J. Fractal Geom. 3 (2016), 95[–117](#page-22-0) DOI 10.4171/JFG/31

Journal of Fractal Geometry © European Mathematical Society

Attractors for iterated function systems

Emma D'Aniello and T. H. Steele1

Abstract. Let X be a compact metric space with $S = \{S_1, \ldots, S_N\}$ a finite set of contraction maps from X to itself. Call a non-empty compact subset F of X an attractor for the iterated function system (IFS) S if $F = \bigcup_{i=1}^{N} S_i(F)$. Working primarily on the unit interval $I = [0, 1]$, we show that

- (1) the typical closed set in $[0, 1]$ is not an attractor of an IFS, and describe the closed sets that comprise the F_{σ} set of attractors;
- (2) both the set of attractors and its complement are dense subsets of $(K([0, 1]), \mathcal{H})$;
- (3) the set of attractors is path-connected;
- (4) every countable compact subset of $[0, 1]$ of finite Cantor–Bendixon rank is homeomorphic to an attractor, and
- (5) every nowhere dense uncountable compact subset of $[0, 1]$ is homeomorphic to an attractor.

Mathematics Subject Classification (2010). Primary: 26A18; Secondary: 28A80, 28A78.

Keywords. Iterated function system, attractor, self-similar set, typical (according to Baire) element.

Contents

 1 The authors are grateful to the Istituto Nazionale di Alta Matematica (INdAM) as this research has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica.

1. Introduction

Let X be a complete metric space with $S = \{S_1, \ldots, S_N\}$ a finite set of contraction maps from X to itself. We call a non-empty subset F of X *invariant*, or *an attractor*, for the iterated function system ([\[15\]](#page-21-1), [\[18\]](#page-22-1)) (IFS) S if

$$
F = \bigcup_{i=1}^{N} S_i(F) = \mathcal{S}(F).
$$

It turns out that, for a particular finite set of contraction maps δ , there exists a unique invariant compact set $F \subseteq X$. This and other results from [\[18\]](#page-22-1) are summarized below.

Theorem 1.1. Let (X, d) be a complete metric space with $S = \{S_1, \ldots, S_N\}$ a *nite set of contraction maps from* X *to itself.*

- (a) *There exists a unique non-empty compact set* $F \subseteq X$ *such that* $F = \mathcal{S}(F)$ *.*
- (b) *The set* F *is the closure of the set of fixed points* $s_{i_1...i_p}$ *of finite compositions* $S_{i_1} \circ \cdots \circ S_{i_p}$ *of members of S*.
- (c) *If* A *is any non-empty compact set in* X*, then*

$$
\lim_{p \to \infty} \mathcal{S}^p(A) = F
$$

in the Hausdor metric.

We, sometimes, as in [\[18\]](#page-22-1), denote F of the previous theorem with $|\mathcal{S}|$. Now, suppose that the contraction maps are similarities, so that

$$
|S_i(x) - S_i(y)| = r_i |x - y|
$$

for all x, y in X, and $0 < r_i < 1$. Each S_i transforms subsets of X into geometrically similar sets, giving rise to invariant sets that are self-similar. When the images of the $S_i(F)$ do not overlap "too much" (see the *open set condition* in Section [2\)](#page-2-0), the self-similar set $F = \bigcup_{i=1}^{N} S_i(F)$ has Hausdorff dimension equal to the value of *s* satisfying $\sum_{i=1}^{N} r_i^s = 1$.

Here, we dedicate our attention to the structure of attractors, as well as the structure of the set of attractors, for iterated function systems. We are motivated by related work found in [\[16\]](#page-22-2), [\[4\]](#page-21-2), [\[6\]](#page-21-3), [\[12\]](#page-21-4), [\[13\]](#page-21-5), [\[10\]](#page-21-6), [\[9\]](#page-21-7) and [\[11\]](#page-21-8). While not necessarily linked to results or techniques presented here, [\[1\]](#page-21-9), [\[2\]](#page-21-10), [\[3\]](#page-21-11), [\[14\]](#page-21-12), [\[15\]](#page-21-1), [\[17\]](#page-22-3), [\[18\]](#page-22-1), [\[19\]](#page-22-4), [\[21\]](#page-22-5) and [\[23\]](#page-22-6), provide some overview of recent work concerning the structure, application and generalizations of attractors for iterated function systems.

We furnish the class K of non-empty compact subsets of X with the Hausdorff metric H ; this space is complete, so that good use can be made of the Baire category theorem. Let

 $\mathcal{T} = \{ F \in \mathcal{K}(X) : F = \mathcal{S}(F); \mathcal{S} \text{ a finite collection of contraction maps} \}.$

We show that T is an F_{σ} subset of K and, in the case that $X = [0, 1]$, we show that T is of the first category. When $X = [0, 1]$, both T and $\mathcal{K}(X) \setminus \mathcal{T}$ are dense in $K(X)$, and T is path-connected. Moreover, every nowhere dense uncountable element of $(K([0, 1]), \mathcal{H})$ is homeomorphic to an element of T, as is the case for any countable element of $(K([0, 1]), \mathcal{H})$ of finite Cantor–Bendixon rank.

We proceed through several sections. After presenting notation, definitions and necessary previously known results in Section [2,](#page-2-0) we present several examples of invariant sets in Section [3.](#page-5-0) In Section [4](#page-11-0) we show that the collection of invariant sets is an F_{σ} set for any X, while the collection of invariant sets is also of the first category, should $X = [0, 1]$. We do this by establishing that the set $\mathcal{K}^{\star} \setminus \mathcal{A}$, comprised of certain nowhere dense perfect sets contained in the irrationals, is both residual in $\mathcal{K}([0, 1])$, and has the property that $(\mathcal{K}^{\star} \setminus \mathcal{A}) \cap \mathcal{T} = \emptyset$. Every element of $\mathcal{K}^{\star} \setminus \mathcal{A}$ is nowhere dense and perfect in [0, 1], hence homeomorphic to the middle thirds Cantor set, Q . Since, as is well-known, Q is an attractor (see Example [3.1\)](#page-5-1), each element of the residual $\mathcal{K}^{\star} \setminus \mathcal{A}$, while not itself an attractor, is homeomorphic to the element $Q \in \mathcal{T}$. This motivates the final section, which establishes that every nowhere dense uncountable subset of $[0, 1]$ is homeomorphic to an attractor for a contractive system.

2. Preliminaries

We will do most of our work in two metric spaces. Let (X, d) be a complete metric space. As in [\[18\]](#page-22-1), let $\mathcal{B}(X)$ be the class of non-empty closed and bounded subsets of X. We endow $B(X)$ with the Hausdorff metric H given by

$$
\mathcal{H}(E,F)=\inf\{\delta>0\colon E\subset B_{\delta}(F), F\subset B_{\delta}(E)\}.
$$

This space is complete. In the case that X is also compact, then $B(X) = \mathcal{K}(X)$, where $\mathcal{K}(X)$ is the class of non-empty compact subsets of X, and $(\mathcal{K}(X), \mathcal{H})$ is also compact [\[5\]](#page-21-13). As for the second metric space, let $C(X, X)$ be the collection of continuous self-maps of X. When coupled with the supremum norm, $C(X, X)$ is complete. Let Lip denote the collection of Lipschitz maps $f: X \to X$. For a fixed $m > 0$, let Lip(*m*) denote the collection of Lipschitz maps $f: X \rightarrow X$ with Lipschitz constant less than or equal to m. Should $m < 1$, then $f \in Lip(m)$ is a contraction map.

Let $n \in \mathbb{N}$ with $E \subseteq [0, 1]$. For $s > 0$, set

$$
\mathcal{H}_n^s(E) = \inf \Big\{ \sum \phi(|I_j|) \colon E \subseteq \cup I_j, I_j \text{ an open interval of length } |I_j| \leq \frac{1}{n} \Big\}.
$$

Then $\mathcal{H}^s = \lim_{n \to \infty} \mathcal{H}^s_n$ defines a measure on the Borel sets in [0, 1], generally referred to as the s-dimensional Hausdorff measure $([15], [20])$ $([15], [20])$ $([15], [20])$ $([15], [20])$ $([15], [20])$.

A *portion* P of a closed set $E \subseteq [0, 1]$ is a nonempty set of the form

$$
P=E\cap J,
$$

where J is an open interval, and take $\overline{conv}(F)$ to be the convex closure of $F \subseteq [0, 1].$

Let $S = \{S_1, \ldots, S_N\}$ be a finite set of contraction maps. Then, S is said to satisfy the *open set condition (OSC)* if there is a non-empty open set V such that

$$
\bigcup_{i=1}^N S_i(V) \subseteq V \text{ and } S_i(V) \cap S_j(V) = \emptyset,
$$

whenever $i \neq j$ (see [\[18\]](#page-22-1) and [\[23\]](#page-22-6)). Now, suppose that, for each i, one has $S_i(x) = r_i x + b_i$, where $b_i \in \mathbb{R}$ with $0 < |r_i| < 1$, and take s such that one gets $\sum_{i=1}^{N} |r_i|^s = 1$. If $F = \bigcup_{i=1}^{N} S_i(F)$, then $0 < \mathcal{H}^s(F) < \infty$, and $\mathcal{H}^s(S_i(F) \cap S_j(F)) = 0$, whenever $i \neq j$.

