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Asymptotic perturbation of graph iterated function systems

Haruyoshi Tanaka!

Abstract. We study an asymptotic perturbation of the limit set generated from a finitely
family of conformal contraction maps endowed with a directed graph. We show that if
those maps have asymptotic expansions under weak conditions, then the Hausdorff dimen-
sion of the limit set behaves asymptotically by the same order. We also prove that the
Gibbs measure of a suitable potential and the measure theoretic entropy of this measure
have asymptotic expansions under an additional condition. In final section, we demon-
strate degeneration of graph iterated function systems.

Mathematics Subject Classification (2010). Primary: 37B10; Secondary: 37C45, 37D35.

Keywords. Thermodynamic formalism, symbolic dynamics, asymptotic perturbation.

Contents
1 Introduction . . . . . . ... . . . ... ... 120
2 Auxiliary propositions . . . .. ... 125
3 Proofs . . . . .. e 129
4 Examples . . . .. 147
References. . . . . . . . . . . . e 160

!'The author is heartily grateful to the referee for his valuable comments.



120 H. Tanaka

1. Introduction

Let D > 1 be an integer. We consider a triplet (G, (Jy), (T,)) satisfying the fol-
lowing conditions.

1 G = (V, E,i,t) is a finite directed multigraph which consists of a vertices
set VV, adirected edges set £ and two functions i,t: E — V. Foreache € E,
i(e) is called the initial vertex of e and ¢(e) called the terminal vertex of e.
Assume that the graph G is strongly connected and aperiodic.

(2) For each v € V, a subset J, C RP is compact and connected so that the
interior of J, is not empty and J, and J, are disjoint for v’ # v.

(3) Foreache € E,amap T,: O;¢) — Oi) is conformal C ' *A-diffeomorphism
with 8 > 0 and satisfies 0 < ||7,(x)|| < 1 for x € Oy, TeJi(e) C Ji(e) and
TeJi@e)y N TerJiery = O for e’ € E with ¢’ # e and i(e') = i(e). Here
Oy(ey C RP is an open and connected subset containing J; () and ||7.(x)||
denotes the operator norm of 7,/(x) on RP.

It is known that there exist unique non-empty compact subsets K, C J, forv € V
such that
K, = U Te(Kt(e))
ecE:i(e)=v

is fulfilled. Put K = (J,cp K. In this paper we call the triplet (G, (Jy), (Te))
a graph iterated function system (GIFS) and this set K the limit set of the GIFS.
Such a system is studied by many authors ([4, 7, 9, 10, 11]) and they be mainly
interested in the calculation of the Hausdorff dimension of K.

Now we state one of our main results. Recall that for an integer k > 0 and a
number 8 > 0, a map f(x) from a subset A of a normed space (X, || - |x) to a
normed space Y is of class C¥*# if k-th derivative f®) of f exists and there is
a constant ¢ > 0 such that || f ® (x) — f® (y)|x < cllx — y|2 forany x, y € 4,
where || - ||x is the usual operator norm on Y*. Fix a GIFS (G, (J,).(T,)) and
an integer n > 0. We give a family of GIFSs (G, (Jy), (Te(€,))) with a small
parameter € > 0 so that

(G), there exist numbers 8 > 0 and B(¢) > 0, and R?-valued functions 7, of
CrH1+B T, of C" B, . T,, of C'*8 and T, ,(e,-) of C'+P© defined
on Oy () for each e € E such that T, (e, -) has the form

T, + Te,lE +-- 4+ Te,nén + 7’:E,rl(a ')én on Jl‘(e)’

and, |Te,n(e, )| = 0 and ||%7~"e,n(e, 9|l = 0 as e — 0 are satisfied, where
| - | is a usual norm on RP.
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We note that 8(¢) may tend to 0 as € — 0. Let K(¢) be the limit set of the GIFSs
(G, (Jy), (Te(e,-))) for € > 0. Now we are in a position to state one of the main
result.

Theorem 1.1. Assume that condition (G), is satisfied. Then there exist numbers
S1,...,8, € Rsuch that dimg K(¢) = dimg K + s1€ + --- 4+ s, + 0(¢") in R,
where dimgy K(¢) denotes the Hausdor{f dimension of K (¢).

Each numbers sy, is explicitly determined for the GIFS (G, (Jy), (T,)) and the
maps Te.1, Te2, - - - Ten ([14] for detail).

