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On the Hausdorff and packing measures
of slices of dynamically defined sets

Ariel Rapaport!

Abstract. Let 1 < m < n be integers, and let K C R” be a self-similar set satisfying
the strong separation condition, and with dim K = s > m. We study the a.s. values of
the s — m-dimensional Hausdorff and packing measures of K N V, where V is a typical
n — m-dimensional affine subspace.

For0 < p < % let C, C [0, 1] be the attractor of the IFS { f,.1, f5.2}, where f,, 1(t) =
p-tand fo2(t) = p-t+1— pforeacht € R. We show that for certain numbers
0<a,b< %, for instance a = % and b = %, if K = C, x Cp, then typically we have
FSTKNV)=0.
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1. Introduction

Let1 < m < nbeintegers, and given 0 < ¢ < n let H" and P’ be the ¢-dimensional
Hausdorff and packing measures in R” respectively. Let s € (m,n) be a real
number, and let K C R” be compact with 0 < H*(K) < oco. Denote by u the

! Supported by ERC grant 306494.



34 A. Rapaport

restriction of H{* to K, by G the set of all (n — m)-dimensional linear subspaces
of R”, and by &g the natural measure on G. For each V' € G and x € R" set

Kyx=Kn(x+YV).

It is well known that dimg (Ky,x) = s —m and H* 7" (Ky ) < oo, for u x §g-a.e.
(x,V) € K x G (see Theorem 10.11 in [10]). It is also known that if s = dimp K,
then dimp(Ky,x) < s —mforevery V € G and H™-ae. x € V- (see Lemma 5
in [3]), where dimp stands for the packing dimension. In this paper K will denote
certain self-similar or self-affine sets, in which cases it will be shown that more
can be said about the u x £g-typical values of H*™"(Ky ) and P* 7" (Ky x).

Assume that K is a self-similar set which satisfies the strong separation con-
dition (SSC), then since s > m we have Py < H™ for £g-a.e. V € G (see
the proof of Lemma 3.2 below). Here Py, 1 is the orthogonal projection onto V+.
Firstly we are interested in the validity of the condition

H™™(Kyx) >0 forpuxég-ae. (x,V)e K xG. (1.1)
If m = 1 and K is rotation-free, then by a result by Kempton (Theorem 6.1 in [9])
it follows that (1.1) holds if and only if the density dg‘g’(—f,,u is bounded for £g-a.e.

V € G. In Theorem 2.1 below the case of a general | < m < n and a general
self-similar set K, satisfying the SSC, will be considered. Extending Kempton’s
result, a necessary and sufficient condition for (1.1) will be given. In order to state
this condition, let H be the closed group generated by the orthogonal parts of
the contracting similarities defining K (see Section 2), and let £y be the Haar
measure corresponding to H. We show that (1.1) holds if and only if for £ég-a.e.

.. AP, . . .
V the densities — 27— are £ -essentially bounded, i.e. there exists a constant
P(hV)J_M

d
My > 0 with < My for ég-a.e. h € H. We also prove the analogous

d3om
statement, which says that H*7"(Ky ) = 0 for u x £g-a.e. (x, V) if and only if
dp
for £g-a.e. V the densities %}j“ are not £ -essentially bounded.

It is proven in [4] and independently in [16] that if v is a compactly supported
Radon measure on R” with finite 2m-energy, then Py v < H™ with continuous
density for £g-a.e. V € G. By combining this fact with Theorem 2.1, we prove in
Corollary 2.2 that (1.1) holds whenever s > 2m and H is finite. Unfortunately, in
the general case, it seems out of reach to establish the £ -essential boundedness
of the densities by current methods. Hence whether or not (1.1) generally holds
remains an open problem, which is probably quite hard. This is demonstrated
by Corollary 2.3, where it is shown that if (1.1) holds and H equals the entire
orthogonal group, then Py u < H™ for every V € G. Note that the validity of
the last statement is a major open problem.
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Next we describe our results regarding the s — m-dimensional packing mea-
sure of typical slices. We continue to assume that K is a self-similar set with the
SSC, and observe that dimp (Ky,x) = s —m for u x £g-a.e. (x, V). This follows
by Lemma 5 in [3], which was mentioned above, and since P,y <« H™ for
£g-a.e. V. It will be shown in Theorem 2.4 that we always have P*"(Ky x) > 0

d
for u x ég-a.e. (x, V). We also prove that if for £g-a.e. V' the densities %
are not essentially bounded from 0, then
PTM(Kyx) =00 for u x ég-ae. (x,V) € K xG. (1.2)

By using this, it is shown in Corollary 2.5 that if s > 2m, then (1.2) holds true.
Here we again utilize the continuity of the densities obtained in [4] and [16]. This
is related to a result by Orponen (Corollary 1.2 in [14]), which says that if n = 2,
s > m = 1, and K is rotation and reflection free, then (1.2) holds.

Lastly we consider the case in whichn = 2, m = 1 and K is a certain self-
affine set. For 0 < p < % let C, C [0, 1] be the attractor of the IFS {f, 1, fp.2},
where

Joa(t) =p-t

and
Jopt)=p-1+1-p
for each ¢t € RR. It will be assumed that

K:Cabe,

_ _ . logh . . ..
where 0 < a,b < % are such that a1 and ! are Pisot numbers, 12§a is irrational,

and s = dimg (K) > 1. Under these conditions it is shown in [13] that there exists
a dense Gy set, of 1-dimensional linear subspaces V' C R?2, such that Py u and
H! are singular. By using this fact, it will be proven in Theorem 2.6 below that
H Y (Ky,x) = 0 for u x g-a.e. (x, V). This result demonstrates some kind of
smallness of the slices Ky x, hence it may be seen as related to a conjecture made
by Furstenberg (Conjecture 5 in [6]). In our setting this conjecture basically says
that for ég-a.e. V € G we have dimy (Ky,x) < s — 1 for each x € R2, which
demonstrates the smallness of the slices in another manner.

The rest of this article is organized as follows: In Section 2 the results are
stated. In Section ?? the results regarding self-similar sets are proven. In Section
4 we prove the aforementioned theorem regarding self-affine sets.

Acknowledgment. I would like to thank my advisor Michael Hochman, for sug-
gesting to me problems studied in this paper, and for many helpful discussions.
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2. Statement of the results

2.1. Slices of self-similar sets. Let 0 < m < n be integers, let G be the Grass-
mannian manifold consisting of all » — m-dimensional linear subspaces of R”, let
O(n) be the orthogonal group of R”, and let £p be the Haar measure correspond-
ing to O(n). Fix U € G and for each Borel set £ C G define

§6(E) = §o{g € O(n): gU € E}, 2.1)

then &g is the unique rotation invariant Radon probability measure on G. For a
linear subspace V of R” let Py be the orthogonal projection onto V, let V-+ be
the orthogonal complement of V', and set

Ve =x+V foreachx e R".

