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Attractors for iterated function systems

Emma D’Aniello and T. H. Steele!

Abstract. Let X be a compact metric space with 8 = {Sy,..., Sy} a finite set of con-
traction maps from X to itself. Call a non-empty compact subset F' of X an attractor for
the iterated function system (IFS) 8 if F = U1N=1 S; (F). Working primarily on the unit
interval I = [0, 1], we show that

(1) the typical closed set in [0, 1] is not an attractor of an IFS, and describe the closed sets
that comprise the Fy; set of attractors;

(2) both the set of attractors and its complement are dense subsets of (X([0, 1]), H);
(3) the set of attractors is path-connected;

(4) every countable compact subset of [0, 1] of finite Cantor-Bendixon rank is homeo-
morphic to an attractor, and

(5) every nowhere dense uncountable compact subset of [0, 1] is homeomorphic to an
attractor.

Mathematics Subject Classification (2010). Primary: 26A18; Secondary: 28A80, 28A78.

Keywords. Iterated function system, attractor, self-similar set, typical (according to Baire)

element.
Contents

1 Introduction . . . . . . . . . . . . e 96
2 Preliminaries . . . . . . . . . ... 97
3 Examples of attractors . . . . . .. ... 100
4 Thesetofattractors . . . . . . . . . . . . e 106
5 Attractors and homeomorphisms . . . . . . . ... ... L. 109
References. . . . . . . . . . e 116

!'The authors are grateful to the Istituto Nazionale di Alta Matematica (INdAM) as this re-
search has been partially supported by the Gruppo Nazionale per I’Analisi Matematica, la Prob-
abilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica.



96 E. D’Aniello and T. H. Steele

1. Introduction

Let X be a complete metric space with § = {Sy,..., Sy} a finite set of contrac-
tion maps from X to itself. We call a non-empty subset F' of X invariant, or an
attractor, for the iterated function system ([15], [18]) (IFS) 8§ if

N
F=|JSi(F)=8(F).
i=1

It turns out that, for a particular finite set of contraction maps 8, there exists a
unique invariant compact set F € X. This and other results from [18] are summa-
rized below.

Theorem 1.1. Let (X, d) be a complete metric space with § = {S1,...,SN} a
finite set of contraction maps from X to itself.

(a) There exists a unique non-empty compact set F C X such that F = S(F).

(b) The set F is the closure of the set of fixed points s;, ...i, of finite compositions
Si, 0---08;, of members of 3.

(c) If A is any non-empty compact set in X, then

lim 87(A) = F
p—>00
in the Hausdor{f metric.

We, sometimes, as in [18], denote F' of the previous theorem with |S|. Now,
suppose that the contraction maps are similarities, so that

1Si (x) = Si(W)| = rilx — y|

for all x, y in X, and 0 < r; < 1. Each S; transforms subsets of X into geo-
metrically similar sets, giving rise to invariant sets that are self-similar. When
the images of the S;(F) do not overlap “too much” (see the open set condition in
Section 2), the self-similar set F' = U£V=1 Si (F') has Hausdorfl dimension equal
to the value of s satisfying Y ;¥ = 1.

Here, we dedicate our attention to the structure of attractors, as well as the
structure of the set of attractors, for iterated function systems. We are motivated
by related work found in [16], [4], [6], [12], [13], [10], [9] and [11]. While not
necessarily linked to results or techniques presented here, [1], [2], [3], [14], [15],
[17], [18], [19], [21] and [23], provide some overview of recent work concerning
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the structure, application and generalizations of attractors for iterated function
systems.

We furnish the class K of non-empty compact subsets of X with the Haus-
dorff metric J; this space is complete, so that good use can be made of the Baire
category theorem. Let

T ={F eX(X): F = 8(F); 8 afinite collection of contraction maps}.

We show that T is an Fj, subset of X and, in the case that X = [0, 1], we show
that 7 is of the first category. When X = [0, 1], both T and K(X) \ T are dense
in C(X), and T is path-connected. Moreover, every nowhere dense uncountable
element of (X([0, 1]), H) is homeomorphic to an element of T, as is the case for
any countable element of (K([0, 1]), H) of finite Cantor-Bendixon rank.

We proceed through several sections. After presenting notation, definitions
and necessary previously known results in Section 2, we present several examples
of invariant sets in Section 3. In Section 4 we show that the collection of invariant
sets is an Fy set for any X, while the collection of invariant sets is also of the
first category, should X = [0, 1]. We do this by establishing that the set K* \ A,
comprised of certain nowhere dense perfect sets contained in the irrationals, is
both residual in K(][0, 1]), and has the property that (X* \ A) N T = @. Every
element of X* \ A is nowhere dense and perfect in [0, 1], hence homeomorphic
to the middle thirds Cantor set, Q. Since, as is well-known, Q is an attractor (see
Example 3.1), each element of the residual X* \ A, while not itself an attractor, is
homeomorphic to the element Q € T. This motivates the final section, which es-
tablishes that every nowhere dense uncountable subset of [0, 1] is homeomorphic
to an attractor for a contractive system.

