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Abstract. On a metric measure space X that supports a regular, strongly local resistance

form we consider a magnetic energy form that corresponds to the magnetic Laplacian for a

particle con�ned to X . We provide su�cient conditions for closability and self-adjointness

in terms of geometric conditions on the reference measure without assuming energy dom-

inance.
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1. Introduction

We study the magnetic Laplacian for a particle in a metric measure space .X; �/

that supports a regular, strongly local resistance form. Roughly speaking, a resis-

tance form is a Dirichlet form for which points have positive capacity, and which

is determined by its �nite-dimensional traces; the formal de�nition is in Section 2.

On such a space there is a Hilbert space H of 1-forms and a derivation operator

@ that plays the role of a gradient. In Section 3 we use these to de�ne a magnetic

operator @ C ia, where a 2 H is real-valued, and a magnetic (quadratic) form

h.@C ia/f; .@C ia/giH. Our main result, �eorem 4.1, gives geometric conditions

on the measure � that su�ce for closability of the magnetic form and consequently

for the existence of a self-adjoint magnetic Laplacian ��;a. �e magnetic form

and Laplacian have a gauge invariance property which is established in Section 5.

Examples to which the theory may be applied are in Section 6.

�ese results complement earlier results of [12] where self-adjointness and

gauge invariance had been shown for magnetic Schrödinger operators in situations

where the energy measures are absolutely continuous with respect to the given

1 Research supported in part by SFB 701 of the German Research Council (DFG).
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reference measure (energy dominance). �e novelty in this paper is that for the

resistance form case this assumption can be replaced by a uniform lower bound for

the measure of balls or by a doubling condition. �erefore the present results apply

to resistance forms on fractals even if energy and volume are mutually singular,

[3, 8, 9]; this case is not covered by [12] and is interesting from a spectral theoretic

perspective, [7, 17].

Acknowledgment. �e authors thank the anonymous referee for careful reading

and helpful suggestions.

2. Resistance forms

Following Kigami [14, 15] we de�ne a resistance form as follows.

De�nition 2.1. A resistance form .E;F/ on a set X is a pair such that

(RF1) F is a linear space of functions X ! R containing the constants. E is a

non-negative de�nite symmetric quadratic form on F with E.u; u/ D 0 if

and only if u is constant;

(RF2) the quotient of F by constants is a Hilbert space with norm E.u; u/1=2;

(RF3) if v is a function on a �nite subset V � X there is u 2 F so u
ˇ

ˇ

V
D v;

(RF4) for x; y 2 X

R.x; y/ D sup
° .u.x/ � u.y//2

E.u; u/
W u 2 F;E.u; u/ > 0

±

< 1:

(RF5) if u 2 F then Nu D max.0; min.1; u.x/// 2 F and E. Nu; Nu/ � E.u; u/.

We write E.u/ D E.u; u/ and do similarly for other bilinear expressions.

�e main feature of resistance forms is that they are determined by a sequence

of traces to �nite subsets.

�eorem 2.2 ([14, 15]). Resistance forms have the following properties.

(1) R.x; y/ is a metric on X . Functions in F extend to the completion of X

and .E;F/ is a resistance form on the completion, so we may assume X is

complete.
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(2) If V � X is �nite there is a trace EV of E to V , which is a resistance form

de�ned by

EV .v; v/ D inf¹E.u; u/ W u 2 F; u
ˇ

ˇ

V
D vº

in which the in�mum is achieved at a unique u. Also, if V1 � V2 then

.EV2
/V1

D EV1
.

(3) If .X; R/ is separable and ¹Vnº is an increasing (under inclusion) sequence

of �nite sets such that [j Vj is R-dense in X then EVn
is non-decreasing and

E.u/ D limn EVn
.u/ for all u 2 F.

(4) If ¹Vnº is an increasing sequence of sets supporting resistance forms En such

that .EnC1/Vn
D En for all n, then for u de�ned on V� D [nVn the sequence

En.u/ is non-decreasing andE.u/ D limn!1 En.u/ de�nes a resistance form

with domain F D ¹u W E.u/ < 1º.

