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Quasi-Assouad dimension of fractals
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Abstract. �e Assouad dimension of fractals is not invariant under quasi-Lipschitz map-

pings, even for Ahlfors–David regular sets. In this manuscript, we shall give a new dimen-

sion dimqA of fractals named the quasi-Assouad dimension, which is invariant under any

quasi-Lipschitz mapping, satisfying dimBE � dimqAE � dimAE for any compact subset

E of a metric space. By virtue of the quasi-Assouad dimension, we show that any Bedford–

McMullen carpet F is quasi-Lipschitz Assouad-minimal, i.e., dimA f .F / � dimA F for

any quasi-Lipschitz mapping f .
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1. Introduction

A bijection f W .X; dX/ ! .Y; dY / between two metric spaces is said to be bilips-

chitz, if there exists a constant L > 0 such that for all x1; x2 2 X;

L�1dX .x1; x2/ � dY .f .x1/; f .x2// � LdX.x1; x2/:

Bilipschitz mappings preserve most of the geometric, topological and measure

theoretic properties of sets. Determining whether there exists a bilipschitz map-

ping between two fractals is a topic of interest in geometric measure theory.

However, restrictions of this kind of mappings sometimes seem to be too much

strict. For example, it was pointed out by Cooper and Pignataro [4], David and

Semmes [5] and Falconer and Marsh [7] that there does not exist any bilipschitz

mapping between the Cantor ternary set C and the following self-similar set

K D .ˇK/
S

�

ˇK C 1
2

� 1
2
ˇ

�
S

.ˇK C .1� ˇ// with 3ˇ
log 2

log 3 D 1;

though at �rst glance they are so similar. As we know, they have the same fractal

dimensions, and both of them are self-similar sets satisfying the strong separate

condition (SSC). Relaxing the restrictions, it was shown by Xi [27] that they are

quasi-Lipschitz equivalent.

De�nition 1.1. Two compact metric spaces .X; dX/ and .Y; dY / are said to be

quasi-Lipschitz equivalent if there exists a bijection g W X ! Y called a quasi-

Lipschitz mapping, such that for all distinct points x1; x2 2 X;

log dY .g.x1/; g.x2//

log dX .x1; x2/
�! 1 uniformly as dX.x1; x2/ ! 0:

It is readily checked that the inverse function g�1 is also a quasi-Lipschitz

mapping. �erefore, quasi-Lipschitz equivalence is a kind of equivalent relation-

ship between compact metric spaces, under which the following results seem to

be more natural.

1 (Xi [27]). Two self-conformal sets (satisfying the SSC) are quasi-Lipschitz

equivalent if and only if they have the same Hausdor� dimension.

2 (Wang and Xi [23]). Two uniform disconnected Ahlfors–David s-regular sets
(s > 0) are quasi-Lipschitz equivalent.
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We notice that the most widely used fractal dimensions are invariant under
quasi-Lipschitz mappings, e.g., the Hausdor� dimension and the box-counting
dimension. �at is for any compact metric space X , one has

dimH g.X/ D dimH X; dimBg.X/ D dimBX; dimBg.X/ D dimBX

under any quasi-Lipschitz mapping g. While for the Assouad dimension dimA,
we can �nd a quasi-Lipschitz mapping Qg such that

1 D dimA Qg.C/ ¤ dimA C D log 2= log 3;

which means that the Assouad dimension is not invariant under quasi-Lipschitz
mappings. In fact, we have

Proposition 1.2. Let E � R be a self-similar set satisfying the SSC. �en for any

t 2 .dimAE; 1�, there exists a quasi-Lipschitz mapping gt such that

dimA gt .E/ D t:

For this reason, we try to �nd a kind of fractal dimension such that it is as
close as possible to the Assouad dimension and invariant under quasi-Lipschitz
mappings.

1.1. Quasi-Assouad dimension. We may recall the notion of the Assouad di-

mension as follows. For 0 < r < R, let Nr.E/ denote the least number of balls of
radius r required to cover the subset E of a metric space X and

Nr;R.E/ D sup
x2E

Nr.B.x; R/\ E/:

�en the Assouad dimension of E is de�ned as

dimAE D inf
°

˛ � 0
ˇ

ˇ

ˇ
there exists c > 0 such that

Nr;R.E/ � c
�R

r

�˛

for all 0 < r < R
±

;

which was introduced by Assouad in the late 1970s [1, 2, 3]. When the metric
space X is doubling (i.e., there exists a positive integer N such that every closed
ball in X can be covered by N closed balls of half the radius), the Assouad di-
mension of E is always �nite. �e Assouad dimension plays a prominent role in
the study of quasiconformal mappings and embeddability problems. Please refer
to the textbook [11] and the survey paper [16] for more details.
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For any ı 2 .0; 1/, let

hE .ı/ D inf
°

˛ � 0
ˇ

ˇ

ˇ there exists c > 0 such that

Nr;R.E/ � c
�R

r

�˛

for all 0 < r < r1�ı � R
±

:

It is clear that the function hE .ı/ does not decrease as ı decreasing on .0; 1/.
We de�ne the quasi-Assouad dimension of E as the limit

dimqA E WD lim
ı!0

hE .ı/:

Here we let dimqA ¿ D 0 for the empty set ¿.

Proposition 1.3. Suppose that E is a compact subset of a metric space X . �en

for any ı 2 .0; 1/,

hE .ı/ D lim
r!0

sup
r1�ı�R<1

logNr;R.E/

logR � log r
: (1.1)

By the de�nition above, it is readily checked that the quasi-Assouad dimension
de�ned on subsets of X satis�es the following properties. �at is the reason why
we can call it a “dimension” (see, e.g., page 40 in [6]).

