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Quasi-Assouad dimension of fractals

Fan Lii and Li-Feng Xi!

Abstract. The Assouad dimension of fractals is not invariant under quasi-Lipschitz map-
pings, even for Ahlfors—David regular sets. In this manuscript, we shall give a new dimen-
sion dimg 4 of fractals named the quasi-Assouad dimension, which is invariant under any
quasi-Lipschitz mapping, satisfying dimp E < dim, 4 E < dimy4 E for any compact subset
E of ametric space. By virtue of the quasi-Assouad dimension, we show that any Bedford—
McMullen carpet F is quasi-Lipschitz Assouad-minimal, i.e., dimg f(F) > dimy F for
any quasi-Lipschitz mapping f.
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1. Introduction

A bijection f: (X,dy) — (Y, dy) between two metric spaces is said to be bilips-
chitz, if there exists a constant L > 0 such that for all x{, x, € X,

L7'dx (x1,x2) < dy(f(x1). f(x2)) < Ldyx (x1. x2).

Bilipschitz mappings preserve most of the geometric, topological and measure
theoretic properties of sets. Determining whether there exists a bilipschitz map-
ping between two fractals is a topic of interest in geometric measure theory.
However, restrictions of this kind of mappings sometimes seem to be too much
strict. For example, it was pointed out by Cooper and Pignataro [4], David and
Semmes [5] and Falconer and Marsh [7] that there does not exist any bilipschitz
mapping between the Cantor ternary set C and the following self-similar set

log2

K = (BK)U (BK + 1 — 1B) U(BK + (1 — B)) with 3813 = 1,

though at first glance they are so similar. As we know, they have the same fractal
dimensions, and both of them are self-similar sets satisfying the strong separate
condition (SSC). Relaxing the restrictions, it was shown by Xi [27] that they are
quasi-Lipschitz equivalent.

Definition 1.1. Two compact metric spaces (X, dy) and (Y, dy) are said to be
quasi-Lipschitz equivalent if there exists a bijection g: X — Y called a quasi-
Lipschitz mapping, such that for all distinct points x1, x, € X,

logdy (g(x1), g(x2))
logdy (x1, x2)

—> 1 uniformly as dy (x1, x2) — 0.

It is readily checked that the inverse function g~ ! is also a quasi-Lipschitz

mapping. Therefore, quasi-Lipschitz equivalence is a kind of equivalent relation-
ship between compact metric spaces, under which the following results seem to
be more natural.

1 (Xi [27]). Two self-conformal sets (satisfying the SSC) are quasi-Lipschitz
equivalent if and only if they have the same Hausdorff dimension.

2 (Wang and Xi [23]). Two uniform disconnected Ahlfors—David s-regular sets
(s > 0) are quasi-Lipschitz equivalent.
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We notice that the most widely used fractal dimensions are invariant under
quasi-Lipschitz mappings, e.g., the Hausdorff dimension and the box-counting
dimension. That is for any compact metric space X, one has

dimy g(X) = dimy X, dimpg(X) = dimpX, dimgg(X) = dimg X

under any quasi-Lipschitz mapping g. While for the Assouad dimension dimg,
we can find a quasi-Lipschitz mapping g such that

1 = dimy g(C) # dimy € = log2/log3,

which means that the Assouad dimension is not invariant under quasi-Lipschitz
mappings. In fact, we have

Proposition 1.2. Let E C R be a self-similar set satisfying the SSC. Then for any
t € (dimy E, 1], there exists a quasi-Lipschitz mapping g; such that

dimy g: (E) = t.

For this reason, we try to find a kind of fractal dimension such that it is as
close as possible to the Assouad dimension and invariant under quasi-Lipschitz
mappings.

1.1. Quasi-Assouad dimension. We may recall the notion of the Assouad di-
mension as follows. For 0 < r < R, let N, (E) denote the least number of balls of
radius r required to cover the subset E of a metric space X and

Ny r(E) = sup N,(B(x,R)N E).
x€E

Then the Assouad dimension of E is defined as
dimy E = inf {a >0 ‘ there exists ¢ > 0 such that

N r(E) < c(?)a forall 0 < r < R},

which was introduced by Assouad in the late 1970s [1, 2, 3]. When the metric
space X is doubling (i.e., there exists a positive integer N such that every closed
ball in X can be covered by N closed balls of half the radius), the Assouad di-
mension of E is always finite. The Assouad dimension plays a prominent role in
the study of quasiconformal mappings and embeddability problems. Please refer
to the textbook [11] and the survey paper [16] for more details.
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For any § € (0, 1), let

hg(8) = inf {a >0 ‘ there exists ¢ > 0 such that

N, r(E) < c(?)a forall0 <r <r!' 7 < R}.

It is clear that the function /g (§) does not decrease as § decreasing on (0, 1).
We define the quasi-Assouad dimension of E as the limit
dimgy E := gim hEg(8).
—0

Here we let dimg4 @ = 0 for the empty set &.

Proposition 1.3. Suppose that E is a compact subset of a metric space X. Then
forany§ € (0,1),

_ log Ny g (E
he@®) =Tm  sup e Nnr(E) (1.1)

r=0,1-5_p; l0g R —logr’

By the definition above, it is readily checked that the quasi-Assouad dimension
defined on subsets of X satisfies the following properties. That is the reason why
we can call it a “dimension” (see, e.g., page 40 in [6]).