Since $(\mathcal{K}(X), \mathcal{H})$ is complete, we will be able to make good use of the Baire category theorem. A set is of the first category in (X, d) if it can be written as a countable union of nowhere dense sets; otherwise, the set is of the second category. A set is residual if it is the complement of a first category set; an element of a residual subset of (X, d) is called a typical, or generic, element of X. With these definitions in mind, we recall Baire's theorem on category $[22]$.

Theorem 2.1 (Baire category theorem). Let (X, d) be a complete metric space *with B a* first category subset of X. Then $X \setminus B$ *is dense in* X.

Let K^* be the collection of all Cantor sets contained in the irrationals, and let

$$
\mathcal{A} = \{ E \in \mathcal{K}([0, 1]) \colon \text{there are disjoint portions } P \text{ and } Q \text{ of } E \text{ and } f \in \text{Lip}
$$
\n
$$
\text{such that } f(P) \supseteq Q \}.
$$

In [\[7\]](#page-21-14) it is proved that K^* is a residual subset of $\mathcal{K}([0, 1])$ and that A is a first category F_{σ} in $\mathcal{K}([0, 1])$, so that $\mathcal{K}^{\star} \setminus \mathcal{A}$ is also residual in $\mathcal{K}([0, 1])$. Consequently, we have the following result.

Theorem 2.2. Let $E \in \mathcal{K}^* \setminus \mathcal{A}$. Then the only Lipschitz map that maps E onto E *is the identity map.*

In Section [4](#page-11-0) we use Theorem 2.2 .

To facilitate our work on Q , the middle thirds Cantor set in [0, 1], we use the following notation suggested in [\[8\]](#page-21-15). Let

$$
\mathcal{N} = \{0, 1\}^{\mathbb{N}},
$$

and if $n \in \mathbb{N}$ with $n = \{n_j\}_{j=1}^{\infty}$, we set

$$
\mathbf{n}|k=(n_1,n_2,\ldots,n_k).
$$

By 0 (respectively 1), we mean that $n \in \mathbb{N}$ such that $n_i = 0$ (respectively $n_i = 1$) for all *i*. We let $\{J_{n|k} : n \in \mathbb{N}\}$ be the 2^k closed intervals of length $\frac{1}{3^k}$ found in the k^{th} step of the canonical construction of Q, with $J_{n|k,0}$ lying to the left of $J_{n|k,1}$, for all $k > 0$. Let

$$
E_k=\bigcup_{n\in\mathbb{N}}J_{n|k}.
$$

It follows, then, that

$$
Q = \bigcup_{n \in \mathbb{N}} \bigcap_{k=1}^{\infty} J_{n|k} = \bigcap_{k=1}^{\infty} E_k,
$$

and

$$
J_{\boldsymbol{n}} = \bigcap_{k=1}^{\infty} J_{\boldsymbol{n}|k}
$$

is a singleton for every $n \in \mathcal{N}$. Let

$$
G = \left(\frac{1}{3}, \frac{2}{3}\right)
$$

be the complementary interval of Q between J_0 and J_1 . In general, let $G_{n|k}$ be that component of [0, 1] \ Q between $J_{n|k,0}$ and $J_{n|k,1}$. In Section [5](#page-14-0) we make extensive use of clopen portions of Q of the form $J_{n|k} \cap Q$, and frequently refer to them as *canonical portions of* Q.

We also need the Ascoli–Arzelà theorem in Section [4.](#page-11-0)

Theorem 2.3 (Ascoli–Arzelà theorem). Let (X, d) be a compact metric space, and let K be a closed subset of $C(X, X)$. Then K is compact if and only if K is *equicontinuous.*

Finally, let A be a countable compact subset of $[0, 1]$. Define a transfinite subsequence $\{A_{\alpha}\}_{{\alpha}\in\Omega}$ as follows:

$$
A_0 = A,
$$

\n
$$
A_{\gamma} = \begin{cases} \bigcap_{\alpha < \gamma} A_{\alpha} & \text{if } \gamma \text{ is a limit ordinal,} \\ A_{\gamma} & \text{is the set of the limit points of } A_{\gamma - 1}. \end{cases}
$$

Hence, by $[24,$ Theorem 37, Section 26], for every such set there is an ordinal number $\beta < \Omega$ such that A_{β} is non-empty and finite, and $A_{\beta+1} = \emptyset$. Then we call β the *rank of* A and A_β its *set of highest order limit points*. We denote β by $\beta(A)$. (We recall that $\beta + 1$ is the *Cantor–Bendixon rank of A*.)

3. Examples of attractors

In Sections [4](#page-11-0) and [5](#page-14-0) we are concerned with the topological structure of attractors. In this brief section we present a few examples in order to give a flavor of the myriad of possibilities.

Example 3.1 (Cantor set). Let

$$
S_1(x) = \frac{1}{3}x
$$

and

$$
S_2(x) = \frac{1}{3}x + \frac{2}{3}.
$$

Then, as it is well-known,

$$
Q = S_1(Q) \cup S_2(Q),
$$

where Q is the middle thirds Cantor set. Since $\{S_1, S_2\}$ satisfies the OSC with $V = (0, 1)$, it follows that the Hausdorff dimension of Q is

$$
s = \frac{\log 2}{\log 3},
$$

as $2(\frac{1}{3})$ $\frac{1}{3}$)^s = 1.

Example 3.2 (interval attractor). Let

$$
S_1(x) = \frac{1}{3}x,
$$

$$
S_2(x) = \frac{1}{3}x + \frac{1}{3},
$$

and

$$
S_3(x) = \frac{1}{3}x + \frac{2}{3}.
$$

Then,

$$
[0, 1] = \bigcup_{i=1}^{3} S_i([0, 1])
$$

Moreover, $\{S_1, S_2, S_3\}$ satisfies the OSC with $V = (0, 1)$, and as we expect, the Hausdorff dimension of [0, 1] is 1 as $3\left(\frac{1}{3}\right)^1 = 1$.

Example 3.3 (countable attractor). Let

$$
S_1(x) = \frac{1}{3}x
$$

and

$$
S_2(x)=1.
$$

Then

$$
F = \left\{ \bigcup_{j=0}^{\infty} \frac{1}{3^j} \right\} \cup \{0\} = \mathcal{S}(F),
$$

where

$$
\mathcal{S} = \{S_1, S_2\}
$$

as

$$
S_1(F) = \{0\} \cup \bigcup_{j=0}^{\infty} \frac{1}{3^{j+1}}
$$

and

$$
S_2(F) = 1 = \frac{1}{3^0}.
$$

The IFS 8 satisfies the OSC with $V = (0, 1)$. Then, the Hausdorff dimension s of F is given by the equation,

$$
\left(\frac{1}{3}\right)^s + 0^s = 1,
$$

so that, as we expect as F is countable, $s = 0$.

The following example verifies that one can frequently combine types of attractors in a predictable way.

Example 3.4 (attractor of the form $Q \cup C$ with $Q \cap C = \emptyset$, where Q is a Cantor set, C is countable and $Q \subset \overline{C}$). Let $X = [0, 1]$ and $F = Q \cup C$, where Q is the middle thirds Cantor set, and C is the collection of the mid-points of each open interval complementary to Q . Let

$$
S_1(x) = \frac{1}{3}x,
$$

$$
S_2(x) = \frac{1}{2},
$$

and

$$
S_3(x) = \frac{1}{3}x + \frac{2}{3}.
$$

Then

$$
S_1(F) = F \cap \left[0, \frac{1}{3}\right],
$$

$$
S_2(F) = \frac{1}{2},
$$

and

$$
S_3(F) = F \cap \left[\frac{2}{3}, 1\right].
$$

The Hausdorff dimension s of F is given by the equation,

$$
\left(\frac{1}{3}\right)^s + 0^s + \left(\frac{1}{3}\right)^s = 2\left(\frac{1}{3}\right)^s = 1,
$$

so that, as we expect and is well-known, $s = \frac{\log 2}{\log 3}$.

