

Z

Q

�.E � q�1/ d�.q/:

Since � is invariant it follows that for each g 2 Q

�.Eg/ D

Z

Q

�.E � g � q�1/ d�.q/

D

Z

Q

�.E � g � .q � g/�1/ d�.q/

D �.E/:

�is shows that � is a right-invariant Borel probability measure onQ, hence � D �

by the uniqueness of the Haar measure, and the lemma follows.

Lemma 3.2. Let V be the set of all V 2 G with

�H .H n ¹h 2 H W P.hV /?� � Hmº/ D 0;

then �G.G n V/ D 0.

Proof. Set

L D G n ¹V 2 G W PV ?� � Hmº:

It is easy to see that there exists a constant b 2 .0;1/ with �.B.x; r// � b � rs for

each x 2 Rn and r 2 .0;1/ (see �eorem 4.14 in [10]). By the discussion found

at the beginning of Chapter 8 of [10], and since s > m, it follows that Im.�/ < 1.

Hence, by �eorem 9.7 and equality (3.10) in [10] we get �G.L/ D 0.

Let U 2 G be as in (2.1) and set

L0 D ¹g 2 O.n/ W gU 2 LºI

then

�O.L
0/ D �G.L/ D 0:

Let B � O.n/ be a Borel set with L0 � B and �O.B/ D 0; then by Lemma 3.1 it

follows that

0 D �O.B/ D

Z

�H .B � g�1/ d�O .g/ :

We get that for �O -a.e. g 2 O.n/

0 D �H .B � g�1/ � �H .L
0 � g�1/

D �H ¹h 2 H W hg 2 L0º

D �H .H n ¹h 2 H W P.hgU /?� � Hmº/;
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and so

�H .H n ¹h 2 H W P.hV /?� � Hmº/ D 0 for �G-a.e. V 2 G,

which proves the lemma.

Lemma 3.3. Let Z be the set of all .x; V / 2 K �G such that �V;x is de�ned and

�V;x.Kw/ D lim
�#0

�.Kw \ P�1
V ?.B.PV ?x; �///

PV ?�.B.PV ?x; �//
for each w 2 ƒ�I

then for each V 2 G we have

� � �H ¹.x; h/ 2 X W .x; hV / … Zº D 0:

Proof. Fix V 2 G. It holds that Z is a Borel set, see Section 3 of [11] for a related

argument. It follows that the set

ZV D ¹.x; h/ 2 X W .x; hV / 2 Zº

is also a Borel set. By the properties stated in Section 3.1 we get that

�¹x 2 K W .x; h/ … ZV º D 0 for each h 2 H;

and so � � �H .X n ZV / D 0 by Fubini’s theorem. �is proves the lemma.

Lemma 3.4. Given a compact set zK � Rn and 0 < t � n, the map that takes

.x; V / 2 zK �G to Ht . zK \ Vx/ is Borel measurable.

Proof. For ı > 0 let Ht
ı

be as de�ned in Section 4.3 of [10]. Let .x; V / 2 zK �G,

� > 0 and ¹.xk; V
k/º1

kD1
� zK �G, be such that

.xk ; V
k/

k
�! .x; V /: (�)

Let W1; W2; : : : � Rn be open sets with zK \ Vx �
S1

j D1Wj ,

1
X

j D1

.diam.Wj //
t � Ht

ı.
zK \ Vx/C �

and diam.Wj / � ı for each j � 1. Since zK is compact and (�), it follows that
zK\V k

xk
�

S1
j D1Wj for each k � 1 which is large enough, and so for each such k

Ht
ı.

zK \ V k
xk
/ �

1
X

j D1

.diam.Wj //
t < Ht

ı.
zK \ Vx/C �:
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It follows that the function that maps .x; V / to Ht
ı
. zK \ Vx/ is upper semi-con-

tinuous, and so Borel measurable. Now since Hs D lim
k!1

Hs
1=k

the lemma fol-

lows.

Lemma 3.5. Given 0 < t � n and a Radon probability measure � on K �G, the

map that takes .x; V / 2 K � G to Pt .K \ Vx/ is �-measurable (i.e. this map is

universally measurable).

Proof. Let a � 0 and set

E D ¹.x; V / 2 K � G W Pt .K \ Vx/ < aºI

then in order to prove the lemma it su�ce to show that E is �-measurable.

Set

Y D ¹C � K W C is compactº;

endow Y with the Hausdor� metric, and let G be the �-algebra of Y which is

generated by its analytic subsets. Set

E D ¹C 2 Y W Pt .C / < aºI

then by �eorem 4.2 in [12] it follows that E 2 G, and so by �eorem 21.10 in [8]

we get that E is universally measurable.

For each .x; V / 2 K �G set

 .x; V / D K \ Vx :

It will now be shown that

 W K �G �! Y

is a Borel function. For each y 2 K the function that maps .x; V / 2 K � G to

d.K\Vx; y/ is lower semi-continuous, and hence a Borel function. For each l � 1

let Sl � K be �nite with K �
S

y2Sl
B.y; l�1/, and set

 l .x; V / D ¹y 2 Sl W d.K \ Vx ; y/ � l�1º

for each .x; V / 2 K � G. It holds that

 l W K �G �! Y

is a Borel function and

 l

l!1
����!  

pointwise, hence  is a Borel function. Note also that E D  �1.E/.



Slices of dynamically de�ned sets 45

Since E is universally measurable it is � ı  �1-measurable, and so there exist

A and C, Borel subsets of Y , with A � E � C and � ı  �1.C n A/ D 0. It holds

that  �1.A/ and  �1.C/ are Borel subsets ofK�G,  �1.A/ � E �  �1.C/ and

�. �1.C/ n  �1.A// D 0. �is shows that E is �-measurable, and the lemma is

proved.

Lemma 3.6. For .x; h; V / 2 K �H � G set

 .x; h; V / D .x; hV /

and let B � K � G be universally measurable. Assume that for �G-a.e. V 2 G it

holds for �H -a.e. h 2 H that

�¹x 2 K W  .x; h; V / 2 Bº D 0I

then � � �G.B/ D 0.