1 Monotonicity. dimqAE � dimqA F if E � F � X .

2 Stability. dimqA.E [ F / D max.dimqA E; dimqA F / for any E;F � X .

3 Bilipschitz invariance. dimqA E D dimqA f .E/ for any subset E � X and any
bilipschitz transformation f .

4 Range of values. 0 � dimqA E � dimAE for any subset E � X: In particular,
for X D R

n; we have 0 � dimqAE � n:

5 Open sets. If E is a non-empty open subset of X D R
n; then dimqAE D n.

�eorem 1.4. �e quasi-Assouad dimension is invariant under any quasi-Lipschitz

mapping. More precisely, if two compact metric spaces .X; dX/ and .Y; dY / are

quasi-Lipschitz equivalent with respect to the map g W X ! Y , then for any com-

pact subset E � X ,

dimqAE D dimqA g.E/:



Quasi-Assouad dimension of fractals 191

It is well-known that for any compact subset E of a metric space, we have

dimH E � dimBE � dimAE:

�en, what is the relationship between the quasi-Assouad dimension and these
fractal dimensions?

Proposition 1.5. For any compact subset E of a metric space, we have

dimH E � dimBE � dimqA E � dimAE: (1.2)

In fact, we can say more about these inequalities in (1.2).

Proposition 1.6. Given four real numbers a, b, c and d with 0 < a < b < c �

d � 1, we can �nd a compact set F � Œ0; 1� such that

dimH F D a; dimBF D b; dimqA F D c; dimA F D d:

1.2. Quasi-Lipschitz minimality. A set E � R
n is said to be quasisymmetri-

cally minimal if dimH f .E/ � dimH E for any n-dimensional quasisymmetric
mapping f: For results about quasisymmetric mappings, please refer to [9], [10],
[14], [21], [22], et al. In analogy with the de�nition of quasisymmetric mini-
mality, replacing the quasisymmetric mappings by quasi-Lipschitz mappings, we
introduce the notion of quasi-Lipschitz minimality for compact sets with respect
to the Assouad dimension.

De�nition 1.7. A compact subsetE of a metric space is said to be quasi-Lipschitz

Assouad-minimal if

dimA g.E/ � dimAE

for any quasi-Lipschitz mapping g:

By virtue of the quasi-Assouad dimension, we can show the quasi-Lipschitz
minimality of Bedford–McMullen carpets.

�eorem 1.8. For any compact subsetE of a metric space, if dimqAE D dimAE,

then it is quasi-Lipschitz Assouad-minimal. In particular, dimqA E D dimAE if

E is an Ahlfors–David regular set or a Bedford–McMullen carpet. Hence all

Ahlfors–David regular sets and Bedford–McMullen carpets are quasi-Lipschitz

Assouad-minimal.
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By Proposition 1.6, there exists a compact set F � Œ0; 1� such that

dimBF < dimqA F D dimA F:

�erefore, the quasi-Assouad dimension has advantage in determining the quasi-
Lipschitz minimality of compact sets than the upper box-counting dimension.

1.3. Quasi uniform disconnectedness. �e uniform disconnectedness of sub-
sets in metric spaces is related to their Assouad dimensions (see, e.g., Proposition
5.1.7 of [18]). For any non-empty subset E of a metric space,

dimAE < 1 H) E is uniformly disconnected.

When studying the quasi-Lipschitz equivalence of compact metric spaces, Wang
and Xi [24] introduced a weaker notion of quasi uniform disconnectedness.

De�nition 1.9. We say that a non-empty compact subset E of a metric space

.X; d/ is quasi uniformly disconnected, if there is a constant r� > 0 and a function

 W .0; r�/ ! .0; r�/

with

 .r/ < r for all 0 < r < r�

and

lim
r!0

log .r/

log r
D 1

such that for any x 2 E and 0 < r < r�, we can �nd a set Ex;r � E satisfying

E \ B.x;  .r// � Ex;r � B.x; r/

and

dist.Ex;r ; EnEx;r / �  .r/;

where

dist.A; B/ D inf
x2A;y2B

d.x; y/

for any subsets A, B � X .

Finding a smaller fractal dimension to ensure the weaker notion is the other
motivation for us to introduce the quasi-Assouad dimension.

�eorem 1.10. Let E be a non-empty compact subset of a metric space .X; d/. If

dimqAE < 1, then it is quasi uniformly disconnected.



Quasi-Assouad dimension of fractals 193

�e following simple example shows the di�erence between the uniform dis-
connectedness and the quasi uniform disconnectedness.

Example 1.11. Fix 0 < ˛ < 1, let ak D
Qk

iD1.1 � .i C 1/�˛/ for all k � 1. �en

(we will prove in Section 4 that) the countable compact set E D ¹0; 1; a1; a2; : : : º

is quasi uniformly disconnected but not uniformly disconnected. Moreover,

0 D dimqAE < dimAE D 1:

�erefore, one can also get the quasi uniform disconnectedness of the set E by

�eorem 1.10.

Remark 1.12. �e assumption that the upper box-counting dimension is less than

1 does not imply the quasi uniform disconnectedness of a compact set. In fact,

when taking ˛ D 1 in Example 1.11, we get E D ¹0; 1; 1=2; 1=3; : : :º. It is well-

known that dimBE D 1=2. We can check that E is not quasi uniformly discon-

nected (with details in Section 4).