1 Monotonicity. dimgy E < dimgyq Fif E C F C X.
2 Stability. dimg4 (E U F) = max(dimyy E.dimg4 F) forany E, F C X.

3 Bilipschitz invariance. dimg4 E = dimg4 f(E) for any subset E C X and any
bilipschitz transformation f.

4 Range of values. 0 < dimyq E < dimy E for any subset £ C X. In particular,
for X = R", we have 0 < dimgyyq E < n.

5 Open sets. If E is a non-empty open subset of X = R”, then dimg4 E = n.

Theorem 1.4. The quasi-Assouad dimension is invariant under any quasi-Lipschitz
mapping. More precisely, if two compact metric spaces (X,dx) and (Y,dy) are
quasi-Lipschitz equivalent with respect to the map g: X — Y, then for any com-
pact subset E C X,

diqu E = diqu g(E)
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It is well-known that for any compact subset £ of a metric space, we have
dimyg F < dimgE < dimy E.

Then, what is the relationship between the quasi-Assouad dimension and these
fractal dimensions?

Proposition 1.5. For any compact subset E of a metric space, we have
dimy E < dimgE < dimg4 E < dimy E. (1.2)
In fact, we can say more about these inequalities in (1.2).

Proposition 1.6. Given four real numbers a, b, c and d with0 < a < b < ¢ <
d <1, we can find a compact set F C [0, 1] such that

dimg F =a, dimgF =b, dimgs F =c, dimy F =d.

1.2. Quasi-Lipschitz minimality. A set £ C R” is said to be quasisymmetri-
cally minimal if dimgy f(E) > dimg E for any n-dimensional quasisymmetric
mapping f. For results about quasisymmetric mappings, please refer to [9], [10],
[14], [21], [22], et al. In analogy with the definition of quasisymmetric mini-
mality, replacing the quasisymmetric mappings by quasi-Lipschitz mappings, we
introduce the notion of quasi-Lipschitz minimality for compact sets with respect
to the Assouad dimension.

Definition 1.7. A compact subset £ of a metric space is said to be quasi-Lipschitz
Assouad-minimal if

dimy g(E) > dimy E

for any quasi-Lipschitz mapping g.

By virtue of the quasi-Assouad dimension, we can show the quasi-Lipschitz
minimality of Bedford—McMullen carpets.

Theorem 1.8. For any compact subset E of a metric space, if dimgq E = dimy E,
then it is quasi-Lipschitz Assouad-minimal. In particular, dimgq E = dimy E if
E is an Ahlfors—David regular set or a Bedford—McMullen carpet. Hence all
Ahlfors—David regular sets and Bedford—-McMullen carpets are quasi-Lipschitz
Assouad-minimal.



192 F. Lii and L.-F. Xi
By Proposition 1.6, there exists a compact set F' C [0, 1] such that
dimp F < dimy4 F = dimy F.

Therefore, the quasi-Assouad dimension has advantage in determining the quasi-
Lipschitz minimality of compact sets than the upper box-counting dimension.

1.3. Quasi uniform disconnectedness. The uniform disconnectedness of sub-
sets in metric spaces is related to their Assouad dimensions (see, e.g., Proposition
5.1.7 of [18]). For any non-empty subset E of a metric space,

dimy £ <1 = E is uniformly disconnected.

When studying the quasi-Lipschitz equivalence of compact metric spaces, Wang
and Xi [24] introduced a weaker notion of quasi uniform disconnectedness.

Definition 1.9. We say that a non-empty compact subset £ of a metric space
(X, d) is quasi uniformly disconnected, if there is a constant r* > 0 and a function
¥ (0,r%) — (0.77)

with
Y(r)<r foralO<r <r*

and |
lim 28Y ) _
r—0 logr

such that for any x € £ and 0 < r < r*, we can find a set E , C E satisfying
ENB(x,y¥(r)) C Ex, C B(x,r)

and
dist(Ex,r, E\Ex,) > ¥ (r),

where
dist(4, B) = inf d(x,y)
x€A,yeB

for any subsets A, B C X.

Finding a smaller fractal dimension to ensure the weaker notion is the other
motivation for us to introduce the quasi-Assouad dimension.

Theorem 1.10. Let E be a non-empty compact subset of a metric space (X, d). If
dimg4 E < 1, then it is quasi uniformly disconnected.
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The following simple example shows the difference between the uniform dis-
connectedness and the quasi uniform disconnectedness.

Example 1.11. Fix0 < o < 1, leta; = ]_[f;l(l — (i +1)™) for all k > 1. Then
(we will prove in Section 4 that) the countable compact set £ = {0, 1,a1,4a>,...}
is quasi uniformly disconnected but not uniformly disconnected. Moreover,

0 =dimgy E <dimy E = 1.

Therefore, one can also get the quasi uniform disconnectedness of the set £ by
Theorem 1.10.

Remark 1.12. The assumption that the upper box-counting dimension is less than
1 does not imply the quasi uniform disconnectedness of a compact set. In fact,
when taking « = 1 in Example 1.11, we get £ = {0,1,1/2,1/3,...}. It is well-
known that dimg E = 1/2. We can check that E is not quasi uniformly discon-
nected (with details in Section 4).

Using Theorem 1.10 and Remark 1.12, we have

Claim 1. The set E = {0,1,1/2,1/3,...} is quasi-Lipschitz Assouad-minimal,
since dimgy E = dimy E = 1.