Proof. Since B is universally measurable there exist Borel sets A;C � K � G

with A � B � C and

� � �H � �G. 
�1.C n A// D 0:

By the assumption on B and Fubini’s theorem it follows that

� � �H � �G. 
�1.C // D � � �H � �G. 

�1.A//

D

“

�¹x W .x; h; V / 2  �1.A/º d�H .h/ d�G.V /

�

“

�¹x W .x; h; V / 2  �1.B/º d�H .h/ d�G.V /

D 0:

Now by Fubini’s theorem, by the de�nition of �G given in (2.1), and by Lem-

ma 3.1, it follows that

0 D � � �H � �G. 
�1.C //

D

“

�H ¹h W .x; h; V / 2  �1.C /º d�G.V / d�.x/

D

“

�H ¹h W .x; h; gU / 2  �1.C /º d�O .g/ d�.x/

D

“

�H ¹h W .x; hgU / 2 C º d�O.g/ d�.x/
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D

“

�H .¹h W .x; hU / 2 C º � g�1/ d�O.g/ d�.x/

D

Z

�O¹g W .x; gU / 2 C º d�.x/

D

Z

�G¹V W .x; V / 2 C º d�.x/

D � � �G.C /

� � � �G.B/;

which completes the proof of the lemma.

3.3. Proofs of �eorems 2.1 and 2.4. Fix V 2 V for the remainder of this sec-

tion, set

F D FV ;

and for each h 2 H set

V h D hV and Ph D P.V h/? :

Set

Q D
®

.x; h/ 2 X W F.x; h/ ¤ ‚�m.Ph�;Ph.x// or

F.x; h/ D 1 or

F.x; h/ D 0
¯

where ‚�m is as de�ned in (2.2); then Q is a Borel set. By �eorem 2.12 in [10]

it follows that

�¹x 2 K W .x; h/ 2 Qº D 0 for each h 2 H with Ph� � Hm;

hence since V 2 V we have

� � �H .Q/ D

Z

H

�¹x W .x; h/ 2 Qº d�H .h/ D 0: (3.2)

Let D be the set of all .x; h/ 2 X such that Ph� � Hm, �V h;x is de�ned,

�V h;x.Kw/ D lim
�#0

�.Kw \ P�1
h
.B.Phx; �///

Ph�.B.Phx; �//
for each w 2 ƒ�;

and

0 < F.x; h/ D lim
�#0

Ph�.B.Ph.x/; �//

.2�/m
< 1:
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By the choice of V , by Lemma 3.3 and by equation (3.2), it follows that

� � �H .X nD/ D 0:

Set

D0 D

1
\

j D0

T �jDI

then

� � �H .X nD0/ D 0

since T is measure preserving. �e following key lemma will be used several

times below.

Lemma 3.7. Given k � 1 and .x; h/ 2 D0, we have

�V h;x.Kwk.x// D .F.x; h//�1 � rs�m
wk.x/ � F.T k.x; h//:

Proof. Set u D wk.x/. �en

�V h;x.Ku/ D lim
�#0

�.Ku \ P�1
h
.B.Phx; �///

Ph�.B.Phx; �//

D lim
�#0

.2�/m

Ph�.B.Phx; �//
�
�.Ku \ P�1

h
.B.Phx; �///

.2�/m

D .F.x; h//�1 � lim
�#0

�.Ku \ P�1
h
.B.Phx; �///

.2�/m
:

For each � > 0 set

E� D P�1

h�1
u h

.B.Ph�1
u h.'

�1
u .x//; � � r�1

u //I

then since

P�1
h .B.Phx; �// D x C V h C B.0; �/

D 'u ı '�1
u .x C V h C B.0; �//

D 'u.'
�1
u .x/C V h�1

u h C B.0; � � r�1
u //

D 'u.E�/;

it follows that

�V h;x.Ku/ D .F.x; h//�1 � lim
�#0

�.'u.K \E�//

.2�/m

D .F.x; h//�1 � lim
�#0

1

.2�/m

X

w2ƒk

pw � �.'�1
w .'u.K \ E�///:
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Given w 2 ƒk n ¹uº we have

'u.K/ \ 'w.K/ D ;;

so

'�1
w .'u.K// \K D ;;

and so

�V h;x.Ku/ D .F.x; h//�1 � lim
�#0

pu � �.K \E�/

.2�/m

D .F.x; h//�1 � rs�m
u � lim

�#0

�.E�/

.2� � r�1
u /m

D .F.x; h//�1 � rs�m
u � F.'�1

u .x/; h�1
u h/

D .F.x; h//�1 � rs�m
u � F.T k.x; h//;

which proves the lemma.

Proof of �eorem 2.1 (i). Assume that V is such that kF kL1.���H / < 1. Set

M D kF kL1.���H /;

E D ¹.x; h/ W F.x; h/ � M º

and

E1 D D0 \
�

1
\

j D0

T �j .E/
�

I

then

� � �H .X nE1/ D 0:

For �H -a.e. h 2 H we have

�¹x 2 K W .x; h/ … E1º D 0;

�x such h0 2 H . For each l � 1 set

Al D ¹x 2 K W .x; h0/ 2 E1 and F.x; h0/ � l�1º;

and �x l0 � 1. Setting � D min¹r� W � 2 ƒº, it will now be shown that

‚�s�m.�V h0 ;x; x/ � .2��/m�sl0M for each x 2 Al0
; (3.3)
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where � is as de�ned in (3.1). Let x 2 Al0
and let �� > ı > 0. Let k � 1 be such

that

rwk.x/ �
ı

�
> rwkC1.x/;

and set

u D wk.x/:

By Lemma 3.7 and by T k.x; h0/ 2 E we get that

�V h0 ;x.Ku/ D .F.x; h0//
�1 � rs�m

u � F.T k.x; h0// � l0 � rs�m
u �M;

and so

�V h0 ;x.B.x; ı//

.2ı/s�m
�
�V h0 ;x.B.x; � � rwk.x///

.2� � rwkC1.x//s�m

�
�V h0 ;x.Ku/

.2�� � ru/s�m

�
l0r

s�m
u M

.2�� � ru/s�m

D .2��/m�sl0M;

which proves (3.3).

