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Abstract. Following in the footsteps of P. Erdős, A. Rényi, and T. S̆alát we compute the
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1. Introduction

�e study of normal numbers and other statistical properties of real numbers with
respect to large classes of Cantor series expansions was �rst done by P. Erdős and
A. Rényi in [7] and [8] and by A. Rényi in [19], [20], and [21] and by P. Turán
in [24].

Denote by N b
n .B; x/ the number of times a block B occurs with its starting

position no greater than n in the b-ary expansion of x.

De�nition 1.1. A real number x is normal in base b if for all k and blocks B in
base b of length k, one has

lim
n!1

N b
n .B; x/

n
D b�k : (1.1)

A number x is simply normal in base b if (1.1) holds for k D 1.

1 Research of the authors is partially supported by the U.S. NSF grant DMS-0943870.
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Borel introduced normal numbers in 1909 and proved that almost all (in the
sense of Lebesgue measure) real numbers are normal in all bases. �e best known
example of a number that is normal in base 10 is due to Champernowne [5].
�e number

H10 D 0:1 2 3 4 5 6 7 8 9 10 11 12 : : : ;

formed by concatenating the digits of every natural number written in increasing
order in base 10, is normal in base 10. Any Hb, formed similarly to H10 but
in base b, is known to be normal in base b. Since then, many examples have
been given of numbers that are normal in at least one base. One can �nd a more
thorough literature review in [12, 6, 3].

We wish to mention one of the most fundamental and important results relating
to normal numbers in base b. �e following is due to D. D. Wall in his Ph.D.
dissertation [29].

�eorem 1.2 (D. D. Wall). A real number x is normal in base b if and only if the

sequence .bnx/ is uniformly distributed mod 1.

�e Q-Cantor series expansions, �rst studied by G. Cantor in [4], are a natural
generalization of the b-ary expansions. G. Cantor’s motivation to study the Cantor
series expansions was to extend the well known proof of the irrationality of the
number e D

P

1=nŠ to a larger class of numbers. Results along these lines may be
found in the monograph of J. Galambos [11]. Let Nk WD Z \ Œk; 1/. If Q 2 N

N

2 ,
then we say that Q is a basic sequence. Given a basic sequence Q D .qn/1

nD1, the
Q-Cantor series expansion of a real number x is the (unique)1 expansion of the
form

x D E0 C
1

X

nD1

En

q1q2 � � � qn

(1.2)

where E0 D bxc and En is in ¹0; 1; : : : ; qn � 1º for n � 1 with En ¤ qn � 1

in�nitely often. We abbreviate (1.2) with the notation x D E0:E1E2E3 : : : with
respect to Q.

A block is an ordered tuple of non-negative integers, a block of length k is an
ordered k-tuple of integers, and block of length k in base b is an ordered k-tuple
of integers in ¹0; 1; : : : ; b � 1º. Let N

Q
n .B; x/ denote the number of occurrences

of the block B in the digits of the Q-Cantor series expansion of x up to position n.

1 Uniqueness can be proven in the same way as for the b-ary expansions.
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Let

Q.k/
n WD

n
X

j D1

1

qj qj C1 � � � qj Ck�1

and

TQ;n.x/ WD
�

n
Y

j D1

qj

�

x .mod 1/:

A. Rényi [20] de�ned a real number x to be normal with respect to Q if for all
blocks B of length 1,

lim
n!1

N
Q
n .B; x/

Q
.1/
n

D 1: (1.3)

If qn D b for all n and we restrict B to consist of only digits less than b, then (1.3)
is equivalent to simple normality in base b, but not equivalent to normality in base

b. A basic sequence Q is k-divergent if

lim
n!1

Q.k/
n D 1;

fully divergent if Q is k-divergent for all k, and k-convergent if it is not k-divergent.
A basic sequence Q is in�nite in limit if qn ! 1.

Motivated by �eorem 1.2, we make the following de�nitions of normality for
Cantor series expansions.

De�nition 1.3. A real number x is Q-normal of order k if for all blocks B of
length k,

lim
n!1

N
Q
n .B; x/

Q
.k/
n

D 1:

We letNk.Q/ be the set of numbers that are Q-normal of order k. �e real number
x is Q-normal if

x 2 N.Q/ WD
1
\

kD1

Nk.Q/:

De�nition 1.4. A real number x is Q-ratio normal of order k (here we write
x 2 RNk.Q/) if for all blocks B1 and B2 of length k

lim
n!1

N
Q
n .B1; x/

N
Q
n .B2; x/

D 1:

We say that x is Q-ratio normal if

x 2 RN.Q/ WD
1
\

kD1

RNk.Q/:
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De�nition 1.5. A real number x is called Q-distribution normal if the sequence
.TQ;n.x//1

nD0 is uniformly distributed mod 1. Let DN.Q/ be the set of Q-distri-
bution normal numbers.

