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On the equality of Hausdor� measure and Hausdor� content

Ábel Farkas and Jonathan M. Fraser1

Abstract. We are interested in situations where the Hausdor� measure and Hausdor�
content of a set are equal in the critical dimension. Our main result shows that this equal-
ity holds for any subset of a self-similar set corresponding to a nontrivial cylinder of an
irreducible subshift of �nite type, and thus also for any self-similar or graph-directed self-
similar set, regardless of separation conditions. �e main tool in the proof is an exhaustion
lemma for Hausdor� measure based on the Vitali Covering �eorem.

We also give several examples showing that one cannot hope for the equality to hold in

general if one moves in a number of the natural directions away from ‘self-similar’. For ex-

ample, it fails in general for self-conformal sets, self-a�ne sets and Julia sets. We also give

applications of our results concerning Ahlfors regularity. Finally we consider an analogous

version of the problem for packing measure. In this case we need the strong separation con-

dition and can only prove that the packing measure and ı-approximate packing pre-measure

coincide for su�ciently small ı > 0.
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Keywords. Hausdor� measure, Hausdor� content, packing measure, self-similar set,

subshift of �nite type.

1. Introduction

Hausdor� measure and dimension are among the most important notions in frac-
tal geometry and geometric measure theory used to quantify the size of a set. �e

1 Ábel Farkas was �nancially supported by an EPSRC doctoral training grant. Most of this
work took place whilst Jonathan M. Fraser was a research fellow at the University of Warwick,
where he was �nancially supported by the EPSRC grant EP/J013560/1. Ábel Farkas visited
Jonathan M. Fraser at the University of Warwick to work on this project and both authors thank
the department for its hospitality. �e authors thank Kenneth Falconer for helpful comments on
the exposition of the paper.
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Hausdor� content is a concept closely related to the Hausdor� measure, but per-
haps less popular in the context of classical measure theory. �at being said the
Hausdor� content enjoys greater regularity than the Hausdor� measure and still
gives the Hausdor� dimension as the critical exponent. �e goal of this article is
to understand further the relationship between Hausdor� measure and Hausdor�
content in the context of some well-known and popular classes of fractals sets. In
particular we are interested in when the Hausdor� measure and Hausdor� con-
tent of a set are equal in the Hausdor� dimension. �is study was motivated by a
question of Michael Barnsley posed to one of the authors.

1.1. Hausdor� measure and Hausdor� content. Let F � Rn. For s > 0 and
ı > 0 the ı-approximate s-dimensional Hausdor� measure of F is de�ned by

Hs
ı.F / D inf

°

1
X

kD1

diam.Uk/s W ¹Ukº1
kD1 is a countable cover of F

by sets with diam.Uk/ 6 ı for all k
±

and the s-dimensional Hausdor� (outer) measure of F by

Hs.F / D lim
ı!0

Hs
ı.F /:

If one does not put any restriction on the diameters of the covering sets, then one
obtains the Hausdor� content of F , namely,

Hs
1.F / D inf

°

1
X

kD1

diam.Uk/s W ¹Ukºk2K is a countable cover of F

by arbitrary sets
±

:

�e following chain of inequalities is evident

Hs
1.F / 6 Hs

ı.F / 6 Hs.F /

(for every ı > 0) and, moreover, the Hausdor� dimension of F is equal to

dimH F D inf¹s > 0 W Hs.F / D 0º D inf¹s > 0 W Hs
1.F / D 0º:

�us, for every s > dimH F , we have Hs
1.F / D Hs

ı
.F / D Hs.F / D 0 and for

every s < dimH F , we have Hs
1.F / 6 Hs

ı
.F / 6 Hs.F / D 1, again for every

ı > 0, with the �nal inequality strict if F is bounded (Hs
ı
.F / is �nite for every

ı for F bounded). �e case when s D dimH F is more subtle, and the case of
interest. �en Hs.F / may be zero, positive and �nite, or in�nite, but Hs

1.F /

must be �nite if F is bounded. Moreover, if Hs
1.F / D 0, then Hs.F / D 0 also.
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�e goal of this article is to study situations where Hs
1.F / D Hs.F / with s D

dimH F . Sets with this property were studied by Foran [14], where they were called
s-straight sets. �ere are many advantages to having this equality as Hausdor�
content is more easily analysed. For example, the expression

P1
kD1 diam.Uk/s

gives a genuine upper bound for Hs
1.F / for every cover ¹Ukº1

kD1
, and for every

s > 0 the function Hs
1 acting on the set of compact subsets of a compact metric

space equipped with the Hausdor� metric is an upper semicontinuous function,
and thus Baire 1, whereas Hs is only Baire 2, see [21]. Another consequence is
that Hs

ı
.F / D Hs.F / for all ı > 0. For more details on Hausdor� measure and

dimension, see [10, Chapter 3] and [24].

We conclude this section with a well-known observation and include the proof
for completeness.

Lemma 1.1. Let F � Rn be such thatHs
1.F / D Hs.F / < 1 where s D dimH F .

�en for every Hs-measurable subset E � F we also have Hs
1.E/ D Hs.E/.

Proof. A routine calculation using Hs-measurable hulls veri�es that

Hs.E/ D Hs.F / � Hs.F n E/

even if F is not Hs-measurable. �erefore

H
s
1.E/ 6 H

s.E/

D Hs.F / � Hs.F n E/

6 H
s
1.F / � H

s
1.F n E/

6 Hs
1.E/;

which completes the proof.

Of course, this result is not necessarily true if we replace s by dimH E.