It holds that

¹x 2 K W .x; h0/ 2 E1º D

1
[

lD1

Al ;

hence

0 D �.K n

1
[

lD1

Al / D

Z

�V h0 ;x

�

K n

1
[

lD1

Al

�

d�.x/;

and so for �-a.e. x 2 K there exist lx � 1 with

�V h0 ;x.Alx
\ V h0

x / D �V h0 ;x.Alx
/ > 0:

Fix such x0 2 K and let y 2 Alx0
\ V

h0
x0

I then by (3.3) we get that

‚�s�m.�V h0 ;x0
; y/ D ‚�s�m.�V h0 ;y ; y/ � .2��/m�slx0

M;

and so by �eorem 6.9 in [10] it follows that

Hs�m.K \ V h0
x0
/ � Hs�m.Alx0

\ V h0
x0
/

� 2�.s�m/.2��/s�ml�1
x0
M�1 � �V h0 ;x0

.Alx0
\ V h0

x0
/

> 0:
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�is proves that if kFV kL1.���H / < 1, then for �H -a.e. h 2 H we have

Hs�m.K \ .x C hV // > 0 for �-a.e. x 2 K;

and so (i) follows by Lemma 3.4 and Fubini’s theorem.

Proof of �eorem 2.1 (ii). Assume that V is such that

kF kL1.���H / D 1I

then

� � �H ¹.x; h/ W F.x; h/ > M º > 0 for each 0 < M < 1:

For each integer M � 1 set

EM D ¹.x; h/ 2 X W F.x; h/ > M º

and

E0;M D

1
\

N D1

1
[

j DN

T �j .EM /I

then

� � �H .EM / > 0;

and so

� � �H .X nE0;M / D 0

since � � �H is ergodic (see �eorem 1.5 in [17]). Set

zE D D0 \
�

1
\

M D1

E0;M

�

I

then

� � �H .X n zE/ D 0:

For �H -a.e. h 2 H it holds that

�¹x 2 K W .x; h/ … zEº D 0;

�x such h0 2 H and set

A D ¹x 2 K W .x; h0/ 2 zEº:
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Note that since .x; h0/ 2 D0 for some x 2 K, it follows that Ph0
� � Hm. It will

now be shown that

‚�s�m.�V h0 ;x; x/ D 1 for each x 2 A: (3.4)

Let x 2 A,M � 1 and N � 1 be given; then there exists k � N with T k.x; h0/ 2

D0 \EM , and so F.T k.x; h0// > M . Set

u D wk.x/

and

ˇ D .F.x; h0//
�1I

then by Lemma 3.7

�V h0 ;x.Ku/ D ˇ � rs�m
u � F.T k.x; h0//

� ˇ � rs�m
u �M:

Set

d D sup¹jy1 � y2j W y1; y2 2 Kº:

�en

�V h0 ;x.B.x; d � rwk.x///

.2d � rwk.x//
s�m

�
�V h0 ;x.Ku/

.2d � ru/s�m

�
ˇ � rs�m

u �M

.2d � ru/s�m

D
Mˇ

.2d/s�m
:

Since lim
k!1

rwk.x/ D 0 we get that

‚�s�m.�V h0 ;x; x/ �
Mˇ

.2d/s�m
;

and so (3.4) follows since M can be chosen arbitrarily large.

Let x 2 A and y 2 A \ V
h0

x I then by (3.4) we get

‚�s�m.�V h0 ;x ; y/ D ‚�s�m.�V h0 ;y ; y/ D 1:
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Now by �eorem 6.9 in [10] it follows that for eachM � 1

Hs�m.A \ V h0
x / � M�1 � �V h0 ;x.A \ V h0

x / � M�1;

and so

Hs�m.A \ V h0
x / D 0

sinceM can be chosen arbitrarily large. Also, since�.KnA/D 0, by �eorem 7.7

in [10] we get that

Z

.V h0 /?

Hs�m..K n A/ \ V h0
y / dHm.y/

� const � Hs.K n A/

D const � �.K n A/

D 0:

�is shows that

Hs�m..K n A/ \ V h0
y / D 0 for Hm-a.e. y 2 .V h0/?,

and so

Hs�m..K n A/ \ V h0
x / D 0 for �-a.e. x 2 K since Ph0

� � Hm.

It follows that for �-a.e. x 2 A (and so for �-a.e. x 2 K) we have

Hs�m.K \ V h0
x / D Hs�m.A \ V h0

x /C Hs�m..K n A/ \ V h0
x / D 0 :

From Lemma (3.4) and Fubini’s theorem, it follows that

Hs�m.K \ V h
x / D 0 for � � �H -a.e. .x; h/ 2 K �H ,

which proves (ii).

Proof of �eorem 2.1 (iii). Assume that kFV k1 < 1 for �G-a.e. V 2 G. By

Lemma 3.2 and part (i), it follows that for �G-a.e. V 2 G it holds for �H -a.e.

h 2 H that

Hs�m.K \ .x C hV // > 0 for �-a.e. x 2 K :

Set

B D ¹.x; V / 2 K � G W Hs�m.K \ Vx/ D 0ºI

then by Lemma 3.4 we get that B is a Borel set (hence universally measurable),

and so � � �G.B/ D 0 by Lemma 3.6.
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For the other direction, set

W D ¹V 2 G W kFV k1 D 1º

and assume that

�G.W/ > 0:

By part (ii) it follows that for �G-a.e. V 2 W we have

Hs�m.K \ .x C hV // D 0 for � � �H -a.e. .x; h/ 2 X;

and so by Lemma 3.1

0 < �G.W/

�

Z

� � �H ¹.x; h/ W Hs�m.K \ .x C hV // D 0º d�G.V /

D

“

�H ¹h W Hs�m.K \ .x C hgU // D 0º d�O.g/ d�.x/

D

“

�H .¹h W Hs�m.K \ .x C hU // D 0º � g�1/ d�O.g/ d�.x/

D

Z

�O¹g W Hs�m.K \ .x C gU // D 0º d�.x/

D

Z

�G¹V W Hs�m.K \ Vx/ D 0º d�.x/

D � � �G¹.x; V / W Hs�m.K \ Vx/ D 0º;

which completes the proof of (iii).