(5) Functions in F are 1=2-Hölder in the resistance metric because from the

de�nition of R.x; y/ they satisfy

jf .x/ � f .y/j � R.x; y/E.f /1=2; f 2 F: (1)

De�nition 2.3. .X; R; �/ will be called a regular doubling resistance space if the

following hold.

(1) �ere is a resistance form .E;F/ on X , the metric space .X; R/ is separable,

connected and locally compact, and the compactly supported functions in F

are supremum-norm dense in Cc.X/.

(2) � is a non-atomic �-�nite Borel regular measure with 0 < �.B.x; r// < 1

for all balls B.x; r/.

(3) X is metrically doubling: there is Cd such that any ball B.x; 2r/ can be

covered by Cd balls of radius r .

Remark 2.1.

(i) Condition (1) implies that we consider a regular resistance form .E;F/, [16,

De�nition 6.2]. In particular, if K � X is compact and U � K is a relatively

compact open neighborhood of K then there exists a compactly supported

function � 2 F such that supp � 2 U , 0 � � � 1 on X and � � 1 on K.

�is follows from [16, �eorem 6.3]. To such a function � we refer as cut-o�

function for K and U .



78 M. Hinz and L. Rogers

(ii) If (1) holds and in addition � is a measure satisfying (2) then the space C D

F\ Cc.X/ of compactly supported �nite energy functions is dense in L2.�/

and the closure of .E;C/ on L2.�/ is a regular Dirichlet form .E; zF/, see [16,

�eorem 8.4]. In this case C is a form core, meaning that it is dense in zF with

respect to the norm .E C k � k2
L2.X;�/

/1=2 and also in Cc.X/ with respect to

the supremum norm k�ksup. �ese facts do not require the metric doubling

property (3). Note that we have introduced the notation zF for the domain of

the Dirichlet form, which can di�er from the resistance form domain F in

the case that .X; R/ is non-compact. In the compact case the space C D F

equals zF (in the sense of distinguished representatives).

Henceforth we assume that X is a regular doubling resistance space and that

E is strongly local. �e latter means that E.u; v/ D 0 when u; v 2 F and v is

constant in each component of a neighborhood of supp.u/.

We record the following easy estimate for later use. For any open ball B D

B.z; r/ write

fB D
1

�.B/

Z

B

f .y/ d�.y/;

and observe that the resistance estimate (1) implies

jf .x/ � fB j �
1

�.B/

Z

B

jf .x/ � f .y/j d�.y/

�
1

�.B/
E.f /1=2

Z

B

R.x; y/1=2 d�.y/

� E.f /1=2r1=2:

(2)

Evidently we could modify it by replacing fB by any value in ŒinfB f; supB f �.

We will also need the extension of E to complex-valued functions. If f D

f1 C if2, g D g1 C ig2 with both fj and gj real-valued elements of F, one can set

E.f; g/ D E.f1; g1/ � iE.f1; g2/ C iE.f2; g1/ C E.f2; g2/:

It is not di�cult to check that this is conjugate symmetric and linear in the �rst

variable. We refer to a form with these properties simply as ’quadratic form’.

Moreover, the form E is non-negative de�nite, E.f / D E.f1/ C E.f2/ � 0. �is

is what we mean by E.f / for a complex-valued f . Observe that (2) is still valid

for complex-valued f . In what follows we repeatedly use the natural complexi�-

cations of E, F, L2.X; �/ and so on, they will be denoted by the same symbols.

See [12] for more details.
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3. 1-forms and Magnetic operator

�e core C D F\Cc.X/ is an algebra, and we recall (see, for example, Section 3.2

of [6]) that regularity and strong locality ensure that associated to f; g 2 zF there

is a unique Radon measure �.f; g/ on .X; R/, called the energy measure, and

satisfying

E.f h; g/ C E.gh; f / � E.fg; h/ D 2

Z

X

h d�.f; g/; h 2 C:

In the case f D g and the measure is denoted �.f / and is non-negative; also

�.f /.X/ D E.f /. Note that no aspect of this construction depends on the mea-

sure �.