Example 3.5 (attractors with countably many non-degenerate closed intervals which converge to a unique point $\{0\}$). Let $X = [0, 1]$ with

$$
F = \{0\} \cup \bigcup_{j=0}^{\infty} \left[\frac{2}{3^{j+1}}, \frac{1}{3^j}\right]
$$

= $\{0\} \cup \cdots \cup \left[\frac{2}{27}, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right].$

Let

$$
S_1(x) = \frac{1}{3}x,
$$

\n
$$
S_2(x) = \frac{2}{3} + \frac{2}{3}\lambda([0, x] \cap F),
$$

and λ be Lebesgue measure. Then, S_2 is linear with slope $\frac{2}{3}$ on each component of F , and constant on the intervals complementary to F . We conclude that $S_2 \in \text{Lip}\left(\frac{2}{3}\right)$. Moreover,

$$
S_1(F) = \{0\} \cup \bigcup_{j=1}^{\infty} \left[\frac{2}{3^{j+1}}, \frac{1}{3^j}\right]
$$

and

$$
S_2(F) = \left[\frac{2}{3}, 1\right].
$$

Note that $S = \{S_1, S_2\}$ satisfies the OSC with $V = (0, 1)$.

Example 3.6. We construct new examples of attractors based on the existence of some $F = \bigcup_{i=1}^{n} S_i(F) = \mathcal{S}(F) \subseteq [0, 1]$, and $S_i : I \to I$.

 (1) Let

$$
h\colon [a,b]\longrightarrow [p,q]=\overline{\text{conv}}F
$$

be a linear homeomorphism, and $S' = \{S'_1, \ldots, S'_n\}$, where S'_i : [0, 1] \rightarrow [0, 1] and

- (i) $S'_i = h^{-1} \circ S_i \circ h$ on [a, b],
- (ii) $S_i'(x) = S_i'(a)$ for $x \in [0, a]$, and
- (iii) $S_i'(x) = S_i'(b)$ for $x \in [b, 1]$.

Since S_i is a contraction and $S_i(F) \subseteq F$, it follows that $S_i([p,q]) \subseteq [p,q]$, and $S'_{i}([0, 1]) \subseteq [a, b]$. Now,

$$
S_i'(h^{-1}(F)) = (h^{-1} \circ S_i \circ h)(h^{-1}(F)) = (h^{-1} \circ S_i)(F).
$$

Thus,

$$
\bigcup_{i=1}^{n} S'_{i}(h^{-1}(F)) = \bigcup_{i=1}^{n} (h^{-1} \circ S_{i})(F)
$$

$$
= h^{-1}(\bigcup_{i=1}^{n} S_{i}(F))
$$

$$
= h^{-1}(F),
$$

and $h^{-1}(F)$ is the attractor of $S' = \{S'_1, \ldots, S'_n\}.$

 (2) Set

$$
[a, b] = \left[\frac{3}{4}, 1\right]
$$

and let

$$
S'' = \{S', S_{n+1} = \frac{1}{3}x\}.
$$

Let

$$
E = \{0\} \cup \bigcup_{j=0}^{\infty} \left(\frac{1}{3}\right)^j h^{-1}(F)
$$

and

$$
\left(\frac{1}{3}\right)^j h^{-1}(F) = \left\{\frac{x}{3^j} : x \in h^{-1}(F)\right\}
$$

We show that $E = \mathcal{S}''(E)$. This follows from the observation that we have (a) $S'(E) = h^{-1}(F)$, and (b) $S_{n+1}(E) = \{0\} \cup \bigcup_{j=1}^{\infty} \left(\frac{1}{3}\right)^j h^{-1}(F)$.

(a) Let $S_i' \in \mathcal{S}'$. Then

$$
S_i'(E) = S_i'\Big(\{0\} \cup \bigcup_{j=0}^{\infty} \left(\frac{1}{3}\right)^j h^{-1}(F)\Big)
$$

= $S_i'\Big(\{0\} \cup \bigcup_{j=1}^{\infty} \left(\frac{1}{3}\right)^j h^{-1}(F)\Big) \cup S_i'(h^{-1}(F))$
= $S_i'(a) \cup h^{-1}(S_i(F)),$

and, since $S_i'(a) = (h^{-1} \circ S_i \circ h)(a) = h^{-1}(S_i(h(a)))$ is an element of $h^{-1}((S_i(F))$, we have

$$
S_i'(E) = h^{-1}(S_i(F)).
$$

(b) This, of course, follows from $S_{n+1}(x) = \frac{1}{3}x$ and the definition of E. We conclude that

$$
S''(E) = S'(E) \cup S_{n+1}(E)
$$

= $h^{-1}(F) \cup (\{0\} \cup \bigcup_{j=1}^{\infty} \left(\frac{1}{3}\right)^j h^{-1}(F))$
= $\{0\} \cup \bigcup_{j=0}^{\infty} \left(\frac{1}{3}\right)^j h^{-1}(F)$
= E .

104

Suppose that A and B are countable compact subsets of $[0, 1]$. From $[25, 1]$ Proposition 2] we know that if A and B have the same rank and the same number of highest order limit points, then they are homeomorphic. This observation, coupled with Example [3.3](#page-6-0) and Example [3.6,](#page-8-0) gives the following result.

Theorem 3.7. If $F \in \mathcal{K}([0, 1])$ is a countable set of finite rank, then there exist F' *homeomorphic to* F *and* $\mathcal{S} = \{S_1, \ldots, S_n\}$ *such that* $F' = \mathcal{S}(F')$ *.*

Proof. Let $t \in \mathbb{N}$. We first show that there exists a countable set F in $\mathcal{K}([0, 1])$ of rank t , and possessing a single limit point of that rank. We show this using induction. Consider $\delta = {\frac{1}{3}x, 1}$ so that $S_2(x)$ is the constant function 1. Then $|\mathcal{S}| = \{0\} \cup \bigcup_{j=0}^{\infty} \left(\frac{1}{3}\right)^j$, and $|\mathcal{S}|$ is of rank 1, with $\{0\}$ as its unique limit point of that rank. Now, suppose $F = \bigcup_{i=1}^{n} S_i(F) = \mathcal{S}(F) \subseteq [0, 1], S_i : I \to I$ and F is of rank t. Using Example [3.6,](#page-8-0) we construct $S'' = \{S', S_{n+1} = \frac{1}{3}x\}$ and $E = \{0\} \cup \bigcup_{j=1}^{\infty} \left(\frac{1}{3}\right)$ $\frac{1}{3}$, $\int h^{-1}(F)$ so that $\mathcal{S}''(E) = E$. Since $(\frac{1}{3})$ $\frac{1}{3}$)^j $h^{-1}(F) \to 0$ as $j \rightarrow \infty$, it follows that E is of rank $t + 1$, and $\{0\}$ is the unique limit point of that rank.

Now, suppose $F = \bigcup_{i=1}^{n} S_i(F) = \mathcal{S}(F) \subseteq [0, 1], S_i : I \to I$ and F is of rank t. Let $k \in \mathbb{N}$. For $1 \le j \le k$, we construct $S_j' = \{S_{1,j'}, \ldots, S_{n,j'}\}$ so that $h_j^{-1}(F)$ is a homeomorphic copy of F contained in $\left[\frac{2j-1}{2k}, \frac{2j}{2k}\right]$. Let $E = \bigcup_{j=1}^{k} h_j^{-1}(F)$, and $\tilde{\delta} = {\delta_1', \ldots, \delta_k'}$. Then, $\tilde{\delta}(E) = E$ and E is of rank t with k limit points of that order. We conclude by recalling that if A and B are countable compact subsets having the same rank and the same number of highest order limit points, then they are homeomorphic [\[25,](#page-22-10) Proposition 2]. \Box

We conclude this section by showing that any finite union of non-degenerated closed intervals in $[0, 1]$ is an attractor.

Proposition 3.8. Let $\{J_1, J_2, \ldots, J_n\}$ be a finite collection of disjoint nondegen*erate closed intervals in* $I = [0, 1]$ *. Then there exists* $S = \{S_1, \ldots, S_n\}$ *a finite* set of contraction maps on I such that $F = \bigcup_{i=1}^{n} S_i(F)$, where $F = \bigcup_{i=1}^{n} J_i$. *Moreover, the set of contractions* $S = \{S_1, \ldots, S_n\}$ *satisfies the open set condition.*

Proof. Suppose $i = 1$, so we have just one interval J_1 . That J_1 is an attractor follows from Examples [3.2](#page-6-1) and [3.6.](#page-8-0) Now, let $\{J_1, J_2, \ldots, J_n\}$ be a finite collection of disjoint nondegenerate closed intervals in $I = [0, 1]$, with $n \ge 2$. Let $J_i = [a_i, b_i]$, with $b_i < a_j$ whenever $i < j$. Let $Q = \sum_{i=1}^n (b_i - a_i)$ be the sum of the lengths of the intervals J_i . Now, fix $1 \le i \le n$, and set $P = b_i - a_i$, the length of J_i . We define the contraction map $S_i: I \to I$ so that $S_i(F) = J_i$,

where $F = \bigcup_{k=1}^{n} J_k$. As one sees from the construction, $S_i([0, 1]) = J_i$, so that the resulting set of contraction maps on I satisfies the open set condition, with $V = (0, 1).$