Using �eorem 1.10 and Remark 1.12, we have

Claim 1. �e set E D ¹0; 1; 1=2; 1=3; : : :º is quasi-Lipschitz Assouad-minimal,

since dimqAE D dimAE D 1:

It is known that for any compact subset E � R, we have dimAE < 1 if and
only ifE is uniformly disconnected (see, e.g., �eorem 5.2 of [16]). One wonders
whether there is a dimensional functionˆ W 2R ! Œ0; 1� such thatˆ.E/ < 1 if and
only if E is quasi uniformly disconnected. Since dimAE � dimH E, we present
a reasonable assumption ˆ.E/ � dimH E and obtain the following interesting
result:

Proposition 1.13. For any set functionˆ W 2R ! Œ0; 1� satisfyingˆ.E/ � dimH E

for all compact sets E � R, the following equivalence fails for some compact set

F � R,

ˆ.F / < 1 if and only if F is quasi uniformly disconnected:

1.4. Quasi-Assouad dimensions of Moran sets. Some special cases of Moran
sets were �rst studied by Moran [19]. �e later works [12, 13, 25, 26] developed
the theory on the geometric structures and the fractal dimensions of Moran sets
systematically.
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Suppose that J � R is a bounded closed interval with non-empty interior. Let
¹nkºk�1 be a sequence of integers satisfying nk � 2 for all k. Let ¹ckºk�1 be a
sequence of real numbers such that ck 2 .0; 1=nk� for all k: Denote

D
k D ¹i1 : : : ik W ij 2 N \ Œ1; nj � for all 1 � j � kº

and

D
0 D ¹;º

with the empty word ;.

Let J; D J . Denote the length of J by jJ j. Suppose for any k � 1 and
any i1 : : : ik�1 2 D

k�1 (i1 : : : ik�1 D ; if k D 1), the following Ji1:::ik�11; : : : ,
Ji1:::ik�1nk

are closed subintervals of Ji1:::ik�1
with their interiors pairwise dis-

joint, such that

jJi1:::ik�1j j

jJi1:::ik�1
j

D ck for all 1 � j � nk :

�en we call the following non-empty compact set

F D

1
\

kD0

[

i1:::ik2Dk

Ji1:::ik

a Moran set with the structure .J; ¹nkºk; ¹ckºk/; and denote

F 2 M.J; ¹nkºk; ¹ckºk/:

For any k � 1 and any i1 : : : ik 2 D
k , we call the closed interval Ji1:::ik a basic

interval of rank k of the Moran set F 2 M.J; ¹nkº; ¹ckº/.

Further, we call the Moran set F 2 M.J; ¹nkºk ; ¹ckºk/ a uniform Cantor set,
if for any k � 1 and any i1 : : : ik�1 2 D

k�1, the subintervals ¹Ji1:::ik�1j º
nk

j D1 are
uniformly distributed from left to right in Ji1:::ik�1

such that Ji1:::ik�11 shares the
same left endpoint with Ji1:::ik�1

, and Ji1:::ik�1nk
shares the same right endpoint

with Ji1:::ik�1
.

Suppose that F 2 M.J; ¹nkº; ¹ckº/ is a Moran set. By �eorem 3:2 of [8], if
supk nk < 1; then

dimH F D lim
k!1

log.n1 : : : nk/

� log.c1 : : : ck/
, dimBF D lim

k!1

log.n1 : : : nk/

� log.c1 : : : ck/
: (1.3)
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Under the assumption that infk ck > 0, Li, Li, Miao and Xi [15] obtained the
Assouad dimension of F

dimA F D lim
m!1

sup
k�1

log.nkC1 : : : nkCm/

� log.ckC1 : : : ckCm/
: (1.4)

When F is a uniform Cantor set, one recent result by Peng, Wang and Wen [20]
is that dimA F D 1 if supk nk D C1.

In this manuscript, we try to compute the quasi-Assouad dimensions of Moran
sets, and get the following result.

�eorem 1.14. If

lim
k!1

log ck

log c1 : : : ck

D 0;

then for any Moran set F 2 M.J; ¹nkº; ¹ckº/;

dimqA F D lim
ı!0

lim
q!1

max
1�p�lq;ı

log.np : : : nq/

� log.cp : : : cq/
;

where

lq;ı D max
°

1 � p � q
ˇ

ˇ

ˇ

log.cp : : : cq/

log.c1 : : : cq/
> ı

±

with ı 2 .0; 1/. In particular, if infk ck > 0, then

dimqA F D lim
�!0

lim
q!1

max
1�p�q.1��/

log.np : : : nq/

� log.cp : : : cq/
:

From �eorem 1.10 and �eorem 1.14, we have the following corollary.

Corollary 1.15. If

lim
k!1

log ck

log.c1 : : : ck/
D 0 and lim

k!1

log nk

� log ck

< 1;

then any Moran set F 2 M.J; ¹nkº; ¹ckº/ is quasi uniformly disconnected.

With the above results, we have the following two simple examples. Note that
both of the Moran sets given in Example 1.16 and Example 1.17 are quasi uni-
formly disconnected but not uniformly disconnected. In fact, Example 1.17 is a
special case in the proof of Proposition 1.6.
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Example 1.16. Let nk D 3k and ck D 3�2k for all k � 1. �en supk nk D C1

and

lim
k!1

log ck

log c1 : : : ck

D 0:

Let F 2 M.Œ0; 1�; ¹nkº; ¹ckº/ be a uniform Cantor set. By �eorem 1.14 and the

result on Assouad dimension by Peng et al [20], we have

1

2
D dimqA F < dimA F D 1:

Example 1.17. Let nk D 2 for all k � 1. Let ¹aiºi�1 be a sequence of positive

integers with a1 D 1 such that aiC1 > 2ai C i for all i and

lim
i!1

i

ai

D lim
i!1

a1 C a2 C � � � C ai�1

ai

D 0:

For any k � 1, if k 2 Œai ; aiC1/ for some i , then let

ck D

8

ˆ

ˆ

<

ˆ

ˆ

:

1=4 if k 2 Œai ; 2ai/,

1=2 if k 2 Œ2ai ; 2ai C i/,

1=8 otherwise.

Under these assumptions, any Moran set F 2 M.Œ0; 1�; ¹nkº; ¹ckº/ satis�es

dimH F D
1

3
< dimBF D

2

5
< dimqA F D

1

2
< dimAE D 1:

�e rest of this paper is organized as follows. In the next section, we will
give the proof of Propositions 1.3, 1.5 and �eorem 1.4. Section 3 is devoted to
the proof of Proposition 1.2 and �eorem 1.8. Results about the quasi uniform
disconnectedness will be proved in Section 4. In the last section, we will prove
�eorem 1.14 and Proposition 1.6.