It is known that for any compact subset £ C R, we have dimgq £ < 1 if and
only if £ is uniformly disconnected (see, e.g., Theorem 5.2 of [16]). One wonders
whether there is a dimensional function ®: 2® — [0, 1] such that ®(E) < 1 if and
only if E is quasi uniformly disconnected. Since dimyg £ > dimy E, we present
a reasonable assumption ®(£) > dimgy E and obtain the following interesting
result:

Proposition 1.13. For any set function ®: 2% — [0, 1] satisfying ®(E) > dimy E
for all compact sets E C R, the following equivalence fails for some compact set
F CR,

®(F) < 1 ifand only if F is quasi uniformly disconnected.

1.4. Quasi-Assouad dimensions of Moran sets. Some special cases of Moran
sets were first studied by Moran [19]. The later works [12, 13, 25, 26] developed
the theory on the geometric structures and the fractal dimensions of Moran sets
systematically.
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Suppose that J C R is a bounded closed interval with non-empty interior. Let
{nk}x>1 be a sequence of integers satisfying ny > 2 for all k. Let {cx}x>1 be a
sequence of real numbers such that ¢ € (0, 1/ng] for all k. Denote

DF ={iy...ix:ij e NN [l,n;]forall 1 < j <k}
and

D = {0}

with the empty word @.

Let Jy; = J. Denote the length of J by |J|. Suppose for any £ > 1 and
any iy ...ig—; € D¥71 (iy...ig-y = @ if k = 1), the following Ji, iy _,1,---»
Jiy.ir_n; are closed subintervals of J;, ; _, with their interiors pairwise dis-
joint, such that

Wir i =¢; forall1 <j <ng.
| iy i

Then we call the following non-empty compact set

a Moran set with the structure (J, {ng}x, {cx}%), and denote

F e M(J, {ng}r. {ck e

Forany k > 1 and any iy ...i; € Dk we call the closed interval Ji\...i, abasic
interval of rank k of the Moran set F € M(J, {ng}, {ck}).

Further, we call the Moran set F' € M(J, {ng}x,{ck}x) a uniform Cantor set,
if forany k > 1 and any iy ...ix_; € D*¥~!, the subintervals {J,-l___,-k_lj}?il are
uniformly distributed from left to right in J;, _; _, such that J;, ;1 shares the
same left endpoint with J;, _;,_,, and J;, i, _,n, shares the same right endpoint
with Ji1-~-ik—1 .

Suppose that F € M(J, {ng}, {cx}) is a Moran set. By Theorem 3.2 of [8], if
supy nx < oo, then

log(ny ...ng)

. dimpF = Tm log(ny ...ng)
koo —log(cr ... ck) k

dimyg F = lim .
—>00 — IOg(Cl e Ck)

(1.3)
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Under the assumption that inf ¢, > 0, Li, Li, Miao and Xi [15] obtained the
Assouad dimension of F

1 m
dimg F = lim sup 08(Mk+1 - Mhtm)

: (1.4)
m—00 ;1 —108(Ck+1 - - - Chtm)

When F is a uniform Cantor set, one recent result by Peng, Wang and Wen [20]
is that dimy F = 1 if supy ny = +o0.

In this manuscript, we try to compute the quasi-Assouad dimensions of Moran
sets, and get the following result.

Theorem 1.14. If
1
lim O8

—°F* 0,
k—o00 logcl N

then for any Moran set F € M(J, {ny},{ck}),

— 1
dimyy F = lim lim max dog(y...ng)
§—>09—>00 1<p<l, s —log(cy ... cq)

’

where
log(cp .. .cq) - 5}

l, s = 1<p<
2.8 max{ =P = log(cy - ..cq)

with § € (0, 1). In particular, if infy ¢, > 0, then

— lo
dimgg F = lim lim  max M.
n—>0g—>00 1<p<q(1-n) —log(cp ...cq)

From Theorem 1.10 and Theorem 1.14, we have the following corollary.

Corollary 1.15. If

I — 1
08 Ck =0 and lim OBk

kgrc}o log(cy .. .ck) k—oo —log cg

<1,
then any Moran set F € NM(J, {n}, {ck}) is quasi uniformly disconnected.

With the above results, we have the following two simple examples. Note that
both of the Moran sets given in Example 1.16 and Example 1.17 are quasi uni-
formly disconnected but not uniformly disconnected. In fact, Example 1.17 is a
special case in the proof of Proposition 1.6.
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Example 1.16. Let ny = 3% and ¢ = 372f for all k > 1. Then supy nx = 400

and log i
kan}o logey...cx =0

Let F € M([0, 1], {nk}, {cr}) be a uniform Cantor set. By Theorem 1.14 and the

result on Assouad dimension by Peng et al [20], we have

1

3 =dimgy F <dimy F = 1.
Example 1.17. Let ny = 2 for all £k > 1. Let {a;};>1 be a sequence of positive
integers with a; = 1 such that a¢;+; > 2a; 4+ i for all i and

aitaz+---+ai—1

.0 .
lim — = lim =0.
i—00 a; i—00 a;

For any k > 1, if k € [a;, a;+1) for some i, then let
1/4 ifk € [a;,2a;),
cp = 31/2 ifk € [2a;,2a; + 1),
1/8 otherwise.

Under these assumptions, any Moran set F' € M([0, 1], {ng}, {cx}) satisfies

| QR 2 1
dimHF=§<dimBF=§<diquF=§<dimAE=1.