Using the energy measures we can de�ne a nonnegative bilinear form on C˝C

by setting

ha ˝ b; c ˝ d iH WD

Z

X

bd d�.a; c/; a ˝ b; c ˝ d 2 C ˝ C;

and extending by linearity. Factoring out zero norm elements and completing

yields a Hilbert space .H; h�; �iH/, referred to as the space of 1-forms associated

with E. Note that H contains elements of the form a ˝ b for any a 2 zF, b 2

L2.d�.a//. In the context of Dirichlet and resistance forms this construction was

introduced in [4, 5, 13] and studied further in [10, 11, 12]. It is important that .ab/˝

c � a ˝ bc � b ˝ ac D 0, see the proof of �eorem 2.7 of [13].

�e algebra C acts on C ˝ C by

c.a ˝ b/ WD .ca/ ˝ b � c ˝ .ab/ and .a ˝ b/d WD a ˝ .bd/ (3)

for a; b; c 2 C and bounded Borel functions d . Moreover strong locality of E

implies the right and left actions coincide (see �eorem 2.7 of [13]) and the def-

initions (3) extend continuously to a uniformly bounded action on H, so if c is

bounded and continuous and a 2 H then

kcakH � kcksup kakH : (4)

A derivation @ W C ! H can be de�ned by setting

@f WD f ˝ 1:
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It satis�es the Leibniz rule,

@.fg/ D f @g C g@f; f; g 2 C; (5)

and

k@f k2
H

D E.f /; f 2 C: (6)

By the latter @ extends to a linear map @ W zF ! H, and as .E; zF/ is closed in

L2.X; �/, it may be viewed as an unbounded closed operator @ from L2.X; �/

into H with domain zF. Let @�
� denote its adjoint, so that for f 2 C

@�

�h.f / D hh; @ Nf iH

and @�
� W H ! C

� is a bounded linear operator into the dual C� of the space C

topologized by f 7! .E.f / C kf k2
L2.X;�/

/1=2. By standard results @�
� de�nes

a densely de�ned unbounded operator @�
� W H ! L2.X; �/. Let .��; dom ��/

denote the in�nitesimal generator of .E; zF/. Substituting h D @g for some g 2

dom.��/ entails @g 2 dom @�
� and ��g D �@�

�@g. More details are in [10]

and [12].

For f 2 zF we de�ne the support of f ˝ 1 2 H to be the support of the

measure �.f / and denote it by supp
H

.f ˝ 1/. Recall that its complement is the

union of those open sets U with �.f /.U / D 0. From Remark 2.1 (i) and the

Radon property we obtain

�.f /.U / D sup

²Z

jgj2d�.f / W g 2 C; supp.g/ � U; jgj � 1

³

:

Recalling that
R

jgj2d�.f / D kg@f k2
H

we may then extend the de�nition of

supp
H

.a/ to all a 2 H.

De�nition 3.1. �e support of a 2 H is de�ned by setting the complement to be

supp
H

.a/c

D
[

¹U W U is open and kgak2
H

D 0 for all g 2 C with supp.g/ � U º:
(7)

�is notion allows for a generalization of (4).
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Lemma 3.2. If supp
H

.a/ is compact and g is continuous on supp
H

.a/, then

kgakH � kakH sup
x2supp

H
.a/

jg.x/j: (8)

Proof. Suppose a 2 H and g are as in the statement. For � > 0 choose an

open neighborhood U of supp
H

.a/ on which jgj � � C supsupp
H

.a/ jgj. Let

V be an open neighborhood of supp
H

.a/ with V � U and let � be a cut-o�

for V and U . Observe that kgakH � kg�akH C kg.1 � �/akH and the lat-

ter term is zero because of (7) and the fact that g.1 � �/ D 0 on V . �us

kgakH � .� C supsupp
H

.a/ jgj/kakH by (4).

Let a 2 H be a real vector �eld. We may regard a as a mapping a W C ! H by

f 7! fa. A magnetic operator (deformed di�erential) @a W C ! H can be de�ned

by

@a WD .@ C ia/; f 7�! @f C ifa; f 2 C:

It is not di�cult to see that

E
a.f; g/ WD h@af; @agi

H

de�nes a non-negative de�nite quadratic form E
a on C. We have E

a.f; g/ D

E.f; g/ C B.f; g/ with

B.f; g/ D ihaf; @giH � ih@f; agiH C haf; agiH; (9)

and clearly also B is a quadratic form on C.