2. Preliminaries

We will do most of our work in two metric spaces. Let (X, d) be a complete metric
space. As in [18], let B(X) be the class of non-empty closed and bounded subsets
of X. We endow B(X) with the Hausdorff metric J{ given by

H(E, F) =inf{§ > 0: E C Bs(F), F C Bs(E))}.

This space is complete. In the case that X is also compact, then B(X) = K(X),
where K (X) is the class of non-empty compact subsets of X, and (KX (X), K) is
also compact [5]. As for the second metric space, let C(X, X) be the collection
of continuous self-maps of X. When coupled with the supremum norm, C(X, X)
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is complete. Let Lip denote the collection of Lipschitz maps f: X — X. For a
fixed m > 0, let Lip(m) denote the collection of Lipschitz maps f: X — X with
Lipschitz constant less than or equal to m. Should m < 1, then f € Lip(m) is a
contraction map.

Letn € IN with £ C [0, 1]. For s > 0, set

1
Hy(E) = inf{z¢(|1j|): E C Ul;, I; an open interval of length |/;| < ;}

Then H* = lim,_.o J(} defines a measure on the Borel sets in [0, 1], generally
referred to as the s-dimensional Hausdorff measure ([15], [20]).

A portion P of a closed set E C [0, 1] is a nonempty set of the form
P=EnNJ,

where J is an open interval, and take conv(F) to be the convex closure of
F C[o0,1].

Let 8 = {S1,..., Sy} be a finite set of contraction maps. Then, § is said to
satisfy the open set condition (OSC) if there is a non-empty open set V' such that

N
UsSiycv and Si(v)nsS;(v) =0,
i=1
whenever i # j (see [18] and [23]). Now, suppose that, for each i, one has
Si(x) = rix + b;, where b; € R with 0 < |r;| < 1, and take s such that
one gets YN rf = 1. If F = N, Si(F), then 0 < H5(F) < oo, and
HE(S;(F) N S;(F)) =0, wheneveri # j.

Since (X(X), H) is complete, we will be able to make good use of the Baire
category theorem. A set is of the first category in (X, d) if it can be written as a
countable union of nowhere dense sets; otherwise, the set is of the second cate-
gory. A set is residual if it is the complement of a first category set; an element
of a residual subset of (X, d) is called a typical, or generic, element of X. With
these definitions in mind, we recall Baire’s theorem on category [22].

Theorem 2.1 (Baire category theorem). Let (X, d) be a complete metric space
with B a first category subset of X. Then X \ B is dense in X.

Let X* be the collection of all Cantor sets contained in the irrationals, and let

A ={E € X([0, 1]): there are disjoint portions P and Q of E and f € Lip
such that f(P) 2 Q}.
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In [7] it is proved that X* is a residual subset of K ([0, 1]) and that A is a first
category F, in K(]0, 1]), so that KX* \ A is also residual in K ([0, 1]). Consequently,
we have the following result.

Theorem 2.2. Let E € X* \ A. Then the only Lipschitz map that maps E onto E
is the identity map.

In Section 4 we use Theorem 2.2.

To facilitate our work on Q, the middle thirds Cantor set in [0, 1], we use the
following notation suggested in [8]. Let

N = {0, 1}%,
andif n € N with n = {n;}32,, we set
nlk = (ny,na,...,ng).

By 0 (respectively 1), we mean that n € N such that n; = 0 (respectively n; = 1)

for all i. We let {J,x: n € N} be the 2k closed intervals of length 3Lk found in the

Kkt step of the canonical construction of Q, with J,x o lying to the left of Jpx 1,

for all k > 0. Let
Er = | Jui.

neN

It follows, then, that

0= U ﬂjnlk:mEks
k=1

neN k=1
and
oo
Jn = ﬂ Jnlk
k=1
is a singleton for every n € N. Let
12
6=(53)

be the complementary interval of Q between Jy and J;. In general, let G, be that
component of [0, 1]\ O between Jy o and Jpk,1. In Section 5 we make extensive
use of clopen portions of Q of the form J,x N Q, and frequently refer to them as
canonical portions of Q.
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We also need the Ascoli—Arzela theorem in Section 4.

Theorem 2.3 (Ascoli-Arzela theorem). Let (X, d) be a compact metric space,
and let K be a closed subset of C(X, X). Then K is compact if and only if K is
equicontinuous.