2. Properties of the quasi-Assouad dimension

In this section, we try to verify some properties of the quasi-Assouad dimension.
More precisely, we will prove Proposition 1.3, 1.5 and �eorem 1.4.

Proof of Proposition 1.3. Fix ˛ > hE .ı/, we may assume that there exists a con-

stant c > 0 such that if 0 < r < r1�ı � R, then Nr;R.E/ � c.R=r/˛: �is

implies

lim
r!0

sup
r1�ı�R<1

logNr;R.E/

logR � log r
� ˛:
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�us

lim
r!0

sup
r1�ı�R<1

logNr;R.E/

logR � log r
� hE .ı/:

On the other hand, for any

˛0 > lim
r!0

sup
r1�ı�R<1

logNr;R.E/

logR � log r
;

there exists a real number r0 2 .0; 1/ such that if 0 < r < r1�ı � R < r0, then

Nr;R.E/ � .R=r/˛
0

. Since the setE is compact, we can �nd a constant c > 0 such

that Nr;R.E/ � c.R=r/˛
0

whenever 0 < r < r1�ı � R. �erefore ˛0 � hE .ı/,

and thus

lim
r!0

sup
r1�ı�R<1

logNr;R.E/

logR � log r
� hE .ı/:

Proof of Proposition 1.5. For any ı 2 .0; 1/, we will verify that dimBE � hE .ı/:

�en dimH E � dimBE � limı!0 hE .ı/ D dimqAE � dimAE.

Fix ı 2 .0; 1/, for any ˛ > hE .ı/ we may assume that there exists a constant

c > 0 such that Nr;R.E/ � c.R=r/˛ whenever 0 < r < r1�ı � R. For such r and

R, it is readily checked that Nr .E/ � Nr;2R.E/ � NR.E/. �erefore,

logNr .E/

� log r
�

logNR.E/

� log r
C

log c

� log r
C
˛ log.2R/

� log r
C ˛:

Since the set E is compact, we know that NR.E/ < C1. Letting r ! 0;

we obtain that dimBE � ˛, and thus dimBE � hE .ı/.

Proof of �eorem 1.4. Based on the fact that g is a quasi-Lipschitz mapping, we

will show that dimqA g.E/ � dimqAE. For the same reason, we can obtain that

dimqAE � dimqA g.E/, since g�1 is also a quasi-Lipschitz mapping.

By the de�nition of quasi-Lipschitz mapping, there are increasing functions

�; � W .0; 1/ �! .0;C1/

with

lim
r!0

log �.r/

log r
D lim

R!0

log�.R/

logR
D 1 (2.1)

such that for any y 2 g.E/ and r; R > 0 small enough, one has

g.B.g�1y; �.r/// � B.y; r/ and B.y; R/ � g.B.g�1y; �.R///: (2.2)
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Given ı 2 .0; 1=2/ and " > 0, by (2.1) when R > 0 is small enough, one has

�.r/1�ı � �.R/ and �.R/=�.r/ � .R=r/1C" for all 0 < r < r1�2ı � R. �en,

for any ˛ > hE .ı/; by (2.2) we have

Nr;R.g.E// � N�.r/;�.R/.E/ � c
��.R/

�.r/

�˛

� c
�R

r

�˛.1C"/

;

where c D c.˛/ > 0 is a constant. Since the set g.E/ is compact and the numbers

˛; " are arbitrary, we obtain that hg.E/.2ı/ � hE .ı/: Letting ı ! 0; it follows that

dimqA g.E/ � dimqAE:

3. Quasi-Lipschitz minimality

In this section, we �rst show that the Assouad dimensions of sets are not quasi-
Lipschitz invariant, even for self-similar sets satisfying the SSC. �en, we will
prove that for any Bedford–McMullen carpet F , one has dimqA F D dimA F .
More precisely, we will prove Proposition 1.2 and �eorem 1.8.

Proof of Proposition 1.2. It is well-known that the self-similar setE � R satisfy-

ing the SSC is Ahlfors–David regular with s WD dimAE D dimH E 2 .0; 1/. �en

it is uniformly disconnected. In the light of the result of Wang and Xi [24] that

two quasi Ahlfors–David s-regular sets with s 2 .0; 1/ are quasi-Lipschitz equiv-

alent, we only need to construct a quasi Ahlfors–David s-regular set F � Œ0; 1�

satisfying dimA F D t .

For all k � 1, let nk D 2 and

ck D

8

<

:

2�.1C1=m/=t if k 2 Œm3; m3 Cm� for some integer m,

2�1=s; otherwise.

Let Ft 2 M.Œ0; 1�; ¹nkºk; ¹ckºk/ be a uniform Cantor set. By (1.4), we obtain

that dimA Ft D t . We will show that Ft is quasi Ahlfors–David s-regular, i.e.,

there exists a Borel probability measure � supported on Ft and a non-decreasing

function

ƒ W .0; 1/ �! .0;C1/

with

lim
r!0

ƒ.r/ D 0

such that for all x 2 Ft and 0 < r < 1,

s.1 �ƒ.r// �
log�.B.x; r//

log r
� s.1Cƒ.r//:
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Let � be the Moran measure supported on Ft , i.e., � is the natural measure

on F such that for all k � 1 and any basic interval Ji1:::ik of rank k, one has

�.Ji1:::ik / D .n1 : : : nk/
�1, see [19]. Let c0 D n0 D 1. For any 0 < r < 1, assume

that c1 : : : ckr C1 � r < c1 : : : ckr
for some kr � 0. �en

lim
r!0

log.c1 : : : ckr
/

log r
D lim

r!0

log.c1 : : : ckr C1/

log r
D 1:

�us

lim
r!0

log.n1 : : : nkr
/ � log 3

log r
D lim

r!0

log.n1 : : : nkr C1/

log r
D s:

Hence, we can �nd a non-decreasing function

ƒ W .0; 1/ �! .0;C1/

with

lim
r!0

ƒ.r/ D 0

such that

s �ƒ.r/ �
log.n1 : : : nkr

/ � log 3

log r
;
log.n1 : : : nkr C1/

log r
� s Cƒ.r/: (3.1)

For any x 2 Ft and 0 < r < 1, it is readily checked that

.n1 : : : nkr C1/
�1 � �.B.x; r// � 3.n1 : : : nkr

/�1:

�en by (3.1)

s �ƒ.r/ �
log�.B.x; r//

log r
� s Cƒ.r/:

�erefore, Ft is quasi Ahlfors–David s-regular.