Part (iv) can be proven in a similar manner, so the proof of �eorem 2.1 is

complete.

Proof of �eorem 2.4 (i). LetM > 0 be so large such that for

E D ¹.x; h/ 2 X W F.x; h/ � M º

we have

� � �H .E/ > 0:
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Set

E0 D

1
\

N D1

1
[

j DN

T �j .E/I

then

� � �H .X nE0/ D 0

since � � �H is ergodic. Set

E1 D E0 \D0I

then

� � �H .X nE1/ D 0:

For �H -a.e. h 2 H it holds that

�¹x 2 K W .x; h/ … E1º D 0:

Fix such h0 2 H . For each l � 1 set

Al D ¹x 2 K W .x; h0/ 2 E1 and F.x; h0/ � l�1º;

and �x l0 � 1. It will now be shown that

‚s�m
� .�V h0 ;x ; x/ � .2�/m�sl0M for each x 2 Al0

: (3.5)

Let x 2 Al0
and let N � 1 be given. �en since .x; h0/ 2 E1 it follows that there

exist k � N with T k.x; h0/ 2 E \D0, and so F.T k.x; h0// � M . Set

u D wk.x/I

then by Lemma 3.7 we have

�V h0 ;x.Ku/ D .F.x; h0//
�1 � rs�m

u � F.T k.x; h0//

� l0r
s�m
u M:

It follows that

�V h0 ;x.B.x; � � rwk.x///

.2� � rwk.x//
s�m

�
�V h0 ;x.Ku/

.2� � ru/s�m

�
l0r

s�m
u M

.2� � ru/s�m

D .2�/m�sl0M:

�is proves (3.5) since rwk.x/ tends to 0 as k tends to 1.
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As in the proof of part (i) of �eorem 2.1, since

�
�

K n

1
[

lD1

Al

�

D 0;

it follows that for �-a.e. x 2 K there exists lx � 1 with

�V h0 ;x.Alx
\ V h0

x / > 0:

Fix such an x0 and let y 2 Alx0
\ V

h0
x0

. �en by (3.5) we get

‚s�m
� .�V h0 ;x0

; y/ D ‚s�m
� .�V h0 ;y ; y/ � .2�/m�slx0

M;

and so by �eorem 6.11 in [10] it follows that

Ps�m.K \ V h0
x0
/ � Ps�m.Alx0

\ V h0
x0
/

� .2�/s�ml�1
x0
M�1 � �V h0 ;x0

.Alx0
\ V h0

x0
/

> 0:

Since �G.G nV/ D 0, this shows that for �G-a.e. V 2 G it holds for �H -a.e. h 2 H

that

Ps�m.K \ .x C hV // > 0 for �-a.e. x 2 K.

Set

B D ¹.x; V / 2 K �G W Ps�m.K \ Vx/ D 0ºI

then by Lemma 3.5 we get thatB is universally measurable, and so the claim stated

in (i) follows by Lemma 3.6.

Proof of �eorem 2.4 (ii). Assume V is such that












1

F













L1.���H /

D 1:

�en

� � �H ¹.x; h/ W F.x; h/ < M�1º > 0 for each 0 < M < 1:

For each integer M � 1 set

EM D ¹.x; h/ W F.x; h/ < M�1º

and

E0;M D

1
\

N D1

1
[

j DN

T �j .EM /I
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then since � � �H is ergodic and � � �H .EM / > 0 it follows that

� � �H .X nE0;M / D 0:

Set

zE D D0 \
�

1
\

M D1

E0;M

�

I

then

� � �H .X n zE/ D 0:

For �H -a.e. h 2 H it holds that

�¹x 2 K W .x; h/ … zEº D 0;

�x such h0 2 H and set

A D ¹x 2 K W .x; h0/ 2 zE/º:

It will now be shown that

‚s�m
� .�V h0 ;x; x/ D 0 for each x 2 A : (3.6)

Let x 2 A,M � 1 andN � 1 be given. �en there exists k � N with T k.x; h0/ 2

D0 \EM , and so F.T k.x; h0// < M
�1. Set

u D wk.x/:

�en by Lemma 3.7

�V h0 ;x.Ku/ D .F.x; h0//
�1 � rs�m

u � F.T k.x; h0//

� .F.x; h0//
�1 � rs�m

u �M�1:

It follows that

�V h0 ;x.B.x; � � rwk.x///

.2� � rwk.x//s�m

�
�V h0 ;x.Ku/

.2� � ru/s�m

�
.F.x; h0//

�1 � rs�m
u �M�1

.2� � ru/s�m

D .2�/m�s � .F.x; h0//
�1 �M�1:
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�is shows that

‚s�m
� .�V h0 ;x; x/ � .2�/m�s � .F.x; h0//

�1 �M�1;

and so (3.6) holds since M can be chosen arbitrarily large.

We have

0 D �.K n A/ D

Z

�V h0 ;x.K n A/ d�.x/;

hence�V h0 ;x.A\V
h0

x / > 0 for�-a.e.x 2 K. Fix suchx0 2 K and let y 2 A\V
h0

x0
.

�en by (3.6) we get

‚s�m
� .�V h0 ;x0

; y/ D ‚s�m
� .�V h0 ;y ; y/ D 0 :

Now by �eorem 6.11 in [10] it follows that for each � > 0

Ps�m.K \ V h0
x0
/ � Ps�m.A \ V h0

x0
/ � ��1 � �V h0 ;x0

.A \ V h0
x0
/;

which shows that

Ps�m.K \ V h0
x0
/ D 1

since � can be chosen arbitrarily small and �V h0 ;x0
.A \ V

h0
x0
/ > 0.