Finally, let A be a countable compact subset of [0, 1]. Define a transfinite sub-
sequence { Ay }ocq as follows:

Ao = A,

ﬂ Ay if y is a limit ordinal,
A, = {e<y
A, is the set of the limit points of 4, _.

Hence, by [24, Theorem 37, Section 26], for every such set there is an ordinal
number B <  such that Ag is non-empty and finite, and Ag4; = @. Then we call
B the rank of A and Ag its set of highest order limit points. We denote by B(A).
(We recall that B + 1 is the Cantor—Bendixon rank of A.)

3. Examples of attractors

In Sections 4 and 5 we are concerned with the topological structure of attractors.
In this brief section we present a few examples in order to give a flavor of the
myriad of possibilities.

Example 3.1 (Cantor set). Let

1
S1(x) = gx

and

Then, as it is well-known,

0 = 51(Q) U $2(0),

where Q is the middle thirds Cantor set. Since {S, S»} satisfies the OSC with
V = (0, 1), it follows that the Hausdorff dimension of Q is
log?2
s = —,
log 3
as 2(%)s =1.



Attractors for iterated function systems 101

Example 3.2 (interval attractor). Let

1
S1(x) = 3%
1 1
and
2
S3()C) =-x+ =
3
Then,

3
[0.1] = S: ([0, 1.
i=1

Moreover, {S1, S2, S3} satisfies the OSC with V' = (0, 1), and as we expect, the
Hausdorff dimension of [0, 1] is 1 as 3(%)1 =1.

Example 3.3 (countable attractor). Let

1
S1(x) = gx
and
Sz(x) = 1.
Then
*1
F={U§}U{0}=S(F),
j=0
where
8§ = {81, S2},
as
o0
$1(F) = {0y u | 573
j=0
and
1

The IFS S satisfies the OSC with V' = (0, 1). Then, the Hausdorff dimension s of

F is given by the equation,
S

GRLaY

so that, as we expect as F is countable, s = 0.
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The following example verifies that one can frequently combine types of at-
tractors in a predictable way.

Example 3.4 (attractor of the form Q U C with Q N C = @, where Q is a Cantor
set, C is countable and Q € C). Let X =[0,1] and F = Q U C, where Q is the
middle thirds Cantor set, and C is the collection of the mid-points of each open
interval complementary to Q. Let

1
Si(x) = §X,
1
Sa(x) = 5,
and
2
S3(x) = =x + =.
3
Then
Si(F) = Fn [0, 3],
S$2(F) = =,
and

S3(F) = F N [%1]

The Hausdorff dimension s of F is given by the equation,
N 1\* 1\*
(3) +o+(3) =2(3) =1,
log?2

so that, as we expect and is well-known, s = Tog3 "

Example 3.5 (attractors with countably many non-degenerate closed intervals
which converge to a unique point {0}). Let X = [0, 1] with

o0

r= ouU[5 5]
=
EPTVERNNT
Let
S1(x) = 1)6,

3

Sa(x) = % + %)&([O,x] NF),
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and A be Lebesgue measure. Then, S, is linear with slope % on each compo-
nent of F, and constant on the intervals complementary to F'. We conclude that
S> € Lip (%). Moreover,

Si1(F) ={0}U

(G
| —
W

S
X

L] =
| I—

Il
_

J
and

2
S,(F) = [5, 1].
Note that 8 = {S, S,} satisfies the OSC with V' = (0, 1).

Example 3.6. We construct new examples of attractors based on the existence of
some F = J/_, Si(F)=8(F) < [0,1],and S;: [ — I.

(1) Let
h:la,b] — [p,q] = ConvF
be a linear homeomorphism, and 8’ = {S},..., S, }, where S/: [0, 1] — [0, 1]
and

(i) S/=h"1oS;ohon]la,b],
(i) S/(x) = S/(a) for x € [0,a], and
(iii) S/(x) = S/(b) for x € [b, 1].

Since S; is a contraction and S;(F) C F, it follows that S; ([p,q]) < [p. 4],
and S/([0, 1]) € [a, b]. Now,

S{(hH(F) = (W™ o Si o h)(h™H(F)) = (A" o S;)(F).

Thus,

U S/ (Fy) = | J" o S)(F)

i=1 i=1
=h'({J Si(F))
i=1
=h~!(F),

and h~1(F) is the attractor of 8’ = {S/,..., S’}

*~n
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(2) Set
3
=[]
and let :
SN = {S/, Sn+1 = gx}
Let
00 1 j »
E={0tulJ () i7'(F)
j=0
and

(%)jh_l(F) — {% xe h—l(F)}.