Remark 1.2. (i) In the system (G, (J,), (T,)), if the cone property (condition (d)
in [11]) is imposed on the set J, for each v € V, then this system satisfies the
condition of conformal graph directed Markov systems (CGDMS) defined in [11]
with a finite alphabet. In addition to the property, when V' consists of one point v,
our system fulfills the condition of conformal iterated function system with a finite
alphabet (finite CIFS) defined in [10].

(ii) From each T, is a conformal C !-diffeomorphism, this map is either holo-
morphic or antiholomorphic if D = 2, and Liouville’s theorem (Theorem A.3.7
in [2]) implies that this map has the form

Te(x) = é‘eAe(l.lg,S(), (%)) + pe (1.1)

if D > 3, where {, € R, p. € RP, A, is a linear isometry on R?, and i, ¢,
is either the identity or the inversion with respect to the sphere with the center
te € RP and the radius & > 0. This inversion is defined by

x_Le

. 2
lle:ée(x) = le + Ee |X -1 |2'
e

(iii) When V consists of one point v and the cone property for J, is fulfilled, our
theorem under n = 0 contains a similar result of Roy and Urbariski (Theorem 5.8
in [10]).

(iv) Assume that D > 3 and the cone property for J,, v € V, are satisfied. Let
SO(D) be the totally of linear isometries on R? whose determinants are 1, and
I' = (0,00) x (0,00) x R? x RP x SO(D). Note that I" is an open subset of
R2+DP(P+3)/2 For the five parameters ze = (e, £e. Le, pe, Ae) € I' of T, defined
in (1.1), denoted by K((z.)) the limit set of the GIFS (G, (Jy), (T,)). We write
B(z., R) for the open ball with the center z, and the radius R. Under this notation,
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Roy and Urbanski (Theorem 7.2 in [11]) showed that there exists a small R > 0
such that B(z., R) C I" for any e € E and the map

[1 BGe. B) 3 (ye) — dimp K((ye))
ecE

is real-analytic. Our theorem gives an asymptotic version of this result. In fact, it
is not hard to check that if the five parameter

Ze(€) = (Ce(€). §e(€), Le(€). pe(€), Ae(€))

of T, (e, -) has n-order asymptotic expansions

n
Ze (E) =Ze + Z(é‘e,ks Ee,ka le,ks Pe k> Ae,k)ek + Ze,n (E)én
k=1

with |Z. ,(€)| — Oas e — 0, then the GIFSs (G, (J,), (Te (€, -))) satisfies condition
(G)yn. In particular, each coefficient 7, x (k = 1,2,...n)is given as C*.

For the second result, we also introduce the following condition:

(G);, under condition (G),, the small order parts To.n(e, x) satisfy

Jd ~ d ~
|5 Tente.) = ——Tente.y)|
c¢1 = lim sup max sup X ; <
€>0 e€E x,y€0;(e): X#Y lx =yl

oQ.

We give some notation below. We take a number r € (0, 1) so that r > ||7,| and
r > SUprey, |T,(e, x)|| for any e € E and for any € > 0, where Uy is given
by (2.1) in the next section. Denoted by

o
E®) = {a) = @O € [] E: t(p) = i(@psr) forall k = o}
k=0
a code space. The shift transformation

o: E® — g

is defined by
(00 = wpq1  forw = (wy) € E©.

The pair (E(), ) is called a subshift of finite type. Let

w: E® _, RP
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be a coding map for the GIFS (G, (Jy), (T,)) defined by
o
70 = () Two* Tug J1(wy) forw e E©.
k=0

We put the function

¢(0) = log||IT;, (mow)|| (1.2)
for o € E(. For each ¢ > 0, (¢, w) means the coding map of the GIFS
(G, (Jv). (Te(e,-))) and @(e, ) the function log | £ Tu, (€, 7 (e, 0w)) |. Denoted
by p the Gibbs measure of (dimg K)¢ on E© and by ji(e, -) the Gibbs measure
of (dimy K(€))¢(e, ) on E(_ It is known that the (dimy K)-dimensional Haus-
dorff measure restricted to K is equivalent to the measure p o ~! by condition (3).
For 6 € (0, 1), a metric dg on E© is defined by

dg(w,v) = 8™,

with mg = min{m > 0: @, # Uy}. For K = C, R or RP, let C(E©®), K) be the
Banach space consisting of all IK-valued continuous functions on E (> endowed
with the supremum norm

Ifllo = sup [f(@)],

weE ()

and Fg(E, K) the Banach space consisting of all IK-valued dg-Lipschitz con-
tinuous functions on E (> endowed with the Lipschitz norm

I/ lle =1l flloo + [f]6.

where (@) — )
w)— v

[f1e =SuP{wta)o=Uo, a)?év}

If no confusion can arise, we may omit KK from notation of these two spaces.
We obtain the second result as follows.