We note that by �eorem 1.2, the analogous versions of the above de�nitions
are equivalent for the b-ary expansions.

It was proven in [17] that the directed graph in Figure 1 gives the complete
containment relationships between these notions when Q is in�nite in limit and
fully divergent. �e vertices are labeled with all possible intersections of one,
two, or three choices of the sets N.Q/, RN.Q/, and DN.Q/, where we know that
N.Q/ D N.Q/ \RN.Q/ and N.Q/ \DN.Q/ D N.Q/ \DN.Q/ \RN.Q/. �e
set labeled on vertex A is a subset of the set labeled on vertex B if and only if there
is a directed path from A to B . For example, N.Q/ \ DN.Q/ � RN.Q/, so all
numbers that are Q-normal and Q-distribution normal are also Q-ratio normal.

We remark that all inclusions suggested from Figure 1 are either easily proven
(N.Q/ � RN.Q/) or are trivial. �e di�culty comes in showing a lack of inclu-
sion. �e most challenging of these is to prove that there is a basic sequence Q

where RN.Q/ \ DN.Q/nN.Q/ ¤ ;.

N.Q/

RN.Q/

RN.Q/\DN.Q/

N.Q/\DN.Q/

DN.Q/

Figure 1

It follows from a well known result of H. Weyl [31, 32] that DN.Q/ is a set of
full Lebesgue measure for every basic sequence Q. We will need the following
result of the second author [16] later in this paper.
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�eorem 1.6. Suppose2 that Q is in�nite in limit. �en Nk.Q/ and RNk.Q/ are

of full measure if and only if Q is k-divergent. �e sets N.Q/ and RN.Q/ are of

full measure if and only if Q is fully divergent.

Based on Figure 1 and �eorem 1.6 it is natural to ask for the Hausdor� dimen-
sion of the di�erence sets. It was proven in [18] that for every basic sequence Q

that is in�nite in limit

dimH .DN.Q/nN.Q// D dimH .DN.Q/nRN.Q// D 1:

Using di�erent methods we will prove the following theorem.

�eorem 1.7. Every non-empty set formed by taking the di�erence of two sets

listed in Figure 1 has full Hausdor� dimension for every Q that is in�nite in limit,

except possibly the set N.Q/ n DN.Q/.

It will be shown that the set N.Q/nDN.Q/ has full Hausdor� dimension for
a more restricted class of basic sequences in �eorem 3.5. We should note that
we can not hope to establish dimH .N.Q/nDN.Q// D 1 for all Q that are in�nite
in limit. �is follows from the result in [16] that N.Q/ D ; when Q is in�nite in
limit and not fully divergent.

A surprising property of Q-normality of order k is that we may not conclude
that Nk.Q/ � Nj .Q/ for all j < k like we may for the b-ary expansions. In
fact, it was shown in [14] that for every k there exists a basic sequence Q and
a real number x such that Nk.Q/n

Sk�1
j D1 Nj .Q/ is non-empty. �us, we will

have to be more careful in stating exactly what our theorems prove since lack of
Q-normality of order 2 does not imply lack of Q-normality of order 338, for ex-
ample. Furthermore, we will greatly expand on this result in �eorem 3.6 where
for each natural number ` we exhibit a class of basic sequences such that

dimH

�

1
\

j D`

Nj .Q/
/

`�1
[

j D1

Nj .Q/
�

D 1:

For x D E0:E1E2 � � � with respect to Q, de�ne the set

SQ.x/ D ¹E1; E2; E3; : : : º:

P. Erdős and A. Rényi [7] proved the following theorems.

2 Early work in this direction has been done by A. Rényi [20], T. S̆alát [27], and
F. Schweiger [23].
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�eorem 1.8 (P. Erdős and A. Rényi). If Q is 1-convergent, then SQ.x/ has density

0 for almost every real number x.

�eorem 1.9 (P. Erdős and A. Rényi). For x D E0:E1E2 � � � with respect to Q,

let dn.x/ denote the number of di�erent numbers in the sequence E1; : : : ; En.

If Q is 1-convergent, then for almost every x we have

lim
n!1

dn.x/

n
D 1:

If Q is in�nite in limit and 1-divergent, we have that almost every real number
is simply Q-normal by �eorem 1.6. On the other hand, if Q is 1-convergent we
have that almost every real number is not simply Q-normal in a particularly strong
sense by �eorem 1.8.