4. Closability and self-adjointness

�e goal of this section is to prove �eorem 4.1, which gives su�cient conditions

for .Ea; zF/ to be a closed extension of .Ea;C/ and as a consequence, the associated

magnetic Laplacian to be self-adjoint. Most of the work occurs in Lemma 4.2.

�ere are two cases in the theorem. In the �rst we consider a general magnetic

�eld a 2 H and we assume a uniform lower estimate on the measure of balls:

m.r/ WD inf
x2X

�.B.x; r// > 0 (10)
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In the second case we restrict to a compactly supported magnetic �eld a 2 H and

instead assume � is a doubling measure

C� WD sup

²

�.B.x; 2r//

�.B.x; r//
W x 2 X; r > 0

³

< 1: (11)

Note that (11) implies that the space is metrically doubling (see De�nition 2.3)

but does not imply (10).

�eorem 4.1. Suppose .X; R; �/ is a regular doubling resistance space and let

a 2 H be a real vector �eld. Further assume that either (i) � has the lower uniform

estimate (10) or (ii) � is doubling as in (11) and supp
H

.a/ is compact. �en

.Ea;C/ extends to a closed quadratic form .Ea; zF/ on L2.X; �/ and consequently

there is a unique non-positive de�nite self-adjoint operator .��;a; dom ��;a/ such

that

E
a.f; g/ D �h��;af; giL2.X;�/

for any f 2 dom ��;a and g 2 zF.

We regard this operator ��;a as the magnetic Laplacian with vector poten-

tial a generated by .E;F/ and �. �eorem 4.1 should be compared to the results

of [12], which permit the de�nition of a self-adjoint magnetic operator on the

space L2.�/ where � is an energy-dominant measure (i.e. a measure such that

all energy measures �.f; g/, f; g 2 F are absolutely continuous with respect to

� and have bounded Radon–Nikodym derivatives). �eorem 4.1 is applicable to

a much wider class of measures that may be more natural on the space X , even

though they could be singular to the energy measures, [3, 8, 9]. In particular it is

applicable to certain fractal sets X which are known to support resistance forms

(see [14]) in the case where � is a Hausdor� measure with respect to the resistance

metric.

Lemma 4.2. Let M > 0. Under either of the assumptions of �eorem 4.1 the

mapping f 7! fa extends to zF and there is a constant Ca;M depending only on

a 2 H, M and the properties of X such that if f 2 zF then





fa






2

H
�

1

M
E.f / C Ca;M kak2

H
kf k2

L2.X;�/
: (12)
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Proof. Fix 0 < r � .4MCd kak2
H

//�1. It is easy to see that a maximal set

¹B.xj ; r/º of disjoint balls has the property that [j B.xj ; 2r/ � X . Moreover

the metric doubling property of X implies
P

j 1B.xj ;2r/ � Cd : if xj1
; : : : ; xjn

2

B.x; 2r/ then covering by Cd balls B.yk; r/ we see each xjl
is in some B.yk; r/

but no two can be in the same B.yk; r/ else yk 2 B.xjl
; r/ \ B.xjl0

; r/ contradicts

disjointness, so n � Cd .

Assume �rst that f 2 C. We use the cover to estimate f .x/2. Note from (2)

that if x 2 Bj D B.xj ; 2r/ then

jf .x/j2 � 2jf .x/ � fBj
j2 C 2.fBj

/2

� 4E.f /r C 2.f 2/Bj

where the last term was estimated by Jensen’s inequality. �en for any x

jf .x/j2 �
X

j

jf .x/j21Bj
.x/

�
X

j

.4E.f /r C 2.f 2/Bj
/1Bj

.x/

� 4CdE.f /r C
X

j

2.f 2/Bj
1Bj

.x/:

If � has the lower uniformity property (10) then the last term is bounded by

2Cd kf k2
L2.X;�/

.m.r//�1. If, instead, � is doubling and a has compact support

then let B.x0; �/ contain supp
H

.a/, take k so 2kr > 2� and for x 2 B.x0; �/ it-

erate the doubling estimate (11) to see �.B.x; r// � C �k
� �.B.x0; �//. �en the

last term in the above equation is bounded by 2Cd C k
�kf k2

L2.X;�/
�.B.x0; �//�1

if x 2 B.x0; �/. �erefore we have a value Ca;M depending on a; M and on the

properties of X such that, after using our choice of r to simplify the �rst term,

jf .x/j2 �
E.f /

Mkak2
H

C Ca;M kf k2
L2.X;�/

(13)

holds for all x 2 X under the lower uniformity assumption, or for all x in a neigh-

borhood of the compact set supp
H

.a/ under the doubling assumption. �e proof

of (12) for f 2 C is now completed using (4) in the former case and (8) in the

latter case. For general f 2 zF (12) follows by approximation according to Re-

mark 2.1 (ii).
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Proof of �eorem 4.1. Note �rst that by Lemma 4.2 the quadratic form

B.f / D E
a.f / � E.f / D 2R.i h@f; faiH/ C kfak2

H
(14)

is de�ned for all f 2 zF. Applying Cauchy–Schwarz to the cross-term in (14), we

obtain

jB.f /j �
1

4
E.f / C 5 kfak2

H
;

which by (12) yields

jB.f /j � " E.f / C C kf k2
L2.X;�/ ; f 2 zF; (15)

with positive constants

C WD 5Ca;M kak2
H

and

" WD .4�1 C 5M �1/ < 1;

provided M > 20=3. Now the result follows from the classical KLMN theorem

([21, �eorem X.17]).

Recall that in the de�nition of @a we treat a 2 H as a linear operator

a W C �! H; f 7�! fa

with the bound kfakH � kf ksupkakH. From the proof of Lemma 4.2 we see that

either

kf k2
sup � 4CdE.f /r C 2Cd .m.r//�1kf k2

L2.X;�/

or

kf k2
sup � 4CdE.f /r C 2Cd C k

��.B.x0; �//�1kf k2
L2.X;�/:

In either case we can optimize over r to obtain

kf ksup � C.E.f / C kf k2
L2.X;�//

1=2:

�is allows us to de�ne an adjoint operator

a�

� W H �! C
�

simply as

h 7�! a�

�h;

where for f 2 C we set

a�

�h.f / D hh; Nf aiH:
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Both the fact that this de�nes a�h as an element of C� and the boundedness of the

map a�
� follow from

jhfa; NhiHj � kf ksupkakHkhkH

� C.E.f / C kf k2
L2.X;�//

1=2kakHkhkH;

which was obtained using Cauchy–Schwarz, (4) and our bound for kf ksup.

It is then natural to de�ne an adjoint of @a. We set

@�

�;a D .@ C ia/�

�;

so that

E
a.f; g/ D h.@ C ia/f; .@ C ia/giH

D .@�

� � ia�

�/..@ C ia/f /. Ng/

D @�

�;a@af . Ng/

for any f; g 2 C and therefore

��;af D �@�

�;a@af; f 2 C;

seen as an identity in C
�. For f 2 dom ��;a it can be interpreted as an identity in

L2.X; �/. We record a simple fact about the spectra of �� and �a;�.

�eorem 4.3. Let the hypotheses of �eorem 4.1 be in force. If �� has pure point

spectrum, then also ��;a has compact resolvent and therefore pure point spectrum

with eigenvalues 0 � �1 � �2 � : : : accumulating only at �1.

Under mild conditions resistance forms on p.c.f. self-similar fractals always

lead to Laplacians �� with with pure point spectrum (or, equivalently, with com-

pact resolvent), see for example [14, Lemma 3.4.5]. �is is essentially due to the

fact that for any element of the dense subspace C there are �nite-dimensional ap-

proximations given by the resistance condition. Other examples of Laplacians

with pure point spectrum arise from resistance forms on (generalized) Sierpinski

carpets, [1, 2].

Proof. Since �� has pure point spectrum, zF is compactly embedded into L2.�/,

see [14] �eorem B.1.13. �is remains true if zF is normed by .Ea Ck�k2
L2.X;�/

/1=2.

�us ��;a has pure point spectrum and compact resolvent (see again [14] �eo-

rem B.1.13).
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5. Locality, local exactness and gauge invariance

Using the energy measure representation of the norm in H we determine that the

form E
a from �eorem 4.1 is local, meaning that Ea.f; g/ D 0 for all f; g with

disjoint supports; this property does not depend on the measure �.