The rest of this paper is organized as follows. In the next section, we will
give the proof of Propositions 1.3, 1.5 and Theorem 1.4. Section 3 is devoted to
the proof of Proposition 1.2 and Theorem 1.8. Results about the quasi uniform
disconnectedness will be proved in Section 4. In the last section, we will prove
Theorem 1.14 and Proposition 1.6.

2. Properties of the quasi-Assouad dimension

In this section, we try to verify some properties of the quasi-Assouad dimension.
More precisely, we will prove Proposition 1.3, 1.5 and Theorem 1.4.

Proof of Proposition 1.3. Fix o > hg(§), we may assume that there exists a con-
stant ¢ > 0 such that if 0 < r < r'™% < R, then N, g(E) < c(R/r)%. This
implies

— log Ny r(E

hm Sup LR() <«

r—>0 15 gy log R —logr



Quasi-Assouad dimension of fractals 197

Thus

_ log N, r(E
lim sup log Nr,r(E) < hg(8).
r=0 15 gy log R —logr

On the other hand, for any

— log Nr.r(E
o >Tm sup —22NnrE)
r—>0,1-s gy l0g R —logr

there exists a real number 7o € (0, 1) such thatif 0 < r < r1=% < R < ry, then
Ny r(E) < (R/ r)?. Since the set E is compact, we can find a constant ¢ > 0 such
that N, r(E) < ¢(R/r)¥ whenever 0 < r < r'=% < R. Therefore o’ > hg(§),

and thus

_ log Ny r(E
im osup e Mer(E) 0
r=>0 15 p<y log R —logr

Proof of Proposition 1.5. For any § € (0, 1), we will verify that dimg E < hg (6).
Then dimy E < dimgE < limg_ohg(§) = dimyy E < dimy E.

Fix § € (0, 1), for any « > hg(§) we may assume that there exists a constant
¢ > O such that N, gr(E) < c(R/r)* whenever0 < r < r1=8 < R. For such r and
R, it is readily checked that N, (E) < N,2r(E) - Nr(E). Therefore,

log N, (E log Nr(E 1 log(2R
ogNr(E) _logNr(E)  loge | alog2R)
—logr —logr —logr —logr

Since the set E is compact, we know that Ng(E) < +oo. Letting r — 0,
we obtain that dimg E < «, and thus dimg E < hg (8). O

Proof of Theorem 1.4. Based on the fact that g is a quasi-Lipschitz mapping, we
will show that dimg4 g(E) < dimgy4 E. For the same reason, we can obtain that
dimg4 E < dimgy4 g(E), since g~ ! is also a quasi-Lipschitz mapping.

By the definition of quasi-Lipschitz mapping, there are increasing functions

L, ¢:(0,1) — (0, +00)

with

log¢(r) _ . logd(R) _

lim =1 2.1)

r—0 logr R—0 logR

such that for any y € g(E) and r, R > 0 small enough, one has

g(B(g™'y.,5(r) C B(y,r) and B(y,R)Cg(B(g"'y,¢(R)). (22)



198 F. Lii and L.-F. Xi

Given § € (0,1/2) and ¢ > 0, by (2.1) when R > 0 is small enough, one has
E(r)' % < ¢(R) and ¢(R)/E(r) < (R/r)'*é forall 0 < r < r'=28 < R. Then,
for any o > hg (), by (2.2) we have

¢(R))“ - c<£>a(1+8)
¢(r) r

where ¢ = c¢(«) > 01is a constant. Since the set g(E) is compact and the numbers
«, € are arbitrary, we obtain that 4 (g)(26) < hg (). Letting § — 0, it follows that
dimgyg g(E) < dimyy E. ]

Ny r(&(E)) < Nerypr) (E) < C( ,

3. Quasi-Lipschitz minimality

In this section, we first show that the Assouad dimensions of sets are not quasi-
Lipschitz invariant, even for self-similar sets satisfying the SSC. Then, we will
prove that for any Bedford-McMullen carpet F, one has dimy4 FF = dimy F.
More precisely, we will prove Proposition 1.2 and Theorem 1.8.

Proof of Proposition 1.2. 1t is well-known that the self-similar set £ C R satisfy-
ing the SSC is Ahlfors—David regular with s := dimy £ = dimgy E € (0, 1). Then
it is uniformly disconnected. In the light of the result of Wang and Xi [24] that
two quasi Ahlfors—David s-regular sets with s € (0, 1) are quasi-Lipschitz equiv-
alent, we only need to construct a quasi Ahlfors—David s-regular set F' C [0, 1]
satisfying dimy F = ¢.