Theorem 1.3. Assume that condition (G)), is satisfied. Choose any 0; € (r8.1).
Then there exist linear functionals |11, L2, ..., Uy € F(;‘1 (E© R), and numbers
Hy, H;, ..., H, € R such that for each f € Fp, (E(°°),C)

ple. f) = u(f) + mi(N)e+ -+ un (/)" +o(") inR,
h(p(e,)) = h(p) + Hie + -+ Hue" + o(€") in R,

where h(ji(€,)) denotes the measure-theoretic entropy of the Gibbs measure [L(€ ).
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We would prove Theorem 1.1 and Theorem 1.3 in Section 3. We remark that
Ui,..., U and Hy, ..., H, are exactly given [14].

One of our motivations for studying those asymptotic expansions is as follows.
For a fixed GIFS (G, (Jy), (Te)), we decompose the edge set E of the graph G into
E = E(0)U E(1) with E(0) # 0. Consider a family of GIFSs (G, (Jy), (Te(¢,-)))
with a small parameter € > 0 so that

[Te(e,) — Te] — 0, e € E(0),
[Te(e,) —ael — 0, e € E(1),

as € — 0, where a, is a constant. Put

o
E(0)©) = {(a)k);;;o e [[EO: 1) = i(@ks1) forall k > 0}

k=0
and

0(0) = o|g gy -
In this setting, when ¢ tends to 0, the subshift (E(° o) corresponding to
the perturbed system (G, (Jy), (T(€,-))) changes extremely to the subshift
(E(0)©),5(0)) corresponding to the unperturbed system (G(0), (Jy), (T.)) at
€ = 0, where G(0) = (V, E(0)). Such a situation is often called a singular
perturbation of symbolic dynamics ([5, 6, 8]).

One of our interests is to study the behaviour of the dimension dimg K (€), the
Gibbs measure u (¢, -) and the measure-theoretic entropy of this measure as € — 0.
It is known that dimg K (¢) converges to dimy K (G(0)) as € — 0 (as in a special
case treated in [8]), where K (G(0)) is the limit set of (G(0), (Jy). (Te)). On the
other hand, the continuity of the Gibbs measure p (¢, -) depends on the number of
strong connected components of G(0) and on the convergence speed (or higher
order asymptotic expansion) of each T, (¢, -). In fact, it is known that when G(0)
consists of two strong connected components { H1, H»} and the two dimensions
dimg K (H,) and dimy K (H,) are equal, the limit lim¢_¢ u(e, ) = pu exists if
Te(e€,-) has a 1-order asymptotic expansion for each e € E and some conditions
are satisfied (Theorem 4.1 and Theorem 4.9 in [15]). In particular, this limit u has
the form p = y1ji1 + y2 iz with y1, ¥2 > 0 and y; + 2 = 1, and this coefficient is
determined with the convergence speed T, ;, where each fiy is the Gibbs measure
corresponding to (Hyg, (Jy), (T,)) for k = 1,2. To deal with such a problem, we
need to study high order asymptotic behaviors of the dimension dimg K(¢) and
the Gibbs measure j(¢, -) under the case when E(1) = @, and state these in the
present paper. This argument is very important in our future work in the case when

E(1) # 0.
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In Section 2, we give some notation and auxiliary propositions which need to
prove the main theorems. Proofs of the main theorems are shown in Section 3. In
the last section 4, we provide concrete examples which satisfy condition (G); or
(G)} in Example 4.1 and Example 4.2. In particular, we demonstrate an example
in which the small order part of a function T, (e, -) is of C1*#(© and B(e) tends to
0 as € — 0. In Example 4.3, we formulate degeneration of graph iterated function
systems and calculate the speed of Hausdorff dimension of this limit sets. This
example is one of examination in the case when f{E(1) # 0.