�roughout this section we assume that .X; R/ is compact, what implies

C D F.

Lemma 5.1. If a; b; c; d 2 F and supp.a/ \ supp.c/ \ supp.bd/ D ; then

ha ˝ b; c ˝ d iH D 0.

Proof. Write out the expression in terms of the energy measure

2ha ˝ b; c ˝ d iH D 2

Z

X

bd d�.a; c/

D E.bda; c/ C E.a; bdc/ � E.ac; bd/:

which is zero by locality of E and the support assumption.

�eorem 5.2. Fix a 2 H. If the conditions of �eorem 4.1 are satis�ed and

f; g 2 F have disjoint supports then E
a.f; g/ D 0.

Proof. Recall a 2 H can be approximated by linear combinations of the form
Pn

j D1 aj ˝ bj with aj ; bj 2 C. �en af is approximated by
Pn

j D1 aj ˝ bj f ,

see (4). Similarly ag is approximated by
Pn

j D1 aj ˝ bj g. Applying the previous

lemma, for all j

D

n
X

j D1

aj ˝ bj f; g ˝ 1

E

H

D 0;

D

f ˝ 1;

n
X

j D1

aj ˝ bj g
E

H

D 0;

D

n
X

j D1

aj ˝ bj f;

n
X

j D1

aj ˝ bj g
E

H

D 0;

and by taking limits using (4) we see that B.f; g/ as considered in (9) is zero,

B.f; g/ D ihaf; @giH � ih@f; agiH C haf; agiH D 0:

Since E.f; g/ D 0 by locality, the result follows.
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Our next goal is to show that modifying the magnetic �eld by adding a gradient

is equivalent to conjugating the associated magnetic form by an exponential. �is

property is called gauge invariance (and the gradient is referred to as a gauge �eld).

We need a trivial lemma.

Lemma 5.3. If f 2 F and k@f kH D 0 then f is constant.

Proof. Recall k@f k2
H

D E.f /, so this follows from RF1.

We also recall the following result of LeJan regarding strong local forms.

�eorem 5.4 (�eorem 3.2.2. in [6]). If ˆ 2 C 1.Rm/ with ˆ.0/ D 0 and u D

.u1; : : : ; un/ 2 F
n with all ui bounded then ˆ.u/ 2 F is bounded and for all

bounded f 2 F

d�.ˆ.u/; f / D

n
X

j D1

@ˆ

@xj

.u/ d�.uj ; f / (16)

Without condition ˆ.0/ D 0 the function ˆ.u/ is a member of Floc, the space of

functions which are locally in F in the sense that on any open set with compact

closure they agree with a function fromF. Formula (16) remains valid in this case.

�e assumption that the uj are bounded can be removed if all partial derivatives

of ˆ are bounded.

In particular we see that for all f 2 F the function eif � 1 exists in F and

satis�es the above. From the theorem the function eif is only locally in F, but

in the Hilbert space of F modulo constants it is simply eif � 1. Notice also that

E.eif / D E.f /.

Remark 5.1. �eorem 5.4 immediately implies that @ˆ.u/ is a member of H (or

locally a member) and

@ˆ.u/ D

n
X

j D1

@ˆ

@xj

.u/ @uj (17)

holds (globally or locally, respectively).

�eorem 5.5. Let � 2 F. �e solution set of .@ C i@�/f D 0 consists of the

constant multiples of e�i�. Moreover we have gauge invariance: E
a.ei�f / D

EaC�.f /. In particular

��;aC@� D e�i���;aei�:

so that ��;a and ��;aC@� have the same spectrum and their domains are related

by multiplication by ei�.
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Proof. �eorem 5.4 implies e�i� exists and is locally in F. For any constant c we

compute by (16)

k@.ce�i�/ C ie�i�@.c�/k2
H

D kce�i� ˝ 1k2
H

C kie�i�.c� ˝ 1/k2
H

C 2hce�i� ˝ 1; ie�i�.c� ˝ 1/iH

D

Z

d�.ce�i�/ C

Z

.ie�i�/2 d�.c�/ C 2

Z

.ie�i�/d�.ce�i�; c�/

D

Z

.�ice�i�/2 d�.�/

C

Z

c2.ie�i�/2 d�.�/

C 2

Z

.ie�i�/.�ice�i�/c d�.�/

D 0

so that ce�i� is a solution to the equation. Conversely if f is any solution then a

similar computation gives @.ei�f / D 0 so by Lemma 5.3 f is a constant multiple

of e�i�.