On J_1 , $S_i(a_1) = a_i$, $S_i(b_1) = a_i + \frac{P}{Q}(b_1 - a_1)$ and S_i is linearly extended to all of [a_1, b_1]. Now, let S_i [$[b_1, a_2]$ be the constant map $a_i + \frac{p}{Q}(b_1 - a_1)$, and set $S_i(b_2) = a_i + \frac{P}{Q}(b_1 - a_1) + \frac{P}{Q}(b_2 - a_2) = a_i + \frac{P}{Q}\sum_{k=1}^{2}(b_k - a_k)$, with S_i linear on $[a_2, b_2]$. Continuing in this manner, we have

$$
S_i(b_n) = a_i + \frac{P}{Q} \sum_{k=1}^n (b_k - a_k) = a_i + \frac{P}{Q} Q = a_i + P = b_i,
$$

 S_i linear with slope $m = \frac{P}{Q}$ on each J_k and constant on the complementary intervals $[b_{k-1}, a_k]$, and $S_i(F) = S_i([0, 1]) = J_i$. \Box

4. The set of attractors

Let (X, d) be a compact metric space. The first main result of the section is Theorem [4.4,](#page-13-0) which establishes that the set

 $\mathcal{T} = \{F \in \mathcal{K}(X): F = \mathcal{S}(F) \text{ with } \mathcal{S} \text{ a finite collection of contraction maps}\}\$

is an F_{σ} subset of $(\mathcal{K}(X), \mathcal{H})$. Lemma [4.3](#page-12-0) describes the structure of the closed sets that comprise the F_{σ} set T.

Lemma 4.1. *Let* (X, d) *be a compact metric space. Let* ${F_i}_{i \in \mathbb{N}}$ *be a sequence converging to* F *in* $(\mathcal{K}(X), \mathcal{H})$ *. Suppose there exists* $N \in \mathbb{N}$ *such that, for each* $i, F_i = K_i^1 \cup \cdots \cup K_i^N$ with $K_i^j \in \mathcal{K}(X)$ for any $1 \leq j \leq N$. Then, there exists ${F_{i_j}}_{j \in \mathbb{N}} \subseteq {F_i}_{i \in \mathbb{N}}$ so that

- (1) *for each* i_j , $F_{i_j} = K_{i_j}^{\rho(1)}$ $\iota_j^{\rho(1)}\cup\cdots\cup K_{i_j}^{\rho(N)}$ $_{i_j}^{\rho(N)}$, where ρ : $\{1, ..., N\} \rightarrow \{1, ..., N\}$ is *a permutation,*
- (2) $F = K^{\rho(1)} \cup \cdots \cup K^{\rho(L)}$, $L \leq N$ and, for each $1 \leq i \leq L$,

$$
\lim_{j \to \infty} K_{i_j}^{\rho(i)} = K^{\rho(i)}.
$$

Proof. For each *i*, we have $F_i = K_i^1 \cup \cdots \cup K_i^N$, and $\lim_{i \to \infty} \mathcal{H}(F_i, F) = 0$. Consider $\{K_i^1\}_{i\in\mathbb{N}}$. Since $\mathcal{K}(X)$ is compact, there exists $\{K_{i_j}^1\}_{j\in\mathbb{N}} \subseteq \{K_i^1\}_{i\in\mathbb{N}}$ such that $\lim_{j\to\infty} K_{i_j}^1 = K^{\rho(1)}$. Now, if $K^{\rho(1)} = F$, then we are done. Otherwise, $F \setminus K^{\rho(1)} \neq \emptyset.$

Let $x \in F \setminus K^{\rho(1)}$. Since $\lim_{j\to\infty} F_{i_j} = F$, and $x \in F$, for each i_j there is $K_{i}^{\rho(2)}$ $\mathcal{L}^{(2)}_{i_j} \in \{K^1_{i_j}, \ldots, K^N_{i_j}\} \setminus K^{\rho(1)}_{i_j}$ $\mathcal{L}^{(\rho(1))}_{i_j}$ and a subsequence $\{K^{\rho(2)}_{i_j}\}$ $\{e^{(2)}_{i_{j_l}}\}_{l \in \mathbb{N}} \subseteq \{K_{i_j}^{\rho(2)}\}$ $\begin{aligned} \binom{p(z)}{i_j} &\neq \mathbb{N} \end{aligned}$ such that $\lim_{l\to\infty} K_{i_{i}}^{\rho(2)}$ $\frac{\rho(2)}{\mu_{j}} = K^{\rho(2)}$ and $x \in K^{\rho(2)}$. To simplify the notation, we rename the subsequence i_{j_l} as i_j . Now, if $K^{\rho(1)} \cup K^{\rho(2)} = F$, then we are done. Otherwise, let $x \in F \setminus K^{\rho(1)} \cup K^{\rho(2)}$, and as before, there exists for each i_j , $K_i^{\rho(3)}$ $\begin{array}{rcl} \n\varphi^{(3)} \in & \{K^1_{i_j}, \ldots, K^N_{i_j}\} \setminus \{K^{\rho(1)}, K^{\rho(2)}\} \text{ and a subsequence} \n\end{array}$ $\{K_{i}^{\rho(3)}\}$ $\binom{\rho(3)}{i_{j_l}}_{l \in \mathbb{N}} \subseteq \{K_{i_j}^{\rho(3)}\}$ $\binom{\rho(3)}{i_j}$ i $\in \mathbb{N}$ such that $\lim_{l \to \infty} K_{i_{j_l}}^{\rho(3)}$ $\frac{\rho(3)}{i_{j}} = K^{\rho(3)}$ and $x \in K^{\rho(3)}$. We show that there exists $L \leq N$ such that $F = K^{\rho(1)} \cup \cdots \cup K^{\rho(L)}$. Suppose this is not the case. Then $F \setminus K^{\rho(1)} \cup \cdots \cup K^{\rho(N)} \neq \emptyset$. Moreover, there is $\{i_j\}_{j\in\mathbb{N}}$ such that $F_{i_j} = K_{i_j}^{\rho(1)}$ $\iota^{ \rho(1)}_i \cup \cdots \cup K_{i_j}^{\rho(N)}$ $i_j^{\rho(N)}$ and $\lim_{j\to\infty} K_{i_j}^{\rho(i)}$ $\frac{\rho(i)}{i_j} = K^{\rho(i)}$ for each $1 \le i \le N$. But now we have a contradiction, as

$$
\bigcup_{l=1}^{N} K_{i_j}^{\rho(l)} = F_{i_j}
$$

and

$$
\lim_{j \to \infty} F_{i_j} = F,
$$

yet lim $_{j\rightarrow\infty}\bigcup_{l=1}^{N}K_{i_{j}}^{\rho(l)}$ $\varphi_{i_j}^{(\ell)} = \bigcup_{l=1}^N K^{\rho(l)}$ is also a proper subset of F.

Lemma 4.2. *Let* (X, d) *be a compact metric space. If* ${E_k}_{k \in \mathbb{N}}$ *is a sequence in* $\mathcal{K}(X)$ *such that* $\lim_{k\to\infty} \mathcal{H}(E_k, E) = 0$ *and* $\{S_k\}_{k\in\mathbb{N}}$ *is a sequence in* $C(X, X)$ *converging uniformly to* S, then $\lim_{k\to\infty} \mathcal{H}(S_k(E_k), S(E)) = 0$.

Proof. Since

$$
\mathcal{H}(S_k(E_k), S(E)) \leq \mathcal{H}(S_k(E_k), S_k(E)) + \mathcal{H}(S_k(E), S(E))
$$

and both, $\mathcal{H}(S_k(E_k), S_k(E))$ and $\mathcal{H}(S_k(E), S(E))$ converge to zero as k goes to ∞ , the conclusion follows. \Box

Lemma 4.3. *Let* (X, d) *be a compact metric space. Let* $N \in \mathbb{N}$ *and* $0 \le m \le 1$ *. Fine set*

$$
\mathcal{L}_{N,m} = \{ F \in \mathcal{K}(X) : F = \mathcal{S}(F) \text{ with } \mathcal{S} = \{ S_1, \dots, S_L \},
$$

for $L \leq N \text{ and } \text{Lip}(S_i) \leq m \}$

is closed.