Let A be a finite and nonempty set. Let {¢)}1ca be a self-similar IFS in R”,
with attractor K C R" and with dimgyg K = s > m. For each A € A there exist
0<ry<1,hy € Om)anday € R”, such that ¢, (x) = ry - h(x) + a,, for each
x € R"™. We assume that {¢, } 1 satisfies the strong separation condition, i.e. that
the sets {¢) (K)}rea are pairwise disjoint. Let H be the smallest closed sub-group
of O(n) which contains {/;},ecn, and let £y be the Haar measure corresponding
to H. For each E C R" set

HKNE
pE) = 2

then u is a Radon probability measure which is supported on K.
For each 0 <t < oo, v a Radon probability measure on R”, and x € R” set
V(B(x,¢€))

O©*(v,x) = limsup ———— and ©,L(v,x) = liminf
(v, x) EWP 20) (v, x) i

V(B(x,¢€))
——=, (22

20 (2.2)
where B(x, ¢€) is the closed ball in R” with center x and radius €. It holds that
O* (v,-) and O (v,-) are Borel functions (see remark 2.10 in [10]). For V € G
define

FV(X,]’I) = @T(P(hV)L,bL, P(hv)i(X)) for (X,h) e K x H;

then Fy is a Borel function from K x H to [0, co]. In what follows the collection
{Fy}vec will be of great importance for us.
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Let V be the set of all V € G with
Eu(H\{the H: Pgyyp < H™}) = 0;

then in Lemma 3.2 below it will be shown that &6 (G \ V) = 0. Note that by
Theorem 2.12 in [10] it follows that for each V € V

APy 1k
dHm

First we state our results regarding the Hausdorff measure of typical slices of K.

Fy(x,h) = (PgyyL(x)) foruxég-ae. (x,h) € K x H.

Theorem 2.1. (i) Given V €V, if || Fv || oo (iuxt,y) < 00, then
HT™KN(x +hV)) >0 foruxég-ae (x,h) € K x H.
(ii) Given V €V, if || Fy || Loo(uuxgz) = 00, then
FH™KN(x+hV)=0 foruxég-ae (x,h) € KxH.
(iii) H™™(K N Vy) > 0 for u x Eg-a.e. (x,V) € K x G if and only if
| FvlLoo(uxey) <00 forég-a.e. V € G.
{v) H*=™(K N Vy) = 0for u x Eg-a.e. (x,V) € K x G if and only if
| Fv | Looquxey) =00 forég-a.e. V €G .

By Theorem 2.1 we can derive the following corollaries.

Corollary 2.2. Assume that s > 2m and H is finite; then
HT™KNVy) >0 forpuxég-ae. (x,V) e K xG.
Corollary 2.3. Assume that H = O(n) and
wxéc{(x,V)e KxG: H*"™(KNVy)>0}>0;
then there exists 0 < M < oo such that for each V € G we have
Pyip < H"
with

<M.
Loo(F(m)

dPVJ_/,L
dHm
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Remark. It is known that under the assumptions of Corollary 2.3 we have
dim(PyLpu) =m foreachV € G

(see Theorem 1.6 in [7]). It is not known however if Py < H™ foreach V € G,
which is in fact a major open problem. Hence Corollary 2.3 implies that determin-
ing whether

uxée{(x,V) e KxG: H"™™(KNVy)>0}>0
is probably quite hard.

Next we state our results regarding the packing measure of typical slices.

Theorem 2.4. (i) For u x £g-a.e. (x,V) € K x G,
PTMK N V) > 0.
(i) Given V €V, if H ﬁ HLOO(MXEH) = 00, then
PTMK N (x +hV)) =00 foruxéEg-ae (x,h) € Kx H.
(iii) IfHﬁHLOO(MEH) = oo for ég-a.e. V € G, then

PTMEKNVy) =00 foruxég-ae (x,V)e K xG.
By Theorem 2.4 the following corollary can be derived.

Corollary 2.5. Assume s > 2m; then

PTMKNVy) =00 foruxég-ae (x,V)e K xG.

Remark. In the proofs of Corollaries 2.2 and 2.5, we use the fact that if s > 2m,
then d;gj,,“ is a continuous function for £g-a.e. V' (see Lemma 3.8 below). It is
not known whether this is still true if m < s < 2m, hence we need the assumption
s > 2m. Note also that the densities d;gj,,“ are in L2(H™) for £g-a.e. V (see

Theorem 9.7 in [10]), but it seems difficult to make any use of this.
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2.2. Slices of self-affine sets. Assumen = 2andm = 1. Given 0 < p < %

define
fp,la fp,zi R—->R

by

Joa(x) =p-x
and

Jo2(x) =p-x+1-p

for all x € R. Let C, C [0, 1] be the attractor of the IFS { f, 1. f52}. Set

dp = dimH Cp,
so that
_ log2
? 7 logp~V
and, for each £ C R, set
H4 (C, N E)
pp(E) = ————
Hee (Cp)

logh
> loga

Theorem 2.6. Let 0 < a < b < 1 be such that 1 and § are Pisot numbers
is irrational and d, + dp > 1; then

HAHDTI(Ca x Cp) N Vi) = 0
Jor pg x up x Eg-a.e. (x,y,V) e Cq x Cp x G.

Remark. Recall that every integer greater than 1 is a Pisot number, hence Theo-
rem 2.6 applies for instance in the case = § and b = 1.
Remark. Note that
0 < H%t(C, x Cp) < 00

and

FHda+dp (E)
Hdatdp (Cq x Cp)
for each Borel set £ C C, x Cp (see Lemma 4.4 below). Hence by Theorem 10.11
in [10] we get

Ma X pp(E) =

dimg ((Ca X Cp) N Vix,y)) = dg +dp — 1
for g x up x €g-a.e. (x,y,V) € Cqg x Cp X G.
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3. Proof of the results regarding self-similar sets

3.1. Preliminaries. The following notation will be used in the proofs of Theo-
rems 2.1 and 2.4. For each A € A set

s

pk=rk

Then p is the unique self-similar probability measure corresponding to the IFS
{¢1}rea and the probability vector (p))aeca, i.e. u satisfies the relation

= pr-pog;.

AEA
Let A* be the set of finite words over A; then given A;-----A; = w € A™ we write
Pw = Pry - Pr;»
rw — rll ..... rl[s
By = hy oo ha,,

Pw = Py O---OQDAI

and
Ky = ¢u(K).

For each/ > 1 and x € K, let w;(x) € A’ be the unique word of length / which
satisfies x € Ky, (x). Set also

p = min{d(ps, (K).91,(K): At Az € Aand Ar # A2 B.D)

then p > 0 since {p; }1ea satisfies the strong separation condition. Given V1, V, €
G set

dc (V1,V2) = || Py, — Py, ||

(where || - || stands for operator norm); then dg is a metric on G. Recall that for a
Radon measure v on R” and ¢ > 0 the ¢-energy of v is defined to be

n@)=/|x—ﬂﬁdMdew.
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The following dynamical system will be used in the proofs of Theorems 2.1
and 2.4. Set
X=KxH

and for each (x,h) € X let

T(x,h)= (%;ll(x)x’h;}(x) +h).