It should be noted that T. S̆alát [28] considered sets related to those mentioned
in �eorem 1.8 and �eorem 1.9. We will need the following de�nition from [2].

De�nition 1.10. For S � Z, de�ne the mass dimension of S to be the limit

dimM .S/ D lim
n!1

log #.S \ .�n=2; n=2//

log n
;

if it exists.

We note that an upper mass dimension and a lower mass dimension may be
de�ned similarly by changing the limit in De�nition 1.10 to a lim sup or a lim inf.

For non-empty S � N0, de�ne

WQ.S/ D
®

x 2 R W SQ.x/ D S
¯

:

We will build on �eorem 1.8 and �eorem 1.9 by proving the following theorem.

�eorem 1.11. If Q is in�nite in limit, limn!1
log qn

Pn
iD1 log qi

D 0, and S � N such

that min S < min Q and dimM .S/ exists, then

dimH
�

WQ.S/
�

D dimM .S/ :

T. S̆alát proved in [26] that under some conditions on the basic sequence Q

the set of real numbers whose digits in their Q-Cantor expansion is bounded has
zero Hausdor� dimension. We remark that his result may be sharpened with his
conditions weakened by use of our Lemma 2.4 instead of Satz 1 from [25]. �e
proof of this otherwise follows identically to his original proof, so we do not record
it in this paper.

We remark that some of the techniques developed in this paper and Lemma 2.4
are used to study fractals associated with normality-preserving operations in [1].
Interesting results of a slightly di�erent �avor may be found in [15, 30, 9].
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2. Lemmata

Let .nk/ be a sequence of positive integers and .ck/ be a sequence of positive
numbers such that nk � 2, 0 < ck < 1, n1c1 � ı, and nkck � 1, where ı is a
positive real number. For any k, let

Dk D ¹.i1; : : : ; ik/ W 1 � ij � nj ; 1 � j � kº;

and
D D

[

Dk;

where D0 D ;. If � D .�1; : : : ; �k/ 2 Dk , � D .�1; : : : ; �m/ 2 Dm, put

� � � D .�1; : : : ; �k; �1; : : : ; �m/:

De�nition 2.1. Suppose J is a closed interval of length ı. �e collection of closed
subintervals F D ¹J� W � 2 Dº of J has homogeneous Moran structure if

(1) J; D J ;

(2) for all k � 0, � 2 Dk; J��1; : : : ; J��nkC1
are subintervals of J� and

VJ��i \ VJ��j D ; for i ¤ j ;

(3) for all k � 1, and � 2 Dk�1; 1 � j � nk , ck D
�.J��j /

�.J� /
.

Suppose that F is a collection of closed subintervals of J having homogeneous
Moran structure. Let

E.F/ D
\

k�1

[

�2Dk

J� :

We say E.F/ is a homogeneous Moran set determined by F, or it is a homogeneous

Moran set determined by J , .nk/, .ck/. We will need the following theorem of D.
Feng, Z. Wen, and J. Wu from [10].

�eorem 2.2 (D. Feng, Z. Wen, and J. Wu). If S is a homogeneous Moran set

determined by J , .nk/, .ck/, then

lim inf
k!1

log n1n2 � � � nk

� log c1c2 � � � ckC1nkC1

� dimH .S/ � lim inf
k!1

log n1n2 � � � nk

� log c1c2 � � � ck

:

Given basic sequences ˛ D .˛i / and ˇ D .ˇi /, sequences of non-negative
integers s D .si /; t D .ti/; � D .�i /; and F D .Fi /, and a sequence of sets
I D .Ii / such that Ii � ¹0; 1; : : : ; ˇi � 1º, de�ne the set ‚.˛; ˇ; s; t; �; F; I / as
follows. Let Q D Q.˛; ˇ; s; t; �/ D .qn/ be the following basic sequence:

ŒŒ˛1�s1 Œˇ1�t1 ��1ŒŒ˛2�s2 Œˇ2�t2 ��2ŒŒ˛3�s3 Œˇ3�t3 ��3 : : : : (2.1)
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where Œ˛�s is the sequence consisting of ˛ repeated s times. De�ne the function

c.n/ D max
°

t W
i.n/�1
X

j D1

�j .sj C tj / C t .si.n/ C ti.n// > n
±

Set

ˆ˛.i; c; d/ D
i�1
X

j D1

�j sj C csi C d

where 0 � c < �i and 0 � d < si and let the functions i˛.n/, c˛.n/, and d˛.n/ be
such that