2. Main results: general situations where H
s
1

.F / D H
s.F /

Let I D ¹0; : : : ; M � 1º be a �nite alphabet, let † D IN and � W † ! † be
the one-sided left shift. We will write i 2 I, i D .i0; : : : ; ik�1/ 2 Ik and ˛ D
.˛0; ˛1; : : : / 2 †. We will also write ˛jk D .˛0; : : : ; ˛k�1/ 2 Ik for the restriction
of ˛ to its �rst k coordinates. We equip † with the standard metric de�ned by

d.˛; ˇ/ D 2�n.˛;ˇ/
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for ˛ ¤ ˇ, where

n.˛; ˇ/ D max¹n 2 N W ˛jn D ˇjnº:

We write

I
� D

[

k2N

I
k

for the set of all �nite words. For i D .i0; : : : ; ik�1/ 2 I�, we write

Œi � D
®

˛ 2 † W ˛jk D i
¯

for the cylinder corresponding to i and we let ji j D k be the length of i . Also,
even though the shift is only de�ned on †, it will be convenient also to de�ne it
for i D .i0; : : : ; ik�1/ 2 I� by

�.i / D �..i0; : : : ; ik�1// D .i1; : : : ; ik�1/:

Any closed �-invariant set ƒ � † is called a subshift. Among the most important
subshifts are subshifts of �nite type which we de�ne as follows. Let A be an M �M

transition matrix indexed by I� I with entries in ¹0; 1º. We de�ne the subshift of
�nite type corresponding to A as

†A D ¹˛ D .˛0˛1 : : : / 2 † W A˛i ;˛iC1
D 1 for all i D 0; 1; : : : º:

If every entry of A is 1 then we call †A D † the full shift. We say †A is irreducible
(or transitive) if the matrix A is irreducible, which means that for all pairs i; j 2 I,
there exists n 2 N such that .An/i;j > 0. We say †A is aperiodic (or mixing) if the
matrix A is aperiodic, which means that there exists n 2 N such that .An/i;j > 0

for all pairs i; j 2 I simultaneously.

To each i 2 I associate a similarity map Si on Rn with contraction ratio
ri 2 .0; 1/ which we assume for convenience maps Œ0; 1�n into itself. For i D
.i0; : : : ; ik�1/ 2 I�, write

Si D Si0 ı � � � ı Sik�1

and

ri D ri0 � � � rik�1
:

Let … W † ! Œ0; 1�n be the natural coding map given by

….˛/ D
1
\

kD1

S˛jk .Œ0; 1�d /:
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For a given subshift of �nite type †A, we are interested in the set FA WD ….†A/.
�e set F WD ….†/ corresponding to the full shift is called a self-similar set and
is the unique non-empty compact set satisfying

F D
[

i2I

Si.F /:

�e collection of contracting similarities ¹Siºi2I is called an iterated function sys-

tem (IFS), see [10, Chapter 9]. We will also be interested in subsets of FA corre-
sponding to the cylinders of †A. In particular, for i 2 I�, let

F i
A D ….†A \ Œi �/;

which may be empty. It can be shown via the implicit theorems of Falconer [7],
[9, Section 3.1] that if A is irreducible, then Hs.FA/ < 1 where s D dimH FA.
Moreover, if Hs.FA/ > 0, then Hs.F i

A / > 0 for each i 2 I� for which F i
A ¤ ;.

�eorem 2.1. Let A be irreducible and let s D dimH FA. For all i 2 I� we have

H
s
1.F i

A / D H
s.F i

A /:

Moreover, we can extend this to unions of 1-cylinders in the same ‘family.’ For all

i 2 I,

H
s
1

�

[

j 2I W Ai;j D1

F
j

A

�

D H
s
�

[

j 2I W Ai;j D1

F
j

A

�

:

We will prove �eorem 2.1 in Section 6.2. It is natural to wonder if the equality
is still satis�ed for the full set, and not just cylinders and unions of cylinders in
the same family. We give an example in Section 4 which shows that this is not
true. Delaware [6] proved that any set with �nite Hs measure is �s-straight, in
that it can be decomposed as a countable union of s-straight sets. �is proved a
conjecture of Foran [14]. �eorem 2.1 can be viewed as a strengthening of this
result in the very special case of subshifts of �nite type for self-similar sets. In
particular, we prove that for irreducible A the set FA can be decomposed into a
�nite union of s-straight sets

FA D
[

i2I

F i
A:

In this paper we only consider subshifts of �nite type, but the same questions are
valid for general subshifts and we therefore ask the following natural question.
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Question 2.2. Does there exists a system of similarities and a transitive subshift

ƒ � †, such that

Hs
1.….ƒ/ \ Œi �/ < Hs.….ƒ/ \ Œi �/

for some i 2 I�?

Note that for general subshifts, being transitive means that there exists one
dense orbit under the left shift. Transitive subshifts of �nite type are precisely
those with irreducible A and so �eorem 2.1 answers this question in the negative
for subshifts of �nite type.

�eorem 2.1 was shown for self-similar sets rather than subshifts of �nite type
by Bandt and Graf [1, Proposition 3] assuming the open set condition is satis�ed.
See [10, Section 9.2] for the de�nition and further properties of the open set con-
dition. �is result was generalised by Farkas [12, Proposition 1.11] for self-similar
sets without assuming any separation condition. We state this result as a corollary
of �eorem 2.1.

Corollary 2.3. Let F � Œ0; 1�n be a self-similar set and let s D dimH F . �en,

regardless of separation conditions, Hs
1.F / D Hs.F /.

Proof. Since F is self-similar it is modelled by a full shift and thus for any i 2 I

F D
[

j 2I W Ai;j D1

F
j

A

and so the result follows from �eorem 2.1.

We note here that if the Hausdor� measure of a set is zero in a particular
dimension, then the Hausdor� content is also zero in that dimension and so the
equality is trivial. One might initially wonder if HdimH F .F / D 0 always holds
when F is a self-similar set which cannot be de�ned via a system which satis�es
the open set condition, but this is false, see for example [12, Example 8.6]. �us
this result provides nontrivial information even when the open set condition is not
satis�ed. Recall that Schief [25] proved that Hs.F / D 0 if F is a self-similar set
de�ned via a system which does not satisfy the open set condition and s is the
similarity dimension but, as the example of Farkas shows, one can obtain positive
Hausdor� measure in the Hausdor� dimension if this is less than the similarity
dimension, even if the open set condition cannot be satis�ed.

A natural and important generalisation of self-similar sets is graph-directed

self-similar sets, which we now de�ne. Let � D G.V;E/ be a �nite strongly
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connected directed multigraph with vertices V D ¹1; : : : ; N º and a �nite multiset
of edges E. Write Ei;j for the multiset of all edges joining the vertex i to the
vertex j . For each e 2 E associate a contracting similarity mapping Se on Rn

with contraction ratio re 2 .0; 1/ which we again assume for convenience maps
Œ0; 1�n into itself. It is standard that there exists a unique family of non-empty
compact sets ¹Fiºi2V satisfying

Fi D
N
[

j D1

[

e2Ei;j

Se.Fj /: (2.1)

Each set in the family ¹Fiºi2V is called a graph-directed self-similar set. Even
though all self-similar sets are graph-directed self-similar sets, it was proved by
Boore and Falconer [4] that graph-directed self-similar sets are genuinely more
general than just self-similar sets. We obtain the following generalisation of Corol-
lary 2.3.

