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On the packing measure of slices of self-similar sets

Tuomas Orponen1

Abstract. LetK � R
2 be a rotation and re�ection free self-similar set satisfying the strong

separation condition, with dimension dimK D s > 1. Intersecting K with translates

of a �xed line, one can study the .s � 1/-dimensional Hausdor� and packing measures

of the generic non-empty line sections. In a recent article, T. Kempton gave a necessary

and su�cient condition for the Hausdor� measures of the sections to be positive. In this

paper, I consider the packing measures: it turns out that the generic section has in�nite

.s � 1/-dimensional packing measure under relatively mild assumptions.
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1. Introduction

�e main motivation for this paper is the article [4] by T. Kempton, where the

following question is considered. Let s > 1, and �x an s-dimensional self-similar

set K � R
d , satisfying the open set condition and containing no rotations or re-

�ections. �en, pick a one-dimensional subspace L � R
d , and slice K with the

.d � 1/-planes Vt WD ��1
L ¹tº, where �L stands for the orthogonal projection onto

L. Under what conditions do many of the slices KL;t WD K \ Vt have positive

.s � 1/-dimensional Hausdor� measure? �e answer turns out to be closely con-

nected with the behaviour of the projection of the measure H
s jK into the line L,

denoted by �L].H
sjK/. Under a mild geometric condition on the set K – im-

plied by the strong separation condition – Kempton proves that Hs�1.KL;t/ > 0

1 �e research was partially supported by the Academy of Finland, grant 133264 “Stochastic

and harmonic analysis, interactions and applications”.
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for �L].H
sjK/ almost all t 2 L, if and only if �L].H

s jK/ � H
1 with bounded

density.

By Marstrand’s projection theorem, the condition s > 1 alone implies that

�L].H
sjK/ � H1 for almost all one-dimensional subspaces L. But in most prac-

tical instances – especially when d D 2 – current methods do not shed much light

on the question of whether or not �L].H
sjK/ has bounded density. So, it seems

desirable to obtain some information about the slices KL;t under weaker assump-

tions on �L].H
sjK/. Since Kempton’s result is a characterisation, however, such

assumptions simply cannot yield information about Hausdor� measure.

In this paper, I study the packing measure of the sets KL;t . I restrict attention

to the case d D 2, and, like Kempton, I only consider rotation and re�ection

free self-similar sets K (RRFSSS in short). �e main result in this setting is the

following:

�eorem 1.1. Let K � R
2 be a RRFSSS satisfying the strong separation condi-

tion, with dimK D s > 1. Let � be the orthogonal projection onto some one-

dimensional subspace. Assume that the following conditions are met:

(A) �].H
s jK/ � H

1;

(B) the self-similar set �.K/ has no �xed point coincidence.

�en dimpŒK \��1¹tº� D s � 1 and P
s�1.K \��1¹tº/ D 1 for almost every

t 2 �.K/, where dimp and P
s�1 stand for packing dimension and .s � 1/-dimen-

sional packing measure, respectively.

In fact, (B) can even be replaced by a slightly weaker condition, see Section 4.

To conclude the introduction, I mention another motivation for the paper, which

has little to do with self-similar sets to begin with. IfK � R
d is a general (Borel)

set with H
s.K/ < 1 for some s > 1, it is well-known, see [5, �eorem 7.7], that

H
s�1.KL;t/ < 1 for almost all t 2 L, and for every line L.

For packing dimension, the closest known analogue is the following result

by K. Falconer [2, Lemma 5]: if dimpK � s for some s > 1, then almost

all of the slices have dimpKL;t � s � 1 (in particular, the conclusion that

dimpŒK \ ��1¹tº� � s � 1 for almost all t 2 �.K/ in �eorem 1.1 is a corol-

lary of this result). What Falconer’s lemma does not reveal, however, is whether

P
s.K/ < 1 implies �nite .s � 1/-dimensional packing measure for almost all

slices – in analogue with the situation for Hausdor� measures. Since the sets K

appearing in �eorem 1.1 have P
s.K/ < 1, the conclusion is that the answer is

de�nitely negative: curiously, one can �nd an abundance of counterexamples even

in sets as regular as RRFSSS’s.
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Corollary 1.2. Let K � R
2 be a RRFSSS satisfying the strong separation condi-

tion with dimK D s > 1. �en, for almost all one-dimensional subspaces L, one

has Ps�1.KL;t / D 1 for almost all t 2 �L.K/.

2. Acknowledgements

I wish to thank Tom Kempton for suggesting the problem, Katrin Fässler for

fruitful discussions, and the anonymous referees for numerous good comments.