We show that £ = 8”(E). This follows from the observation that we have
() 8'(E) = h~'(F), and (b) Sp+1(E) = {0} U7, (%)’h_l(F).

(a) Let S;” € §'. Then

sy = s/ (oro U (5) i)

j=0
o J

= si'(toyu (%) BN (F)) U S{(h (F))
j=1

= 5;'(a) UK\ (Si(F)),

and, since S;'(a) = (h™' 0 S; oh)(a) = h™'(S;(h(a))) is an element of
h=1((S;(F)), we have

Si'(E) = h™ ! (Si(F)).
(b) This, of course, follows from S,+1(x) = %x and the definition of E.

We conclude that

§"(E) = S'(E) U Sn41(E)

oo

= Y(F)U ({0} vl (l)jh_l(F))

) 3
j=1

o0

=(u (%)jh_l(F)

Jj=0

=F.



Attractors for iterated function systems 105

Suppose that A and B are countable compact subsets of [0, 1]. From [25,
Proposition 2] we know that if A and B have the same rank and the same num-
ber of highest order limit points, then they are homeomorphic. This observation,
coupled with Example 3.3 and Example 3.6, gives the following result.

Theorem 3.7. If F € K ([0, 1]) is a countable set of finite rank, then there exist F’
homeomorphic to F and 8 = {S1, ..., Sy} such that F' = 8(F’).

Proof. Lett € IN. We first show that there exists a countable set F in K ([0, 1])
of rank ¢, and possessing a single limit point of that rank. We show this using
induction. Consider § = {%x, 1} so that S»(x) is the constant function 1. Then
8| = {0} U U;io (%)J, and |8| is of rank 1, with {0} as its unique limit point
of that rank. Now, suppose F = | Ji_, Si(F) = 8(F) € [0,1], S;: I — [ and
F is of rank ¢. Us1ng Example 3.6, we construct 8" = {§, Sn+1 = —x} and

= {0 U, 3 Y h=1(F) so that 8"(E) = E. Since (3 Y h=1(F) = 0 as
Jj — oo, it follows that E is of rank ¢ + 1, and {0} is the unique limit point of that
rank.

Now, suppose F = | J7_, Si(F) = 8(F) € [0, 1], Si: I — I and F is of rank
t.Letk €e N.Forl < j <k, weconstruct§; ’— {51 jooeesSnyj }sothathj_l(F)
is a homeomorphic copy of F contained in [22+ k , 2k] Let E = Uk L h J-_l(F ),
and § = {81,....8'}. Then, S(E) = FE and E is of rank ¢ with k limit points
of that order. We conclude by recalling that if A and B are countable compact
subsets having the same rank and the same number of highest order limit points,
then they are homeomorphic [25, Proposition 2]. O

We conclude this section by showing that any finite union of non-degenerated
closed intervals in [0, 1] is an attractor.

Proposition 3.8. Let {J1, Ja, ..., Ju} be a finite collection of disjoint nondegen-

erate closed intervals in I = [0, 1]. Then there exists 8 = {S1,..., Sy} a finite
set of contraction maps on I such that F = \J;_, Si(F), where F = \J!_, Ji.
Moreover, the set of contractions 8 = {S1, ..., Sp} satisfies the open set condition.

Proof. Suppose i = 1, so we have just one interval J;. That J; is an attractor
follows from Examples 3.2 and 3.6. Now, let {Jy, J2, ..., J,} be a finite collec-
tion of disjoint nondegenerate closed intervals in / = [0, 1], with n > 2. Let
Ji = lai, bi], with b; < a; wheneveri < j. Let Q = >7_,(b; — a;) be the
sum of the lengths of the intervals J;. Now, fix 1 <i < n, andset P = b; — a;,
the length of J;. We define the contraction map S;: I — [ so that S;(F) = J;,
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where F = Uz=1 Jr. As one sees from the construction, S; ([0, 1]) = J;, so that
the resulting set of contraction maps on / satisfies the open set condition, with
V =(0,1).

On Jq, Si(a1) = a;, Si(by) = a; + g(bl —aj) and S; is linearly extended to
all of [ay, b1]. Now, let S;|[b1, az] be the constant map a; + 5(191 —ay), and set
Si(h2) = ai+ 5 (br—a)) + Hhr—a2) =ai + § S 2_, (bx —ay), with S; linear
on [as, b,]. Continuing in this manner, we have

P P
Sibn) =ai+ = > (bk—ar) =ai+ ~Q =a; + P =b;.
Ot 0
S; linear with slope m = 6 on each Ji and constant on the complementary inter-
vals [bk_l,ak], and Si(F) = Si([O, 1]) = J;. ]

4. The set of attractors

Let (X, d) be a compact metric space. The first main result of the section is The-
orem 4.4, which establishes that the set

T ={F €e X(X): F = 8(F) with § a finite collection of contraction maps}

is an F, subset of (K(X),H). Lemma 4.3 describes the structure of the closed
sets that comprise the Fy set 7.