�is proves that if






1
FV







L1.���H /
D 1, then for �H -a.e. h 2 H we have

Ps�m.K \ .x C hV // D 1 for �-a.e. x 2 K,

and so (ii) follows by Lemma 3.5 and Fubini’s theorem.

Proof of �eorem 2.4 (iii). Assume that













1

FV













L1.���H /

D 1 for �G-a.e. V 2 G;

then by Lemma 3.2 and part (ii) it follows that for �G-a.e. V 2 G it holds for

�H -a.e. h 2 H that

Ps�m.K \ .x C hV // D 1 for �-a.e. x 2 K.

Set

B D ¹.x; V / 2 K �G W Ps�m.K \ Vx/ < 1ºI

then by Lemma 3.5 we get thatB is universally measurable, and so the claim stated

in (iii) follows by Lemma 3.6.

�is completes the proof of �eorem 2.4.
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3.4. Proofs of Corollaries 2.2, 2.3 and 2.5. �e following lemma will be used

in the proofs of Corollaries 2.2 and 2.5.

Lemma 3.8. Assume s > 2m. �en PV ?� � Hm and
dP

V ?�

dHm has a continuous

version for �G-a.e. V 2 G.

Proof. It is proven in [4] and independently in [16] that if � is a compactly sup-

ported Radon measure on Rn with I2m.�/ < 1, then PV ?� � Hm and
dP

V ?�

dHm

has a continuous version for �G-a.e. V 2 G. By the assumption s > 2m we get

I2m.�/ < 1 (see the proof of Lemma 3.2), hence the lemma follows.

Proof of corollary 2.2. Assuming s > 2m and jH j < 1, it will be shown that

kFV kL1.���H / < 1 for �G-a.e. V 2 G. By �eorem 2.1 (iii) the corollary will

follow. Set

E D
°

V 2 G W PV ?� � Hm and
dPV ?�

dHm
is continuous

±

I

then by Lemma 3.8 we get �G.G nE/ D 0. By Lemma 3.1 it now follows that

0 D �G.G nE/

D �O¹g 2 O.n/ W gU … Eº

D

Z

�H ¹h W hgU … Eº d�O.g/

D

Z

�H ¹h W hV … Eº d�G.V /;

and so

�H ¹h W hV … Eº D 0 for �G-a.e. V .

Fix such a V 2 G. �en since jH j < 1 we have

�H ¹hº > 0 for each h 2 H ,

and so

hV 2 E for every h 2 H .
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For each h 2 H and y 2 .hV /? set

Qh.y/ D ‚m
� .P.hV /?�; y/;

�x h0 2 H , and set

W D .h0V /
?:

Since Hm.B.y; �/ \W / D .2�/m for each y 2 W and 0 < � < 1, it follows by

�eorem 2.12 in [10] that

Qh0
.y/ D

dPW �

dHm
.y/ for Hm-a.e. y 2 W ,

i.e. the function Qh0
equals a continuous function as members of L1.W;Hm/.

Also, since � is supported on a compact set it follows that the set

¹y 2 W W Qh0
.y/ ¤ 0º

is bounded, so Qh0
equals a continuous function with compact support in

L1.W;Hm/, which shows that

kQh0
kL1.W;Hm/ < 1:

Since PW� � Hm it follows that

kQh0
kL1.PW �/ < 1:

Now set

M D max¹kQhkL1.P
.hV /? �/ W h 2 H º:

�en M < 1 since jH j < 1. Also we have

0 D
1

jH j

X

h2H

P.hV /?�¹y 2 .hV /? W jQh.y/j > M º

D
1

jH j

X

h2H

�¹x 2 K W jQh.P.hV /?.x//j > M º

D
1

jH j

X

h2H

�¹x 2 K W jFV .x; h/j > M º

D

Z

�¹x 2 K W jFV .x; h/j > M º d�H .h/

D � � �H ¹.x; h/ 2 K �H W jFV .x; h/j > M º;

which shows that

kFV kL1.���H / � M < 1:

�is completes the proof of corollary 2.2.
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Proof of corollary 2.3. Assume that H D O.n/ and

� � �G¹.x; V / W Hs�m.K \ Vx/ > 0º > 0 :

Let V 2 V. �en since �H D �O we have

� � �H ¹.x; h/ W Hs�m.K \ .x C hV // > 0º > 0 ;

and so by �eorem 2.1 (ii) it follows that

kFV kL1.���H / < 1:

Set

M D kFV kL1.���H /

and

E D

´

W 2 G W PW ?� � Hm and













dPW ?�

dHm













L1.Hm/

� M

µ

;

and for each h 2 H set

Ph D P.hV /? :

We shall �rst show that

�G.G nE/ D 0:

Since PW ?� � Hm for �G-a.e. W 2 G (see the proof of Lemma 3.2), and since

�H D �O , we have

�G.G nE/ D �G.G n ¹W 2 G W PW ?� � Hmº/

C �G

´

W 2 G W PW ?� � Hm and













dPW ?�

dHm













L1.Hm/

> M

µ

D �H

´

h W Ph� � Hm and













dPh�

dHm













L1.Hm/

> M

µ

:

(3.7)
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Let h 2 H be such that

Ph� � Hm

and












dPh�

dHm













L1.Ph�/

� M:

�en

0 D Ph�
°

y 2 .hV /? W
dPh�

dHm
.y/ > M

±

D

Z

.hV /?