Proof of �eorem 1.8. For any quasi-Lipschitz mapping g, by �eorem 1.4 and

Proposition 1.5, if dimAE D dimqAE, then

dimAE D dimqA E D dimqA g.E/ � dimA g.E/:

�erefore, E is quasi-Lipschitz Assouad-minimal.
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For any Ahlfors–David s-regular set D; we have

dimAD D dimqA D D s;

since s D dimH D � dimqA D � dimAD D s:

We will show that for any Bedford–McMullen carpet F , one has

dimA F D dimqA F:

Given two positive integers n > m � 2 and a �xed set

A � ¹0; 1; : : : ; .n� 1/º � ¹0; 1; : : : ; .m � 1/º

with cardinality #A � 2, the Bedford–McMullen carpet F � R
2 is de�ned as the

unique non-empty compact set satisfying

F D
[

.a;b/2A

S.a;b/.F /;

where

S.a;b/.x; y/ D
�x C a

n
;
y C b

m

�

:

Let

tj D #¹i 2 ¹0; 1; : : : ; .n� 1/º j .i; j / 2 Aº;

t D max
j
tj ;

and

s D #¹j j tj > 0º:

Mackay [17] proved that

dimA F D logm s C logn t:

For example, ifm D 3, n D 4 andA D ¹.0; 0/; .2; 0/; .0; 2/; .2; 2/; .2; 4/º, we have

the initial pattern as in Figure 1.

Figure 1. m D 3; n D 4; s D 2; t D 3:
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We shall verify

dimqA F � logm s C logn t:

Note that the boxes of rank k � 1 in the sense of McMullen are rectangles

with width n�k and height m�k0

satisfying m�k0

� n�k ; where � means that k0

is the smallest integer such that m�k0

� n�k : For r D n�k1 and R D n�k2 with

integers k1 � k2 � 1, let zNr;R denote the largest number of sub-boxes of rank

k1 contained in one box of rank k2. For the usual number Nr;R.F /, it is readily

checked that there exists a constant c > 0 such that

zNr;R � cNr;R.F / for all r; R 2 ¹n�k j k 2 Nº: (3.2)

m
-k

n
-k

m
- k+l( )

m
- k+l( )

un
-k

n
-k

...

enlarge the
fullest box

t
l

columns

m
- k+l( )

n
- k+l( )

m
- k+l( )

m
- k+l( )

m
- k+l+l’( )

m
- k+l+l’( )

un
- k+l( )

little  boxess
l’

m
- k+l( )

Figure 2. Calculation of zNrk;Rk

For k � 1 large enough, as in Figure 2, we consider the big boxes with width

Rk D n�k and height m�.kCl/ (m�.kCl/ � n�k) and the little boxes with width

rk D n�.kCl/ and heightm�.kClCl 0/ (m�.kClCl 0/ � n�.kCl/). Since each “fullest”

box of rank k contains t l columns of width n�.kCl/ and height m�.kCl/, and each

column contains sl 0

little boxes, we have

zNrk ;Rk
D sl 0

t l :
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�en by (3.2),

logNrk ;Rk
.F /

logRk � log rk
�
l 0 log s C l log t � log c

logRk � log rk
: (3.3)

Note that
logRk

log rk
D

k

k C l
�!

logm

logn
as k ! 1.

�us for k large enough, one has

1 �
logRk

log rk
�

�

1 �
logm

logn

�

=2 DW ı0:

Sincem�.kCl/ � n�k andm�.kClCl 0/ � n�.kCl/; letting k ! 1; by (1.1) and (3.3),

we obtain that

hF .ı0/ D lim
r!0

sup
r1�ı0�R<1

logNr;R.F /

logR � log r

� lim
k!1

logNrk ;Rk
.F /

logRk � log rk

� logm s C logn t:

�erefore,

dimqA F D lim
ı!0

hF .ı/ � hF .ı0/ � logm s C logn t:

4. Quasi uniform disconnectedness

In this section, we �rst give the details of Example 1.11 and Remark 1.12, which
will help us to understand the notion of quasi uniform disconnectedness. �en,
we turn to its relationship with quasi-Assouad dimension and prove �eorem 1.10
and Proposition 1.13.

4.1. Details of Example 1.11. Fix ˛ 2 .0; 1/, since
P1

iD1.i C 1/�˛ D C1, the
product

Q1
iD1.1� .i C 1/�˛/ converges to 0. �erefore,

lim
k!1

ak D lim
k!1

k
Y

iD1

.1 � .i C 1/�˛/ D 0:
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We claim that the sequence ¹akºk satis�es

(1) limk!1

log akC1

log ak

D 1I

(2) limk!1

log k

log ak

D 0I

(3) limk!1

log.ak � akC1/

log ak

D 1:

For .1/, we have

lim
k!1

log akC1

log ak

D 1C lim
k!1

log.1� .k C 2/�˛/

log ak

D 1:

For .2/, by Stolz theorem, we have

lim
k!1

log k

� log ak

D lim
k!1

log.1C 1=k/

log.ak=akC1/
D lim

k!1

.k C 2/˛

k
D 0:

Since ak � akC1 D .k C 2/�˛ak ; by virtue of .2/, we obtain .3/.
Suppose E is uniformly disconnected, then there are constants C > 0 and

r� > 0 such that for any x 2 E and 0 < r < r�, we can �nd a set Ex;r � E

satisfying

E \ B.x; C r/ � Ex;r � B.x; r/ and dist.Ex;r ; EnEx;r / � Cr:

If we take k � 1 large enough such that ak=2 < r
� and

ak � akC1 D .k C 2/�˛ak � Cak=3;

then one can not �nd such Ex;r for x D ak and r D ak=2. In fact, since the gap
sequence ¹ak � akC1ºk is decreasing, for any subset A � E \ B.x; r/ containing
x, we must have

dist.A; EnA/ � ak � akC1 � Cak=3 < Cr:

�erefore, E is not uniformly disconnected.
Let r� D 1. For 0 < r < r�, let

 .r/ D .ak � akC1/=2

if ak � r < ak�1 for some k � 1 (with ak�1 D 1 if k D 1). �en  .r/ < r for all
0 < r < r� and

lim
r!0

log .r/

log r
D 1

by .1/–.3/.
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Given both x 2 E and 0 < r < r�, suppose ak � r < ak�1 for some k. If
0 � x � akC1, then we take Ex;r D Œ0; akC1�\E; if akC1 < x � 1, then we take
Ex;r D ¹xº. �en

E \ B.x;  .r// � Ex;r � B.x; r/ and dist.Ex;r ; EnEx;r/ �  .r/:

�erefore, E is quasi uniformly disconnected.

Since E is not uniformly disconnected, we have dimAE D 1. For any " > 0

and ı 2 .0; 1/, we will verify hE .ı/ � ". �en dimqAE D limı!0 hE .ı/ D 0.

Since the gap sequence ¹ak �akC1ºk is decreasing and limk!1 ak D 0, when
k is large enough such that ak < .1� a1/=2, we can �nd a unique positive integer
mk such that .amk

� amkC1/=2 � ak < .amk�1 � amk
/=2: By (1)–(3), we have

lim
k!1

log.amk
=ak/

log ak�1

D 0 and lim
k!1

log.2mk/

log ak�1

D 0:

�erefore, there exists a positive integer k0 such that for all k � k0,

min
° log.amk

=ak/

log ak�1

;
log.2mk/

log ak�1

±

� �ı";

which means that

max
°amk

ak

; 2mk

±

� a�ı"
k�1: (4.1)

For any 0 < r < r1�ı � R < ak0
, assume that an � r < an�1 and al � R <

al�1 for some n � l � k0. Since E D .Œ0; amn
�\E/[ .Œamn�1; 1�\E/; we have

Nr;R.E/ D sup
x2E

Nr.B.x; R/\E/

� Nan
.E/

�
amn

2an

Cmn

� max
°amn

an

; 2mn

±

:

�en by (4.1), Nr;R.E/ � a�ı"
n�1 � r�ı" � .R=r/". Since the set E is compact, we

can �nd a constant c > 0 such thatNr;R.E/ � c .R=r/" for all 0 < r < r1�ı � R.
�erefore, hE .ı/ � ".
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4.2. Details of Remark 1.12. Suppose E is quasi uniformly disconnected, then
there is a constant r� > 0 and a function  W .0; r�/ ! .0; r�/ with  .r/ < r for
all 0 < r < r� and

lim
r!0

log .r/

log r
D 1

such that for any x 2 E and 0 < r < r�, we can �nd a set Ex;r � E satisfying

E \ B.x;  .r// � Ex;r � B.x; r/ and dist.Ex;r ; EnEx;r/ �  .r/:

If we take k � 1 large enough such that 1=.2k/ < r� and

� logŒk.k C 1/� < log .1=.2k//;

then one can not �nd such Ex;r for x D 1=k and r D 1=.2k/. In fact, for any
subset A � E \ B.x; r/ containing x, we must have

dist.A; EnA/ � 1=k � 1=.k C 1/ D 1=Œk.k C 1/� <  .1=.2k//:

�erefore, E is not quasi uniformly disconnected.

4.3. Quasi uniform disconnectedness of fractal

Proof of �eorem 1.10. Assume that dimqAE D s < 1: For any ı 2 .0; 1/ and

r 2 .0; 1/, let

hE .ı; r/ D sup
r1�ı�R<1

logNr;R.E/

logR � log r
:

�en by (1.1), we have

lim
r!0

hE .ı; r/ D hE .ı/:

For any ı 2 .0; 1/, there exists a real number rı 2 .0; 1/ such that for any

r 2 .0; rı/, we have

hE .ı; r/ < hE .ı/C .1 � s/=2 � s C .1 � s/=2 D .1C s/=2:

�en whenever r 2 .0; rı/ and r1�ı � R < 1, we have

Nr;R.E/ � .R=r/.1Cs/=2: (4.2)
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For any 0 < R < 1, let

�.R/ D inf
0<ı<1

max
° log rı

logR
� 1;

ı

1 � ı
;

2 log 6

�.1� s/ logR

±

:

�en we have

�.R/ �
2 log 6

�.1� s/ logR
> 0: (4.3)

Fix ı 2 .0; 1/, we obtain that

lim
R!0

�.R/ � lim
R!0

max
° log rı

logR
� 1;

ı

1� ı
;

2 log 6

�.1� s/ logR

±

�
ı

1� ı
:

�erefore, we have

lim
R!0

�.R/ D 0:

Fix x 2 X and R 2 .0; 1/, let r D R1C2�.R/. Let B0 D ¹xº and

Bi D B.x; ir/nB.x; .i � 1/r/ for all i � 1:

Write nR D ŒR=r�, where Œz� denotes the integral part of the real number z. �en

nR D ŒR�2�.R/� � ŒR
4 log 6

.1�s/ log R �Œ6
4

1�s � > 4:

�eorem 1.10 will follow from the claim below.

Claim 2. If R 2 .0; 1/, then Bi \ E D ¿ for some 1 � i � nR.