It is easy to check that the system (X, u x ég, T) is measure preserving, and by
Corollary 4.5 in [15] it follows that it is ergodic. We also have

Tk(x,h) = (<P;,1(x)x,h_l -h) foreachk > 1and (x,h) € X.

wi (x)

Let R be the Borel o-algebra of R”. For each V' € G set
Ry = P, 1(R),

and let {ity x}xern be the disintegration of p with respect to Ry (see Section 3
of [5]). For u-a.e. x € R” the probability measure py x is defined and supported
on K N Vy. Also, for each f € L'(u) the map that takes x € R” to [ fduyyis
Ry -measurable, the formula

[ 7 =[] 1oy diev) duto

is satisfied, and for Py, pu-a.e. x € VL we have

. 1
/ e = lim e / fdu.

P} (B(x.€)

For more details on the measures {{ty x}rer» see Section 3 of [5] and the refer-
ences therein.

3.2. Auxiliary lemmas. We shall now prove some lemmas that will be needed
later on. The following lemma will be used with &g in place of n, where &g is
considered as a measure on O(n) (which is supported on H).

Lemma 3.1. Let Q be a compact metric group, and let v be its normalized Haar
measure. Let n be a Borel probability measure on Q; then for each Borel set
EcCoQ

W(E) = [Q B(E g dv(g).
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Proof. For each Borel set E C Q define

)= [ nE g™ dvia).
Since v is invariant it follows that for each g € Q

{(Eg) = /Q M(E-g-q~") dv(g)

:/Qr;(E-g-(q'g)_l)dV(CI)

= {(E).
This shows that ¢ is a right-invariant Borel probability measure on Q, hence v = ¢
by the uniqueness of the Haar measure, and the lemma follows. U

Lemma 3.2. Let "V be the set of all V € G with
En(H\{he€ H: Pgyyp < H"}) =0,
then £ (G \'V) = 0.
Proof. Set
L=G\{VeG: Ppoip<<H"}.
It is easy to see that there exists a constant » € (0, oo) with u(B(x,r)) < b-r® for
each x € R” and r € (0, 0o) (see Theorem 4.14 in [10]). By the discussion found
at the beginning of Chapter 8 of [10], and since s > m, it follows that I, (1) < oo.
Hence, by Theorem 9.7 and equality (3.10) in [10] we get ég (L) = 0.
Let U € G be as in (2.1) and set
L' ={geO0m): gU € L};
then
fo(L)) = &c(L) = 0.
Let B C O(n) be a Borel set with L.’ C B and £¢(B) = 0; then by Lemma 3.1 it
follows that

0=¢0(8) = [ B¢ dbole).
We get that for £p-a.e. g € O(n)
0=¢x(B-g7")>¢n(L'-g7")
=¢églhe H:hge L'}
=En(H\{h € H: Pgopypp < H"}),
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and so
En(H\{h € H: PpyyLp <K H"}) =0 forég-ae. V eG,
which proves the lemma. O
Lemma 3.3. Let Z be the set of all (x, V) € K x G such that uy, is defined and

Ky N PSY(B(Pyox,e
wvx(Ky) = limu( v yL(B(Pyix,€)))
elo Pyij(B(Pyix,e))

then for each V € G we have

foreach w € A™;

X Eg{(e,h) € X: (x,hV) ¢ 2} = 0.

Proof. Fix V € G. It holds that Z is a Borel set, see Section 3 of [11] for a related
argument. It follows that the set

Zy ={(x,h)y e X: (x,hV) e Z}
is also a Borel set. By the properties stated in Section 3.1 we get that
u{x € K: (x,h) ¢ Zy} =0 foreachh € H,

and so i x £ (X \ Zy) = 0 by Fubini’s theorem. This proves the lemma. O

Lemma 3.4. Given a compact set KCR'and0 < t < n, the map that takes
(x,V) € K xG to H'(K N Vy) is Borel measurable.

Proof. For § > 0 let 5 be as defined in Section 4.3 of [10]. Let (x, V) € K xG,
€ > 0 and {(xg, V")},‘;":1 C K x G, be such that

(e VE) 5 (e, v). (%)

Let Wy, Wa, ... C R be open sets with K N Vy C U;";l W,

> (diam(W)))" < HE(K N Vy) + e

Jj=1

and diam(W;) < § for each j > 1. Since K is compact and (x), it follows that
Kn ka C U;";l W; for each k > 1 which is large enough, and so for each such k

o
HEK NVE) < (diam(W)))" < HE(K N Vi) + €.
j=1
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It follows that the function that maps (x, V) to J(§ (K N V) is upper semi-con-

tinuous, and so Borel measurable. Now since H* = klim 33 Jk the lemma fol-
—> 00
lows. O

Lemma 3.5. Given 0 <t < n and a Radon probability measure v on K x G, the
map that takes (x,V) € K x G to P'(K N Vy) is v-measurable (i.e. this map is
universally measurable).

Proof. Leta > 0 and set
E={x,V)e KxG:P(KNVy) <a);

then in order to prove the lemma it suffice to show that E is v-measurable.
Set
Y ={C C K: C is compact},

endow Y with the Hausdorff metric, and let G be the o-algebra of Y which is
generated by its analytic subsets. Set

E={CeY:P(C)<a);

then by Theorem 4.2 in [12] it follows that € € G, and so by Theorem 21.10 in [8]
we get that € is universally measurable.
For each (x, V) € K x G set

Y(x, V)= KNV

It will now be shown that
Yv:KxG—Y

is a Borel function. For each y € K the function that maps (x,V) € K x G to
d(KNVy, y)is lower semi-continuous, and hence a Borel function. Foreach/ > 1
let S; C K be finite with K C |, g5, B(y,17"), and set

Yi(x, V) ={yeS:d(KNV,,y)<I7"}
for each (x, V) € K x G. It holds that
Y. KxG—Y

is a Borel function and
=00

Y —— Y

pointwise, hence ¥ is a Borel function. Note also that £ = ¥~ (€).
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Since € is universally measurable it is v o Y ~!-measurable, and so there exist
A and @, Borel subsets of Y, with A C € C Cand v o Yy~ 1(C\ A) = 0. It holds
that ¥~ (A) and ¥ ~!(€) are Borel subsets of K x G, y"1(A) C E C ¥~ 1(C) and
v(¥~1(C) \ ¥ 1(A)) = 0. This shows that E is v-measurable, and the lemma is
proved. U

Lemma 3.6. For (x,h,V) e K x H x G set
Y(x,h, V)= (x,hV)

and let B C K x G be universally measurable. Assume that for £Eg-a.e. V € G it
holds for ég-a.e. h € H that

w{x € K: v(x,h,V)e B} =0;
then u x ég(B) = 0.

Proof. Since B is universally measurable there exist Borel sets 4,C C K x G
with A C B C C and

pxég xEg(Y~H(C\ 4) =0.