For the gauge invariance we can use (17) to compute

E
a.ei�f / D h.@ C ia/ei�f; .@ C ia/ei�f iH

D hei�.@ C i.a C @�//f; ei�.@ C i.a C @�//f iH

D h.@ C i.a C @�//f; .@ C i.a C @�//f iH

D E
aC@�.f /;

from which the asserted results are immediate.

Corollary 5.6. If a is exact, meaning a D @� for some � 2 F then E
a.e�i�f / D

E.f / and ��;a D ei���e�i�.

It should be noted that in this circumstance the standard properties of resis-

tance forms carry over to E
a via the conjugation. For example, for any non-empty

Y � X there is a Green function gY W X � X ! R such that E.gY .x; �/; f .�// D

f .x/ for all f 2 F that vanish on Y (see [16]). It is readily veri�ed that then

E
a.e�i�gY .x; �/; e�i�f .�// D f .x/ for the same f , which is the same as saying

we can solve ��;au D f on X n Y and u D 0 on Y using conjugation with ei�

and integration against gY .
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Corollary 5.6 also has consequences for studying E
a. Recall that the exact

forms span a subspace ¹@f W f 2 Fº of H. By RF2 it is closed. Any a 2 H

may then be written as the sum of an exact form and a form orthogonal to the

exact forms. We may use Corollary 5.6 to conjugate away the exact part of a, so

it su�ces to study E
a when a 2 H is orthogonal to the exact forms. Such forms a

are usually referred to as Coulomb gauges.

We may improve �eorem 5.5 to �elds that are only locally exact provided

there is a non-trivial f 2 F solving E
a.f / D 0, but we need certain additional

assumptions on X .

Assumption 5.7. (1) X is locally connected, and

(2) If U � X is open and connected and f 2 F satis�es .@f /1U D 0 in H

then f is constant on U .

Remark 5.2. If X has a �nitely rami�ed cell structure as in [23] then the latter two

hypotheses are both true. In particular these hold for the class of post-critically

�nite self-similar fractals of Kigami [14].

De�nition 5.8. We say a 2 H is locally exact if there is an open cover [j Uj and

functions �j 2 F such that a1Uj
D .@�j /1Uj

for all j .

It is worth noting that in many cases of interest locally exact forms are not

typical. For example, on fractal gaskets and carpets there is non-trivial topology

at all locations and scales, see [11] and [13].

�eorem 5.9. Let .X;E/ satisfy Assumption 5.7. Fix real-valued a; b 2 H and

suppose the hypotheses of �eorem 4.1 are satis�ed for both a and b. Further

suppose a is locally exact. If there is a non-zero f 2 F such that Ea.f / D 0

then jf j is constant on X and the set ¹g W Ea.g/ D 0º consists of the constant

multiples of f . Taking f0 with E
a.f0/ D 0 and jf0j D 1 we have gauge invariance

E
aCb.f0f / D E

b.f /. In particular ��;aCb D f �1
0 ��;bf0, so these operators

have the same spectrum and their domains are related by multiplication by f0.

Proof. Local exactness and local connectedness provide a cover ¹Uj º of X by

connected open sets and corresponding �j 2 F so that a1Uj
D .@�j /1Uj

for

each j . Note that the �j are real-valued. If k.@ C ia/f k2
H

D E
a.f / D 0 then

.@.fei�j //1Uj
D ..@f /ei�j C i.@�j /e�j f /1Uj

D ..@ C ia/f /1Uj
D 0:
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By the third point in Assumption 5.7 we conclude fei� is constant on Uj , so

f D cj e�i�j for some constant cj . Moreover if Uj \ Uk is non-empty we must

have cj e�i�j D cke�i�k . �en jf j D jcj j D jck j, and since any pair of cells

are connected by a chain of sets Ul with non-empty intersections we see jf j is

constant. �ere is no loss of generality in taking this constant to be 1, and the phase

in cj D ei�j may be absorbed by replacing �j with �j ��j , for some real constants

�j . �us E
a.f / D 0 if and only if there is a choice of �j 2 F with a1Uj

D

.@�j /1Uj
and f 1Uj

D ce�i�j for all j . �e latter is equivalent to �j � �k 2 2�Z

when Uj \ Uk ¤ ;. We let f0 be the case c D 1.