Otherwise, we may assume that Bi \E is non-empty for all 1 � i � nR. Take

a point yi 2 Bi \E for each 1 � i � nR and let

‚ D ¹yi j 1 � i � nRº:

For any 1 � i; j � nR with j � i C 3, we have

d.yi ; yj / � d.x; yj / � d.x; yi / > .j � 1/r � ir � 2r:

�en B.yj ; r/\B.yi ; r/ D ¿:�erefore, a ball with radius r covers at most three

points in ‚, thus

nR=3 � Nr;R.E/: (4.4)
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By the de�nition of �.R/ and (4.3), there exists a ı 2 .0; 1/ such that

max
° log rı

logR
� 1;

ı

1 � ı
;

2 log 6

�.1 � s/ logR

±

< 2�.R/:

�en for such ı, we have r < rı , r1�ı < R and

log 6

�.1� s/ logR
< �.R/: (4.5)

�us, by (4.2) we have Nr;R.E/ � R�.1Cs/�.R/: Using (4.4) and the de�nition of

nR, we obtain that R=.6r/ � nR=3 � R�.1Cs/�.R/; which implies

�.R/ �
log 6

�.1� s/ logR
:

�is is contradictory to (4.5). �e claim is proved.

For allR 2 .0; 1/, let .R/ D R1C2�.R/ and 1 � iR � nR so thatBiR \E D ¿.

For any x 2 E and 0 < R < 1, by virtue of Claim 1, if we let

Ex;R D E \ B.x; .iR � 1/ .R//;

then

E \ B.x;  .R// � Ex;R � B.x; R/ and dist.Ex;R; EnEx;R/ �  .R/:

�erefore, the quasi uniform disconnectedness of the set E is obtained.

Before the proof of Proposition 1.13. We give the following lemma �rst.

Lemma 4.1. Let nk D 2 and ck D kC1
2.kC2/

for all k � 1: �en the uniform Cantor

set F 2 M.J; ¹nkºk; ¹ckºk/ is quasi uniformly disconnected.

Proof. Let r� D 1
3
. For any 0 < r < r�, let

 .r/ D c1 : : : ck � .1 � 2ckC1/;

where k � 1 is the unique integer such that c1 : : : ckC1 � r < c1 : : : ck . �en

 .r/ < c1 : : : ckC1 � r for all 0 < r < r�

and

lim
r!0

log .r/

log r
D 1:
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Fix x 2 F and 0 < r < r�. Suppose k � 1 is the unique integer such that

c1 : : : ckC1 � r < c1 : : : ck . Note that the length of every basic interval I of

rank k C 1 of F is c1 : : : ckC1 and dist.I; F nI / �  .r/. �en the closed ball

B.x; r/ contains a basic interval Ix;r of rank k C 1 of F such that x 2 Ix;r . Take

Ex;r D Ix;r \ F , one can check that

F \ B.x;  .r// � Ex;r � B.x; r/ and dist.Ex;r ; F nEx;r / �  .r/:

Proof of Proposition 1.13. Let F be the uniform Cantor set given in Lemma 4.1.

�en by (1.3), we have dimH F D 1.

Suppose ˆ W 2R ! Œ0; 1� is a set function such that ˆ.E/ � dimH E for any

compact set E � R. If it satis�es for all compact sets E � R, one has ˆ.E/ < 1

if and only if E is quasi uniformly disconnected. �en since F is quasi uniformly

disconnected, we should have dimH F < 1, which is impossible.

5. Quasi-Assouad dimensions of Moran sets

In this section, we �rst compute the quasi-Assouad dimensions of Moran sets
under the assumption that

lim
k!1

log ck

log.c1 : : : ck/
D 0:

�en, we will give the proof of Proposition 1.6.

Proof of �eorem 1.14. For 1 � p � q, let

sp;q D
log.np : : : nq/

� log.cp : : : cq/
:

Notice that dimqA F D limı!0 hF .ı/. It su�ces to show

hF .ı/ D lim
q!1

max
1�p�lq;ı

sp;q for any ı 2 .0; 1/:

Step 1 . Fix ı 2 .0; 1/, we will verify

hF .ı/ � limq!1 max
1�p�lq;ı

sp;q :

Fix s > limq!1 max1�p�lq;ı
sp;q , we are going to �nd two constants b; c > 0

such that Nr;R.F / � c.R=r/s whenever 0 < r < r1�ı � R < b.
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Since

s > lim
q!1

max
1�p�lq;ı

sp;q ;

one can �nd a constant � > 0 small enough such that

s.1 � �/ > lim
q!1

max
1�p�lq;ı

sp;q :

�en there exists a positive integer N1 such that for all q � N1,

s.1 � �/ > max
1�p�lq;ı

sp;q : (5.1)

Since

lim
k!1

log ck

log.c1 : : : ck/
D 0;

there exists a positive integer N2 such that for all k � N2,

log ck

log.c1 : : : ck/
<
ı�

2
: (5.2)

Let N D max¹N1; N2º. Take b D c1 : : : cN and c D 3. For 0 < r < r1�ı � R <

b, we may assume that

c1 : : : cp � R < c1 : : : cp�1 and c1 : : : cq � r < c1 : : : cq�1

for some q � p � N C 1. �en a ball of radius R intersects at most three basic

intervals of rank .p � 1/ of F , thus

Nr;R.F / � 3np : : : nq D 3.R=r/
log.np:::nq/

log.R=r/ � 3.R=r/
log.np:::nq/

� log.cp:::cq /Clog.cpcq / : (5.3)

Since .c1 : : : cq/
1�ı � r1�ı � R < c1 : : : cp�1, we have

log.cp : : : cq/

log.c1 : : : cq/
> ı: (5.4)