By the assumption on B and Fubini’s theorem it follows that
1xEn xE(YH(C)) = px En x Eg (Y1 (A))
= [ ntws vy e vt Ay du i dia )

< // plx: (x V) € yH(B)} dEg (h) dé (V)
= 0.

Now by Fubini’s theorem, by the definition of £ given in (2.1), and by Lem-
ma 3.1, it follows that

0=pxég x&c(¥'(C))

- / Enth: (v.h.V) € y=(O)} dig (V) du(x)
- // Enth: (v h.gU) € Y~ (C)} do(g) du(x)

_ / Enlh: (x,hgU) € C} déo(g) du(x)
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=/ en(th: (x.hU) € C}-g7Y) dEo(g) du(x)
= /go{g: (x,gU) e C}du(x)

=/sa{V: (x.V) € C} dp(x)
=uxéc(C)
> jx EG(B),

which completes the proof of the lemma. O

3.3. Proofs of Theorems 2.1 and 2.4. Fix V € 'V for the remainder of this sec-
tion, set
F = Fy,

and for each & € H set
Vi =hv and P, = Pyn..
Set

Q0 = {(x,h) € X: F(x,h) # ©*" (P, Py(x)) or
F(x,h) =oc0or
F(x,h) =0}

where ®*" is as defined in (2.2); then Q is a Borel set. By Theorem 2.12 in [10]
it follows that

uix € K: (x,h) € Q} =0 foreachh € H with Ppu < H™,

hence since VV € V we have
pxEn(Q) =[x (xuh) € Q) du) =0. (3.2)
H
Let D be the set of all (x, h) € X such that P < H™, pyn , is defined,

(K 0 P (B (P, 6)))
Ky) =1 f hw e A*,
My Ko) = O B Py ) oreachw

and

0 < F(x.h) = lim DB )
€l0 (2e)™
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By the choice of V, by Lemma 3.3 and by equation (3.2), it follows that
wxEn(X\ D) =0.
Set
g .
Do=(\T7/D:
j=0
then
px &g (X \ Do) =0
since T is measure preserving. The following key lemma will be used several

times below.

Lemma 3.7. Given k > 1 and (x, h) € Dy, we have

i (Kug) = (F )™ rg - F(TF (e h).
Proof. Setu = wi(x). Then

Ky N P Y(B(Pyx,€)))
K,) = lim
K = O (B (P, )
~ lim (2e)™ KKy N P, (B(Pyx,€)))
el0 Pru(B(Ppx,¢€)) (2¢)m
w(Ky N P (B(Pyx, €)))
(2e)™ '

= (F(x,h))™" - lim
€l0

For each € > 0 set
Ee = P (B(Pyo1 0y ()€ r )
then since
PN (B(Pyx,€)) = x + VP + B(0,¢)
=gy o0, (x + V" + B(0,¢))
= (g () + Vi 4 B0, 1))
= gu(Ee),

it follows that

_ i (K 0 E)
/LVh,x(Ku) - (F(X,h)) lelilg (26)m

1
L D w1y (@u(K N E))).
weAk

= (F(x,h) "1

€

jay

m
0
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Given w € A¥ \ {u} we have

ou(K) Ny (K) = 0,

o)
9 (pu(K) N K =0,
and so
(K N Ee)
K,) = (F(x.h)"" -1i Pu- (KN Ee)
() = (F e )™ lim S0
1 sem 1 p(Ee)
= (F(x,h))~t.psm lim ———
u elo (2e-r;Y)
= (F(x.m) ™ g™ Flog ' (x). b h)
= (F(x, )™ - r5=™ . F(T*(x, h)),
which proves the lemma. O

Proof of Theorem 2.1(i). Assume that V' is such that || F|| oo, xg,,) < 00. Set

M = ||F||Leo(uxtn)
E ={(x,h): F(x,h) < M}

and

Ey=Don ([T (E)):
Jj=0

then
pwx &g (X \ Er) =0.

For ég-a.e. h € H we have
ul{x e K: (x,h) ¢ E1} =0,
fix such hg € H. Foreach ! > 1 set
A;={x e K: (x,ho) € Eyand F(x, hy) > I},
and fix /o > 1. Setting k = min{r: A € A}, it will now be shown that

O (yng . X) < (2pK)"*lgM for each x € Ay, 33
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where p is as defined in (3.1). Let x € A;, and letkp > 6§ > 0. Let k > 1 be such
that
Fwg(x) = P > Fwgyq(x)s
and set
u = wr(x).

By Lemma 3.7 and by T*(x, ho) € E we get that

Hyho o(Ku) = (F(x,ho)) ™ -y - F(T*(x, ho)) < lo-rj ™™ - M,

and so
Kyho x(B(x.6)) - Ko (B(x, 0 Fuy(x)))
(zg)s_m h (ZIO : rwk_H (x))s_m
tho,x(Ku)
T (2pk cry)sTM
- lor,‘;_mM
T (2pk - ry)sT™
= (2px)" Sy M,
which proves (3.3).
It holds that
o0
{x e K:(x.ho) € Er} = A
1=1
hence

0o oo
0= &\ A0 = [y (KN A1) dieo)
=1 =1
and so for pu-a.e. x € K there exist [, > 1 with
Pyno (AL, N V) = pyng (A1) > 0.
Fix such xg € K and let y € 4;, N Vxhoo; then by (3.3) we get that
O™ (Uyho xys ¥) = O (Uyng . ¥) = (2pK)™ 1y M,
and so by Theorem 6.9 in [10] it follows that
FETHK N VI0) = HET (Ay,, N V)

0

> 276" Qi) LI M T g (Ary, 0 V)

0

> 0.
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This proves that if | Fy || fco(,xg,,) < 00, then for §g-a.e. h € H we have
FH"™K N (x+hV)) >0 foru-ae x €Kk,
and so (i) follows by Lemma 3.4 and Fubini’s theorem.
Proof of Theorem 2.1 (ii). Assume that V' is such that
| FllLoo(uxty) = 00

then
uxEg{(x,h): F(x,h) > M} >0 foreach0 < M < oo.

For each integer M > 1 set

Ep ={(x,h) € X: F(x,h) > M}

and
oo oo )
Eom= () | T7(Emn:
N=1 j=N
then
wxEg(Epm) >0,
and so

mxEa(X \ Eom) =0

since u x &g is ergodic (see Theorem 1.5 in [17]). Set

o0
E= Doﬂ( ﬂ EO,M);
M=1

then
wxEn(X\E)=0.
For ég-a.e. h € H it holds that

ulx € K: (x,h) ¢ E} =0,
fix such g € H and set

A={xeK: (x,hoy) € E}.
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Note that since (x, ho) € Dy for some x € K, it follows that Pp,u < H™. It will
now be shown that

O ™ (lyng »X) = 0o foreachx € 4. (3.4)

Letx € A, M > 1and N > 1 be given; then there exists k > N with T*(x, hg) €
Do N Ejpr, and so F(Tk(x,ho)) > M. Set

U = wr(x)
and

B = (F(x,ho))™"
then by Lemma 3.7

Wyng o (Ku) = B 137 - F(T*(x, ho))
>p-r " M.
Set
d = sup{|y1 — y2|: y1.y2 € K}.