Lemma 4.1. Let (X, d) be a compact metric space. Let {F;}ien be a sequence

converging to F in (K(X),H). Suppose there exists N € IN such that, for each

i, F; = Kl.1 U---u KI.N with Kij € K(X) forany 1 < j < N. Then, there exists

{Fi;}jew S {Fi}ien so that

(1) foreachij, Fi, = Ki’;(l) U---u KZ(N), where p: {1,...,N} =>{l,...N}is
a permutation,

) F=KPMDy...uKkPD L <N and, foreach1 <i < L,

lim K°® = kP,

j—oo L
Proof. For each i, we have F; = K} U---U KN, and lim;_,00 H(F;, F) = 0.
Consider {K}}iex. Since K(X) is compact, there exists {Kl.lj Yew € {K!}ien
such that lim; _, Kl.lj = K*M Now, if KD = F, then we are done. Otherwise,
F\ KPD £ g,
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Letx € F\ K*PM  Since lim; Fi, = F, and x € F, for each i; there
is KZ-@) € {Kilj, . Kl.lj\_’} \ KZ_(I) and a subsequence {K,-';.Ez)}lem - {Ki’;_@)}‘,-em
such that lim;_, o Ki’; 52) = K*® and x € K*@. To simplify the notation,
we rename the subsequence ij, as i;. Now, if KM U KP® = F, then we

are done. Otherwise, let x € F \ K?M U KP@ and as before, there exists
for each i, Kl.’;_(3) € {Kl.lj,...,Ki]J\,’} \ {KPD KPP} and a subsequence
{KZ§3)}IGN - {Kip;.@)}je]N such that lim;_, KZ§3) = K°P® and x € K°P®,
We show that there exists L < N such that F = K*P(D U ... U KPL) Sup-
pose this is not the case. Then F \ KM U ... U KPWNV) £ g, ‘Moreover, there is
{ij}jew such that F;, = Ki’;(l) U-.-u Kl.’;_(N) and lim; _, o KZ-(Z) = K*® for each
1 <i < N. But now we have a contradiction, as

N

() _ 1
U Kij = F;
I=1

and
lim F;, = F,
j—oo
. N o) _ | N o) :
yet lim; o0 Uiz K= U=, K#* is also a proper subset of F. O

Lemma 4.2. Let (X, d) be a compact metric space. If { Ex }ren IS a sequence in
K(X) such that limg_,oo H(Eg, E) = 0 and {Si}ren is a sequence in C(X, X)
converging uniformly to S, then limy_, oo H(Sx(Ex), S(E)) = 0.

Proof. Since
H(Sk(E), S(E)) < H(Sk(Ek), Sk(E)) + H(Sk(E), S(E))

and both, H(S¢ (Ex), Sx(E)) and H(S¢(E), S(E)) converge to zero as k goes to
00, the conclusion follows. O

Lemma 4.3. Let (X, d) be a compact metric space. Let N € Nand 0 <m < 1.
The set

LNm ={F e X(X): F =8(F)with8 ={51,...,SL},
for L < N and Lip(S;) < m}

is closed.
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Proof. Let {F;}icy be a sequence in Ly, such that lim; . F; = F. It suffices
to find § = {S;,...,SL} € Lip(m), where L < N, such that F = §(F). From
Lemma 4.1, there exists {Fij }iew € {F;}ien such that each

Fy = IO (F) U usEN (Fy) = KO U Uk (PO = KED),
we have

lim F;, = F,

J—>00

and
F=KDy...ukrH)  with L <N,

and, foreach 1 </ < L, we have

lim k0 = gr®.

j—ooo Y

Recall that, for each /, Sl.’j’_ DFy = Ki’; D and {Si’; O jen is uniformly bounded
and equicontinuous. Thus, by restricting our attention to a subsequence of {i; };jen
if necessary, we may assume that for each /, Si‘; (l)(Fi j) converges to S P(0) yni-
formly. This follows from the Ascoli—-Arzela theorem. Thus, by Lemma 4.2, as
Fj; converges to F in (X(X), ) and Si‘; @ converges to SP© uniformly,

lim Si(l)( Fi,) = lim K;,*® = k?O = §PO(F),
j—>o0 J—>00

We conclude that F = S(F), where § = {SP1) ... s,y ]
Theorem 4.4. Let (X, d) be a compact metric space. The set
T ={F e X(X): F = 8(F) with § a finite collection of contraction maps}

is an Fy subset of (KX(X), H).
Proof. Let N and [/ be in N. By Lemma 4.3 the set

Ly = {F € K(X): F = 8(F) with 8 = {S,..., L),

. [—1
for L < N and Lip(S;) < T}

is closed for any N and / in IN. Now,

o o
7= J J~Ln- O

N=1[=1
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We now turn our attention to the case X = [0, 1]. Here we see that T is quite
“small” in K ({0, 1]), as the typical element of K ([0, 1]) is not an attractor for any
contractive system defined on the interval.