ˆ�1
˛ .n/ D .i˛.n/; c˛.n/; d˛.n//:

Note this is possible since ˆ˛ is a bijection from

U D
®

.i; c; d/ 2 N
3 W 0 � c < �i ; 0 � d < si

¯

to N. De�ne the functions

G.n/ D
i˛.n/�1

X

j D1

�j .sj C tj / C c˛.n/
�

si˛.n/ C ti˛.n/

�

C d˛.n/

and

g.n/ D min ¹t W G.t/ � nº :

Note that i˛.g.n// D i.n/ and c˛.g.n// D c.n/. Furthermore, de�ne

C˛.n/ D
�

i˛.n/�1
X

j D1

�j

�

C c˛.n/:

We consider the condition on n

�

n �
i.n/�1
X

j D1

�j .sj C tj /
�

mod .si.n/ C ti.n// � si.n/: (2.2)

De�ne the sets

V.n/ D

8

<

:

Ii.n/ if condition (2.2) holds,

¹FG.n/º otherwise.
:
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�at is, we choose digits from Ii.n/ in positions corresponding to the bases ob-
tained from the sequence ˇ and choose a speci�c digit from F for the bases ob-
tained from the sequence ˛. Set

‚.˛; ˇ; s; t; �; F; I / D ¹x D 0:E1E2 : : : with respect to Q W En 2 V.n/º :

We will need the following basic lemma to prove Lemma 2.4 and elsewhere in
this paper.

Lemma 2.3. Let L be a real number and .an/1
nD1 and .bn/1

nD1 be two sequences

of positive real numbers such that

1
X

nD1

bn D 1 and lim
n!1

an

bn

D L:

�en

lim
n!1

a1 C a2 C : : : C an

b1 C b2 C : : : C bn

D L:

Lemma 2.4. Given basic sequences ˛ D .˛i / and ˇ D .ˇi /, sequences of non-

negative integers s D .si /; t D .ti /; � D .�i/; and F D .Fi /, and a sequence of

sets I D .Ii / such that Ii � ¹0; 1; : : : ; ˇi � 1º such that the following conditions

hold:

lim
n!1

sn log ˛n

n�1
X

iD1

�i ti log ˇi

D 0 (2.3)

and

lim
n!1

sn log ˛n

tn log ˇn

D 0: (2.4)

�en

dimH .‚.˛; ˇ; s; t; �; F; I // D  WD lim
n!1

log jInj

log ˇn

:
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Proof. Note that ‚.˛; ˇ; s; t; �; F; I / is a homogeneous Moran set with

nk D

8

<

:

jIk j if qk D ˇi.k/

1 if qk D ˛i.k/

and

ck D
1

qk

:

Set

N D
i.n/�1
X

j D1

�j
X

kD1

Œtj log ǰ C sj log j̨ �

C
b.n/
X

j D1

Œti.n/ log ˇi.n/ C si.n/ log ˛i.n/�

C si.n/ log ˛i.n/:

We get

dimH .‚.˛; ˇ; s; t; �; F; I //

� lim inf
k!1

log n1n2 : : : nk

� log c1c2 : : : ckC1nkC1

� lim
n!1

i.n/�1
X

j D1

�j
X

kD1

tj log jIi j C
b.n/
X

j D1

ti.n/ log jIi.n/j

N

D lim
n!1

�

i.n/�1
X

j D1

�j tj  log ǰ

�

C b.n/ti.n/ log ˇi.n/

N

(where we have used Lemma 2.3)

D lim
n!1

�

i.n/�1
X

j D1

�j tj  log ǰ

�

C b.n/ti.n/ log ˇi.n/

�

i.n/�1
X

j D1

�j tj log ǰ

�

C b.n/ti.n/ log ˇi.n/ C si.n/ log ˛i.n/
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(which follows from (2.4))

D lim
n!1

�

i.n/�1
X

j D1

�j tj  log ǰ

�

C b.n/ti.n/ log ˇi.n/

�

i.n/�1
X

j D1

�j tj log ǰ

�

C b.n/ti.n/ log ˇi.n/

D :

which we get from (2.3). �e upper bound follows from a similar calculation.

For a sequence of real numbers X D .xn/ with xn 2 Œ0; 1/ and an interval
I � Œ0; 1�, de�ne

An.I; X/ D #¹i � n W xi 2 I º:

We will need the following standard de�nition and lemma that we quote from [12].

De�nition 2.5. Let X D .x1; : : : ; xN / be a �nite sequence of real numbers.
�e number

DN D DN .X/ D sup
0�˛�ˇ�1

ˇ

ˇ

ˇ

ˇ

AN .Œ˛; ˇ/; X/

N
� .ˇ � ˛/

ˇ

ˇ

ˇ

ˇ

is called the discrepancy of the sequence !.