Corollary 2.4. Let F � Œ0; 1�n be a graph-directed self-similar set and let

s D dimH F . �en, regardless of separation conditions, Hs
1.F / D Hs.F /.

Corollary 2.4 follows from �eorem 2.1 and the following proposition.

Proposition 2.5. Let ¹Fiºi2V be the solution of a graph-directed self-similar iter-

ated function system with directed graph � D G.V;E/. �en there exists a subshift

of �nite type associated to the alphabet I D E such that every Fi is the union of 1-

cylinders in the same family in the sense of �eorem 2.1. If � is strongly connected

then the constructed subshift of �nite type is irreducible.

Proof. Let the alphabet be indexed by the edge setE. Now, for two edges e; f 2 E,
let Ae;f D 1 if and only if f begins from the vertex where e ended, i.e., it is
possible to walk along e and then along f . If � is strongly connected, the matrix
A is irreducible. It is now straightforward to see that for all e 2 Ei;j

F e
A D Se.Fj /

and so for all i 2 V we have

Fi D
N
[

j D1

[

e2Ei;j

F e
A

and, moreover, for any edge e which �nishes at i

N
[

j D1

Ei;j D ¹f 2 E W Ae;f D 1º
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as required.

Proposition 2.5 says that the solution of every graph-directed self-similar iter-
ated function system is a subshift of �nite type in some sense. �e next proposition
states that the converse is true which will be useful in Section 5.

Proposition 2.6. Let †A be a subshift of �nite type for the alphabet I where A has

at least one non-zero entry in every row. �en there exits a graph-directed self-

similar iterated function system with directed graph � D G.I;E/ with solution

¹F i
Aºi2I. If A is irreducible then � is strongly connected.

Proof. We draw a directed edge e D ei;j from i to j if Ai;j D 1, let Se D Si and
let E D ¹ei;j W i; j 2 I; Ai;j D 1º. If A is irreducible then � is strongly connected.
We have that

F i
A D

[

j 2I;Ai;j D1

Si

�

F
j

A

�

D
[

j 2I

[

e2Ei;j

Se

�

F
j

A

�

and since there is a unique set of compact attractors associated to this graph-
directed system, the proposition follows.

2.1. Extension to k-block subshifts of �nite type. We only consider 2-block
subshifts of �nite type in this paper, i.e. where the forbidden words are of length
2, but note that our results can be extended to the more general k-block case, where
the forbidden words are of length k. �is is a natural simpli�cation to make, as
one can always reformulate a k-block subshift of �nite type as a 2-block analogue
over a larger alphabet. Moreover, this can be done so that the two systems are
topologically conjugate which means that for irreducible k-block systems the as-
sociated 2-block system remains irreducible. �e reformulation is straightforward
and standard. �e new alphabet is the set of words of length .k � 1/ such that
there is an allowable word of length k beginning with that word of length .k � 1/.
�en, the 2-word (over the new alphabet) consisting of .i0; i1; : : : ; ik�2/ followed
by .i1; i2; : : : ; ik�1/ is allowed if and only if .i0; i1; : : : ; ik�1/ was allowed in the
original k-block system. �ere is a naturally induced homeomorphism which con-
jugates the k-block system to the new 2-block system.

3. Ahlfors regularity and the weak separation property

Our results have applications in studying Ahlfors regularity of self-similar sets
and related fractals. Recall that a bounded set F � Rn with Hausdor� dimension
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s is called Ahlfors regular if there exists a constant c > 1 such that for all r 2
.0; diam.F /� and x 2 F

c�1rs
6 H

s.F \ B.x; r// 6 crs :

It is straightforward to show that for an Ahlfors regular set the Hausdor� measure
and Hausdor� content are equivalent in the Hausdor� dimension (equal up to a
constant bound). It is also well-known that a self-similar set satisfying the open
set condition is Ahlfors regular. Our results yield the following corollary.

Corollary 3.1. Let A be irreducible and let s D dimH FA. �en Hs.FA/ > 0 if

and only if FA is Ahlfors regular. Moreover, this extends to any cylinder, i.e., for

all i 2 I�, Hs.F i
A / > 0 if and only if F i

A is Ahlfors regular.

Proof. We will prove the result for FA; the result for cylinders is similar and omit-
ted. Fix r 2 .0; diam.FA/� and x 2 F . �e lower bound is straightforward and
follows by choosing a �rst level cylinder with positive measure and then �nding a
copy of this cylinder inside FA \ B.x; r/ with diameter comparable to r and then
applying the scaling property for Hausdor� measure. For the upper bound,

Hs.FA \ B.x; r// 6

X

i2I

Hs.F i
A \ B.x; r/

�

D
X

i2I

Hs
1.F i

A \ B.x; r//

(by �eorem 2.1 and Lemma 1.1)

6

X

i2I

diam
�

F i
A \ B.x; r/

�s

6 M.2r/s

completing the proof.

Observe that the above corollary also applies to any collection of cylinders
in FA and in particular to graph-directed self-similar sets. Also, no separation
conditions are assumed.
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Let F � Rn be a self-similar set, not contained in any a�ne hyperplane. Re-
call that the weak separation property is satis�ed if the identity map is not an
accumulation point of the set

¹S�1
i ı Sj W i ; j 2 I�º

equipped with the uniform norm, see [27]. It was shown in [16, �eorem 2.1]
that if F satis�es the weak separation property (which is weaker than the open
set condition) then it is Ahlfors regular. It was also shown [16, �eorem 1.4] that
if F does not satisfy the weak separation condition then the Assouad dimension
dimA F of F is greater than or equal to 1. In general the Assouad dimension is an
upper bound for the Hausdor� dimension and we refer the reader to [16] for the
de�nition. �is allows us to prove the following corollary.