 \Box

Proof. Let $\{F_i\}_{i\in\mathbb{N}}$ be a sequence in $\mathcal{L}_{N,m}$ such that $\lim_{i\to\infty} F_i = F$. It suffices to find $S = \{S_1, \ldots, S_L\} \subseteq \text{Lip}(m)$, where $L \leq N$, such that $F = S(F)$. From Lemma [4.1,](#page-11-1) there exists $\{F_{i_j}\}_{j\in\mathbb{N}}\subseteq \{F_i\}_{i\in\mathbb{N}}$ such that each

$$
F_{i_j} = S_{i_j}^{\rho(1)}(F_{i_j}) \cup \cdots \cup S_{i_j}^{\rho(N)}(F_{i_j}) = K_{i_j}^{\rho(1)} \cup \cdots \cup K_{i_j}^{\rho(N)} \quad (S_{i_j}^{\rho(1)}(F_{i_j}) := K_{i_j}^{\rho(1)}),
$$

we have

$$
\lim_{j \to \infty} F_{i_j} = F,
$$

and

$$
F = K^{\rho(1)} \cup \dots \cup K^{\rho(L)}, \quad \text{with } L \leq N,
$$

and, for each $1 \leq l \leq L$, we have

$$
\lim_{j \to \infty} K_{i_j}^{\rho(l)} = K^{\rho(l)}.
$$

Recall that, for each l, $S_i^{\rho(l)}$ $i_j^{\rho(l)}(F) = K_{i_j}^{\rho(l)}$ $i_j^{\rho(l)}$, and $\{S_{i_j}^{\rho(l)}\}$ $\begin{bmatrix} \rho(t) \\ i_j \end{bmatrix}$ is uniformly bounded and equicontinuous. Thus, by restricting our attention to a subsequence of $\{i_j\}_{j\in\mathbb{N}}$ if necessary, we may assume that for each l, $S_i^{\rho(l)}$ $i_j^{\rho(l)}(F_{i_j})$ converges to $S^{\rho(l)}$ uni-formly. This follows from the Ascoli–Arzelà theorem. Thus, by Lemma [4.2,](#page-12-1) as F_{i_j} converges to F in $(\mathcal{K}(X), \mathcal{H})$ and $S_{i_j}^{\rho(l)}$ $\int_{i_j}^{\rho(l)}$ converges to $S^{\rho(l)}$ uniformly,

$$
\lim_{j \to \infty} S_{i_j}^{\rho(l)}(F_{i_j}) = \lim_{j \to \infty} K_{i_j}^{\rho(l)} = K^{\rho(l)} = S^{\rho(l)}(F).
$$

We conclude that $F = \mathcal{S}(F)$, where $\mathcal{S} = \{S^{\rho(1)}, \ldots, S^{\rho(L)}\}.$

Theorem 4.4. *Let* (X, d) *be a compact metric space. The set*

$$
\mathfrak{T} = \{ F \in \mathcal{K}(X) : F = \mathcal{S}(F) \text{ with } \mathcal{S} \text{ a finite collection of contraction maps} \}
$$

is an F_{σ} *subset of* $(\mathcal{K}(X), \mathcal{H})$ *.*

Proof. Let N and l be in N. By Lemma [4.3](#page-12-0) the set

$$
\mathcal{L}_{N,l} = \left\{ F \in \mathcal{K}(X) : F = \mathcal{S}(F) \text{ with } \mathcal{S} = \{S_1, \dots, S_L\}, \right\}
$$

for $L \leq N$ and $\text{Lip}(S_i) \leq \frac{l-1}{l} \right\}$

is closed for any N and l in N . Now,

$$
\mathcal{T} = \bigcup_{N=1}^{\infty} \bigcup_{l=1}^{\infty} \mathcal{L}_{N,l}.
$$

 \Box

We now turn our attention to the case $X = [0, 1]$. Here we see that T is quite "small" in $\mathcal{K}([0, 1])$, as the typical element of $\mathcal{K}([0, 1])$ is not an attractor for any contractive system defined on the interval.

Theorem 4.5. *Let* $S = \{S_1, \ldots, S_N\}$ *be a finite set of contraction maps on* [0, 1], with $F = \bigcup_{i=1}^{N} S_i(F)$. Then $F \notin \mathcal{K}^{\star} \setminus \mathcal{A}$.

Proof. Let $E \in \mathcal{K}^* \setminus \mathcal{A}$. Each $S_i : I \to I$ is a contraction map, so that each S_i is Lipschitz. Since $E \in \mathcal{K}^{\star} \setminus \mathcal{A}$, it follows from Theorem [2.2](#page-4-0) that $S_i(E)$ is nowhere dense in E for each i. One concludes that $\bigcup_{i=1}^{n} S_i(E)$ is also nowhere dense in E and $E \neq \bigcup_{i=1}^{n} S_i(E)$. \Box

Corollary 4.6. *The collection*

 $\mathcal{T} = \{F \in \mathcal{K}([0, 1]) : F = \mathcal{S}(F)$ with \mathcal{S} *a finite collection of contraction maps*}

is a first category F_{σ} *subset of* $(\mathcal{K}([0, 1]), \mathcal{H})$ *.*

Proof. This follows immediately from Theorems [2.2,](#page-4-0) [4.4,](#page-13-0) and [4.5.](#page-14-1)

Remark 4.7. This result is the best possible, since $\{E \in \mathcal{K}([0, 1]) : E \text{ is finite}\}\$ is dense in $\mathcal{K}([0, 1])$ and contained in T, and $\mathcal{K}^{\star}\backslash\mathcal{A}$ is dense in $\mathcal{K}([0, 1])$ and contained in $\mathcal{K}([0, 1]) \setminus \mathcal{T}$. Moreover, \mathcal{T} is path-connected in $\mathcal{K}([0, 1])$. In particular, let $F \in \mathcal{T}$, with h_{ϵ} the linear homeomorphism taking [0, 1] onto [0, ϵ], as in Example [3.6.](#page-8-0) Then, $h_{\epsilon}(F) \subseteq [0, \epsilon]$, and $h_{\epsilon}(F) \in \mathcal{T}$. Since $\lim_{\epsilon \to 0} h_{\epsilon}(F) = \{0\}$, we have a path-connected subset of T connecting $h_1(F) = F$ to $\lim_{\epsilon \to 0} h_{\epsilon}(F) = \{0\}.$

5. Attractors and homeomorphisms

In Section [4](#page-11-0) we saw that there exists a residual subset $\mathcal{K}^{\star}\setminus\mathcal{A}$ of $\mathcal{K}([0, 1])$ contained in the complement of

 $\mathcal{T} = \{ F \in \mathcal{K}(X) : F = \mathcal{S}(F) \text{ with } \mathcal{S} \text{ a finite collection of contraction maps} \}.$

Every element of $\mathcal{K}^{\star}\backslash A$ is a Cantor set, and hence homeomorphic to Q, the middle thirds Cantor set. From Theorem [4.5](#page-14-1) it follows, then, that no element of $\mathcal{K}^{\star} \setminus \mathcal{A}$ is an attractor, yet, by Example [3.1,](#page-5-1) every element of this residual subset of $\mathcal{K}([0, 1])$ is homeomorphic to an attractor, namely Q . This observation is the starting point of this section, where we show that every nowhere dense uncountable element of $\mathcal{K}([0, 1])$ is homeomorphic to an element of T.

 \Box

Lemma 5.1. Let Q be the middle thirds Cantor set, $C \in \mathcal{K}([0,1])$ be countable, *and* $\epsilon > 0$ *. Then there exist a homeomorphic copy* F_0 *of* C *so that* $F_0 \subset Q$ *and* $f: Q \to F_0$ *with* $f \in Lip(\epsilon)$.

Proof. We first show that there exists F a homeomorphic copy of C contained in O .

Let $C = \{x_i\}_{i \in \mathbb{N}}$. If there exists $\delta > 0$ such that $B_\delta(x_i) \cap C = \{x_i\}$, then x_i is isolated in C. Let $\{x_{i_j}\}_{j \in \mathbb{N}} \subseteq \{x_i\}_{i \in \mathbb{N}}$ be the set of isolated points of C. Take $F_k = J_{n|k} \cap Q$, for some $n \in \mathbb{N}$, so that a translation F_{i_j} of F_k contains x_{i_j} and has the property that $F_{i_j} \cap C \setminus \{x_{i_j}\} = \emptyset$. It follows that $C \subset \overline{\bigcup_{j=1}^{\infty} F_{i_j}}$ and $\overline{\bigcup_{j=1}^{\infty} F_{i_j}}$ is nowhere dense and perfect. Take h a homeomorphism such that $h(\overline{\bigcup_{j=1}^{\infty} F_{i_j}}) = Q$. Then, $F = h(C)$ is a homeomorphic copy of C contained in O .

We now show that there exists $f: Q \to F$ such that $f \in Lip(3)$.

We define $f: I \to I$ such that $f \in Lip(3)$ and $f(Q) = F$.