It is well known that a sequence X is uniformly distributed mod 1 if and only
if DN .X/ ! 0.

Lemma 2.6. Let x1; x2; : : : ; xN and y1; y2; : : : ; yN be two �nite sequences in

Œ0; 1/. Suppose �1; �2; : : : ; �N are non-negative numbers such that jxn � ynj � �n

for 1 � n � N . �en, for any � � 0, we have

jDN .x1; : : : ; xN / � DN .y1; : : : ; yN /j � 2� C
xN .�/

N
;

where xN .�/ denotes the number of n, 1 � n � N , such that �n > �.
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3. Proofs

We will compute the Hausdor� dimension of di�erence sets formed by taking
unions or intersections of the sets N.Q/, RN.Q/, and DN.Q/. Note that the non-
empty sets which must be considered in �eorem 1.7 are

N.Q/ n DN.Q/; RN.Q/ n N.Q/; RN.Q/ n DN.Q/;

DN.Q/ n N.Q/; RN.Q/ \ DN.Q/ n N.Q/; DN.Q/ n RN.Q/;

RN.Q/ n .N.Q/ \ DN.Q//:

Note that there are many other ways of writing these sets, but we choose the sim-
plest representation.

�e Hausdor� dimension for each of the sets except for N.Q/nDN.Q/ will be
computed in �eorem 3.1, �eorem 3.3, and �eorem 3.4 or follow from these the-
orems and Figure 1. For exampleRN.Q/nN.Q/ containsRN.Q/\DN.Q/nN.Q/

which has full Hausdor� dimension by �eorem 3.1. We will compute the Haus-
dor� dimension of N.Q/ nDN.Q/ for restricted basic sequences in �eorem 3.5.

�eorem 3.1. If Q is in�nite in limit, then

dimH .RN.Q/ \ DN.Q/nN.Q// D 1:

Proof of �eorem 3.1. Let P D .pi / with pi D blog ic C 2 and � 2 N.P / with
� D :F1F2 � � � with respect to P . Fix a sequence X D .xn/ that is uniformly
distributed modulo 1. De�ne the sequences

L0 D 0I

�n D inf

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

t W

n�1
X

mD0

log qLn�1Cm

j �Ln�1�1
X

mD0

log qLn�1Cm

<
1

n
; for all j � t

9

>

>

>

>

>

=

>

>

>

>

>

;

;

�n;k D inf

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

t W
Q.k/

n

j
X

mD1

P
.k/

m�kC1

<
1

n
; for all j � t

9

>

>

>

>

>

=

>

>

>

>

>

;

;

Ln D sup¹inf¹t W log.qj / > n; for all j � tº; Ln�1 C n2; Ln�1 C �n; sup
k�n

¹�n;kºº;
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and set
i.n/ D max¹j W Lj � nº:

Note that �n and �n;k are �nite since Q is in�nite in limit and P is fully divergent.
De�ne the set

S D
1
[

nD1

¹Ln; Ln C 1; : : : ; Ln C n � 1º:

Note that this set has density 0 since

#S \ ¹1; : : : ; nº

n
�

i.n/C1
X

j D1

j

i.n/
X

j D1

Lj � Lj �1

�

i.n/C1
X

j D1

j

i.n/
X

j D1

j C j 2

�! 0 as n goes to in�nity.

De�ne the intervals

V.n/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ŒFn�Li.n/
; Fn�Li.n/

C 1/

if n 2 ŒLi.n/; : : : ; Li.n/ C i.n/�;

Œxnqn � !n; xnqn C !n/ \ Œ dlog i.n/e ; qn � 1�

otherwise,

where

!n D q1��n
n and �n D

min ¹log q1 � � � qn�1; log qnº1=2

log qn

Set
ƒQ D ¹x D :E1E2 � � � with respect to Q W En 2 V.n/º:

We claim that ƒQ � RN.Q/ \ DN.Q/nN.Q/ and dimH.ƒQ/ D 1. Let x 2 ƒQ

and let B be a block of length k. Note that by the de�nition of Ln, there are only
�nitely many values n 2 NnS such that B occurs at position n in the Q-Cantor
series expansion of x. �is is because all digits En with n 2 NnS must be greater
than dlog i.n/e by the de�nition of V.n/ and since i.n/ tends to in�nity as n does.
�us, if m is the maximum digit for the block B , we have that for n 2 NnS with
i.n/ > m, that En > m. �us

N Q
n .B; x/ D

i.n/
X

iD1

N P
i�kC1.B; �/ C O.1/:
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So for any two blocks B1 and B2 of length k, we have

lim
n!1

N Q
n .B1; x/

N Q
n .B2; x/

D lim
n!1

i.n/
X

iD1

N P
i�kC1.B1; �/ C O.1/

i.n/
X

iD1

N P
i�kC1.B2; �/ C O.1/

D lim
n!1

N P
n�kC1.B1; �/

N P
n�kC1.B2; �/

D 1:

�us x 2 RN.Q/.