Corollary 3.2. Let F � Rn be a self-similar set with Hausdor� dimension s < 1

not contained in any a�ne hyperplane. �en the following are equivalent:

(1) F satis�es the weak separation property;

(2) Hs.F / > 0;

(3) 0 < Hs.F / < 1;

(4) F is Ahlfors regular;

(5) the Hausdor� and Assouad dimensions of F coincide.

Proof. Zerner [27, Corollary after Proposition 2] proved that (1) H) (2),
(2) and (3) are equivalent since any self-similar set has �nite Hausdor� measure
in its Hausdor� dimension, see [10, Corollary 3.3], our result, Corollary 3.1, shows
that (2) () (4), the fact that (4) H) (5) is straightforward and folklore (see, for
example, [26, Proposition 2.1 (viii)]), and since dimH F < 1 the result mentioned
above [16, �eorem 1.4] shows that (5) H) (1).

�e fact that (2) H) (1) provides a partial solution to a conjecture of Zerner,
see the discussion following Proposition 2 in [27]. We note that Corollary 3.2 also
shows that for self-similar sets with Hausdor� dimension strictly less than 1, the
weak separation property can be formulated in a way which only depends on the
set itself and not the de�ning iterated function system. �e additional assumption
dimH F < 1 required in the above corollary seems a little strange at �rst. However,
it turns out that this condition is sharp. Firstly consider F in the line. It is straight-
forward to construct a self-similar set F � Œ0; 1� which fails the weak separation
property, but for which H1.F / > 0. For example, use the contractions x 7! x=2,
x 7! x=3 and x 7! x=2 C 1=2 and apply the argument from [15, Example 3.1]
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using the fact that log 2= log 3 … Q. We use a variation of this example to prove
the following proposition demonstrating the (almost) sharpness of Corollary 3.2.

Proposition 3.3. For all n 2 N n ¹1º and all s 2 .1; n�, there exists a self-similar

set F � Œ0; 1�n not contained in any a�ne hyperplane such that

(1) F fails the weak separation property,

(2) dimH F D s,

(3) Hs.F / > 0.

Proof. Let r 2 .0; 1=2� be chosen such that

log 2

� log r
D s � 1

n � 1
DW t

and let F1 D Œ0; 1� be viewed as a self-similar attractor of an iterated function
system which fails the weak separation property and all of the maps have con-
traction ratio r . Such an iterated function system can be constructed by modi-
fying [1, Section 2 (v)]. Also, let E � Œ0; 1� be the self-similar set de�ned by
the maps x 7! rx and x 7! rx C .1 � r/, and observe that dimH E D t and
Ht .E/ > 0 since the open set condition is satis�ed, see [10, Corollary 3.3]. Now
let F D F1 �En�1 � Œ0; 1�n be the product of F1 with n�1 copies of E. It is easy
to see that F is not contained in any a�ne hyperplane and that it is a self-similar
set de�ned via the natural product iterated function system. It follows from [20,
�eorem 8.10] that dimH F D 1 C .n � 1/t D s and that Hs.F / > 0. Note that to
compute the dimension of F here we used the fact that the Hausdor� and pack-
ing dimensions coincide for any self-similar set [9, Corollary 3.3]. Finally it is
easy to see that the weak separation property fails by virtue of it failing in the �rst
coordinate.

For s D n in the above proposition our set F is just Œ0; 1�n, which is not very
interesting. We point out that it is possible to construct a set with the desired
properties but which has empty interior. For example, it was shown in [5] that
there exists a self-similar set in the plane with positive H2 measure, but empty
interior, and by [27, �eorem 3] such a set must fail the weak separation property.
We end this section by asking the natural question, an answer to which would
complete the study.

Question 3.4. Is it true that for all n 2 N n ¹1º there exists a self-similar set

F � Œ0; 1�n not contained in any a�ne hyperplane such that F fails the weak

separation property, dimH F D 1 and H1.F / > 0?
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4. Examples where H
s
1

.F / < H
s.F / < 1 and future work

In this section we give examples which show that equality of Hausdor� measure
and Hausdor� content in the critical dimension is actually a rather special prop-
erty. In particular, we give several examples falling into natural classes of set for
which one might hope to be able to extend �eorem 2.1, but for which equality
does not hold. A natural situation to consider is attractors of more general iterated
function systems. In general an iterated function system (IFS) is a �nite collection
of contractions ¹Siºi2I on a compact metric space. �e attractor of this system is
the unique non-empty compact set F satisfying

F D
[

i2I

Si.F /:

See [10, Chapter 9] and [18] for more details on iterated function systems. Two of
the most standard and important generalisations of self-similar sets are self-a�ne

sets, where the de�ning maps are a�ne maps on some Euclidean space, and self-

conformal sets, where the de�ning maps are conformal. We note that similarities
are both a�ne and conformal. It is evident that for any compact set F � Rn with
Hausdor� dimension equal to 1, we have

H1
1.F / 6 diam.F /:

However, if F is connected and not contained in a straight line, then

H1.F / > diam.F /:

�is phenomenon provides us with several simple counter examples.

Self-a�ne sets. It was shown in [2] that there exist self-a�ne curves C in the
plane which are di�erentiable at all but countably many points. In particular, these
curves can have �nite length but not lie in a straight line (see [2, Example 10]
and [19, Example 6.2]). Such sets have Hausdor� dimension 1 and by the above
argument satisfy

0 < H
1
1.C / < H

1.C / < 1:

Self-conformal sets. �e upper half A of the unit circle in the complex plane is
a self-conformal set and has

H1
1.A/ D 2 < � D H1.A/:

�e maps in the de�ning IFS for A are z 7!
p

z and z 7! i
p

z, de�ned on a
suitable open domain containing A.
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Julia sets. the unit circle S1 is the Julia set for the complex map z 7! z2 and
satis�es

H
1
1.S1/ D 2 < 2� D H

1.S1/:

Sub-self-similar sets. Sub-self-similar sets, introduced by Falconer in [8], are
compact sets F satisfying

F �
[

i2I

Si .F /

for some IFS of similarities. For any such IFS with the unit square as its attractor,
the boundary of the unit square Q D @Œ0; 1�2 is a sub-self-similar set and satis�es

H1
1.Q/ D

p
2 < 4 D H1.Q/:

Finally we give two simple examples which show that �eorem 2.1 is sharp, in
some sense.