Let $\{(a_i, b_i)\}_{i=1}^{\infty}$ be an enumeration of the complementary intervals of F. If $x \in I$, then either $x \in F$ or there exists $j \in \mathbb{N}$ such that $x \in (a_j, b_j)$. If $x \in F$, define $f(x) = x$. If there exists $j \in \mathbb{N}$ such that $x \in (a_i, b_i)$, let

$$
G_{\mathbf{n}|k} = (c_j, d_j) \subset (a_j, b_j)
$$

such that

$$
|b_j - a_j| \leq 3|G_{n|k}|.
$$

Define $f : [a_i, b_i] \rightarrow I$ continuous such that

$$
f([aj, cj]) = aj,
$$

$$
f([dj, bj]) = bj,
$$

and $f|[c_i, d_i]$ is linear. By construction, $f(I) = \overline{conv}(F)$ and $f \in Lip(3)$.

Now, take k such that $\left(\frac{1}{3}\right)^{k-1} < \epsilon$. Let $F_k = J_{n|k} \cap Q$ be a canonical portion of Q. Then there exists a linear homeomorphism $h: Q \rightarrow F_k$ such that $h \in \text{Lip} \left(\left(\frac{1}{3} \right)^k \right)$ and let $F_0 = h(F)$. Since there exists $f: F_k \to F_0$ so that $\left(\frac{1}{3}\right)^k$), that is Lip $\left(\left(\frac{1}{3}\right)^{k-1}\right)$. $f \in Lip(3)$, it follows that $f \circ h: Q \to F_0$ is Lip $((3)(\frac{1}{3}))$ П

Our goal is to show that every nowhere dense uncountable element of $\mathcal{K}([0, 1])$ is homeomorphic to an element of T. Here is an approach.

Let $F \in \mathcal{K}([0, 1])$ be nowhere dense and uncountable. Say, $F = P \cup C$, where $P \cap C = \emptyset$, P is the maximal perfect subset of F, and C is countable. Let

$$
C_l = \{x \in F : x \le \min P\}
$$

and

$$
C_r = \{x \in F : x \ge \max P\}.
$$

Take

$$
P \cup C' = F \cap \overline{\text{conv}}(P),
$$

where $P \cap C' = \emptyset$. We take $Q \cup S$ to be a homeomorphic copy of $P \cup C'$ such that P is homeomorphic to Q , the middle thirds Cantor set, and S is contained in a particular set K which we describe below. We construct K so that $Q \cup K$ can be covered with a finite number of similarities of Q . It makes sense, then, that K be a collection of canonical portions of Q, arranged so that $Q \mapsto Q \cup K$ is relatively convenient to verify. In the construction of K that follows, we make extensive use of the notations found in Section [2.](#page-2-0)

Consider some $G_{n|k}$. Let

$$
F_{n|k} = F_{n|k}^l \cup F_{n|k}^r \subseteq G_{n|k},
$$

where $F_{n|k}^l$ and $F_{n|k}^r$ each is a copy of the canonical portion $J_{n|2(k+1)} \cap Q$, with $\min F_{n|k}^l = \min \overline{G_{n|k}}$ and $\max F_{n|k}^r = \max \overline{G_{n|k}}$. Similarly, take

$$
F^{0} = F^{0,l} \cup F^{0,r} \subset G = \left(\frac{1}{3}, \frac{2}{3}\right),
$$

where $F^{0,l}$ and $F^{0,r}$ each is a copy of $J_{00} \cap Q$, with

$$
\min F^{0,l} = \frac{1}{3} \quad \text{and} \quad \max F^{0,r} = \frac{2}{3}.
$$

Let

$$
K = F^0 \cup \Big(\bigcup_{n \in \mathbb{N}} \bigcup_{k=1}^{\infty} F_{n|k}\Big).
$$

See the picture below for the first two steps of the construction of K :

 $I=[0,1]$

 $F_0 \cup F^0 \cup F_1$

Lemma 5.2. *There exists* $f \in Lip(9)$ *so that* $f(Q) = Q \cup K$ *.*

Proof. We proceed in three parts.

(1) We wish to show that there exists $f \in Lip(9)$ so that $f(Q) = Q \cup K$. Let $\{K_i\}_{i \in \mathbb{N}} \subseteq \mathcal{K}$ such that $\lim_{i \to \infty} K_i = Q \cup K$ in $(\mathcal{K}, \mathcal{H})$ and for each i, $f_i(Q) = K_i$ for some $f_i \in Lip(9)$. Since $\{f_i\}_{i=1}^{\infty}$ is equicontinuous, there exists $\{f_{i_j}\}_{j\in\mathbb{N}}\subseteq\{f_i\}_{i\in\mathbb{N}}$ and f such that $||f_{i_j}-f||\to 0$ uniformly. This follows from the Ascoli–Arzelà theorem (Theorem 2.3). Using Lemma [4.2,](#page-12-1) it follows that

$$
0 = \lim_{j \to \infty} \mathcal{H}(f(Q), f_{i_j}(Q))
$$

=
$$
\lim_{j \to \infty} \mathcal{H}(f(Q), K_{i_j})
$$

=
$$
\lim_{j \to \infty} \mathcal{H}(f(Q), Q \cup K).
$$

Thus, it suffices to take $\{K_i\}_{i \in \mathbb{N}}$ in K such that $\lim_{i \to \infty} K_i = Q \cup K$ in $(\mathcal{K}, \mathcal{H})$, and determine the existence, for each i, of some $f_i \in Lip(9)$ so that $f_i(Q) = K_i.$

(2) In our construction of $Q \cup K$, in each interval $G_{n|k}$ complementary to Q , we insert $F_{n|k}$, comprised of two canonical portions $J_{n|2(k+1)} \cap Q$ of Q. Let

$$
K_i = F^0 \cup \Big(\bigcup_{k=1}^i \bigcup_{n \in \mathcal{N}} F_{n|k} \Big),
$$

so that K_i is comprised of $2\sum_{k=0}^{i} 2^k = 2(2^{i+1} - 1) = 2^{i+2} - 2$ portions, and K_i converges to $Q \cup K$ in the Hausdorff metric. Let $s = \frac{\log 2}{\log 3}$ $\frac{\log 2}{\log 3}$, and note that $9^s = 4$. By construction,

$$
\mathcal{H}^{s}(K_{i}) = 2 \sum_{k=0}^{i} 2^{k} \left(\frac{1}{3^{2(k+1)}}\right)^{s} \mathcal{H}^{s}(Q)
$$

$$
= \frac{2}{9^{s}} \left[\sum_{k=0}^{i} \left(\frac{2}{9^{s}}\right)^{k} \right] \mathcal{H}^{s}(Q)
$$

$$
= \frac{1}{2} \left[\sum_{k=0}^{i} \left(\frac{1}{2}\right)^{k} \right] \mathcal{H}^{s}(Q)
$$

$$
= \left[1 - \left(\frac{1}{2}\right)^{i+1} \right] \mathcal{H}^{s}(Q)
$$

$$
< \mathcal{H}^{s}(Q).
$$

Should f_i be linear with slope 9, we have

$$
\mathcal{H}^{s}(f_i(J_{n|k}\cap Q))=4\mathcal{H}^{s}(J_{n|k}\cap Q),
$$

for $n \in \mathbb{N}$ and $k \in \mathbb{N}$. In particular, we may have

$$
f_i(J_{m|2k+4} \cap Q) = F_{n|k}^l
$$
 (or, $F_{n|k}^r$).

Similarly, if f_i is linear with slope 9 on some $G_{n|k} = (a, b)$, then

$$
|f_i(b) - f_i(a)| = 9(b - a).
$$

(3) Since $K_i \cap [0, \frac{1}{2}]$ is a reflection of $K_i \cap [\frac{1}{2}, 1]$, it suffices to determine the map $f_i \in \text{Lip}(9)$ from $Q \cap \left[0, \frac{1}{3}\right]$ to $K_i \cap \left[0, \frac{1}{3} + \frac{1}{9}\right]$. As we develop f_i , for each maximal portion $F_{n|k}^l$ (or $F_{n|k}^r$) of K_i , we take a canonical portion $J_{m|2k+4} \cap Q$ of Q, so that $f_i(J_{m|2k+4} \cap Q) = F_{n|k}^l$ (or $F_{n|k}^r$) is Lip(9) there. One takes an appropriate complementary interval $G_{j|q}$ to bridge the gap between successive portions of K_i , so that $f_i | G_{j|q} \in Lip(m)$, $m \leq 9$. Fix *i*; we develop f_i from right to left. Let $n = 0111...$ so that $J_{n|4}$ is the right most component of $E_4 \cap [0, \frac{1}{3}]$. Let $f_i(\frac{1}{3})$ $\left(\frac{1}{3}\right) = \frac{1}{3} + \frac{1}{9}$, and take f_i so that $f_i(J_{n|4} \cap Q) = F^{0,l}$. Then $f_i | J_{n|4} \cap Q \in Lip(9)$ since $F^{0,l}$ is congruent to $J_{n|2} \cap Q$. Now, consider (a, b) , the first interval from the right complementary to portions of K_i , so that $b = \frac{1}{3}$ and $a = \max \{x \in K_i : x < \frac{1}{3}\}$. Let $G_{\sigma|k}$ be the first complementary interval from the right of $Q \cap [0, \min J_{n|4}]$ such that $\frac{b-a}{|G_{\sigma}|k|} \leq 9$. If $G_{\sigma}|k = (c, d)$, then $f_i(c) = a$, $f_i(d) = b$ and $f_i([d, \min J_{n|4}]) = f_i(\min J_{n|4}) = b = \frac{1}{3}.$

Now, let $F_{m|s}^r$ be the next maximal portion from the right of K_i . By construction, $F_{m|s}^r$ is a canonical portion $J_{m|2(s+1)} \cap Q$. We take $J_{p|2s+4} \cap Q$ to be the right most canonical portion of $Q \cap [0, c]$, and take f_i so that $f_i(J_{p|2s+4} \cap Q) = F'_{m|s}$. Then $f_i|J_{p|2s+4} \cap Q \in Lip(9)$.