Consider the sequence Y D
�

En

qn

�

. For n 2 NnS , we have

ˇ

ˇ

ˇ

En

qn

� xn

ˇ

ˇ

ˇ <
!n

qn

;

which tends to 0 as n goes to in�nity. We therefore have for � > 0 that

xN .�/ D O.1/ C #S \ ¹1; : : : ; N º:

�us by Lemma 2.6

jDN .X/ � DN .Y /j < 2� C
O.1/

N
C

#S \ ¹1; : : : ; N º

N
< 3�

if N is su�ciently large. Since the inequality holds for all � > 0, we have that
�

En

qn

�

is uniformly distributed mod 1. �us x 2 DN.Q/.

Note that

lim
n!1

N Q
n .B; x/

i.n/
X

iD1

P
.k/

i�kC1

D 1:

However,

lim
n!1

Q.k/
n

i.n/
X

iD1

P
.k/

i�kC1

D 0

by the de�nition of Ln, so x 62
S1

kD1 Nk.Q/ and in particular x 62 N.Q/.
�us ƒQ � RN.Q/ \ DN.Q/nN.Q/.
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Evidently ƒQ is a homogeneous Moran set with nk D jV.k/j and ck D 1
qk

.
�us

dimH
�

ƒQ

�

� lim inf
k!1

log n1 � � � nk

� log c1 � � � ckC1nkC1

D lim inf
n!1

k
X

iD1

�NnS .i/ .1 � �i / log qi

k
X

iD1

log qi C log qkC1

D lim inf
n!1

0

B

B

B

B

B

B

@

1 �

i.n/
X

j D1

j �1
X

kD0

log qLj Ck

i.n/
X

j D1

i.j /�i.j �1/
X

kD0

log qLj Ck

1

C

C

C

C

C

C

A

D lim inf
n!1

0

B

B

B

B

B

@

1 �

n�1
X

iD0

log qLnCi

Ln�Ln�1
X

iD0

log qLnCi

1

C

C

C

C

C

A

D 1

by the de�nition of �n and Ln. �us

dimH
�

ƒQ

�

D 1 and dimH .RN.Q/ \ DN.Q/nN.Q// D 1:

Corollary 3.2. If Q is in�nite in limit, then dimH .RN.Q// D 1.

�eorem 3.3. If Q is in�nite in limit, then

dimH

�

RN.Q/n
�

1
[

j D1

Nj .Q/ [ DN.Q/
��

D 1:

Proof. �e proof is the same as �eorem 3.1, but with X D .xn/ a sequence that
is not uniformly distributed mod 1.
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�eorem 3.4. If Q is in�nite in limit, then

dimH

�

DN.Q/n
1
[

j D1

RNj .Q/
�

D 1:

Proof. �e proof is the same as �eorem 3.1, but we choose � D :E1E2 : : : with
respect to P such that the digit 0 never occurs.

We will need to refer to the following four conditions.

lim
n!1

tn˛k
n

snˇk
n

D 0; (3.1)

lim
n!1

tn˛k
n

snˇk
n

> 0; (3.2)

lim
n!1

˛k
n

sn

D 0; (3.3)

lim
n!1

n
X

iD1

�isi

n
X

iD1

�i .si C ti /

D 0: (3.4)

�eorem 3.5. Suppose that Q D Q.˛; ˇ; s; t; �/ is in�nite in limit, t -divergent

(resp. fully divergent), and satis�es conditions (2.3), (2.4), (3.1) for all k � t ,

(3.3), and (3.4). If ˛i D o.ˇi /, then

dimH

�

t
\

j D1

Nj .Q/nDN.Q/
�

D 1 .resp. dimH .N.Q/nDN.Q// D 1/:

Proof. We will prove the statement for when Q D .qn/ is fully divergent.
�e proof for when Q is k-divergent follows similarly. De�ne the basic sequence
P by

P D Œ˛1�s1�1 Œ˛2�s2�2 Œ˛3�s3�3Œ˛4�s4�4 : : : :