Non-irreducible subshift of �nite type. Consider the subshift of �nite type on
the alphabet ¹0; 1; 2º given by the matrix

A D

0

@

1 0 0

0 1 0

1 1 0

1

A

and associate any iterated function system consisting of three similarities on Œ0; 1�

which map Œ0; 1� to three disjoint intervals. Here A is not irreducible and so does
not fall into the class considered by �eorem 2.1. �e limit set F D …

�

†A

�

con-
sists of only four points and so F and all of its children have Hausdor� dimension
0, but nevertheless

H
0
1

�

F 2
A

�

D 1 < 2 D H
0
�

F 2
A

�

:

Full set for irreducible and aperiodic subshift of �nite type. Now we will
show that one cannot hope to have Hs

1.FA/ D Hs.FA/ for even an aperiodic

subshift of �nite type (which we recall is a stronger condition than irreducible).
Consider the alphabet ¹0; 1; 2; 3º and let

A D

0

B

B

B

@

1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0

1

C

C

C

A
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which is quickly seen to be aperiodic. De�ne similarities on the unit square by

S0.x; y/ D .x=2; y=2/;

S1.x; y/ D .�x=2; y=2/ C .1=2; 1=2/;

S2.x; y/ D .x=2; y=2/ C .1=2; 0/;

and

S3.x; y/ D .�x=2; y=2/ C .1; 1=2/:

It is easy to see that

FA D .¹0º � Œ0; 1�/ [ .¹1º � Œ0; 1�/

which satis�es
H1

1.FA/ D
p

2 < 2 D H1.FA/:

Of course �eorem 2.1 still correctly states that

H1
1.F 0

A [ F 1
A / D H1.F 0

A [ F 1
A /

and

H1
1.F 2

A [ F 3
A / D H1.F 2

A [ F 3
A /;

noting that

F 0
A [ F 1

A D ¹0º � Œ0; 1�

and

F 2
A [ F 3

A D ¹1º � Œ0; 1�:

A possible direction for further study on this topic would be to consider the classes
of sets studied in this section, namely, self-conformal, self-a�ne, sub-self-similar,
or Julia sets, and try to prove that the Hausdor� measure and Hausdor� content
agree in some interesting subclass. Alternatively, one could look for negative re-
sults, which prove that the Hausdor� measure and Hausdor� content are always
distinct in certain subclasses. Also, all of our counter examples in these classes
were using sets with dimension 1. Could there be di�erent phenomena at work
for non-integral dimensions? We suspect not, but have not investigated this fur-
ther. Note that we cannot give a simple condition guaranteeing Hs

1.F / < Hs.F /

apart from for connected sets F not lying in a straight line with Hausdor� dimen-
sion s D 1. �is is because such sets may be s-straight by the result of Delaware
mentioned previously [6].
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5. �e question of packing measure

In this section we address the question of whether analogous results can be ob-
tained for packing measure and a suitably de�ned ‘packing content’. First we recall
the de�nition of the packing measure. Packing measure, de�ned in terms of pack-

ings, is a natural dual to Hausdor� measure, which was de�ned in terms of covers.
For s > 0 and ı > 0 the ı-approximate s-dimensional packing pre-measure of F

is de�ned by

Ps
ı.F / D sup

°

1
X

kD1

diam.Uk/s W ¹Ukº1
kD1 is a countable collection

of pairwise disjoint closed balls

centered in F with diam.Uk/ 6 ı for all k
±

and the s-dimensional packing pre-measure of F by Ps
0.F / D limı!0 P

s
ı
.F /. To

ensure countable subadditivity, the packing (outer) measure of F is de�ned by

Ps.F / D inf
°

X

i

Ps
0.Fi / W F �

[

i

Fi

±

:

It follows from the de�nition that

Ps.F / 6 Ps
0.F / 6 Ps

ı.F /: (5.1)

Similar to the Hausdor� dimension, the packing dimension of F is de�ned to be

dimP F D inf¹s > 0 W Ps.F / D 0º:

�e extra step in the de�nition of packing measure makes it often more di�cult
to handle than the Hausdor� measure. However, in our setting there is a useful
simpli�cation due to Feng-Hua-Wen [13] and Haase [17].

Proposition 5.1. Let F be a compact subset of Rn with the property that for every

open ball B centered in F , there exists a bi-Lipschitz map S on Rn such that

S.F / � B \ F . �en for all s > 0 we have

P
s.F / D P

s
0.F /:

Proof. For any compact set F � Rn, if Ps
0.F / < 1, then Ps.F / D Ps

0.F /, by
the main result in [13]. In the case when Ps

0.F / D 1, the additional assumption
implies that Ps

0.B \ F / D 1 for all open balls intersecting F , which by [17,
Lemma 4], implies that Ps.F / D 1.
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For this reason we can concern ourselves only with the packing pre-measure,
which is easier to understand. �e �rst question is, how should we de�ne the
packing (pre) content? If we naively de�ne it by just removing the bounds on the
diameters of the balls in the packing, then the answer is always in�nity, as long as
s > 0 and F ¤ ;. �is is because one can just take a packing by a single ball with
unbounded diameter. Possible alternatives would be either to insist that there are
at least two balls in every packing, or to bound the radii by something concrete,
such as the diameter of F itself. However, it might be more natural to try to prove
that for su�ciently small ı, the equality Ps

0.F / D Ps
ı
.F / is satis�ed. We adopt

this third approach. �e next question is, do we expect this to be true in the same
setting as �eorem 2.1? An archetypal question being:

“If F is self-similar, then does there exists a ı0 > 0 such that for all ı 2 .0; ı0/

we have

Ps.F / D Ps
0.F / D Ps

ı.F /‹”

One strange consequence of this would be that for such sets the packing mea-
sure is always strictly positive. In the same way that Hs

ı
.F / is always �nite for

bounded sets, we have that Ps
ı
.F / is always positive for arbitrary non-empty sets.