Set $f_i(\text{max } J_{p|2s+4}, c]$ = $f_i(c) = a$. We continue this construction by choosing the first element $G_{\sigma' | k'} = (a', b')$ from the right contained in $Q \cap [0, \min J_{p|2s+4}]$ so that

$$
\frac{\min F_{m|s}^r - \max F_{m|s}^l}{b'-a'} \leq 9,
$$

and set $f_i(a') = \max F_{m|s}^l$, $f_i(b') = \min F_{m|s}^r$, with $f([b', \min J_{p|2s+4}]) =$ min $F_{m|s}^r$.

From our considerations in (2), this construction terminates after considering the $2^{i+2} - 2$ portions of K_i , and the intervals complementary to its portions. Finally, set $f_i([0, x]) = \min K_i$, where $f_i(x) = \min K_i$ from our construction. \Box **Corollary 5.3.** *Let* $k \geq 3$ *. Let F be a canonical component of* E_k *. There exists* $f \in \text{Lip} \left(\left(\frac{1}{3} \right)^{k-2} \right)$ such that $f(Q) = F \cap (Q \cup K)$.

Proof. By Lemma [5.2](#page-16-0) there exists $f_1 \in Lip(9)$ so that $f_1(Q) = Q \cup K$. Let $f_2 \in \text{Lip} \left(\left(\frac{1}{3} \right)^k \right)$ such that $f_2(Q \cup K) = F \cap (Q \cup K)$. Let $f = f_2 \circ f_1$. Then, clearly, $f \in \text{Lip} \left(\left(\frac{1}{3} \right)^{k-2} \right)$ and $f(Q) = F \cap (Q \cup K)$. \Box

Theorem 5.4. *If* $F \in \mathcal{K}([0,1])$ *is nowhere dense and uncountable, then there exist* F' , *a homeomorphic copy of* F *, and an IFS,* $S = \{S_1, \ldots, S_n\}$ *such that* $F' = \mathcal{S}(F')$.

Proof. Let $F = P \cup C$, where $P \cap C = \emptyset$, P is the maximal perfect subset of F, and C is countable. Set $C_l = \{x \in F : x \le \min P\}$, $C_r = \{x \in F : x \ge \max P\}$, and $P \cup C' = F \cap \overline{\text{conv}}(P)$, where $P \cap C' = \emptyset$.

Now, take $Q \cup S$ a homeomorphic copy of $P \cup C'$ such that P is homeomorphic to Q and C' is homeomorphic to S, with $S \subset K$.

Our plan is to cover $Q \cup S$ with a finite number of images of Q. First, we cover portions of the form $J_{n|k} \cap (Q \cup S)$ with Q using Corollary [5.3.](#page-19-0) This gives rise to 2^k Lip $\left(\left(\frac{1}{3}\right)^{k-2}\right)$ maps, say $g_1, g_2, \ldots, g_{2^k}$, with $g_i(Q) = J_{n|k} \cap (Q \cup S)$ and each g_i a distinct contraction map for each element of $\{n | k : n \in \mathbb{N}\}\)$. Now, consider

$$
S \cap \Biggl[\Biggl(\bigcup_{j=1}^{k-1} \bigcup_{\boldsymbol{n} \in \mathcal{N}} G_{\boldsymbol{n}|j}\Biggr) \cup \Biggl(\frac{1}{3}, \frac{2}{3}\Biggr)\Biggr],
$$

or that part of S not contained in $\bigcup_{n \in \mathbb{N}} J_{n|k}$. Consider the set

$$
S \cap G_{\mathbf{n}|j} \subset F_{\mathbf{n}|j} = F_{\mathbf{n}|j}{}^{l} \cup F_{\mathbf{n}|j}^{r}.
$$

As one sees from the proof of Lemma [5.2,](#page-16-0) there exists a Lip $\left(\left(\frac{1}{3}\right)^{2j+1}\right)$ map g_i ^{*} so that $g_i^{\star}(Q) = S \cap F_{n|j}^{\star}$, where \star is either l or r. Similarly, there exists a Lip $(\frac{1}{3})$ $\frac{1}{3}$ map g^* so that $g^*(Q) = S \cap (F^{0,*})$, where \star is either l or r.

This gives rise to 2^{k+1} – 2 contraction maps, each having a Lipschitz constant less than $\frac{1}{3}$, which collectively cover that part of S contained in

$$
F^0 \cup \Big(\bigcup_{\mathbf{n}\in\mathcal{N}}\bigcup_{j=1}^{k-1} F_{\mathbf{n}|k}\Big).
$$

Again, using Lemma [5.1,](#page-14-2) there exist in Q homeomorphic copies \tilde{C}_l and \tilde{C}_r of C_l and C_r , respectively, so that $g_{C_l}(Q) = \tilde{C}_l$, $g_{C_r}(Q) = \tilde{C}_r$ and g_{C_l} and g_{C_r} are each Lip $\left(\left(\frac{1}{3} \right)^{k-1} \right)$. We now have a set of $2^k + (2^{k+1} - 2) + 2 = 3 \cdot 2^k$ contraction maps, that we list as $S' = \{S'_i\}_{i=1}^{3 \cdot 2^k}$ $\sum_{i=1}^{3 \cdot 2^{n}}$, each defined on Q, so that

$$
\bigcup_{i=1}^{3\cdot 2^k} S_i'(Q) = (Q \cup S) \cup (\widetilde{C}_l \cup \widetilde{C}_r) = Q \cup D,
$$

and $Q \cup D$ is a homeomorphic copy of F.

We now extend each contraction map S_i' , and, for notational simplicity, we continue to call the extension S_i' , to $Q \cup D$ so that

(1)
$$
S_i'(\tilde{C}_l) = S_i'(\min Q)
$$
 and $S_i'(\tilde{C}_r) = S_i'(\max Q)$,

- (2) $S_i'(F^{0,l}) = S_i'(\frac{1}{3})$ $\frac{1}{3}$) and $S_i'(F^{0,r}) = S_i'(\frac{2}{3})$ $\frac{2}{3}$), and
- (3) for each $n \in \mathbb{N}$ and $k \in \mathbb{N}$,

$$
S_i'(D \cap F_{n|k}^l) = S_i'(\min \overline{G}_{n|k})
$$

and

$$
S_i'(D \cap F_{n|k}') = S_i'(\max \overline{G}_{n|k}).
$$

Thus, $S_i' \colon Q \cup D \to J_{n|k} \cap (Q \cup S)$ is $\text{Lip} \left(\left(\frac{1}{3} \right)^{k-3} \right), S_i' \colon Q \cup D \to S \cap F_{n|j}^{\star}$ is Lip $\left(\left(\frac{1}{3}\right)^{2j}\right)$, S'_i : $Q \cup D \to S \cap F^{0,\star}$ is less than Lip(1) and S'_i : $Q \cup D \to \widetilde{C}_{\star}$ is Lip $\left(\left(\frac{1}{3} \right)^{k-2} \right)$.

Take $k = 5$, and send a homeomorphic copy of $Q \cup D$ into [0, 1] with a linear homeomorphism h. Our conclusion now follows, with $h(Q \cup D) = F'$, and S comprised of $3 \cdot 2^k$ contraction maps $S_i = h \circ S'_i \circ h^{-1}$. □

From Theorem [5.4](#page-19-1) we know that every nowhere dense uncountable element of $\mathcal{K}([0, 1])$ is homeomorphic to an attractor, and from Theorem [3.7](#page-10-0) that the same may be said for countable sets of finite rank. Proposition [3.8](#page-10-1) shows that any finite union of nondegenerate closed intervals in $[0, 1]$ is itself an attractor. We conclude with the rather natural open problem.