In particular, an earlier version of �eorem 1.1 assumed that the similitudes gen-

erating K are equicontractive, but then one of the reviewers generously supplied

an argument to remove the extra hypothesis.

3. Notation and initial reductions

Notation 3.1. �e Hausdor� and packing dimensions of a set B � R
d are de-

noted by dimB and dimp B , respectively. �e s-dimensional Hausdor� and pack-

ing measures are denoted by H
s and P

s. �e de�nition of P
s , see [5, §5.10],

involves the concept of the s-dimensional packing premeasure, P s, along with its

ı-approximates P s
ı
. �e restriction of any measure � on R

2 to a �-measurable

subset B is denoted by �jB . If f W R2 ! R is a continuous function, the image

measure f]� is a measure on R de�ned by f]�.B/ D �.f �1.B//, B � R.

Given A;B > 0, I write A . B , if there exists an absolute constant C � 1

such that A � CB . By A & B I mean that B . A. �e notation A � B is used, if

both A . B and A & B . If any of the symbols ., & or � carry a parameter in the

subindex, for instance A �p B , then the implied constant C is allowed to depend

on this parameter – and nothing else.

3.1. Self-similar sets. A non-empty compact set K � R
d is called self-similar,

if it satis�es the functional equation

K D

q
[

j D1

 j .K/; (3.2)

where the mappings  j are contracting similitudes. �is means that

j j .x/ �  j .y/j D �j jx � yj; x; y 2 R
d ;
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where �j 2 .0; 1/ is the contraction ratio of the similitude  j . A foundational

result of Hutchinson [3] states that to every �nite family ¹ 1; : : : ;  qº of con-

tractive similitudes, there exists one and only one non-empty compact set K sat-

isfying (3.2). One often says that K is generated by the family ¹ 1; : : : ;  qº.

In this note, I only consider rotation and re�ection free self-similar sets K

(RRFSSS in short). �ese words mean that K is generated by a family of simili-

tudes ¹ 1; : : : ;  qº of the form  j .x/ D �jxCwj , where �j 2 .0; 1/ andwj 2 R
2.

3.2. Reduction from Ps�1 to P
s�1. �e �rst step in the proof of �eorem 1.1 is

to reduce matters from the packing measurePs�1 to the packing premeasureP s�1,

which is a larger quantity and thus easier to estimate from below. �is reduction

is the content of the next lemma. Before stating the lemma, let me note that in

all that follows one may assume that the projection � is the vertical projection

�.x; y/ D x, and that �.K/ � Œ0; 1�. If B � R
2 and t 2 R, I write

Bt WD B \ ��1
t ¹tº:

Lemma 3.1. Let K � R
2 be a RRFSSS generated by a family of similitudes

¹ 1; : : : ;  qº. Assume that P s�1.Kt / D 1 for a.e t 2 �.K/. �en

P
s�1.Kt / D 1 for a.e. t 2 �.K/.

Proof. Assume that H1.�.K// > 0 (otherwise the statement is vacuous). �en,

let K0; K1; K2; : : : be an enumeration of all sets of the form

 !1
ı  !2

ı � � � ı  !m
.K/;

with m � 0 and .!1; : : : ; !m/ 2 ¹1; : : : ; qºm. Associate to eachKj the set

Ej WD ¹t 2 �.Kj / W P s�1.K
j
t / < 1º � �.Kj /

By self-similarity, H1.Ej / D 0 for all j � 0. �us, also the union

E WD
[

j

Ej � �.K/

has zero length. Pick t 2 �.K/ n E. �e aim is to show that Ps�1.Kt / D 1.
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To achieve this, express Kt as the countable union

Kt D
[

i

Si

of closed sets Si � ��1¹tº. �e set Kt is compact and non-empty (as it has

in�nite P s�1-measure), so Baire’s theorem states that it cannot be expressed as

the countable union of closed sets without interior in the relative topology of Kt .

Let S D Si be a set with non-empty Kt -interior. Since Kt � K, the relative

topology of Kt is inherited from K. A basis for the topology of K is formed by

the sets Kj , j � 0, so for any interior point x 2 S one may �nd a set Kj such

that x 2 Kj \ Kt � S . Fix such x and j . Now, P s�1.S/ � P s�1.Kj \ Kt / D

P s�1.K
j
t /. �e last quantity here is 1, because t D �.x/ 2 �.Kj / n Ej . So,

P s�1.S/ D 1, and this means that Ps�1.Kt / D 1.