We note that P is fully divergent since Q is fully divergent. By �eorem 1.6,
there exists a real number � D E0:E1E2 � � � with respect to P that is an element
of N.P /. Set

Ii D ¹˛i ; ˛i C 1; : : : ; bˇ
1�.1= log ˇi /1=2

i c C 1º
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and Fi D Ei . Note that

lim
n!1

log jInj

log ˇn

D 1;

so dimH .‚.˛; ˇ; s; t; �; F; I // D 1 by Lemma 2.4. We now wish to show that

‚.˛; ˇ; s; t; �; F; I / � N.Q/nDN.Q/:

Let both k and n be natural numbers, B be a block of length k, and take
x 2 ‚.˛; ˇ; s; t; �; F; I /. We wish to show that

N P
g.n/.B; �/ � kC˛.g.n// � N Q

n .B; x/ � N P
g.n/.B; �/ C O.1/:

Let m be the maximum digit in the block B . Since min Ii ! 1, we know that
there are only �nitely many indices i such that m > min Ii . �us, there are at most
�nitely many occurrences of B starting at position n when qn D ˇi.n/. If every
occurrence of B in � occurs at the corresponding place in x, then we have

N P
g.n/.B; �/ C O.1/ D N Q

n .B; x/:

If some of the occurrences of B in � do not occur in the corresponding places in
x, then we have N

Q
n .B; x/ � N P

g.n/
.B; �/.

On the other hand, the total number of places up to position n where B can
occur in the P -Cantor series expansion of � but B does not occur in the corre-
sponding positions in the Q-Cantor series expansion of x is at most kC˛.n/, the
total length of the last k terms of the substrings Œ˛i �

si of P . �us

N P
g.n/.B; �/ � kC˛.g.n// � N Q

n .B; x/ � N P
g.n/.B; �/ C O.1/:

Many of the following calculations use Lemma 2.3. Note that

P .k/
n D

i˛.n/�1
X

j D1

sj �j

˛k
j

C
si.n/b˛.n/

˛k
i˛.n/

and

Q.k/
n D

�

i.n/�1
X

j D1

.sj � k/�j

˛k
j

C
.tj � k/�j

ˇk
j

C
�

k�1
X

lD1

�j

ˇl
j ˛k�l

j

C
�j

˛l
j ˇk�l

j

��

C
c.n/.si.n/ � k/

˛k
i.n/

C
c.n/.ti.n/ � k/

ˇk
i.n/

C
�

k�1
X

lD1

�i.n/

ˇl
i.n/

˛k�l
i.n/

C
�j

˛l
i.n/

ˇk�l
i.n/

�

:
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Note that by (2.3) and (2.4), we have that

lim
n!1

Q.k/
n

S
D 1;

where

S D
�

i.n/�1
X

j D1

.sj � k/�j

˛k
j

C
.tj � k/�j

ˇk
j

�

C
c.n/.si.n/ � k/

˛k
i.n/

C
c.n/.ti.n/ � k/

ˇk
i.n/

�us

lim
n!1

Q
.k/
n

P
.k/

g.n/

D lim
n!1

S

�

i.n/�1
X

j D1

sj �j

˛k
j

�

C
c.n/si.n/

˛k
i.n/

D lim
n!1

sn � k

sn

C
.tn � k/˛k

n

snˇk
n

D 1 C lim
n!1

tn˛k
n

snˇk
n

D 1:

Furthermore, we have that

lim
n!1

C˛.g.n//

P
.k/

g.n/

D lim
n!1

�

i.n/�1
X

j D1

�j

�

C c.n/

�

i.n/�1
X

j D1

sj �j � k

˛k
j

�

C
c.n/si.n/ � k

˛k
i.n/

D lim
n!1

˛k
n

sn � k=�n

D lim
n!1

˛k
n

sn

D 0:

Since � 2 N.P /, we have that

lim
n!1

N
Q
n .B; x/

Q
.k/
n

D lim
n!1

N
Q
n .B; x/

P
.k/

g.n/

D 1:

�erefore, x 2 N.Q/.
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For n where qn D ˇi.n/, we have

En

qn

�
ˇ

1�log�1=2 ˇi.n/

i.n/

ˇi.n/

�! 0 as n ! 1: (3.5)

Up to position n there are at least
Pi.n/

j D1 �i ti C c.n/ti.n/ such places where (3.5)
holds. By (3.4), we have

lim
n!1

i.n/
X

j D1

�i ti C c.n/ti.n/

n
D 1;

so the sequence
�

En

qn

�

is not uniformly distributed mod 1. �us x … DN.Q/ and

‚.˛; ˇ; s; t; �; F; I / � N.Q/nDN.Q/;

which implies that dimH .N.Q/nDN.Q// D 1:

�eorem 3.6. Suppose that Q D Q.˛; ˇ; s; t; �/ is in�nite in limit, fully divergent,

and satis�es conditions (2.3), (2.4), (3.1) for k � `, (3.2) for ` < k, and (3.3). �en

dimH

�

1
\

j D`

Nj .Q/
/

`�1
[

j D1

Nj .Q/
�

D 1:

Proof. De�ne the same basic sequence P and sequences I and F as in the proof
of �eorem 3.5. �e same arguments regarding the asymptotics of N

Q
n .B; x/ for

x 2 ‚.˛; ˇ; s; t; F; I / hold, so

lim
n!1

N
Q
n .B; x/

P
.k/

g.n/

D 1:

But since (3.1) holds for k � `, we have that

lim
n!1

Q
.k/
n

P
.k/

g.n/

D 1 C lim
n!1

tn˛k
n

snˇk
n

D 1:

�us x is Q-normal of orders greater than or equal to `.
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Example 3.7. Set

˛n D blog log.n C 2/c C 2;

ˇn D blog nc C 2;

sn D blog nc;

tn D n;

and

�n D 2n:

�en the conditions of �eorem 3.5 are satis�ed.

Example 3.8. Fix some integer `. Set

˛n D blog log.n C 2/c C 2;

ˇn D blog nc C 2;

sn D blog nc;

tn D
j�ˇn

˛n

�`C1

sn

k

;

and

�n D 2n:

�en the conditions of �eorem 3.6 are satis�ed.

Proof of �eorem 1.11. Let  D dimM .S/, ˛i D 2, ˇi D qi , si D 0, ti D 1,
�i D 1, Fi D 0, and

Ii D S \ ¹0; : : : ; qi � 2º:

�en (2.3) and (2.4) clearly hold. Note that

WQ.S/ � ‚.˛; ˇ; s; t; �; F; I /;

so dimH.WQ.S// �  .
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To get a lower bound, we construct a subset of WQ.S/ with Hausdor� dimen-
sion  . To do this, let T � N be an in�nite set that is sparse enough such that

lim
k!1

k
X

iD1

�T .i/ log #.S \ ¹0; : : : ; qi � 2º/

k
X

iD1

log #.S \ ¹0; : : : ; qi � 2º/

D 0:

Note that such a T exists since

lim
k!1

k
X

iD1

log #.S \ ¹0; : : : ; qi � 2º/ D 1:

Let f W T ! S be a surjective function such that for all t 2 T , we have
qt > f .t/. Such an f exists since min S < min Q, T is in�nite, and Q is in-
�nite in limit. Consider the homogeneous Moran set C with

nk D

´

1 if k 2 T

#S \ ¹0; : : : ; qk � 2º otherwise

and ck D 1
qk

described as follows: If k 2 T , then for any x 2 C , Ek.x/ D f .k/.
Otherwise, Ek.x/ 2 S \ ¹0; : : : ; qk � 2º. Since f is surjective, we have that for
any x 2 C that SQ.x/ D S , so C � WQ.S/. But

dimH .C / � lim inf
k!1

log n1 � � � nk

� log c1 � � � ckC1nkC1

D lim
k!1

k
X

iD1

�NnT .i/ log #.S \ ¹0; : : : ; qi � 2º/

k
X

iD1

log qi C log qkC1

D lim
k!1

k
X

iD1

log #.S \ ¹0; : : : ; qi � 2º/

k
X

iD1

log qi

D lim
k!1

log #.S \ ¹0; : : : ; qk � 2º/

log qk

D :

�us dimH.WQ.S// �  , so we have dimH.WQ.S// D  .
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4. Further problems

Problem 4.1. For which irrational x does there exist a basic sequence Q where
x 2 RN.Q/\DN.Q/nN.Q/. �e same question may be asked about several of the
other sets discussed in this paper. We remark that it is already known that for every
irrational x there exist uncountably many basic sequences Q where x 2 DN.Q/.
See [13].

Problem 4.2. Prove that the conclusions of �eorem 3.5 and �eorem 3.6 hold
for all Q that are in�nite in limit and fully divergent.

Problem 4.3. In [18] su�cient conditions are given under which countable inter-
sections of sets of the form DN.Q/n

S1
j D1 RNj .Q/ have full Hausdor� dimen-

sion. Surely a similar result holds for many of the sets described in this paper.
Necessary and su�cient conditions similar to conditions found in the paper of
W. M. Schmidt [22] may be possible.
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