�at means 1 � p � lq;ı . By (5.1), we have

sp;q D
log.np : : : nq/

� log.cp : : : cq/
< s.1 � �/: (5.5)
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On the other hand, by (5.2) and (5.4), we obtain that

log.cpcq/

log.cp : : : cq/
D

log cp C log cq

log.c1 : : : cq/
�

log.c1 : : : cq/

log.cp : : : cq/

<
� log cp

log.c1 : : : cp/
C

log cq

log.c1 : : : cq/

�

�
1

ı

< 2 �
ı�

2
�
1

ı

D �:

�en by (5.5),

log.np : : : nq/

� log.cp : : : cq C log cpcq/
�

log.np : : : nq/

�.1� �/ log.cp : : : cq/
D

sp;q

1 � �
< s:

�erefore, by (5.3), we have

Nr;R.F / < 3.R=r/
s D c.R=r/s:

Step 2. Fix ı 2 .0; 1/, we will verify

hF .ı/ � limq!1 max
1�p�lq;ı

sp;q :

Fix ˛ > hF .ı/, we may assume that there are two constants b; c > 0 such that

Nr;R � c.R=r/s whenever 0 < r < r1�ı � R < b. Without loss of generality,

we may assume that there exists a positive integer M such that c1 : : : cM < b �

c1 : : : cM �1: Fix " 2 .0; 2.1 � ı/=ı/, we can take a positive integer N � M large

enough such that for all q � N ,

log.c1 : : : cM /

log.c1 : : : cq/
<

"

2C "
and

log 4c

� log.c1 : : : cq/
<
ı"

2
: (5.6)

For any q � N , let r D c1 : : : cq . Since

log.cM C1 : : : cq/

log.c1 : : : cq/
D 1 �

log.c1 : : : cM /

log.c1 : : : cq/
> 1 �

"

2C "
> ı;

then M C 1 � lq;ı : For any integer p 2 ŒM C 1; lq;ı �, let R D c1 : : : cp�1. �en

0 < r < r1�ı � R < b, and thus

Nr;R.F / � c.R=r/˛ D c.cp : : : cq/
�˛: (5.7)
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Since a ball of radius r intersects at most four basic intervals of rank q, we have

Nr;R.F / � .np : : : nq/=4:

Hence, by (5.6) and (5.7), for any integer p 2 ŒM C 1; lq;ı �,

log.np : : : nq/

� log.cp : : : cq/
�

log 4c

� log.cp : : : cq/
C ˛

D
log 4c

� log.c1 : : : cq/
�

log.c1 : : : cq/

log.cp : : : cq/
C ˛

<
ı"

2
�
1

ı
C ˛

D ˛ C
"

2
:

�erefore, since ck � 1=nk for all k, for any integer 1 � p � M , by (5.6), we

have

log.np : : : nq/

� log.cp : : : cq/
D

log.np : : : nM /

� log.cp : : : cq/
C

log.nM C1 : : : nq/

� log.cp : : : cq/

�
log.cp : : : cM /

log.cp : : : cq/
C

log.nM C1 : : : nq/

� log.cM C1 : : : cq/

�
log.c1 : : : cM /

log.cM C1 : : : cq/
C ˛ C

"

2

D
log.c1 : : : cM /

log.c1 : : : cq/
�

log.c1 : : : cq/

log.cM C1 : : : cq/
C ˛ C

"

2

<
"

2C "
�
2C "

2
C ˛ C

"

2

D ˛ C ":

In a word, for any q � N and any 1 � p � lq;ı , we have sp;q � ˛ C ". �en

lim
q!1

max
1�p�lq;ı

sp;q � ˛ C ":

Letting " ! 0, we have

lim
q!1

max
1�p�lq;ı

sp;q � ˛:
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�erefore, we obtain that

lim
q!1

max
1�p�lq;ı

sp;q � hF .ı/:

When infk ck > 0, note that

.q � p C 1/ log supk ck

q log infk ck

�
log.cp : : : cq/

log.c1 : : : cq/
�
.q � p C 1/ log infk ck

q log supk ck

;

we have

q �
qı log infk ck

log supk ck

� lq;ı � q C 1�
qı log supk ck

log infk ck

:

�erefore, when ı is small and q is large, we obtain that

q
�

1�
ı log infk ck

log supk ck

�

� lq;ı � q
�

1 �
ı log supk ck

2 log infk ck

�

:

Now, we turn to the proof of Proposition 1.6.

Proof of Proposition 1.6. Let nk D 2 for all k � 1. Let ¹aiºi�1 be a sequence of

positive integers with a1 D 1 such that

aiC1 >
b.c � a/

a.c � b/
ai C i for all i

and

lim
i!1

i

ai

D lim
i!1

a1 C a2 C � � � C ai�1

ai

D 0:

For any k � 1, if k 2 Œai ; aiC1/ for some i , then let

ck D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2�1=c if k 2
h

ai ;
b.c � a/

a.c � b/
ai

�

;

2�1=d if k 2
hb.c � a/

a.c � b/
ai ;

b.c � a/

a.c � b/
ai C i

�

;

2�1=a otherwise.

Under these assumptions, it is clear that infk ck > 0 and
log nk

� log ck
2 ¹a; c; dº for all

k � 1: We will verify that any Moran set F 2 M.Œ0; 1�; ¹nkºk ; ¹ckºk/ satis�es

dimH F D a; dimBF D b; dimqA F D c; dimA F D d:



Quasi-Assouad dimension of fractals 213

First, by (1.4), we have

dimA F D lim
m!1

sup
k�1

log.nkC1 : : : nkCm/

� log.ckC1 : : : ckCm/
D d:

�en, since b.c�a/
a.c�b/

> 1, by �eorem 1.14, we obtain that

dimqA F D lim
�!0

lim
q!1

max
1�p�q.1��/

log.np : : : nq/

� log.cp : : : cq/
D c:

Finally, since

lim
k!1

log.n1 : : : nk/

� log.c1 : : : ck/
D a

and

lim
k!1

log.n1 : : : nk/

� log.c1 : : : ck/
D b;

by (1.3) we have dimH F D a and

dimBF D b:
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