4. Main proofs

Fix the self-similar set K, generated by the rotation and re�ection free family of

similitudes ¹ 1; : : : ;  qº. I will abbreviate .K;� ;&K;� and �K;� to .;& and �.

A slightly stronger version of �eorem 1.1 reads as follows.

�eorem 4.1. �e conclusion of �eorem 1.1 remains valid, if the hypothesis (B)

is replaced by the weaker assumption

(B0) Write a D min�.K/ and b D max�.K/. Assume that either ��1¹aº or

��1¹bº meets only one of the sets  j .K/.

To see that condition (B0) is weaker than (B), �rst observe that �.K/ is gen-

erated by the similitudes  0
j .t / D �j t C �.wj /. �en, it is easy the check that if,

say, ��1¹min�.K/º meets  i .K/ and  j .K/, then min�.K/ is a �xed point of

both  0
i and  0

j , and this forces i D j by (B).

�e proof of �eorem 4.1 occupies the rest of the paper. Write

� WD H
s jK :

�en � is a constant multiple of the the natural self-similar probability measure

on K. In other words, � satis�es

� D

q
X

j D1

�s
j �  j ]�:



394 T. Orponen

�e main technical lemma of the paper, below, states that under the hypothe-

ses (A) and (B0), � almost all of the set K can be covered with arbitrarily tall and

narrow upright rectangles with the useful property that the part of K inside each

rectangle is contained relatively near its midpoint:

Lemma 4.2. Let K � R
2 be a RRFSSS, and �x C � 1. Assuming (A) and (B0),

the following holds for �-a.e. x 2 K. For any ı > 0, there exist concentric axes-

parallel rectangles R1 � R2 � R
2 with the following properties:

(i) x 2 R1, and d.R2/ < ı;

(ii) h.R1/ � w.R1/ D w.R2/ � h.R2/=C ;

(iii) K \R2 � R1;

(iv) H
1.�.K \R2// � �w.R2/ for some constant � D �K 2 .0; 1/;

(v) �.R2/ � w.R2/
s.

Here d; h and w refer to diameter, height and width, respectively. �e constants

implicit in “�” depend only on K, and not on C or ı.

Proof. Write

K!1���!m
WD  !1

ı � � � ı  !m
.K/; .!1; : : : ; !m/ 2 ¹1; : : : ; qºm:

�en K!1���!m
is the subset of K!1���!m�1

, which corresponds to ‘using the !th
m

rule inside K!1���!m�1
.’ A set of the form K!1���!m

will be called a generation m

set, and it is one of the q children of the set K!1���!m�1
. Grandchildren, grand

grandchildren and so forth will be referred to as descendants.

Let †� stand for the set of �nite words over the alphabet ¹1; : : : ; qº, and, for

r > 0, write

�r WD ¹.!1; : : : ; !n/ 2 †� W �!1���!n
� r < �!1���!n�1

º;

where

�!1���!m
WD �!1

� � ��!m

is the contraction ratio of  !1
ı � � � ı  !m

.

Suppose for instance that (B0) holds in the form that ��1¹aº meets only one of

the �rst generation sets Kj , say Kl D �lK C wl , l 2 ¹1; : : : ; qº (where l stands

for ‘left’). Also, assume without loss of generality that a D min�.K/ D 0. �en,

there exists a number � > 0 such that ��1Œ0; �� meets no �rst generation sets

besides Kl , see Figure 1. By self-similarity, ��1Œ0; �l�� meets exactly one of the
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second generation sets, namely Kl l . In general, ��1Œ0; �k�1
l

�� meets only one

of the generation k sets, namely Klk (where lk is shorthand for l � � � l). On the

other hand, ��1Œ0; �� contains KlN for some N 2 N, so ��1Œ0; �k�1
l

�� contains

KlNCk�1 . �e conclusions of this paragraph can be combined by writing

KlNCk�1 � ��1Œ0; �k�1
l �� \K � Klk : (4.1)

0 �� � 1

Figure 1. �e set K and the tubes ��1Œ0; ��, ��1Œ0; �l�� and ��1Œ0; �2

l
��.