Interestingly enough it was an important question for about 15 years whether or not
it was possible for a self-similar set to have zero packing measure in its dimension,
see [23], but this was recently resolved by Orponen [22], who provided a family
of self-similar sets for whose elements F (of course not satisfying the open set
condition) PdimP F .F / D 0. �us the answer to the above question is immediately
‘no’. We have managed to prove a weaker result, however, which we state after
brie�y recalling the strong separation condition. �is is a strictly stronger condi-
tion than the open set condition and is satis�ed if the images of the attractor under
the maps in the de�ning system are pairwise disjoint. We also recall that for any
self-similar set, the packing measure must be �nite in the packing dimension, see
[9, Exercise 3.2].

�eorem 5.2. Let F � Rn be a self-similar set which satis�es the strong sepa-

ration condition and let s D dimP F . �en, there exists a ı0 > 0 such that for all

ı 2 .0; ı0/ we have

0 < Ps.F / D Ps
0.F / D Ps

ı.F / < 1:

We will prove �eorem 5.2 in Section 6.3. By the above discussion, this result
does not extend to F which do not satisfy the open set condition. It is also easy
to see that it does not extend to the open set condition case either. For example,
the unit interval I is a self-similar set satisfying the open set condition but not the
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strong separation condition. Elementary calculations yield that P1.I / D 1, but
that P1

ı
.I / D 1 C ı for all ı. We pose the question of whether the appropriate

converse of �eorem 5.2 is true.

Question 5.3. Does there exists a self-similar set F satisfying the open set condi-

tion, but for which there is no IFS of similarities satisfying the strong separation

condition with F as the attractor, for which there exists a ı0 > 0 such that for all

ı 2 .0; ı0/ we have

0 < Ps.F / D Ps
0.F / D Ps

ı.F / < 1‹

We generalise �eorem 5.2 for graph-directed self-similar sets and subshifts
of �nite type. A graph-directed self-similar iterated function system satis�es the
strong separation condition if (2.1) is a disjoint union for every i .

�eorem 5.4. Let ¹Fiºi2V be the solution of a graph-directed self-similar iterated

function system which satis�es the strong separation condition and let s be the

common packing dimension of the sets ¹Fiºi2V. �en, there exists a ı0 > 0 such

that for all ı 2 .0; ı0/ and all i 2 V we have

0 < Ps.Fi / D Ps
0.Fi / D Ps

ı.Fi / < 1:

We will prove �eorem 5.4 in Section 6.3. Due to Proposition 2.6 it follows
that this result generalises to subshift of �nite types.

�eorem 5.5. Let †A be an irreducible subshift of �nite type on the alphabet I

and let s D dimP FA. Assume that

¹F j
A ºj 2I W Ai;j D1 (5.2)

are disjoint for every i 2 I. �en, there exists a ı0 > 0 such that for all

ı 2 .0; ı0/ and all i 2 I we have

0 < Ps
�

F i
A

�

D Ps
0

�

F i
A

�

D Ps
ı

�

F i
A

�

< 1:

�eorem 5.5 follows from �eorem 5.4 and Proposition 2.6 since (5.2) ensures
that the strong separation condition is satis�ed for the graph-directed system in
Proposition 2.6.
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6. Proofs

6.1. A useful exhaustion lemma. In this section we prove an exhaustion lemma
for Hausdor� measure, similar to [12, Proposition 1.9], which may be of interest in
its own right. It shows that we can exhaust the Hausdor� measure of a (potentially
overlapping) subset of a self-similar set modelled by a subshift of �nite type by
in�nitely many, disjoint, images of �rst level cylinders. First we state a version
of Vitali’s covering theorem. Let H � Rd . A collection of sets A is called a
Vitali cover of H if for each x 2 H and ı > 0 there exist A 2 A with x 2 A and
0 < diam.A/ < ı.

Proposition 6.1. Let H � Rd be a Hs-measurable set with Hs.H/ < 1 and

B1; : : : ; Bm � Rd be closed sets with 0 < diam.Bi / < 1 and 0 < Hs.Bi / < 1
for all i 2 ¹1; : : : ; mº. Let A be a Vitali cover of H such that every element of A

is similar to Bi for some i 2 ¹1; : : : ; mº and every element of A is a subset of H .

�en there exists a disjoint sequence of sets (�nite or countable) A1; A2; : : : 2 A

such that Hs
�

H n
�
S1

iD1 Ai

��

D 0.

Proof. Assume that A1; A2; : : : 2 A is a disjoint sequence of sets. Let

M D max
16i6m

diam.Bi /
s

Hs.Bi/
:

If Ai is similar to Bj then

diam.Ai /
s D Hs.Ai/

diam.Bj /s

Hs.Bj /
6 Hs.Ai/ M:

Hence
1

X

iD1

diam.Ai/
s D

1
X

iD1

Hs.Ai/ M 6 Hs.H/ M < 1:

�us the proposition follows from a version of Vitali’s covering theorem [11, �e-
orem 1.10].

Let

I�
A D ¹i 2 I� W there exist ˛ 2 †A and k 2 N such that ˛jk D i º

and for i 2 I�
A let

Ii �
A D ¹j 2 I�

A W j jji j D i º:
For i D .i0; : : : ; ik�1/ 2 I� with ji j > 1 we de�ne .i /0 D i0 and .i /last D ik�1

and �.i / D .i0; : : : ; ik�2/. If i D .i0; : : : ; ik�1/; j D .j0; : : : ; jl�1/ 2 I�
A are such

that A.i /last;.j /0
D 1 then we write i � j D .i0; : : : ; ik�1; j0; : : : ; jl�1/ 2 I�

A.