Theorem 4.5. Let § = {S1,..., SN} be a finite set of contraction maps on [0, 1],
with F = N, Si(F). Then F ¢ K* \ A.

Proof. Let E € X* \ A. Each S;: I — I is a contraction map, so that each S; is
Lipschitz. Since E € X* \ A, it follows from Theorem 2.2 that S;(E) is nowhere
dense in E for each i. One concludes that | J7_, S;(F) is also nowhere dense in
E and E # |J/_, Si(E). O

Corollary 4.6. The collection

T ={F €X([0,1]): F = 8(F) with S a finite collection of contraction maps}
is a first category Fy subset of (X([0, 1]), H).
Proof. 'This follows immediately from Theorems 2.2, 4.4, and 4.5. |

Remark 4.7. This result is the best possible, since {E£ € K ([0, 1]): E is finite} is
dense in X ([0, 1]) and contained in T, and KX*\ A is dense in K ([0, 1]) and contained
in ([0, 1])\T. Moreover, T is path-connected in ([0, 1]). In particular, let F € T,
with /¢ the linear homeomorphism taking [0, 1] onto [0, €], as in Example 3.6.
Then, h(F) C [0,¢], and h(F) € T. Since lim¢_,¢ hc(F) = {0}, we have a
path-connected subset of T connecting 71 (F) = F to lim¢_¢ h(F) = {0}.

5. Attractors and homeomorphisms

In Section 4 we saw that there exists a residual subset KX* \ A of K ([0, 1]) contained
in the complement of

T ={F e X(X): F = 8(F) with § a finite collection of contraction maps}.

Every element of X*\ A is a Cantor set, and hence homeomorphic to Q, the middle
thirds Cantor set. From Theorem 4.5 it follows, then, that no element of K* \ A is
an attractor, yet, by Example 3.1, every element of this residual subset of ([0, 1])
is homeomorphic to an attractor, namely Q. This observation is the starting point
of this section, where we show that every nowhere dense uncountable element of
X (][0, 1]) is homeomorphic to an element of 7.
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Lemma 5.1. Let Q be the middle thirds Cantor set, C € X([0, 1]) be countable,
and € > 0. Then there exist a homeomorphic copy Fy of C so that Fy C Q and
f: O — Fywith f € Lip(e).

Proof. We first show that there exists F a homeomorphic copy of C contained
in Q.

Let C = {x;}ien. If there exists § > 0 such that Bs(x;) N C = {x;}, then
x; is isolated in C. Let {xij }iew € {x;}iew be the set of isolated points of C.
Take Fi = Jax N Q, for some n € N, so that a translation F;; of Fj contains
Xi and has the property that F; . NC \ {x; j} = @. It follows that C C U;";l Fi;
and U;";l Fi; is nowhere dense and perfect. Take 4 a homeomorphism such that
h(U}”;l Fi;) = Q. Then, F = h(C) is a homeomorphic copy of C contained
in Q.

We now show that there exists f: Q — F such that f € Lip(3).

We define f: I — I suchthat f € Lip(3) and f(Q) = F.

Let {(a;.b;)}72, be an enumeration of the complementary intervals of F.
If x € I, then either x € F or there exists j € IN such that x € (a;,b;). If
x € F,define f(x) = x. If there exists j € IN such that x € (a;, b;), let

Gk = (cj.dj) C (aj,bj)
such that
|bj —aj| < 3|Gukl.

Define f: [a;, bj] — I continuous such that
faj.¢jl) = a;.

f(dj.bj]) = b;.
and f'|[c;, d;] is linear. By construction, f(/) = conv(F) and f € Lip(3).

Now, take k such that (%)k_1 < €. Let Fy = Jpux N Q be a canonical por-
tion of Q. Then there exists a linear homeomorphism %: Q — Fj such that
h € Lip ((%)k) and let Fy = h(F). Since there exists f: Fy — Fp so that
f € Lip(3), it follows that f o h: Q — Fy is Lip ((3)(%)¥), that is Lip ((2)*™").