Now suppose that

x D .t; y/ 2 K!1���!mlNCk�1 : (4.2)

Here N is the same number as above, and depends only on K. �e parame-

ter k D kC 2 N will be chosen large enough depending only on C . For �xed

k;N 2 N, it follows by elementary probability theory that � almost every point

x 2 K is contained in in�nitely many sets of the form (4.2), that is, for arbitrarily

long sequences !1 � � �!m. �us, the proof is completed by showing that the rect-

angles R1; R2 containing x and satisfying (i)–(iv) can be found, whenever (4.2)

holds.
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First, observe that

x 2 K!1���!mlNCk�1 � ��1Œd; d C �!1���!m
�k�1

l ��; (4.3)

by self-similarity and (4.1), where d D min�.K!1���!m
/. Also, for the same rea-

sons,

��1Œd; d C �!1���!m
�k�1

l �� \K!1���!m
� K!1���!mlk : (4.4)

Now, de�ne

R2 D Œd; d C �!1���!m
�k�1

l �� � Œy � c�!1���!m
; y C c�!1���!m

�;

where c > 0 depends only on �min WD min¹�j W 1 � j � qº > 0 and will

be speci�ed soon. Note that K!1���!m
\ R2 � K!1���!mlk by (4.4), but we need

something better: the next step is to verify that

K \R2 � K!1���!mlk : (4.5)

Assume that this is not the case, and �nd a point z 2 .K \ R2/ n K!1���!mlk . Let

i 2 †� be the unique �nite word in ��!1���!m
such that z 2 Ki (observe that the

sets Ki, i 2 �r , form a partition of K for any �xed r > 0). �en i ¤ .!1 � � �!m/,

because otherwise z 2 R2 \K!1���!m
� K!1���!mlk by (4.4). Now, note the general

fact that if i; j 2 �r are two distinct �nite words, then dist.Ki; Kj/ & r , where the

implicit constants only depend on �min and the constants arising from the strong

separation condition: with i as above, j D .!1 � � �!m/ and r D �!1���!m
, this gives

dist.Ki; K!1���!m
/ & �!1���!m

:

Recalling that z 2 Ki \R2, observing that diam.R2/ � 10c�!1���!m
, and choosing

c > 0 small enough, it follows that R2 \K!1���!m
D ;. But this is a contradiction,

since obviously x 2 R2 \K!1���!m
. �us, (4.5) is proved.

Now, we claim that R2 is the rectangle we are after, and that we can construct

R1 � R2 appropriately. Clearly (i) is satis�ed, if m is large enough (depending

on ı). Also, the ratio between h.R2/ and w.R2/ can be made to exceed C by

increasing k (so k depends only on C , as we promised). �e rectangle R1 is

de�ned as the rectangle concentric with R2, with w.R1/ D w.R2/ and h.R1/ D

A�!1���!m
�k

l
. �e absolute constantA � 1 will be speci�ed momentarily. �en (ii)

is satis�ed.
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To prove (iii)–(v), we choose A so large that

K!1���!mlk \ ��1Œd; d C �!1���!m
�k�1

l �� � R1: (4.6)

Such a choice is possible, because x D .t; y/ 2 K!1���!mlk , the second coordinate

of the midpoint of R1 is y, and the height of the set K!1���!mlk is

. �!1���!m
�k

l D h.R1/=A:

�en (iii) is an immediate consequence of (4.5) and (4.6).

�e claim (iv) follows from the assumption (A), which implies that

H
1.�.K// DW �K > 0:

Combining (4.6) with (4.3), one �nds that

K!1���!mlNCk�1 � K!1���!mlk \ ��1Œd; d C �!1���!m
�k�1

l �� � K \R2; (4.7)

which gives

H
1.�.K \ R2// � H

1.�.K!1���!mlNCk�1//

D �!1���!m
�N Ck�1

l
�K

�N �!1���!m
�k�1

l �

D w.R2/:

�is is precisely (iv), since the constant N depends only on K.

Finally, (4.7) and (4.5) (in this order) combined yield (v):

w.R2/
s �N �s

!1���!m
�

s.N Ck�1/

l

� �.R2/

� �.K!1���!mlk /

D �s
!1���!m

�ks
l

� w.R2/
s:

�e proof of the lemma is complete.
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Proof of �eorem 4.1. �e plan is to �x any H
1-positive subset E � �.K/ �

Œ0; 1�, and prove that
Z

E

P s�1
ı .Kt / dt D 1 (4.8)

for any ı > 0. �is implies that P s�1.Kt / D 1 for almost every t 2 Œ0; 1�:

otherwise we could use Egoro�’s theorem to �nd ı > 0 and a H
1-positive subset

E such that P s�1
ı

.Kt / � A for t 2 E, violating (4.8).

Fix the H
1-positive subset E � Œ0; 1�. Pick a small " > 0, and let E0 � E be

a H
1-positive subset with the following property: if

� I � R is an interval of length `.I / < ", which intersects E0, and

� FI � I is any compact subset with H
1.FI \ I / � �`.I /, where � > 0 is the

constant from Lemma 4.2(iii),

then

H
1.E \ FI / � �`.I /=2:

By the Lebesgue di�erentiation theorem and Egoro�’s theorem, such a set can be

found when " > 0 is small enough.