1® dPh�

dHm >M
¯ �
dPh�

dHm
dHm

� M � Hm
°

y 2 .hV /? W
dPh�

dHm
.y/ > M

±

;

which shows that












dPh�

dHm













L1.Hm/

� M:

By (3.7) it follows that

�G.G n E/ D �H

´

h W Ph� � Hm and













dPh�

dHm













L1.Ph�/

> M

µ

: (3.8)

By �eorem 2.12 in [10] we get that for each h 2 H with Ph� � Hm

FV .x; h/ D
dPh�

dHm
.Ph.x// for �-a.e. x 2 K;

and so by (3.8)

�G.G nE/ � �H ¹h W kFV .�; h/kL1.�/ > M º

D �H ¹h W �¹x W FV .x; h/ > kFV kL1.���H /º > 0º

D 0:

Since �G.W/ > 0 for every non-empty open set W � G and since �G.G nE/ D 0,

it follows that E is dense in G, and so in order to prove the corollary it su�ces to

show that E is a closed subset of G. Let W0 2 xE, let y 2 W ?
0 and let r 2 .0;1/.

Given � > 0 there exists W 2 E so close to W0 in G (with respect to the metric

dG de�ned in Section 3.1) such that

P�1

W ?
0

.B.y; r//\K � P�1
W ?.B.PW ?y; r C �//:
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Since W 2 E, it follows that

PW ?
0
�.B.y; r//D �.P�1

W ?
0

.B.y; r//\K/

� �.P�1
W ?.B.PW ?y; r C �///

D PW ?�..B.PW ?y; r C �///

D

Z

B.P
W ? y;rC�/\W ?

dPW ?�

dHm
dHm

� M � Hm.B.PW ?y; r C �/ \W ?/

D M � .2 � .r C �//m;

and since this holds for each � > 0 we have

PW ?
0
�.B.y; r/\W ?

0 / � M � .2r/m D M � Hm.B.y; r/\W ?
0 / :

�is holds for every y 2 W ?
0 and r 2 .0;1/, hence W0 2 E by �eorem 2.12

in [10], which shows thatE is closed inG and completes the proof of the corollary.

Proof of corollary 2.5. Assuming s > 2m it will be shown that













1

FV













L1.���H /

D 1 for �G-a.e. V 2 G.

By �eorem 2.4 (iii) the corollary will follow. Set

E D
°

V 2 G W PV ?� � Hm and
dPV ?�

dHm
is continuous

±

I

then as in the proof of corollary 2.2 it follows by Lemma 3.8 and Lemma 3.1 that

0 D �G.G nE/ D

Z

�H ¹h W hV … Eº d�G.V /;

and so

�H ¹h W hV … Eº D 0 for �G-a.e. V .

Fix such V 2 G, let M > 0, set

A D ¹h 2 H W hV 2 Eº;
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and for each h 2 H and y 2 .hV /? set

Qh.y/ D ‚m
� .P.hV /?�; y/

and

Lh D ¹y 2 .hV /? W 0 < Qh.y/ � M�1º:

Fix h0 2 A and set

W D .h0V /
?:

By �eorem 2.12 in [10] it follows that

Qh0
.y/ D

dPW �

dHm
.y/ for Hm-a.e. y 2 W ,

hence the function Qh0
equals a continuous function in L1.W;Hm/. Also, since

� is supported on a compact set, it follows that the set

¹y 2 W W Qh0
.y/ ¤ 0º

is bounded. By these two facts it easily follows that

Hm.Lh0
/ > 0;

and so

PW�.Lh0
/ > 0

since Qh0
D dPW �

dHm and Qh0
> 0 on Lh0

. We get that

0 < �¹x 2 K W Qh0
.PW .x// � M�1º

D �¹x 2 K W FV .x; h0/ � M�1º;

and so by Fubini’s theorem

� � �H

°

.x; h/ W
1

FV .x; h/
� M

±

D

Z

A

�¹x 2 K W FV .x; h/ � M�1º d�H .h/

> 0:

It follows that






1
FV







L1.���H /
� M , and so







1
FV







L1.���H /
D 1 since we can

chooseM as large as we want. �is completes the proof of the corollary.
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4. Proof of the result regarding self-a�ne sets

Set

ƒ D ¹1; 2º:

Given 0 < � < 1
2

de�ne

f�;1; f�;2 W R �! R

by

f�;1.x/ D � � x

and

f�;2.x/ D � � x C 1 � �

for each x 2 R, let C� � Œ0; 1� be the attractor of the IFS ¹f�;1; f�;2º, set

d� D dimH C�;

so that d� D
log 2

log ��1 , and for each E � R set

��.E/ D
Hd�.C� \E/

Hd�.C�/
:

Let 0 < a < b < 1
2

be such that 1
a

and 1
b

are Pisot numbers,
log b

log a
is irrational,

and da C db > 1. Let I D Œ0; 1/ and let L be the Lebesgue measure on I . Fix

� 2 .0;1/, and for each t 2 I and z 2 R2 de�ne

W t D ¹x � .1; � � at / W x 2 Rº;

V t D .W t /?

and

V t
z D z C V t :

In order to prove �eorem 2.6 we shall �rst prove the following:

�eorem 4.1. For �a � �b � L-a.e. .x; y; t / 2 Ca � Cb � I it holds that

HdaCdb�1..Ca � Cb/ \ V t
.x;y// D 0 :
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4.1. Preliminaries. Set

˛ D
log b

log a

(so ˛ 2 I n Q) and, for each t 2 I ,

R.t/ D t C ˛ mod 1:

Given 0 < � < 1
2

and a word �1 � � � � � �l D w 2 ƒ�, write

f�;w D f�;�1
ı � � � ı f�;�l

and

C�;w D f�;w.C�/:

For each n � 1 and x 2 C� let w�;n.x/ 2 ƒn be the unique word of length nwhich

satis�es

x 2 C�;w�;n.x/;

and let

S�.x/ D f �1
�;w�;1.x/.x/:

We also write

w�;0.x/ D ;

and

C�;; D C�:

�e following dynamical system will be used in the proof of �eorem 4.1.

�e idea of using this system comes from the partition operator introduced in

Section 10 of [7]. Set

K D Ca � Cb;

X D K � I;

� D �a � �b;

� D � � L;

and for each .x; y; t / 2 X de�ne

T .x; y; t / D

8

<

:

.x; Sb.y/; R.t// if t 2 Œ0; 1� ˛/;

..Sa.x/; Sb.y/; R.t// otherwise.