Then

//vVho,x(B(x’d : rwk(x))) - //vVho,x(Ku)
(2d 'rwk(x))s_m T Q2d ry)sm
- B-rim-M
T Q2d )
Mp
= (zd)s—m )

Since lim ry, (x) = 0 we get that
k—o0

Mp

@*s—m (/LVhO,x’ x) > W’

and so (3.4) follows since M can be chosen arbitrarily large.
Letxe Aandy € AN Vxho; then by (3.4) we get

®*s_m(/JvVho,x7 y) = ®>ks_m(/JvVho,y’ y) = oo.
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Now by Theorem 6.9 in [10] it follows that for each M > 1
HANVI) < M~ pyng (ANVI0) < M7,

and so
H™(AN V) =0

since M can be chosen arbitrarily large. Also, since u(K\ A) = 0, by Theorem 7.7
in [10] we get that

[, RN A I 03070
< const- H*(K \ A)
= const- (K \ A)
=0.
This shows that
FHSTM(K\NA) N V) =0 for H™-ae.y € (Vio)h,
and so
FH™((K \ A) N Vxho) =0 for pu-a.e.x € K since Ppypu < H™.
It follows that for p-a.e. x € A (and so for u-a.e. x € K) we have
HEM(K N Vo) = 3574 nvhoy £ 35 (K \ A)nVioy=0.
From Lemma (3.4) and Fubini’s theorem, it follows that
HTMK NV =0 forpxég-ae (x.h)e KxH,
which proves (ii). O

Proof of Theorem 2.1 (iii). Assume that || Fy |, < oo for {g-a.e. V € G. By
Lemma 3.2 and part (i), it follows that for £g-a.e. V' € G it holds for &ég-a.e.
h € H that

H™(KN(x+hV)) >0 forpu-ae xek.

Set
B={(x,V)e KxG:H™(KNVy) =0}

then by Lemma 3.4 we get that B is a Borel set (hence universally measurable),
and so i x £g(B) = 0 by Lemma 3.6.
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For the other direction, set
W={VeG: |Fy = o0}

and assume that
Ec(W) > 0.

By part (ii) it follows that for £g-a.e. V€ W we have
F"KN(x+hV) =0 foruxég-ae. (x,h) € X,
and so by Lemma 3.1
0 <&c(W)

< /M x E{(x.h): FO(K O (x + hV)) = 0y dég (V)

- / Elh: 07" (K 0 (x + hgU)) = 0} dEo(g) du(x)

- / En({h: 37K N (x + hU)) = 0} - g7) déo(g) dp(x)
- /go{g; HTK N (x 4+ gU)) = 0} du(x)

- /EG{V: I (K O V) = 0} du(x)
= wx EG{(x. V) HET(K N Vi) = 0),

which completes the proof of (iii). O

Part (iv) can be proven in a similar manner, so the proof of Theorem 2.1 is
complete.

Proof of Theorem 2.4 (). Let M > 0 be so large such that for
E={(x,h)e X: F(x,h) <M}

we have
ux & (E) > 0.
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Set

Eo=() U717

N=1 j=N
then
pwxEa(X \ Eg) =0
since u x &g is ergodic. Set

E{ = Eoy N Dy;
then
px&a(X\ Ey) =0.
For ég-a.e. h € H it holds that
u{x e K: (x,h) ¢ E1} =0.
Fix such hy € H. Foreach ! > 1 set
A; ={x € K: (x,ho) € Ey and F(x, ho) > I},
and fix /o > 1. It will now be shown that
O " (Lyno s X) < (2p)" oM foreach x € Ay,. (3.5)

Letx € Aj, andlet N > 1 be given. Then since (x, ho) € E it follows that there
exist k > N with T¥(x, ho) € E N Dy, and so F(T*(x,ho)) < M. Set

U = wr(x);
then by Lemma 3.7 we have
Pyno x (Ku) = (F(x ho) ™ - 1™« F(T*(x. ho)
<lor; ™M.
It follows that

MVho,x(B(xy P rwk(x))) < //vVhO,x(Ku)
(2p- rwk(x))s_m T (2p-ry)sTm
- l()r;_mM
= Cpro
— (2p)"IoM.

This proves (3.5) since ry, (x) tends to 0 as k tends to oo.
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As in the proof of part (i) of Theorem 2.1, since

o0
M(K \ U Al) =0,
I=1
it follows that for p-a.e. x € K there exists [, > 1 with
Hyno x (A, N V) > 0.
Fix such an xo and let y € A;, N V;’OO. Then by (3.5) we get
O " (yho o0 ) = O (lyng . ¥) = (2p)" " lxy M,
and so by Theorem 6.11 in [10] it follows that
PR N V) = P4, N V)
> (20) "L M g (Ary, N V)
> 0.

Since £ (G \'V) = 0, this shows that for £g-a.e. V € G itholds for ég-a.e. h € H
that
PT"KN(x+hV))>0 foru-ae xeK.

Set
B={(x,V)e KxG:P""™(KNVy)=0};

then by Lemma 3.5 we get that B is universally measurable, and so the claim stated
in (i) follows by Lemma 3.6. ]

Proof of Theorem 2.4 (ii). Assume V is such that

= 0.
Lo (uxErr)

1
F
Then
wx Eg{(x,h): F(x,h) < M} >0 foreach0 < M < oo.
For each integer M > 1 set
Em = {(x,h): F(x,h) < M~}
and

Eom= () U T (Enm);

N=1 j=N
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then since p x &g is ergodic and p x £y (Epr) > 0 it follows that
pxEa (X \ Eo,m) = 0.

Set

o0
E=D0m( ﬂ E()’M);
M=1

then
pxEa(X\ E)=0.
For ég-a.e. h € H it holds that
ulx € K: (x,h) ¢ E} =0,
fix such iy € H and set
A={xeK: (x ho) € E)).
It will now be shown that

O " (Uyng 4 X) = 0 foreachx € 4. (3.6)

Letx € A,M > land N > 1 be given. Then there exists k > N with Tk(x, ho) €
Do N Ep, and so F(T*(x, hg)) < M. Set

u = wi(x).
Then by Lemma 3.7
Wyno o (Ku) = (F(x,ho))™ - 1™ - F(T*(x, ho))
< (F(x,ho))™'- ro ™ M1
It follows that

PLVho,x(B(xv P rwk(x)))
(20 rug )™
- MVho,x(Ku)

=G
_(FGho) !
(2p - ry)s—m

= (20)" - (F(x,ho)) ™' - M~
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This shows that
O (Iyho v X) < (20)" - (F(x,ho) ™' - M7,

and so (3.6) holds since M can be chosen arbitrarily large.
We have

0= 1K\ A) = [ By oK\ ) duCo)

hence /LVho,x(AﬂVth) > Ofor pu-a.e.x € K. Fixsuchxg € Kandlety € AﬂV,f’OO.
Then by (3.6) we get
®fk_m(lu“VhO’xO7 y) = ®i_m(/'LVh0,ys y) = O .