Observe that it su�ces to prove (4.8) for small ı (instead of all ı), because

ı 7! P s�1
ı

.Kt / is a non-decreasing function. In particular, one may restrict con-

siderations to ı � ". Let K0 � K be the set of points described in Lemma 4.2.

�en the rectangles R2 in the said lemma (with a large parameter C � 1) form a

Vitali cover forK0, so, by the Vitali covering theorem (see [1, �eorem 1.10]), there

exists a disjoint collection of rectangles R2 such that d.R2/ � ı for all R2 2 R2,

and either
X

R22R2

d.R2/
s D 1 or �

�

K n
[

R22R2

R2

�

D 0:

Since d.R2/
s .C �.R2/, the �rst condition is impossible by disjointness. So the

second condition holds.

For F � R, write

RF WD ¹R2 2 R2 W K \R2 \ ��1.F / ¤ ;º:

�en

�]�.F / D �.��1.F // �
X

R22RF

�.R2/: (4.9)
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Let t 2 E. A packing1 of the set Kt D K \ ��1¹tº can be found as follows.

For each rectangle R2 2 R¹tº, one �nds, by the de�nition of R¹tº, a point x D

.t; y/ 2 Kt \ R2 such that �.x/ D t , see Figure 2. But, since Kt \ R2 �

R1 by Lemma 4.2(iii), one actually has .t; y/ 2 Kt \ R1. By Lemma 4.2(ii),

R1 is rectangle concentric with R2, with height h.R1/ � w.R2/ D h.R2/=C .

t

x

R1

R2

Figure 2. Choosing the point x.

For C � 1 large enough, one has

IR2
WD ¹tº � Œy � h.R2/=3; y C h.R2/=3� � R2:

�e intervals IR2
are disjoint, because the rectangles in R¹tº are, so

P s�1
ı .Kt / �

X

R22R¹tº

d.IR2
/s�1

&
X

R22R¹tº

h.R2/
s�1 D C s�1

X

R22R¹tº

w.R2/
s�1:

1 A packing of a set A is a collection of disjoint discs centred at points in A. �ese objects

appear in the de�nition of the packing premeasure.
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�is gives
Z

E

P s�1
ı .Kt / dt & C s�1

Z

E

X

R22R¹tº

w.R2/
s�1 dt

D C s�1
X

R22R2

Z

E\�.K\R2/

w.R2/
s�1 dt

� C s�1
X

R22RE0

Z

E\�.K\R2/

w.R2/
s�1 dt

.�/

& C s�1�
X

R22RE0

`.�.R2// �w.R2/
s�1

D C s�1�
X

R22RE0

w.R2/
s

� C s�1�
X

R22RE0

�.R2/ � C s�1� � �.��1.E0//

In the last inequality, (4.9) was used. �e � relation on the last line is

Lemma 4.2(v). Finally, (�) follows from the de�nition of E0: if R2 2 RE0
,

then �.R2/ is an interval of length � ı � " intersecting E0, and �.K \ R2/ �

�.R2/ is a compact subset of length � �`.�.R2// by Lemma 4.2(iv). Hence

H
1.E \ �.K \R2// � �`.�.R2//=2 by the de�nition of E0.

�e value of the constant C is independent of � or �]�.E0/, so one may let

C ! 1. Moreover, the projected measure �]� is equivalent to H1j�.K/ (and not

just absolutely continuous) according to a result of Peres, Schlag, and Solomyak

[6, Proposition 3.1]. �is means that �.��1.E0// > 0, so (4.8) is true, and the

proof is complete, by Lemma 3.1.

Proof of Corollary 1.2. �ere are only countably many 1-dimensional subspaces

L such that the self-similar set �L.K/ has exact overlaps. Since �L].H
sjK/ � H

1

for almost all L by Marstrand’s projection theorem, the corollary follows directly

from �eorem 1.1.

5. An open problem

In �eorem 1.1, one assumes that the projection�].H
sjK/ is absolutely continuous.

Is this necessary? In other words, do there exist self-similar sets K � R
2 such

that dimK D s > 1, the projection �].H
sjK/ is singular, and still

P
s�1.K \ ��1¹tº/ D 1
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for Lebesgue almost every t 2 �.K/? In this case, it follows from Kempton’s

results [4] that

H
s�1.K \ ��1¹tº/ D 0

for H1 almost all t 2 R, but the packing measure is much harder to bound from

above.
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