It is easy to check that the system .X; �; T / is measure preserving, and by Lem-

ma 2.2 in [2] it follows that it is ergodic.
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Let R be the Borel �-algebra of R2. For each t 2 I let Pt be the orthogonal

projection onto W t , and let ¹�t;zºz2R2 be the disintegration of � with respect to

P�1
t .R/ (see Section 3.1 above). Also, for each .z; t / 2 X de�ne

F.z; t / D ‚1
�.Pt�;Ptz/:

4.2. Auxiliary lemmas

Lemma 4.2. It holds that I1.�/ < 1, where recall that I1.�/ is the 1-energy

of �.

Proof. Set

ı D 1 � 2b:

�en, for each .x; y/ 2 R2, and k � 1

�.B..x; y/; ı � ak// � �..x � ı � ak ; x C ı � ak/ � .y � ı � ak; y C ı � ak//

� �a.x � ı � ak; x C ı � ak/ � �b.y � ı � ak ; y C ı � ak/

� 2�k � 2�Œk logb a�

� 2�k � 21�k logb a

D 2 � ak.1Clogb a/ loga 2�1

D 2 � ak.daCdb/:

�is shows that there exists a constantM > 0 with

�.B.z; r// � M � rdaCdb for all z 2 R2 and r > 0.

Since da Cdb > 1, the lemma follows by the discussion found at the beginning of

Chapter 8 of [10].

Lemma 4.3. Let n1; n2 � 1, w1 2 ƒn1 and w2 2 ƒn2 . For each .x; y/ 2 K set

g.x; y/ D .fa;w1
.x/; fb;w2

.y//:

�en for each Borel set B � K

�.g.B// D 2�n1�n2 � �.B/:
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Proof. We prove this by using the ��� theorem (see Section 3 of Chapter 1 of [1]).

Let E be the collection of all Borel sets B � K which satisfy

�.g.B// D 2�n1�n2 � �.B/I

then E is a �-system. Set

P D ¹Ca;u1
� Cb;u2

W u1; u2 2 ƒ�º [ ¹;ºI

then P is a �-system, P � E and �.P/ equals the collection of all Borel subsets of

K. By the � � � theorem it follows that �.P/ � E, hence E equals the collection

of all Borel subsets of K, and the lemma is proven.

Lemma 4.4. It holds that

0 < HdaCdb .K/ < 1;

and

�.E/ D
HdaCdb .K \E/

HdaCdb .K/

for each Borel set E � R2.

Proof. By �eorem 8.10 in [10] it follows that

HdaCdb .K/ > 0;

and by an elementary covering argument it can be shown that

HdaCdb .K/ < 1:

�e rest of the lemma can be proven by using the � � � theorem, as in the proof

of Lemma 4.3.

Lemma 4.5. Let 0 < M < 1 and set

EM D ¹.z; t / 2 X W F.z; t / > M º:

�en

�.EM / > 0:
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Proof. Assume by contradiction that �.EM / D 0 and set

L D ¹t 2 I W �¹z W .z; t / 2 EM º D 0º:

�en L.I n L/ D 0, and so xL D I . Set

A D

´

t 2 I W Pt� � H1 and













dPt�

dH1













L1.H1/

� M

µ

;

and let t 2 L. For Pt�-a.e. z 2 W t we have ‚1
�.Pt�; z/ � M , hence by parts (2)

and (3) of �eorem 2.12 in [10] it follows that t 2 A. �is shows that L � A, and

so that xA D I . By an argument similar to the one given at the end of the proof of

Corollary 2.3, it can be shown that A is a closed subset of I . HenceA D I , and in

particular Pt� � H1 for each t 2 I . �is contradicts �eorem 4.1 in [13], which

says that there exists a dense Gı set of 1-dimensional linear subspaces V � R2

such that PV� and H1 are singular. It follows that we must have �.EM / > 0, and

the lemma is proven.

4.3. Proofs of �eorems 4.1 and 2.6

Proof of theorem 4.1. Let D be the set of all .z; t / 2 X such that Pt� � H1,

�t;z is de�ned,

�t;z.Ca;w1
� Cb;w2

/ D lim
�#0

�..Ca;w1
� Cb;w2

/ \ P�1
t .B.Ptz; �///

Pt�.B.Ptz; �//

for each w1; w2 2 ƒ�, and

0 < F.z; t / D lim
�#0

Pt�.B.Ptz; �//

2�
< 1:

By Lemma 4.2 and by the same arguments as the ones given at the beginning of

Section 3.3, it follows that

�.X nD/ D 0:

Set

D0 D

1
\

j D0

T �jD:

�en

�.X nD0/ D 0

since T is measure preserving.
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For 0 < M < 1 let EM be as in Lemma 4.5, and set

E0;M D

1
\

N D1

1
[

j DN

T �j .EM /:

Since �.EM / > 0, it follows by the ergodicity of .X; �; T / that

�.X nE0;M / D 0:

Set

D1 D D0 \
�

1
\

M D1

E0;M

�

I

then �.X nD1/ D 0. For L-a.e. t 2 I it holds that

�¹z 2 K W .z; t / … D1º D 0:

Fix such t0 2 I and set

A D ¹z 2 K W .z; t0/ 2 D1º:

Note that by A ¤ ; it follows that Pt0� � H1.