Equality of Hausdor� measure and content 421

Lemma 6.2. Let A be an irreducible subshift of �nite type, let s D dimH FA and

assume that Hs.FA/ > 0. �en for each j 2 I, there exists a collection I
j
1 of �nite

words i 2 I� that satis�es the following properties:

(i) the �rst symbol is j , i.e. .i /0 D j ,

(ii) the last symbol is j , i.e. .i /last D j ,

(iii) there exists ˛ 2 †A and k 2 N such that ˛jk D i or, in other words, i 2 I�
A,

(iv) for i ; j 2 I
j
1 with i ¤ j we have that

F i
A \ F

j
A D ;;

(v) Hs
�

F
j

A n
�

[

i 2I
j
1

F i
A

��

D 0;

(vi) the contraction ratios satisfy a Hutchinson–Moran type expression for the

Hausdor� dimension, i.e.
X

i 2I
j
1

rs
�.i / D 1:

Proof. Since A is irreducible, for every i 2 I n ¹j º we can �nd ii 2 Ii�
A such

that .ii /0 D i and .ii /last D j . Of course there are in�nitely many such choices
for ii , but for de�niteness choose one with minimal length. �us if i 2 I

j �
A and

.i /last D i then �.i / � ii 2 I
j �
A and .�.i / � ii /last D j . Let

rmin D min
°Hs.F

ii

A /

Hs.F i
A/

W i 2 I n ¹j º
±

2 .0; 1/: (6.1)

We de�ne a sequence I
j
0 ; I

j
1; : : : inductively where I

j
n satis�es properties (i),

(iii), (iv) and (v). �e collection of sets ¹F i
A W i 2 I

j �
A ; ji j > 2º is a Vitali cover of

F
j

A and hence by Proposition 6.1 there exists Ij
0 � ¹i 2 I

j �
A W ji j > 2º such that

F i
A \ F

j
A D ; for i ; j 2 I

j
0 , i ¤ j and

Hs
�

F
j

A n
�

[

i 2I
j
0

F i
A

��

D 0:

Once I
j
n is de�ned we de�ne I

j
nC1 as follows. First, for each i 2 I

j
n we de�ne a

set Ij
nC1;i

. If .i /last D j then I
j
nC1;i

D ¹i º. If .i /last D i ¤ j then

¹F �.i /�j

A W j 2 I
i�
A ; F

�.i /�j

A \ F
�.i /�ji

A D ;º
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is a Vitali cover of F i
A n F

�.i /�ji

A and hence by Proposition 6.1 there exists

JnC1;i � ¹j W j 2 Ii�
A ; F

�.i /�j

A \ F
�.i /�ji

A D ;º

such that F
�.i /�i1

A \ F
�.i /�i2

A D ; for all i1; i2 2 J
j

nC1;i
, with i1 ¤ i2, and

Hs
�

.F i
A n F

�.i /�ji

A / n
�

[

j 2J
j

nC1;i

F
�.i /�j

A

��

D 0:

Now let
I

j
nC1;i

D ¹�.i / � jiº [ ¹�.i / � j W j 2 J
j
nC1;i

º

and
I

j
nC1 D

[

i 2In

I
j
nC1;i

:

Finally we de�ne

Ij
1 D

1
\

n1D1

1
[

n2Dn1

Ij
n2

:

Clearly F i
A \F

j

A D ; for i ; j 2 I
j
1, i ¤ j . If i 2 I

j
n and .i /last ¤ j then i … I

j

nCl

for every positive integer l , hence i … I
j
1. So .i /last D j for all i 2 I

j
1. Clearly

H
s
�

F
j

A n
�

[

i 2I
j
n

F i
A

��

D 0 (6.2)

for every positive integer n. For i 2 I
j
n such that .i /last D i ¤ j we have that

¹j W �.i / � j 2 InC1; .�.i / � j /last ¤ j º � J
j
nC1;i

and

Hs.F
�.i /�ji

A / D Hs.S�.i /��.ji /.F
j

A //

D rs
�.i /r

s
�.ji /H

s.F
j

A /
Hs.F i

A/

Hs.F i
A/

D Hs.F
ji

A /
Hs.F i

A /

Hs.F i
A/

> rminH
s.F i

A /

(6.3)

by (6.1). Also .�.i / � ji /last D j by de�nition. �erefore

I
j
nC1 n Ij

1 �
[

i 2I
j
nnI

j
1

¹�.i / � j W j 2 J
j
nC1;i º
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and

H
s
�

[

i 2I
j
nC1

nI
j
1

F i
A

�

6

X

i 2I
j
nnI

j
1

H
s
�

[

j 2J
j

nC1;i

F
�.i /�j

A

�

6

X

i 2I
j
nnI

j
1

H
s.F i

A n F
�.i /�ji

A /

(by (6.3))
6

X

i 2I
j
nnI

j
1

.Hs.F i
A / � rminH

s.F i
A //

D
X

i 2I
j
nnI

j
1

.1 � rmin/Hs.F i
A /

D .1 � rmin/Hs
�

[

i 2I
j
nnI

j
1

F i
A

�

:

Hence

Hs
�

[

i 2I
j
nC1

nI
j
1

F i
A

�

6 .1 � rmin/n Hs
�

[

i 2I
j
0

nI
j
1

F i
A

�

D .1 � rmin/nHs.F
j

A /

for all n 2 N and combined with (6.2) we get that

Hs
�

[

i 2I
j
nC1

\I
j
1

F i
A

�

> .1 � .1 � rmin/n/Hs.F
j

A /:

�us

Hs
�

[

i 2I
j
1

F i
A

�

> Hs.F
j

A /

and so

H
s
�

F
j

A n
�

[

i 2I
j
1

F i
A

��

D 0:

�us the collection I
j
1 satis�es properties (i)–(v). Property (vi) follows easily

from (iv) and (v) since

Hs.F
j

A / D
X

i 2I
j
1

Hs.F i
A / D

X

i 2I
j
1

Hs.S�.i /.F
j

A // D
X

i 2I
j
1

rs
�.i /H

s.F
j

A /

and the fact that we can divide by Hs.F
j

A /.
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6.2. Proof of �eorem 2.1. In this section we will prove our main result. It is
trivially true if Hs.FA/ D 0, so we assume otherwise. Fix i 2 I and " > 0. Choose
a countable open cover ¹Ukºk2K of F i

A which satis�es
X

k2K

diam.Uk/s
6 Hs

1.F i
A/ C ": (6.4)

Since F i
A is bounded we can assume that there is a uniform bound on the diameters

of the Uk. Let Ii
1 be the ‘exhausting set’ from Lemma 6.2. For m 2 N, let

Ii;m
1 D

®

i 0 2 I� W i 0 D �.i 0/�.i 1/ : : : �.i m�1/

where i l 2 Ii
1 for l D 0; : : : ; m � 1

¯

:
(6.5)

By properties (i) and (ii) in Lemma 6.2 the set Ii;m
1 is a set of restricted words from