O

Our goal is to show that every nowhere dense uncountable element of I([0, 1])
is homeomorphic to an element of 7. Here is an approach.
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Let F € X(]0, 1]) be nowhere dense and uncountable. Say, F = P UC, where
P N C =4, P is the maximal perfect subset of F, and C is countable. Let

C,={xe F:x <min P}
and
C, ={x € F: x>max P}.

Take
P UC’ = Fnconv(P),

where P N C’ = @. We take Q U S to be a homeomorphic copy of P U C’ such
that P is homeomorphic to Q, the middle thirds Cantor set, and S is contained in
a particular set K which we describe below. We construct K so that Q U K can be
covered with a finite number of similarities of Q. It makes sense, then, that K be
a collection of canonical portions of @, arranged so that Q + Q U K is relatively
convenient to verify. In the construction of K that follows, we make extensive use
of the notations found in Section 2.
Consider some Gpk. Let

Fue = Fp U Fyye S Gk,

where F ril . and F, rfl « €ach is a copy of the canonical portion Jyok+1) N Q, with

min F,flk = min G,k and max Fnr|k = max Gpk. Similarly, take

1 2
FO=F% U Fo cG = (—, —),
33
where F%! and F%" each is a copy of Joo N Q, with

1
min F%! = 3 and max F% = =

Let -
K=F°u(U UF,,|k).
neN k=1

See the picture below for the first two steps of the construction of K:

I=[0,1]

FoUFOUFl
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Lemma 5.2. There exists f € Lip(9) so that f(Q) = Q UK.

Proof. We proceed in three parts.

(1) We wish to show that there exists f € Lip(9) so that f(Q) = Q U K. Let
{K;}iew € X such that lim; K; = Q U K in (X, H) and for each i,
fi(Q) = K; for some f; € Lip(9). Since { f;}72, is equicontinuous, there
exists { fi; }jen € {fi}iew and f such that || fi; — f| — O uniformly. This
follows from the Ascoli—Arzela theorem (Theorem 2.3). Using Lemma 4.2,
it follows that

0= lim H(f(Q). f;,(2))
= lim 5(/(0). Ki,)
= lim 5(/(0). Q UK).

Thus, it suffices to take {K;}ien in K such that lim; o, K; = Q U K in
(K, H), and determine the existence, for each i, of some f; € Lip(9) so that
fi(Q) = Ki.

(2) In our construction of Q U K, in each interval G,; complementary to Q,
we insert F,x, comprised of two canonical portions J, 2 +1) N Q of Q. Let

i
Ki=Fu(J U Fa).
k=1neN
so that K; is comprised of 2 Y4 _, 2% = 2(2/*+! — 1) = 2/*2 — 2 portions,
and K; converges to Q U K in the Hausdorff metric. Lets = %, and note
that 9° = 4. By construction,

1K) =23 2"(32(,{—1“)) 3 (Q)
k=0

22 (2) e

i

() e

k=0

M| -

=[1-(3) e
< H(Q).
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Should f; be linear with slope 9, we have
F(Sfi (Jnike N Q) = 43 (Jupe N Q),

for n € N and k € IN. In particular, we may have

JiUmpak+a N Q) = F,f|k (or, Fy).

Similarly, if f; is linear with slope 9 on some G,k = (a, b), then
| fi(b) — fi(a)| = 9(b —a).

Since K; N [0, 1] is a reflection of K; N [4,1], it suffices to determine the
map f; € Lip(9) from Q N [0,3] to K; N[0, + &]. As we develop f;,
for each maximal portion F,il i (or Fr{l ) of K, we take a canonical portion
Jm|2k+4 no of 0, so that fi(-]m|2k+4 no = Frilk (or F,:|k) is Lip(9)
there. One takes an appropriate complementary interval G, to bridge the
gap between successive portions of K;, so that f;|G;, € Lip(m), m < 9.
Fix i; we develop f; from right to left. Let n = 0111... so that J,4
is the right most component of £4N[0, 1]. Let f;(3) = 1+ 3. and take f£; so
that f;(Jua N Q) = FO%!. Then f;|Jn1a N Q € Lip(9) since F®! is congruent
to Ju2 N Q. Now, consider (a, b), the first interval from the right cornple—
mentary to portions of K;, sothath = 1 anda = max {x € K;: x < 1}. Let

Go ik be the ﬁrst complementary 1nterva1 from the right of Q N [0, min Jp4]
such that |G | T < 9. If Gox = (c,d), then fi(c) = a, fi(d) = b and
ft([d’ min Jn|4]) = fi(min Jn|4) =b= %

Now, let F r:tl , be the next maximal portion from the right of K;. By con-
struction, F,:,ls is a canonical portion Jy,2s+1) N Q. We take Jp2544 N Q
to be the right most canonical portion of Q N [0, c], and take f; so that
Ji(Upas+4 N Q) = F,, . Then fi[Jppsta N Q € Lip(9).