Forall k > 1, let ny = 2 and

2~ (+Um/tif ke e [m®, m® 4 m] for some integer m,
Cp =
2~ s, otherwise.
Let F; € M([0, 1], {ng}k, {cx }x) be a uniform Cantor set. By (1.4), we obtain
that dimy F; = ¢. We will show that F; is quasi Ahlfors—David s-regular, i.e.,
there exists a Borel probability measure u supported on F; and a non-decreasing
function
A:(0,1) — (0, +00)
with
lim A(r) =0
r—0

such that forall x € F; and 0 < r < 1,

log j(B(x, 1))

<s(1 4+ A(r)).
logr

s(I = A(r)) =
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Let u be the Moran measure supported on F;, i.e., u is the natural measure
on F such that for all k¥ > 1 and any basic interval J;, ; of rank k, one has
w(Jiy i) = (n1 .. .ng)" !, see [19]. Letcop = ng = 1. Forany 0 < r < 1, assume
thatcy...ck,+1 <1 <cy...ck, for some k, > 0. Then

lim log(cy .. .ck,) _ lim log(cy ... cky+1) _ 1L
r—0 logr r—0 logr
Thus
1 cong,) —1 1 Nk,
lim og(ni...nk,) —log3 _ lim og(y .. i, +1) _ N
r—0 logr r—0 logr

Hence, we can find a non-decreasing function
A:(0,1) — (0, +00)
with
lim A(r) =0
r—0
such that

log(ny...ng,)—log3 log(n;...nk,4+1)
logr ' logr

s—A(r) < <5+ A(r). 3.1

For any x € F; and 0 < r < 1, it is readily checked that

(n1...ng+1)"" < w(B(x,r)) <3(ny...ng,)~"

Then by (3.1)
I B
s—A(r) < log p(B(x. 1)) < s+ A(r).
log r
Therefore, F; is quasi Ahlfors—David s-regular. Ol

Proof of Theorem 1.8. For any quasi-Lipschitz mapping g, by Theorem 1.4 and
Proposition 1.5, if dimy E = dimg4 E, then

dimy E = dimgy E = dimgy g(E) < dimy g(E).

Therefore, E is quasi-Lipschitz Assouad-minimal.
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For any Ahlfors—David s-regular set D, we have
dimy D =dimgq D =,

since s = dimyg D <dimgyq D <dimy D =>s.
We will show that for any Bedford—McMullen carpet F', one has

dimy F = dimgy F.
Given two positive integers n > m > 2 and a fixed set
ACH{0,1,....,(n—1)}x{0,1,...,(m—1)}

with cardinality #4 > 2, the Bedford-McMullen carpet F C R? is defined as the
unique non-empty compact set satisfying

F= |J San(F).

(a,b)eA
where 5
_(x+a y+
Sta,p)(x,y) —( T )
Let
ti=#iec{0,1,....(n=1)}| (i, j) e A},
t = maxy;,
J
and

s=#{j |t >0}
Mackay [17] proved that
dimy F =log,, s 4+ log, t.

For example, if m = 3,n = 4and A = {(0, 0), (2,0), (0,2), (2,2), (2,4)}, we have
the initial pattern as in Figure 1.

Figurel. m =3,n =4,s =2,t = 3.
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We shall verify

dimgy F > log,, s + log,, ¢.

Note that the boxes of rank k > 1 in the sense of McMullen are rectangles
with width n~* and height m—*" satisfying m=*" ~ n=*, where ~ means that k’
is the smallest integer such that m=%" < n=%_ For r = n™% and R = n—*2 with
integers k1 > k, > 1, let ZV,, R denote the largest number of sub-boxes of rank
k1 contained in one box of rank k5. For the usual number N, g(F), it is readily
checked that there exists a constant ¢ > 0 such that

Nyr <cNpgr(F) forallr,R e {n*|keN). (3.2)

enlarge the I -(k+)
Sfullest box . m

=(k+T
m( )

(kT
m( )I

i [
t columns m*
)k
m =N

s"little boxes
-(k+l)

=(k+I+1
I D

(k+D)
m

(kD) (kD)
m( ):n(*')

-«
-(k+I)
n (

Figure 2. Calculation of ]\7,,(, Rk

For k > 1 large enough, as in Figure 2, we consider the big boxes with width
Ri = n~* and height m~*+D (m=k+D ~ ;=k) and the little boxes with width
re = n~®+D and height m~* 1+ (p=k+1+)  y=(k+D)_ Since each “fullest”
box of rank k contains ¢/ columns of width n~*+? and height m~*+) and each
column contains s'” little boxes, we have

N .1
Nrk,Rk =S5 t.
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Then by (3.2),
log Ny, g, (F) > l/logs+llogt—logc' (3.3)
log Ry — logrg log Ry — logryg
Note that
logRy &k logm

= k .
log ry k+l_> logn ask e

Thus for k large enough, one has

=:09.

log R 1
|- 28l 3(1— Ogm)/z
log i logn

Since m~*+D ~ p=* and m~*k++1) ~ p=k+D Jetting k — oo, by (1.1) and (3.3),
we obtain that

log N r(F)

hF(80) = lim —
F (o) R S log R —logr

rl=%0<R<1

> Tim_ log Ny Ry (F)
k—o00 log Ry — IOg Tk

> log,, s + log,, .
Therefore,

dimgq F =Slim hr(8) > hr(8o) > log,, s +log, t. O
-0

4. Quasi uniform disconnectedness

In this section, we first give the details of Example 1.11 and Remark 1.12, which
will help us to understand the notion of quasi uniform disconnectedness. Then,
we turn to its relationship with quasi-Assouad dimension and prove Theorem 1.10
and Proposition 1.13.

4.1. Details of Example 1.11. Fix « € (0, 1), since Y ;o ,(i +1)™* = +oo, the
product []72, (1 — (i + 1)™*) converges to 0. Therefore,

k
li = li -G +1)™ =0.
e = fim [10 =G+ 0™
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We claim that the sequence {ay } satisfies

1
(1) limyg oo okt —
log ay

logk

log ay

log(ax — ax+1) _
log ay.
For (1), we have

(3) limg oo

1 log(1 — 2)«
08 f+1 — 14 lim og(l —(k +2)7%) ~ 1
k—o0 log ag k—o0 log ag
For (2), by Stolz theorem, we have
I log(1 +1 2)«

k—oo —logayg koo log(ak/ak+1) koo k

Since ay — ap4+1 = (k + 2)"%ay, by virtue of (2), we obtain (3).