Now by Theorem 6.11 in [10] it follows that for each € > 0

PTHK NV = PTANVE) = et pyng L, (AN V),

(0]
which shows that
PSTM(K N V) = oo
since € can be chosen arbitrarily small and ftyn, (4 N V,f'oo) > 0.
. . 1 _
This proves that if || yan ”LOO(MXéH) = o0, then for éx-a.e. h € H we have

PTMKN(x+hV)) =00 forp-ae. x €K,
and so (ii) follows by Lemma 3.5 and Fubini’s theorem. O

Proof of Theorem 2.4 (iii). Assume that

then by Lemma 3.2 and part (ii) it follows that for £g-a.e. V € G it holds for
¢g-a.e. h € H that

1

=o0 forég-ae. V e G;
Fy

Loo(uxEn)

PTMKN(x+hV)) =00 forpu-ae. x e K.

Set
B={(x,V)eKxG:P™KNVy) < oo};

then by Lemma 3.5 we get that B is universally measurable, and so the claim stated
in (iii) follows by Lemma 3.6. ]

This completes the proof of Theorem 2.4.
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3.4. Proofs of Corollaries 2.2, 2.3 and 2.5. The following lemma will be used
in the proofs of Corollaries 2.2 and 2.5.

dP .
Lemma 3.8. Assume s > 2m. Then Py < H™ and d}}’{fnﬂ has a continuous

version for §g-a.e. V € G.

Proof. 1t is proven in [4] and independently in [16] that if v is a compactly sup-
ported Radon measure on R” with I, (v) < oo, then Pypiv < H™ and %
has a continuous version for £g-a.e. V € G. By the assumption s > 2m we get

Iom () < oo (see the proof of Lemma 3.2), hence the lemma follows. |

Proof of corollary 2.2. Assuming s > 2m and |H| < oo, it will be shown that
| FV | oo (uxeyy) < o0 for ég-a.e. V € G. By Theorem 2.1(iii) the corollary will
follow. Set

deL,u . .
1S ContIHUOUS} )

E = {VGG: Pyip < H™ and T

then by Lemma 3.8 we get £ (G \ E) = 0. By Lemma 3.1 it now follows that

0=4§6(G\E)
=50{g € O(n): gU ¢ Ej}

_ / Euth: heU ¢ E} dto(2)
_ /gH{h: hV ¢ E}déc(V),

and so
Eglh: hV ¢ E} =0 forég-ae. V.
Fix such a VV € G. Then since |H| < oo we have

Eg{h} >0 foreachh € H,

and so

hV e E  foreveryh e H.
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Foreach € H and y € (hV)' set

On(y) = O (PpryyL i, ¥),

fix hg € H, and set
W = (hoV)" .

Since H™(B(y,e) N W) = (2¢)" foreach y € W and 0 < € < oo, it follows by
Theorem 2.12 in [10] that
dP
Ono(y) = Ww,ff(y) for H™-a.e.y e W,

i.e. the function Qy, equals a continuous function as members of L!(W, H™).
Also, since u is supported on a compact set it follows that the set

{y e W: Qpo(y) # 0}

is bounded, so Qp, equals a continuous function with compact support in
LY (W, H™), which shows that

| Qo lLoo(w,30m) < o0.

Since Py < H™ it follows that

| QnollLoo(Pyy ) < 0.

Now set
M = maX{”Qh”Loo(P(hV)LM) che H}

Then M < oo since |H| < co. Also we have

1 | Z Poyypdy € (WV)E:105()| > M}

0=—
|H
heH

1
= m E uix € K: |Qh(P(hV)J-(x))| > M}
heH

1
H] > wlx € K:|Fy(x.h)| > M)}
heH

_ /u{x € K: |Fy(x. )| > M} dég (h)

= puxEgl(x,h) € K x H: |Fy(x,h)| > M},

which shows that
I Fv [ oo (uxgrm) = M < 0.

This completes the proof of corollary 2.2. O
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Proof of corollary 2.3. Assume that H = O(n) and
wxEc{(x, V): H™™(KNVy)>0}>0.
Let V € V. Then since £ = £p we have
pxEp{(x,h): HTH(K N (x +hV)) >0} >0,
and so by Theorem 2.1 (ii) it follows that

| Fv [l oo (uxepy) < 00

Set
M = ||Fy Lo (uxtn)
and
E={WeG:PWw<<9cmand HdPW“‘ SM},
dH™ || oo (gemy
and for each 1 € H set
Py = Py
We shall first show that
§6(G\E) =0.

Since Py < H™ for Eg-a.e. W € G (see the proof of Lemma 3.2), and since
&g = £o, we have
§6(G\E)=§c(G\{W € G: Pyip <H"})

dpwJ_,bL
dHm

+ &6 {W €G: Pyip < H™and H

> M
Loo(F(m)

Py > M
Loo(Fm)

dHm

=&y {h: Py < H™ and H

3.7
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Let & € H be such that

Ph/L L H™
and
2], e
dI™ || Loy
Then
dP
0= Piu{y € V)t TTHE(G) > M}
dPpu
= 1 c—dH™
/(hV)l {%f—hr’rf>M} dHm
dpP
= M3y € (hV)H: () > MY,
which shows that
),
dH oo gom) —
By (3.7) it follows that
dP
£6(G\ E) = £y {h: Phpt < H™ and H d}’gr’n‘ >M}. (3.8)
Lo(Pp )

By Theorem 2.12 in [10] we get that for each 7 € H with Ppu < H™

dPpu

Fy(x,h) = J50m

(Pp(x)) for pu-ae. x € K,
and so by (3.8)

§6(G\ E) <éufh: [|Fy (1) |pooqy > M}
=Epth: plx: Fv(x,h) > [|Fv | peo(uxty)) > 0}
= 0.
Since £ (W) > 0 for every non-empty open set W C G and since £ (G \ E) = 0,
it follows that £ is dense in G, and so in order to prove the corollary it suffices to
show that E is a closed subset of G. Let Wy € E, let y € WOL and let r € (0, c0).

Given € > 0 there exists W € E so close to W in G (with respect to the metric
dg defined in Section 3.1) such that

PI}OIL(B()/, r)NK C P (B(Pyry,r+e)).
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Since W € E, it follows that
Py in(B(y, 1)) = p(Pyl (B(y,r) N K)

< W(Py' (B(Pyoy.r+¢)))
= PWJ_/,L((B(PwJ_yyr + E)))

B(Py, Ly r+onw Lt dH"

<M -H"(B(PyLy,r+e)nwi
=M-Q2-(r+e)",
and since this holds for each € > 0 we have
Py n(B(y.r) NWgH) < M - (2r)" = M -H"(B(y.r) N Wgh).
This holds for every y € WOl and r € (0,00), hence Wy € E by Theorem 2.12

in [10], which shows that E is closed in G and completes the proof of the corollary.
O

Proof of corollary 2.5. Assuming s > 2m it will be shown that

=oo forég-ae. V eG.