Set

� D da C db � 1:

It will now be shown that

‚��.�t0;z; z/ D 1 for each z 2 A: (4.1)

Let .x; y/ D z 2 A and set

ˇ D .F.z; t0//
�1 :

�en 0 < ˇ < 1 since .z; t0/ 2 D0. Let M � 1 and N � 1 be given; then there

exists k � N with

T k.z; t0/ 2 D0 \EM ;

and so

F.T k.z; t0// > M:

Set

l D Œt0 C k˛�I
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then

�t0;z.Ca;wl .x/ � Cb;wk.y//

D lim
�#0

�..Ca;wl.x/ � Cb;wk.y// \ P�1
t0
.B.Pt0z; �///

Pt0�.B.Pt0z; �//

D lim
�#0

2�

Pt0�.B.Pt0z; �//
�
�..Ca;wl.x/ � Cb;wk.y// \ P�1

t0
.B.Pt0z; �///

2�

D ˇ � lim
�#0

�..Ca;wl.x/ � Cb;wk.y// \ P�1
t0
.B.Pt0z; �///

2�
:

(4.2)

For each .x0; y0/ 2 R2 set

g.x0; y0/ D .fa;wl.x/.x
0/; fb;wk.y/.y

0//I

then

Ca;wl .x/ � Cb;wk.y/ D fa;wl .x/.Ca/ � fb;wk.y/.Cb/ D g.Ca � Cb/: (4.3)

Let � > 0, and let

L W R2 �! R2

be a linear map with

L.1; 0/ D .al ; 0/

and

L.0; 1/ D .0; bk/:

Since L is the linear part of the a�ne transformation g, we have

P�1
t0
.B.Pt0z; �// D z C V t0 C B.0; �/

D g ı g�1.z/C L ı L�1.V t0/C L ı L�1.B.0; �//

D g.g�1.z/C L�1.V t0/C L�1.B.0; �///:

(4.4)

Since a�l � a�t0�k˛C1 � a � b�k , we obtain

L�1.B.0; �// � B.0; � � a � b�k/: (4.5)
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Also we have

L�1.V t0/ D L�1..W t0/?/ D L�1...1; � � at0/ � R/?/

D L�1..� � at0;�1/ � R/

D .� � at0 � a�l ;�b�k/ � R

D
�

� � at0 �
bk

al
;�1

�

� R;

and so since
bk

al
D ak�loga b�l D ak˛�Œt0Ck˛�;

it follows that

L�1.V t0/ D .� � at0Ck˛�Œt0Ck˛�;�1/ � R

D ..1; � � aRk.t0// � R/?

D V Rk.t0/:

(4.6)

Set

Q� D P�1
Rk.t0/

.B.PRk.t0/.f
�1

a;wl .x/.x/; f
�1

b;wk.y/.y//; �ab
�k//I

then by (4.4), (4.5), and (4.6) it follows that

P�1
t0
.B.Pt0z; �// D g.g�1.z/C L�1.V t0/C L�1.B.0; �///

� g..f �1
a;wl .x/.x/; f

�1
b;wk.y/.y//C V Rk .t0/ C B.0; �ab�k//

D g.Q�/:

Now by (4.2), (4.3), and Lemma 4.3 we get that

�t0;z.Ca;wl.x/ � Cb;wk.y//

D ˇ � lim
�#0

�.g..Ca � Cb/ \Q�//

2�

D ˇ � 2�l�k �
a

bk
� lim

�#0

�..Ca � Cb/ \Q�/

2�ab�k

�
ˇ

2
� 2�k�k˛ �

a

bk
� F..f �1

a;wl .x/.x/; f
�1

b;wk.y/.y//; R
k.t0//

D
ˇa

2
� 2�k�k˛ � b�k � F.T k.z; t0//

�
ˇa

2
� 2�k�k˛ � b�k �M:
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Since

Ca;wl .x/ � Cb;wk.y/ � B
�

z;
2 � bk

a

�

and

2�k�k˛ � b�k � b�k� D 1;

it follows that

�t0;z.B.z;
2�bk

a
//

.4a�1 � bk/�
�
�t0;z.Ca;wl .x/ � Cb;wk.y//

.4a�1 � bk/�

�

ˇa
2

� 2�k�k˛ � b�k �M

.4a�1 � bk/�

�
ˇa2

8
�M � 2�k�k˛ � b�k � b�k�

D
ˇa2

8
�M:

�is shows that

‚��.�t0;z; z/ �
ˇa2

8
�M;

which proves (4.1) since ˇ > 0 and M can be chosen arbitrarily large.

Let z 2 A and u 2 A \ V
t0

z . �en by (4.1)

‚��.�t0;z; u/ D ‚��.�t0;u; u/ D 1;

and so by �eorem 6.9 in [10] we get that

H�.A \ V t0
z / D 0:

Also it holds that

�.K n A/ D 0I

hence by �eorem 7.7 in [10] and by Lemma 4.4 we get that

Z

W t0

H�..K n A/ \ V t0
u / dH

1.u/ � const � H�C1.K n A/

D const � �.K n A/

D 0:
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�is shows that

H�..K n A/ \ V t0
u / D 0 for H1-a.e. u 2 W t0 ,

and so

H�..K n A/ \ V t0
z / D 0 for �-a.e. z 2 K

since Pt0� � H1. It follows that for �-a.e. z 2 A, and so for �-a.e. z 2 K,

H�.K \ V t0
z / D H�.A \ V t0

z /C H�..K n A/ \ V t0
z / D 0 :

By Lemma 3.4, and by Fubini’s theorem it follows that

H�.K \ V t
z / D 0 for �-a.e. .z; t / 2 X ,

which completes the proof of �eorem 4.1.

Proof of �eorem 2.6. Let G be the set of all 1-dimensional linear subspaces

of R2, and set

E D ¹.z; V / 2 K � G W HdaCdb�1.K \ Vz/ D 0º:

For each �1 � t1 < t2 � 1 set

Gt1;t2 D ¹V 2 G W V D .t;�1/ � R with t 2 .t1; t2/º:

Given k 2 Z we can apply theorem 4.1 with � D ak, in order to get that .z; V / 2 E

for � � �G-a.e. .z; V / 2 K � GakC1;ak . By doing this for each k 2 Z we get that

.z; V / 2 E for � � �G-a.e. .z; V / 2 K � G0;1. Now �eorem 2.6 follows by the

symmetry of K with respect to the map that takes .x; y/ 2 K to .1 � x; y/.
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