Suppose E is uniformly disconnected, then there are constants C > 0 and
r* > Osuch that forany x € Eand 0 < r < r*, we can find a set £, C E
satisfying

ENB(x,Cr)C Ex;, C B(x,r) and dist(Ex,, E\Ex,;) >Cr.
If we take k > 1 large enough such that a; /2 < r* and
ak — ak+1 = (k +2)%ax < Cay/3,

then one can not find such Ey , for x = a and r = ax /2. In fact, since the gap
sequence {ay — ai+1}k is decreasing, for any subset A C E N B(x, r) containing
x, we must have

dist(A4, E\A) < ap —ap+1 < Car/3 <Cr.

Therefore, E is not uniformly disconnected.
Letr*=1.For0 <r <r* let

Y (r) = (ak — ax+1)/2

ifay <r <ag_ forsome k > 1 (withag_y = 1 if k = 1). Then ¥ (r) < r for all

0<r<r*and |
lim gy (r) =1
r—0 logr

by (1)-(3).
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Given both x € F and 0 < r < r*, suppose a; < r < ay—; for some k. If
0 <x < ag41,thenwe take Ex » = [0,ax4+1] N E;if agy1 < x < 1, then we take
Ey , = {x}. Then

EN B, ¥(r) C Ex, C B(x,r) and dist(Ex.,. E\Ex,) > ¥(r).

Therefore, E is quasi uniformly disconnected.
Since E is not uniformly disconnected, we have dimy £ = 1. For any ¢ > 0
and § € (0, 1), we will verify hg (8) < e. Thendimyyq E = lims_,o hg(§) = 0.
Since the gap sequence {ay — ag+1}x is decreasing and limg o, ax = 0, when
k is large enough such that a; < (1 —ay)/2, we can find a unique positive integer
my such that (am;, — am;+1)/2 < ax < (Amp—1 — am,)/2. By (1)-(3), we have

0.
k—o00 log Aj—1 k—o00 IOg Ak—1

Therefore, there exists a positive integer ko such that for all k£ > ko,

min{log(amk/ak) log(2my)

> -4
logag_; ~ logaj_, } =%

which means that

max {5 2mi | < a . @.1)
Ak

Forany 0 < r < r1=8 < R < ak,, assume thata, <r <a,—janda; < R <
aj— forsome n > 1 > ky. Since E = ([0, am,] N E) U ([am,—1, 1] N E), we have

NpRr(E) = sup Nr(B(x,R) N E)

x€E
E Nan (E)

Am,

2a,

<

+ my

Grmn ,2mn}.

dp

Then by (4.1), N, gr(E) < a;f*i < r7% < (R/r). Since the set E is compact, we

can find a constant ¢ > 0 such that N, g(E) < ¢ (R/r)* forall0 < r < r'=% < R.
Therefore, hg(§) < e.

< max{
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4.2. Details of Remark 1.12. Suppose E is quasi uniformly disconnected, then
there is a constant 7* > 0 and a function ¥ : (0,7*) — (0,r*) with ¢ (r) < r for
all0 <r <r*and

1
lim 28V _
r—0 logr

such that for any x € £ and 0 < r < r*, we can find a set E , C E satisfying
ENB(x,y¥(r)) C Ex, C B(x,r) and dist(Ex,,, E\Ex,) > ¥ (r).
If we take k > 1 large enough such that 1/(2k) < r* and

—log[k(k + 1)] <logy(1/(2k)),

then one can not find such Ex, for x = 1/k and r = 1/(2k). In fact, for any
subset A C E N B(x, r) containing x, we must have

dist(A, E\A) < 1/k —1/(k + 1) = 1/[k(k + 1)] < ¥ (1/(2k)).

Therefore, E is not quasi uniformly disconnected.

4.3. Quasi uniform disconnectedness of fractal

Proof of Theorem 1.10. Assume that dimyq £ = s < 1. For any § € (0,1) and
re(0,1),let

log N, r(E
he@S.r) = sup L’R()_
r1-s<g< l0g R —logr

Then by (1.1), we have
lir%hE(S, r) = hg(6).
r—

For any 6 € (0, 1), there exists a real number rs € (0, 1) such that for any
r € (0,rg), we have

he@.r) <hp@)+(1—=s5)/2=<s+1—=5)/2=(1+s)/2.
Then whenever r € (0,rs) and '~ < R < 1, we have

Ny.r(E) < (R/r)1+9/2, 4.2)
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Forany 0 < R < 1, let

{log rs ) 2log6 }

R) =i f - L, )
P(R) 01% ax log R 1—-6 —(1—s)logR

<o<1

Then we have

2log6
R > — 4.3
PR Z 5 ogR ™ *3)
Fix § € (0, 1), we obtain that
— — logrs 8 21log6 8
11z1—>mop(R)§11e1LnomaX{logR_ ’1—5’—(1—s)logR}E i

Therefore, we have

fim (0 = 0
Fix x € X and R € (0, 1), let r = R'*2/(®) Let By = {x} and
B; = B(x,ir)\B(x,(i — l)r)foralli > 1.
Write ng = [R/r], where [z] denotes the integral part of the real number z. Then
nr = [R72PR] = [RTTR 6T > 4.
Theorem 1.10 will follow from the claim below.
Claim 2. If R € (0, 1), then B; N E = @ for some 1 <i <ng.