E
Fv |l Loouxer)

By Theorem 2.4 (iii) the corollary will follow. Set
dva,bL . . .
E = {V cG: PVi/”L < J’Cm and W 1S ContlnuouS},

then as in the proof of corollary 2.2 it follows by Lemma 3.8 and Lemma 3.1 that

0=£6(G\ E) = /sH{h: WV ¢ Eydec(V).

and so
Eg{h: hV ¢ E} =0 for ég-ae. V.

Fix such V € G,let M > 0, set

A={he H:hV € E},
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and foreachh € H and y € (hV)* set

On(y) = O (PgyyL ik, y)

and
Ly={yehV):0<Quy) <M}

Fix hg € A and set
W = (hoV)*.

By Theorem 2.12 in [10] it follows that

dPw |
dHm™

Ohno(y) = (y) forH™-ae.yeW,

hence the function Qj, equals a continuous function in L (W, H™). Also, since
W is supported on a compact set, it follows that the set

{y e W: Opo(y) # 0}
is bounded. By these two facts it easily follows that
J’Cm (th) > 0,

and so
PW/’L(Lh()) >0

since Qp, = ‘ffg”{"m“ and Qp, > 0on Ly,. We get that

0 < puix € K: Qpy(Pw(x) <M~}
= u{x € K: Fy(x,ho) < M~}

and so by Fubini’s theorem

1 X gH{(x,h): M} - /A,u{x € K: Fy(x,h) < M~y dég (h)

_
Fy(x,h) —
> 0.

It follows that | ﬁ HL°°(u><$H) > M, and so || ﬁ HL°°(u><$H) = o0 since we can

choose M as large as we want. This completes the proof of the corollary. O
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4. Proof of the result regarding self-affine sets
Set
A ={1,2}.
Given 0 < p < 1 define
fp,ly fp,zl R—R
by

Joa(x) =p-x

and
Jo2(x)=p-x+1-0p
for each x € R, let C, C [0, 1] be the attractor of the IFS { f, 1, fp,2}, set
d, = dimg Cp,

so that d, = l;{;’%, and for each £ C R set

H4(C, N E)
pp(E) = dip
Hee (Cp)
Let0 < a < b < 1 be such that 1 and § are Pisot numbers, L‘Ez is irrational,

andd, +dp > 1. Let I = [0, 1) and let £ be the Lebesgue measure on /. Fix
7 € (0,00), and for each t € I and z € R? define

W' ={x-(1,t-a"): x € R},
vi=WwhHt

and
Vi=z+ V.

In order to prove Theorem 2.6 we shall first prove the following:

Theorem 4.1. For j1, X up x L-a.e. (x,y,t) € C4 X Cp x I it holds that

Flat =1 (Ca x Cp) NV 1) = 0.
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4.1. Preliminaries. Set
logh
o0 =—
loga
(soa €I\ Q)and, foreacht € 1,

R(t)=t+ o modl.

Given0 < p < 1 andaword Ay ----- A = w € A*, write

Jow = fp,ll -0 fp,f\l

and
Cp,w = fp,w (Cp)-
Foreachn > land x € Cplet w, ,(x) € A” be the unique word of length n» which
satisfies
x € Cpwp ()
and let
o) = Sy 00 (¥)-

We also write

Wpo(x) =0
and

Cpo = Cp.

The following dynamical system will be used in the proof of Theorem 4.1.
The idea of using this system comes from the partition operator introduced in
Section 10 of [7]. Set

K =C, xCp,
X =KxI,
U= [la X [Lp,
v=puxyg,
and for each (x, y,t) € X define
(x, Sp(¥), R(t)) ift €[0,1 —a),

T(x,y,t)=
((Sa(x), Sp(»), R(t)) otherwise.

It is easy to check that the system (X, v, T') is measure preserving, and by Lem-
ma 2.2 in [2] it follows that it is ergodic.
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Let R be the Borel o-algebra of R2. For each ¢ € I let P, be the orthogonal
projection onto W', and let {, ;},cpr2 be the disintegration of u with respect to
P71 (R) (see Section 3.1 above). Also, for each (z,7) € X define

F(z,t) = OL(Pip, P;2).
4.2. Auxiliary lemmas

Lemma 4.2. It holds that (i) < oo, where recall that I1(j) is the 1-energy
of |

Proof. Set
§=1-2b.

Then, for each (x, y) € R%, and k > 1
w(B((x,y),8-a%) < p((x=8-a* x +8-a") x (y = §-a*, y +§-d"))
<pa(x—=8-a* x+68-a% - up(y —8-a*,y +6-d"
< 2—k _2—[klogb al
< 2—k '21—k10gba
— 2.ak(1+logha)loga 21

— 5. g*datdy)

This shows that there exists a constant M > 0 with
w(B(z,r)) <M -r%*dr forall z € R and r > 0.

Since d; + dp > 1, the lemma follows by the discussion found at the beginning of
Chapter 8 of [10]. O

Lemma 4.3. Letnqy,ny > 1, wy € A™ and w, € A™2. For each (x,y) € K set

g(x,y) = (faw, (%), fo,w, (1))

Then for each Borel set B C K

u(g(B)) =27"1""2 . u(B).
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Proof. We prove this by using the = — A theorem (see Section 3 of Chapter 1 of [1]).
Let € be the collection of all Borel sets B C K which satisfy

n(g(B)) =27"17" - u(B);
then € is a A-system. Set
P = {Capuy X Cpy: ur,uz € A*} U {0}

then P is a w-system, P C € and o (P) equals the collection of all Borel subsets of
K. By the & — A theorem it follows that o (P) C &, hence € equals the collection
of all Borel subsets of K, and the lemma is proven. Ol

Lemma 4.4. It holds that
0 < H%td(K) < o0,

and
Hdatdr (K N E)
j—cda +dp (K)

w(E) =
for each Borel set E C R2.
Proof. By Theorem 8.10 in [10] it follows that
Hatdr (K > 0,
and by an elementary covering argument it can be shown that
FHéatdb (K) < oo.

The rest of the lemma can be proven by using the = — A theorem, as in the proof
of Lemma 4.3. O

Lemma 4.5. Let 0 < M < oo and set
Ey ={(z,t) e X: F(z,t) > M}.

Then
V(EM) > 0.
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Proof. Assume by contradiction that v(Ejs) = 0 and set
L={tel:u{z:(z,t) € Epq} = 0}.