Characterize those elements of $K([0, 1])$ *which are (homeomorphic to) attractors for some contractive system* $S = \{S_1, \ldots, S_N\}$ *.*

References

- [1] T. Banakh and M. Nowak, A 1-dimensional Peano continuum which is not an IFS attractor. *Proc. Amer. Math. Soc.* **141** (2013), no. 3, 931—935. [MR 3003685](http://www.ams.org/mathscinet-getitem?mr=3003685) [Zbl 1262.28001](http://zbmath.org/?q=an:1262.28001)
- [2] M. F. Barnsley, *Fractals everywhere.* Second edition. Revised with the assistance of and with a foreword by Hawley Rising III. Academic Press Professional, Boston, MA, 1993. [MR 1231795](http://www.ams.org/mathscinet-getitem?mr=1231795) [Zbl 0784.58002](http://zbmath.org/?q=an:0784.58002)
- [3] M. F. Barnsley and A. Vince, The chaos game on a general iterated function system. *Ergodic Theory Dynam. Systems* 31 (2011), no. 4, 1073-1079. [MR 2818686](http://www.ams.org/mathscinet-getitem?mr=2818686) [Zbl 1221.37079](http://zbmath.org/?q=an:1221.37079)
- [4] A. Blokh, A. M. Bruckner, P. D. Humke, and J. Smítal, The space of ω -limit sets of a continuous map of the interval. *Trans. Amer. Math. Soc.* **348** (1996), no. 4, 1357–1372. [MR 1348857](http://www.ams.org/mathscinet-getitem?mr=1348857) [Zbl 0860.54036](http://zbmath.org/?q=an:0860.54036)
- [5] A. M. Bruckner, J. B. Bruckner, and B. S. Thomson, *Real Analysis*. Prentice-Hall Iternational, Upper Saddle River, N.J., 1997. [Zbl 0872.26001](http://zbmath.org/?q=an:0872.26001)
- [6] A. M. Bruckner and J. Smítal, A characterization of ω -limit sets of maps of the interval with zero topological entropy. *Ergodic Theory Dynam. Systems* 13 (1993), no. 1, 7–19. [MR 1213076](http://www.ams.org/mathscinet-getitem?mr=1213076) [Zbl 0788.58021](http://zbmath.org/?q=an:0788.58021)
- [7] A. M. Bruckner and T. H. Steele, The Lipschitz structure of continuous self-maps of generic compact sets. *J. Math. Anal. Appl.* **188** (1994), no. 3, 798–808. [MR 1305486](http://www.ams.org/mathscinet-getitem?mr=1305486) [Zbl 0820.26001](http://zbmath.org/?q=an:0820.26001)
- [8] R. L. Devaney, *Chaotic dynamical systems*. The Benjamin/Cummings Publishing Co., Menlo Park, CA, 1986. [MR 0811850](http://www.ams.org/mathscinet-getitem?mr=0811850) [Zbl 0632.58005](http://zbmath.org/?q=an:0632.58005)
- [9] E. D'Aniello, U. B. Darji, and T. H. Steele, Ubiquity of odometers in topological dynamical systems. *Topology Appl.* **156** (2008), no. 2, 240–245. [MR 2475110](http://www.ams.org/mathscinet-getitem?mr=2475110) [Zbl 1153.37003](http://zbmath.org/?q=an:1153.37003)
- [10] E. D'Aniello, P. D. Humke, and T. H. Steele, The space of adding machines generated by continuous self maps of manifolds. *Topology Appl.* **157** (2010), no. 5, 954–960. [MR 2593709](http://www.ams.org/mathscinet-getitem?mr=2593709) [Zbl 1191.39022](http://zbmath.org/?q=an:1191.39022)
- [11] E. D'Aniello and T. H. Steele, A $C¹$ function for which the ω -limit points are not contained in the closure of the periodic points. *Trans. Amer. Math. Soc.* **355** (2003), no. 6, 2545–2556. [MR 1974002](http://www.ams.org/mathscinet-getitem?mr=1974002) [Zbl 1026.26003](http://zbmath.org/?q=an:1026.26003)
- [12] E. D'Aniello and T. H. Steele, The persistence of ω -limit sets defined on compact spaces. *J. Math. Anal. Appl.* **413** (2014), no. 2, 789–799. [MR 3159805](http://www.ams.org/mathscinet-getitem?mr=3159805) [Zbl 1317.37025](http://zbmath.org/?q=an:1317.37025)
- [13] E. D'Aniello and T. H. Steele, Self-similarity in the collection of ω -limit sets. *Z. Anal. Anwend.* **33** (2014), no. 1, 87–100. [MR 3148625](http://www.ams.org/mathscinet-getitem?mr=3148625) [Zbl 1296.28010](http://zbmath.org/?q=an:1296.28010)
- [14] P. F. Duvall, Jr., and L. S. Husch, Attractors of iterated function systems. *Proc. Amer. Math. Soc.* **116** (1992), no. 1, 279–284. [MR 1132850](http://www.ams.org/mathscinet-getitem?mr=1132850) [Zbl 0765.54031](http://zbmath.org/?q=an:0765.54031)
- [15] K. Falconer, *Fractal geometry.* Mathematical foundations and applications. John Wiley & Sons, Chichester, 1990. [MR 1102677](http://www.ams.org/mathscinet-getitem?mr=1102677) [Zbl 0689.28003](http://zbmath.org/?q=an:0689.28003)
- [16] Feng, De-Jun and Wang, Yang, On the structures of generating iterated function systems of Cantor sets. *Adv. Math.* **222** (2009), no. 6, 1964–1981. [MR 2562770](http://www.ams.org/mathscinet-getitem?mr=2562770) [Zbl 1184.28013](http://zbmath.org/?q=an:1184.28013)
- [17] M. Hata, On the structure of self-similar sets. *Japan J. Appl. Math.* **2** (1985), no. 2, 381–414. [MR 0839336](http://www.ams.org/mathscinet-getitem?mr=0839336) [Zbl 0608.28003](http://zbmath.org/?q=an:0608.28003)
- [18] J. E. Hutchinson, Fractals and self-similarity. *Indiana Univ. Math. J.* **30** (1981), no. 5, 713–747. [MR 0625600](http://www.ams.org/mathscinet-getitem?mr=0625600) [Zbl 0598.28011](http://zbmath.org/?q=an:0598.28011)
- [19] M. Kulczycki and M. Nowak, A class of continua that are not attractors of any IFS. *Cent. Eur. J. Math.* **10** (2012), no. 6, 2073–2076. [MR 2983147](http://www.ams.org/mathscinet-getitem?mr=2983147) [Zbl 1259.28013](http://zbmath.org/?q=an:1259.28013)
- [20] P. Mattila, *Geometry of sets and measures in Euclidean spaces.* Fractals and rectiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. [MR 1333890](http://www.ams.org/mathscinet-getitem?mr=1333890) [Zbl 0819.28004](http://zbmath.org/?q=an:0819.28004)
- [21] M. Nowak and T. Sharek, A "shark tooth" space is a topological IFS-attractor. *Sibirsk. Mat. Zh.* **55** (2014), no. 2, 364–369. In Russian. English translation, *Sib. Math. J.* **55** (2014), no. 2, 296–300. [MR 3237340](http://www.ams.org/mathscinet-getitem?mr=3237340) [Zbl 1317.28019](http://zbmath.org/?q=an:1317.28019)
- [22] J. C. Oxtoby, *Measure and category.* A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, 2. Springer, Berlin etc., 1971. [MR 0393403](http://www.ams.org/mathscinet-getitem?mr=0393403) [Zbl 0217.09201](http://zbmath.org/?q=an:0217.09201)
- [23] A. Schief, Separation properties for self-similar sets. *Proc. Amer. Math. Soc.* **122** (1994), no. 1, 111–115. [MR 1191872](http://www.ams.org/mathscinet-getitem?mr=1191872) [Zbl 0807.28005](http://zbmath.org/?q=an:0807.28005)
- [24] W. Sierpiński, *General Topology.* Translated by C. Cecilia Krieger. Mathematical Expositions, 7. University of Toronto Press, Toronto, 1952. Reprint, Dover Books on Mathematics. Dover Publications, Mineola, N.Y., 2000. [MR 0050870](http://www.ams.org/mathscinet-getitem?mr=0050870) [Zbl 0047.16003](http://zbmath.org/?q=an:0047.16003)
- [25] T. H. Steele, The topological structure of attractors for differentiable functions. *Real Anal. Exchange* **21** (1995/96), no. 1, 181–193. [MR 1377528](http://www.ams.org/mathscinet-getitem?mr=1377528) [Zbl 0849.26003](http://zbmath.org/?q=an:0849.26003)

Received June 9, 2014

Emma D'Aniello, Dipartimento di Matematica e Fisica, Scuola Politecnica e delle Scienze di Base, Seconda Università degli Studi di Napoli, Viale Lincoln n. 5, 81100 Caserta, Italia

e-mail: emma.daniello@unina2.it

T.H. Steele, Department of Mathematics, Weber State University, Ogden, UT 84408-2517, USA

e-mail: thsteele@weber.edu