Otherwise, we may assume that B; N E is non-empty for all 1 <i < ng. Take
apoint y; € B; N E foreach 1 <i < npg and let

O ={y;|1<i<ng}
Forany 1 <i,j <ng with j > i + 3, we have
d(yi, yj) = d(x, y;) —d(x, yi) > (j = Dr —ir = 2r.

Then B(y;,r) N B(y;,r) = @. Therefore, a ball with radius r covers at most three
points in ®, thus

nr/3 < Npr(E). (4.4)
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By the definition of p(R) and (4.3), there exists a § € (0, 1) such that

1 ] 2log6
max{ogr‘g 1 o8

logR ’1—8’—(1—s)10gR} < 20(R).

Then for such §, we have r < rg, r1=8 < R and

log6

Thus, by (4.2) we have N, g(E) < R~(+9r(®) Using (4.4) and the definition of
ng, we obtain that R/(6r) < ng/3 < R~1+92() which implies

log 6
Ry<— %8>
PR = = Tog R

This is contradictory to (4.5). The claim is proved.

Forall R € (0,1),lety/(R) = R'*2*® and 1 < ig < ngsothat B;,NE = @.
For any x € E and 0 < R < 1, by virtue of Claim 1, if we let

Exr = E N B(x,.(ir = DY (R)),
then
ENB(x,¥(R)) C Ex.rg C B(x,R) and dist(Ex g, E\Ex.r) = ¥V(R).
Therefore, the quasi uniform disconnectedness of the set E is obtained. O

Before the proof of Proposition 1.13. We give the following lemma first.

Lemma 4.1. Let n, =2 and ¢ = 2("k—er12)f0r all k > 1. Then the uniform Cantor

set F e M(J,{ng}r,{ck}x) is quasi uniformly disconnected.
Proof. Letr* = . Forany 0 < r < r*, let
V(r)=cr...ck - (1 = 2¢k41),
where k > 1 is the unique integer such that ¢y ...cx+1 <r <cp...ck. Then
Y(r)y<ci...ckpq <r forallO<r <r*

and

lim 28Y ) _
r—0 logr
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Fix x € Fand 0 < r < r*. Suppose k > 1 is the unique integer such that
€1...Ck41 < 1r < c1...c,. Note that the length of every basic interval I of
rank k + 1 of F is ¢;...cryq and dist(Z, F\I) > v (r). Then the closed ball
B(x, r) contains a basic interval I, , of rank k + 1 of F such that x € I, ,. Take
E., = I, N F, one can check that

FN B, ¥(r) C Ex, C B(x,r) and dist(Ex,, F\Ex,) > ¥(r). O

Proof of Proposition 1.13. Let F be the uniform Cantor set given in Lemma 4.1.
Then by (1.3), we have dimgyg F = 1.

Suppose ®: 2 — [0, 1] is a set function such that ®(E) > dimy E for any
compact set £ C R. If it satisfies for all compact sets £ C R, one has ®(F) < 1
if and only if E is quasi uniformly disconnected. Then since F is quasi uniformly
disconnected, we should have dimg F < 1, which is impossible. |

5. Quasi-Assouad dimensions of Moran sets

In this section, we first compute the quasi-Assouad dimensions of Moran sets
under the assumption that

log ¢

8% _
kmroo log(c1 - - cx)

Then, we will give the proof of Proposition 1.6.

Proof of Theorem 1.14. For 1 < p < g, let

_log(np...ng)

P4 = Tlog(cy ... cq)

Notice that dimg4 F = lims_,¢ 2 r (8). It suffices to show

hp(8) = lim max s,, foranyé e (0,1).
q—=>001<p=<iys

Step 1. Fix § € (0, 1), we will verify

hp(8) <limgo max sp4.
lfpflq.tﬁ

Fix s > limy— o0 maxi<p<l, 5 Sp,q» WE are going to find two constants b, ¢ > 0
such that N, g(F) < ¢(R/r)® whenever0 < r < r'™% < R < b.
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Since

s> lim  max sp4,
g0 1<p=<ly s

one can find a constant ¢ > 0 small enough such that

s(1—0)> lim max s,4.
g0 1<p=<iy s

Then there exists a positive integer N; such that for all g > Ny,

s(1—0)> max sp,4. (5.1)
lfpflq,é'

Since
logc
im # — O’
k—o00 IOg(Cl .. .Ck)
there exists a positive integer N, such that for all k > N,,

logick < 8_0_ (5.2)
log(cy ... ck) 2

Let N = max{Ny, N>}. Take b =c¢;...cyandc =3. For0 <r < P8 < R <
b, we may assume that

ci...cp<R<cr...cpm1 and cj...cg <1 <cp...ce—1

for some ¢ > p > N + 1. Then a ball of radius R intersects at most three basic
intervals of rank (p — 1) of F, thus

log(np...ng) log(np...ng)
Ny.g(F) <3np...ng = 3(R/r) WD < 3(R/r) oo cathosepes  (5.3)

Since (c1...c)' 8 <r'™¥ < R <cy...cp1, we have

log(cp ...cq) s

. 4
log(cy ...cq) 54)