Then £(I \ L) = 0,andso L = I. Set

dPt/.,L
dXH1

AZ{ZGIZP;/L<<J‘Cland H

E M ki
Loo(3(1)

and lett € L. For P;u-a.e. z € W' we have ©L(P,; i, z) < M, hence by parts (2)
and (3) of Theorem 2.12 in [10] it follows that t € A. This shows that L. C A, and
so that A = I. By an argument similar to the one given at the end of the proof of
Corollary 2.3, it can be shown that A is a closed subset of /. Hence A = I, and in
particular P, < H! for each ¢ € I. This contradicts Theorem 4.1 in [13], which
says that there exists a dense Gy set of 1-dimensional linear subspaces V C R?
such that Py u and ! are singular. It follows that we must have v(Eys) > 0, and
the lemma is proven. U

4.3. Proofs of Theorems 4.1 and 2.6

Proof of theorem 4.1. Let D be the set of all (z,¢) € X such that Py < H!,
Wtz is defined,

H((Ca,wl X Cb,wz) ﬂ Pt_l(B(PtZ76)))
Pij(B(Pyz,€))

Mr,z(Caywy X Cpy,) = lim
€l0
for each wy, wp, € A*, and

P;uu(B(P
0< F(z,1)= lim—t'u( (Piz,€)) < 00
€l0 2¢

By Lemma 4.2 and by the same arguments as the ones given at the beginning of
Section 3.3, it follows that

v(X \ D) = 0.
Set
OO .
Do = ﬂ T/ D.
j=0
Then
V(X \ Do) =0

since T is measure preserving.
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For 0 < M < oo let Eps be as in Lemma 4.5, and set
o0 o0 )
Eom = () U T7(En).
N=1j=N
Since v(Eys) > 0, it follows by the ergodicity of (X, v, T') that
V(X \ Eo,m) =0.

Set

o0
Dy =DonN ( ﬂ EO,M);
M=1

then v(X \ Dy) = 0. For £-a.e. t € I it holds that
uf{ze K: (z,t) ¢ D1} =0.
Fix such #y € I and set
A={z€K:(z,tp) € D1}.

Note that by 4 # @ it follows that P, u < H!.
Set

n:da‘l_db_l.

It will now be shown that
O™ (f1y,z,2z) =00 foreachz € A. 4.1)

Let (x,y) = z € A and set

B=(F(z,10))"" .

Then 0 < B < oo since (z,t9) € Do. Let M > 1 and N > 1 be given; then there
exists k > N with

T*(z,10) € Do N Ep,

and so
F(T*(z,10)) > M.

Set
[ = [to + ka;
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then

//vto,z(ca,wl(x) X Cb,wk(y))
1((Capwy(x) X Couwi () N Py (B(Pyy 2, €)))

= lim
€0 Py (B(Pyyz, €))
— lim 2e ) //v((ca,wl(x) X Cb,wk(y)) N Pzgl(B(PtOZa E)))
el0 Py (B(Psyz,€)) 2¢
. //v((ca,wl(x) X Cb,wk(y)) N PIEI(B(PtOZ, E)))
= f-lim .
€l0 2¢
4.2)

For each (x', y') € R? set

g(x/, yl) = (fa,wl(x)(x/)’ fb,wk(y)(y/));

then

Ca,w/(x) X Cb,wk(y) = fa,wl(x)(ca) X fb,wk(y)(cb) = g(Cq x Cp).

Lete > 0, and let
L:R?> — R?

be a linear map with
L(1,0) = (a'.0)
and
L(0,1) = (0,%).
Since L is the linear part of the affine transformation g, we have

P (B(Pryz,€)) = z + V' + B(0,¢)
=gog '@+ Lo L (V) + Lo L7Y(B(0,¢))
=g(g7 (@) + L7 (V") + LTH(B(0,6))).

Since a—! > g~to—kat+1l > 4. p=k e obtain

L™Y(B(0,€)) D B(0,e-a-b%).

4.3)

4.4)

4.5)



Also we have

Slices of dynamically defined sets

L7y = LY (W)t = L7(((1, 7 - a") - R)1)

and so since

it follows that

Set

Qc = Pri 1) BPRe (o) oy 0 ) Fim 0y ()5 €ab ™))

=L Y((r-a",—1)-R)

=(r-a" ‘a_l,—b_k)-IR

bk

- = ak-loga b—l _

aka—[to +kal )

a

L_I(Vto) =(t- qlotke—lotkael -1)-R
= ((1,7-a® @) . R)*

— VRk(to)‘

then by (4.4), (4.5), and (4.6) it follows that
P '(B(Pyyz.€)) = g(g7 " (2) + L7H (V™) + L™'(B(0.€)))

— - k -
2 g((fa,ul)/(x)(x)’ fb,ul,k(y)(y)) + VR (t0) + B(O,eab k))

= g(Qo).

Now by (4.2), (4.3), and Lemma 4.3 we get that

Mo,z (Ca,wl(x) X Cb,wk (y))

m(g((Ca x Cp) N OQ¢))

=B-1
IB elﬁ.l e
—poik L iy MG X ) N Qo)
bk elo 2eab~k

>

>

a -1

L oab ot (b 00 Fiby iy ). RA0)

2
IBTa pk—ke  p=k | B(T (2, 1))

Ba

7 . 2—k—k0t . b—k . M

71

(4.6)



72 A. Rapaport

Since

2. b*
Cawi ) X Cowpy) € B (Z’ )

and
2—k—k0t . b—k . b—kY] — 1

it follows that

Bk
/'Lto,z(B(Z’ %)) - /Lto,z(ca,wl(x) X Cb,wk(y))
(4a—1- bk)77 - (4a—1- bk)77
B —k—k —k
Ta .2 . p~k. M
(4a—1- bk)”

This shows that
2

®*n(l’l‘t0,z’ z) > ﬂ% M,

which proves (4.1) since f > 0 and M can be chosen arbitrarily large.
Letz € Aandu € AN V/°. Then by (4.1)

®*n(ulo,2’ u) = ®*n(uto,ua M) = 00,
and so by Theorem 6.9 in [10] we get that
H' (AN V) =D0.

Also it holds that
(K \ 4) = 0;

hence by Theorem 7.7 in [10] and by Lemma 4.4 we get that
/ HT((K \ A) N V) dH" (u) < const- H"H(K \ A)
wio

= const- u(K \ A)
=0.
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This shows that

H'(K\ A)NVP)y=0 forH'-ae ue W,
and so
H'((K\ A)NVPO)y=0 forp-ae zek

since Py,pu < H!. It follows that for pu-a.e. z € A4, and so for u-ae. z € K,
HNK NVPO)=HNANVPO)+H'(K\A)NV0O)y=0.
By Lemma 3.4, and by Fubini’s theorem it follows that
HNK NV =0 forv-ae.(z,t) € X,
which completes the proof of Theorem 4.1. O

Proof of Theorem 2.6. Let G be the set of all 1-dimensional linear subspaces
of R2, and set

E={(zV)eK xG: Héatd=1(K N V,) = 0}.
For each —oo < t; < t; < 00 set
Gy =V €G:V =(t,-1)-Rwitht € (t1,12)}.

Given k € Z we can apply theorem 4.1 with t = ¢, in order to get that (z, V) € E
for u x £g-a.e. (z,V) € K X Gux+1 4x. By doing this for each k € Z we get that
(z,V) € E for p x ég-a.e. (z,V) € K X Gy,00. Now Theorem 2.6 follows by the
symmetry of K with respect to the map that takes (x, y) € K to (1 — x, y). U
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