For the gauge invariance,

E
aCb.f0f / D k.@ C ia C ib/.f0f /k2

H

D kf .@ C ia/f0 C f0.@ C ib/f k2
H

D kf0.@ C ib/f k2
H

D k.@ C ib/f k2
H

D E
b.f /

because .@ C ia/f0 D 0 in H and jf0j D 1 everywhere.

Remark 5.3. Of course the situation where there is non-trivial f so E
a.f / D 0

is also that where we can de�ne eia to be equal ei�j on each Uj , because this

de�nition is legitimate if and only if on those Uj \ Uk ¤ ; one has �j � �k equal

to an integer multiple of 2� .

6. Examples

�e only classical Dirichlet spaces that are also resistance spaces are one-dimen-

sional, but interest in resistance spaces has developed substantially since it was

realized that many classes of fractal sets also admit resistance forms. Our theory

is applicable to these examples provided the measure is su�ciently well-behaved,

and in practice the latter limitation is minor because the natural choices of measure

have the necessary properties.

Example 6.1 (circle with fractal mass). �e unit circle with the form E.u/ D
R

ju0j2 is a regular doubling resistance space and the form is strongly local. In the

case that the measure � is Lebesgue measure we merely recover the usual theory

of magnetic �elds on the circle, however our approach is also applicable to a dou-

bling measure � that is singular to the Lebesgue measure, because we then satisfy
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the hypotheses of �eorem 4.1. One natural class of such measures is obtained

by viewing functions on the circle as periodic functions on the unit interval and

the latter as a post-critically �nite self-similar space under a �nite collection of

similarities mapping the interval to a union of subintervals. For most choices of

self-similar structure the corresponding Bernoulli measure is both doubling and

singular to the Lebesgue measure. In this sense our results apply to magnetic �elds

on the circle with mass given by a fractal Bernoulli measure.

Example 6.2 (Postcritically �nite self-similar sets with Bernoulli measures). �e

circle with a self-similar measure is a very special case in the general class of

postcritically �nite self-similar sets, see [14]. �ere are much larger classes for

which the existence of a regular Dirichlet form is known (e.g. the nested fractals

de�ned by Lindström and their generalizations [20, 18]). �ese forms are generally

self-similar, so the metric doubling condition reduces to comparability of a �nite

set of resistance scaling coe�cients. �e spaces are compact so our theory is

applicable once the measures are doubling. When a self-similar measure is used

the doubling condition again amounts to verifying comparability of a �nite set of

coe�cients. �e canonical example of such a set is the Sierpinski Gasket.

Example 6.3 (Sierpinski Carpets). �ere are considerable technical di�culties

in constructing Dirichlet forms on self-similar sets with in�nite rami�cation, but

this has been done successfully for a class of highly symmetric Sierpinski Car-

pets [1]. In many cases the construction gives a unique resistance form, [1, 19]. If

we consider a Bernoulli self-similar measure then our results apply.

Example 6.4 (Fractafolds). Strichartz [22] has proposed a notion of fractafolds

based on self-similar fractals and has studied those based on the Sierpinski Gas-

ket. In particular this allows us to consider non-compact spaces which are locally

like the fractals in the previous examples. �e simplest type considered in [22]

are based on post-critically �nite self-similar fractals and have a cell-structure,

meaning that the fractafold is a union of cells that are copies of the underlying

fractal, perhaps with some rescaling of the resistance or measure. It is not hard

to see that in the case where the measure and resistance scalings for a cell are

within bounds independent of the cell then the measure estimate (10) holds and

our theory applies. Alternatively one could construct a fractafold for which mea-

sure doubling holds but (10) fails, in which case our theory applies to compactly

supported magnetic �elds.
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