†i
A. Moreover, it follows form property (v) in Lemma 6.2 that, for all m 2 N,

Hs
�

F i
A n

[

i 2I
i;m
1

Si .F i
A/

�

D 0: (6.6)

Observe that, for each m 2 N,

¹Si .Uk/º
i 2I

i;m
1 ;k2K

is a cover of
S

i 2Ii;m
1

Si .F i
A/. Let ı > 0 and choose m 2 N su�ciently large to

ensure that
sup

i 2Ii;m
1 ; k2K

diam.Si .Uk// 6 ı

and thus
¹Si .Uk/º

i 2I
i;m
1 ; k2K

is a countable open ı-cover of
S

i 2I
i;m
1

Si .F i
A/. It follows that

H
s
ı.F i

A/ 6 H
s
ı

�

[

i 2I
i;m
1

Si .F i
A/

�

C H
s
ı

�

F i
A n

[

i 2I
i;m
1

Si .F i
A/

�

(by (6.6))
6

X

k2K

X

i 2I
i;m
1

diam.Si .Uk//s

6

X

k2K

diam.Uk/s
X

i 2I
i;m
1

rs
i

(by (6.4) and (6.5))
6 .Hs

1.F i
A/ C "/

�

X

i 2Ii
1

rs
�.i /

�m

D H
s
1.F i

A/ C "
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by property (vi) from Lemma 6.2. Taking the limit as ı ! 0 and noting that
" > 0 was arbitrary, yields Hs.F i

A/ 6 Hs
1.F i

A/. �e reverse inequality is always
satis�ed.

�e �nal part of �eorem 2.1 follows by a simple trick. Let i 2 I and observe
that

F i
A D Si

�

[

j 2I W Ai;j D1

F
j

A

�

and so

rs
i H

s
1

�

[

j 2I W Ai;j D1

F
j

A

�

D H
s
1.F i

A/ D H
s.F i

A/ D rs
i H

s
�

[

j 2I W Ai;j D1

F
j

A

�

where the middle equality is due to the �rst part of the theorem. Dividing by rs
i

completes the proof.

6.3. Proof of �eorem 5.2 and �eorem 5.4

Proof of �eorem 5.2. Let F � Rn be the self-similar attractor of the IFS ¹Siºi2I

and assume F satis�es the strong separation condition. �is implies that we can
�nd a bounded open setO � Rn such that F � O and

S

i2I Si .O/ � O is a disjoint
union. Let

ı0 D 1

2
inf

x2F
inf

y2RnnO
jx � yj

which is strictly positive since F is closed.

First assume that Ps
ı
.F / < 1 for every ı 2 .0; ı0/. Later we will see that

Ps
ı
.F / D 1 is impossible for ı 2 .0; ı0/. Let " > 0, let ı 2 .0; ı0/ and let ¹Bkºk2K

be a countable collection of disjoint closed balls centered in F with diameter less
than or equal to ı which satis�es

X

k2K

diam.Bk/s
> Ps

ı.F / � ": (6.7)

Since Bk � O for all k 2 K and by the choice of O, the collection

¹Si .Bk/ºi 2Im;k2K

is a countable collection of disjoint closed balls centered in F . Let � 2 .0; ı/ and
choose m 2 N so large so that

sup
i 2Im;k2K

diam.Si .Bk// 6 �:
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It follows that

P
s
�.F / >

X

k2K

X

i 2Im

diam.Si .Bk//s

D
X

k2K

diam.Bk/s
X

i 2Im

rs
i

(by (6.7))
> .Ps

ı.F / � "/
�

X

i2I

rs
i

�m

D P
s
ı.F / � "

by the Hutchinson–Moran formula for (packing) dimension [18]. Taking the limit
as � ! 0 and noting that " > 0 was arbitrary, yields Ps.F / D Ps

0.F / > Ps
ı
.F /.

�e reverse inequality is always satis�ed by (5.1), which completes the proof.

Now assume that Ps
ı
.F / D 1 for some ı 2 .0; ı0/. Via a similar argument to

the one above, this implies that Ps
�.F / > K for every K > 0 and hence Ps

0.F / D
1 but this is a contradiction since every self-similar set has �nite packing measure
(and pre-measure) in the packing dimension, see [9, Exercise 3.2].

�e reason this proof cannot be extended to the open set condition case is
because in that case the number ı0 may be zero and iterations of packings may
no longer be packings. �is is one of the reasons packings are sometimes more
di�cult to control than covers. �e proof of �eorem 5.4 is similar and we just
provide a sketch. First we prove a simple lemma. We say v 6 v0 for vectors
v; v0 2 RN if each entry in v is less than or equal to the corresponding entry in v0.
We say that v is non-negative if 0 6 v. Similar notations apply to matrices.

Lemma 6.3. Let A be a non-negative irreducible matrix of spectral radius 1 and

x be a non-negative vector such that Amx 6 x for large enough m. �en Ax D x.

Proof. Observe that Am is also an irreducible matrix with spectral radius 1. Hence
it follows from [3, �eorem 1.3.28] that Amx D x and therefore Ax D x by the
Perron-Frobenius theorem.

Proof of �eorem 5.4. Let As be the matrix with .i; j /th entry given by

As
i;j D

X

e2Ei;j

rs
e :

Let s be the unique value for which the spectral radius of the matrix As is 1. Let
u| D .Ps.F1/; :::;Ps.FN //. If � is strongly connected then As is irreducible.
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If further the strong separation condition is satis�ed then 0 < Ps.Fi / < 1 for
every i and Asu D u (see [9, Corollary 3.5]. Let u

|

ı
D .Ps

ı
.F1/; : : : ;Ps

ı
.FN //.

Since the strong separation condition is satis�ed there exists a collection of open
sets ¹Oiºi2V such that Fi � Oi and

N
[

j D1

[

e2Ei;j

Se.Oj / � Oi

is a disjoint union for every i . Let

ı0 D 1

2
min
i2V

inf
x2Fi

inf
y2RnnOi

jx � yj:

A similar argument to the proof of �eorem 5.2 shows that for large enough m

depending on � we have that

.As/muı 6 u� 6 uı (6.8)

for ı 2 .0; ı0/ and 0 < � < ı. It follows by Lemma 6.3 that equality holds in (6.8).
Hence uı D u� D u for 0 < � < ı < ı0.
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