That means 1 < p <1, 5. By (5.1), we have

Sp.g = dog(ny..ng). <s(l1—o). (5.5)

~ —log(cp ...cq)
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On the other hand, by (5.2) and (5.4), we obtain that

log(cpeg) _ logep +1logey log(c ... cq)
log(cp .. .cq) log(ci...cq) log(cp...cq)

- ( logc, log ¢, )l
log(cy...cp) log(cr...cq)/ &
<2 do 1
2 6
=o.
Then by (5.5),
log(np ...ng) _ log(np ...ng) _ Spa

—log(cp...cq +1logepey) = —(1—o0)log(cp...cq) 1-o0
Therefore, by (5.3), we have
Nyr(F) <3(R/r)’* =c(R/r).
Step 2. Fix § € (0, 1), we will verify

hr(§) > limgo max sp4.
lfpflq.tﬁ

Fix a > hp(8), we may assume that there are two constants b, ¢ > 0 such that
N;r < c¢(R/r)* whenever 0 < r < r'=% < R < b. Without loss of generality,
we may assume that there exists a positive integer M such thatc;...cpyy < b <
cy...cpy—1. Fix e € (0,2(1 — §8)/6), we can take a positive integer N > M large

enough such that for all g > N,

log(cy...cm) 3 an log4c 8¢
log(c1...¢q) 2+¢ —log(cy...cq)

Foranyg > N,letr =c;...cq. Since

log(cpr+1--.¢4) i log(cy...cum) B
log(cy .. .cq) log(cy...cq) 2+ ¢

> 6,

(5.6)

then M + 1 < I, 5. For any integer p € [M + 1,1;5],1et R = ¢1...cp—1. Then

0<r<r'=% <R <b,and thus

Nrr(F) <c(R/r)* =c(cp...cq)™.

5.7
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Since a ball of radius r intersects at most four basic intervals of rank ¢, we have

N r(F) > (np...ng)/4.

Hence, by (5.6) and (5.7), for any integer p € [M + 1,1/, 5],

1 log4c
og(np ...ng) < 0g4c T
—log(cp...cq) = —log(cp...cq)
_ log4c ' log(cy .. .cq) fa
—log(cy...cq) loglcp...cq)
- e 1 4
—_ . — a
2 6
+ €
=o+ .
2
Therefore, since ¢y < 1/ny for all k, for any integer 1 < p < M, by (5.6), we
have
log(n, ...ng) _ log(ny...ny)  log(napr4i1...1nq)
—log(cp...cq) —loglcp...cq) —log(cp ...cq)
log(cp ...cm) log(npr+1...nq)
~ log(cp...cq)  —loglems1...cq)
1
< og(cy...cm) vatl
IOg(CM_H - Cq) 2
1 1
_ og(cy...cm) ) og(cy ... ¢q) Lo+ €
log(ci...cq) log(epm41...¢q) 2
€ 2+¢ €
<

2+8. ) +Ol+§

=o+te.
In a word, forany ¢ > N andany 1 < p </, s, we have 5, 4, < a + €. Then

lim max s,4 <oa+e.
q—00 1<p<l, s

Letting ¢ — 0, we have

lim max s,4 <oa.
g0 1<p=<ly s
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Therefore, we obtain that

lim max s,4 <hr(9).
g0 1<p=<iy ;s

When infy ¢; > 0, note that

(g — p + 1) logsupy, cx - log(cp ...cq) - (g — p + 1D loginfy cx

q loginfy cx “log(er...cq) q log supy cx
we have _
_gologinfice _, oy 98logsupcck
log supy, cx ’ log infy cx

Therefore, when § is small and ¢ is large, we obtain that

(1 B 8 loginfy cx

8 log supy, ¢k )
log supy, cx '

) <lgs = q(l 2loginfy cx

Now, we turn to the proof of Proposition 1.6.

Proof of Proposition 1.6. Let ny = 2 for all k > 1. Let {a;};>1 be a sequence of
positive integers with a; = 1 such that

b(c —a)
aj+1 > ———=a; +i foralli
i+1 ac —b) i+
and .
liml—: lim ar+ax+---+ai— 0.
i—o00 d;j i—00 a;

For any k > 1, if k € [a;, a;+1) for some i, then let

_ b(c —a)
1/c . . .
2 1fk6[a,,—a(c_b)al),
=1 _ . b(c—a) b(c—a) .
Ck »d itk ) .
! e[a(c—b)a”a(c—b)al_l_l)’
271 otherwise.
Under these assumptions, it is clear that infg ¢ > 0 and _l(ig—"fk € {a,c,d} for all

k > 1. We will verify that any Moran set F' € M([0, 1], {nx}x, {cx }x) satisfies

dimg F =a, dimgF =b, dimg4aF =c, dimyF =d.
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First, by (1.4), we have

1

=d.
m—00r>1 —log(cr1---Chtm)

Then, since zgjzg > 1, by Theorem 1.14, we obtain that

S log(n,...n
dimg4 F = lim lim  max log(np .. .nq) =c.
n—>0g—>0 1<p<q(1-n) — log(cp ce Cq)

Finally, since

m log(ny...ng)
im ———— =aq
k—o0 — log(cl .. Ck)
and

Tm Joglm...me) _

k—o0 — log(cl .. Ck)
by (1.3) we have dimg F = a and

dimp F = b. O
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