Set fi([max Jpas+4.¢]) = fi(c) = a. We continue this construction
by choosing the first element G4/, = (@', b’) from the right contained in
QO N [0, min Jp25+4] so that

min F” mls — max F!
b —a’ - 7
and set f;(a’) = max F! mls® /i (') = min Fo\s With S(b',min Jpp544]) =

,
mmles

From our considerations in (2), this construction terminates after consid-
ering the 22 — 2 portions of K;, and the intervals complementary to its
portions. Finally, set f; ([0, x]) = min K;, where f;(x) = min K; from our
construction. O
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Corollary 5.3. Let k > 3. Let F be a canonical component of Ey.There exists
f € Lip (3)7?) such thar £(Q) = F N (Q UK).

Proof. By Lemma 5.2 there exists f; € Lip(9) so that fi(Q) = Q U K. Let
f> € Lip ((%)k) such that /,(Q U K) = FN(Q UK). Let f = f» 0 fi. Then,
clearly, f € Lip ((%)k_z) and f(Q) = FN(Q UK). O

Theorem 5.4. If F € XK([0, 1]) is nowhere dense and uncountable, then there
exist F', a homeomorphic copy of F, and an IFS, 8 = {Si,..., Sy} such that
F' = 8(F').

Proof. Let F = PUC, where P NC = @, P is the maximal perfect subset of F,
and C is countable. Set C; = {x € F: x <minP},C, = {x € F: x > max P},
and P UC’ = F Nnconv(P), where P N C' = @.

Now, take Q US ahomeomorphic copy of PUC’ such that P is homeomorphic
to @ and C’ is homeomorphic to S, with § C K.

Our plan is to cover Q U S with a finite number of images of Q. First, we cover
portions of the form J,x N (Q U S) with Q using Corollary 5.3. This gives rise to
2 Lip ((%)k_z) maps, say g1, §2, - - - » &2k » With g;(Q) = Jux N(Q U S) and each
gi a distinct contraction map for each element of {n|k : n € N}. Now, consider

so[(UUen)u (3]

j=1neN
or that part of S not contained in | J, <, Jnjk- Consider the set
SN G,,|j C F,,|j = F,,|jl U F':|J"

As one sees from the proof of Lemma 5.2, there exists a Lip ((%)2”1) map g;* so
that g;*(Q) = S N Fy|;*, where « is either / or r. Similarly, there exists a Lip (3)
map g* so that g*(Q) = S N (F%*), where « is either / or r.

This gives rise to 2K+ — 2 contraction maps, each having a Lipschitz constant

less than %, which collectively cover that part of S contained in

Fou( ]Dl Fale)-

neN j=1
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Again, using Lemma 5.1, there exist in Q homeomorph~ic copies C; and C, of
C; and C,, respectively, so that gc,(Q) = C;, g¢,(Q) = C, and g¢, and gc, are
each Lip ((%)k_l). We now have a set of 2K + (2k+1 —2) 4+ 2 = 3.2* contraction
maps, that we list as 8’ = {S/}32], each defined on Q, so that

3.2k

Usi@=@usuué)=0uDb.
i=1

and Q U D is a homeomorphic copy of F.
We now extend each contraction map S/, and, for notational simplicity, we
continue to call the extension Sl./ ,to QO U D so that

(1) S/(C;) = S}(min Q) and S/(C,) = S}(max Q),
(2) S/(F%) = S/(3) and S{(F%") = S/(2), and
(3) foreachn € Nand k € N,

S{(D N Fly) = S/ (min Gpupe)
and

S{(D N Fyy) = Si' (max Gup).

Thus, /1 Q UD — Ju N (Q U S)is Lip (1)), $/: 0UD — SN Fy,

is Lip ((%)”), S/: QU D — SN F%* isless than Lip(1) and S/: QU D — C,
. . 1\k—2
isLip ((3)” )-

Take k = 5, and send a homeomorphic copy of Q U D into [0, 1] with a linear
homeomorphism 4. Our conclusion now follows, with 2/(Q U D) = F’, and 8
comprised of 3 - 2k contraction maps S; =hoS/o hL |

From Theorem 5.4 we know that every nowhere dense uncountable element
of K ([0, 1]) is homeomorphic to an attractor, and from Theorem 3.7 that the same
may be said for countable sets of finite rank. Proposition 3.8 shows that any finite
union of nondegenerate closed intervals in [0, 1] is itself an attractor. We conclude
with the rather natural open problem.

Characterize those elements of K([0, 1]) which are (homeomorphic to) attractors
for some contractive system & = {S1,...,Sn}.
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