2. Auxiliary propositions

In this section, we give some auxiliary propositions which need to prove the main
theorems. We begin with the following fact. Let (G, (Jy), (T,)) be a GIFS. Put

Uy = ) B(x.9) 2.1)

xedy

for small § > 0 with U, C O, for all v € V, where U, is the closure of U,. Then
these U, are open, relative compact and connected subsets of RP. Furthermore,
T.Ue) C Ui for any e € E is satisfied by T, J;) C Ji(e). We have the next
result:

Proposition 2.1 ([9]). Under the above notation, for any v € V and for any map
T of class C' from O, to a normed space (Y, | - ||y), for each x,y € J,

I7(x) =Ty <c2 sup [T'(2)]l|Ix — ¥l (2.2)

zeUy

is satisfied, where we put

( diam(J, ) )}

= max 31, max
€ { dist(J,, 0U,y)

veV
Choose any e (0,6) and put

U, = U B(x,S) foreachv € V.

x€Jy

We note that even if we replace the set J, in Proposition 2.1 by ﬁv and the constant
¢z by max{1, max,ecy (diam(U,)/ dist(U,, dUy))}, the assertion of this proposition
is correct.
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Proposition 2.2. Let (X, | - |lx), (Y, || - |ly) be normed spaces. Assume that a
function f(x) from a bounded open set O of X to Y is of C" TP with n > 0 and
B > 0. Then for any x,y € O with {tx + (1 —¢t)y: 0 <t < 1} C O there exists
an n-multilinear map L(n, f, x,y) from X" to Y such that

n )
=10+ Y LD e e @)
k=1 ’
where f®©(y)(x — y)* means f®()(x—y,....x—y) and L(n, f.x,y) is
———
defined by k

L(O7ﬁx7y) = f(x)—f(J’),

1 (1 _ t)n—l

T AR SR R A L

Lo fix) = |

for n > 1. In particular, |L(n, f,x, y)|ln/|lx — y||§ is bounded uniformly in
x,ye Owith{tx+(1—-1t)y:0<t <1} CO.

Proof. The expansion of f(x) immediately follows from Taylor theorem [1]. It
suffices to prove the last assertion. We have

&Sﬂﬁﬁzﬂg</l (1— )"

< SO+ =) = FO ) di
lx - y1%

o (n—=D!x—=yly

1 -1
(1-1y
=/ Felly + 1= ) = I di
o (= Dilx =y

1 1—1¢ n—1
<c Qzﬁ dt = ¢ .
o (=1 B+1)--(B+n)
Thus we obtain the assertion. O

Proposition 2.3. Let (X, | - |x), (Y, || - lly) be normed spaces and O C X a
bounded open set. Assume that a map f(e,-): O — Y with a parameter ¢ > 0
has the form f(e,) = f + fie + -+ fn€" + fu(e,)e" and | fu(e.")|ly — 0
as e — 0 withmaps f = fo of C"B, fi of C? 1B .. f, of CP and f,(e.-)
of CB. Further, x(¢) € O satisfies x(€) = x + x1€ + -+ + xXu€" + Fp(€)e”
and | X, (€)|lx — 0as e — 0 for some x = xog € O and x1,...,X,, Xn(€) € X.
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Then f (e, x(€)) has the form

f(€,x(€)) = yo + y1€ + -+ + yn€e" + Yn(e)e”

and || yn(€)|ly — 0 as e — 0 by putting

yo = f(x),
j—=1j-I k)
SO (X - Xiy) .
UEFOED D DEED D o l=i=n
1=0 k=1 i1, ip=1: :
i1++ig=s—1

and

n—1 n—I (k)
~ /i (x)(x,-l,...,xik) i—n
ZOEDI Z >, T e

=0 k=1i=n—1+41 1=if.....ig=n:

i1+<~+ik=i
n n-—l
+Y Y Ml ke, x)
1=0 k=1

x(€) —x\n-!
€

+3° L1 fiox(o).x( )+ falexie.
=0

where
k
M ke.x) =Y (B0 —x = Fale)e", ..., Fa(e).....x(€) — ).
i=1 —
i-th
Proof. We have

fle.x(€) = f(x(€) + fi(x()e + -+ + fu(x(e)€" + fule. x(€))e"
n (k)
( )

_ — Kk
—g(g (x(e) — x) 04
F L —1, fi,x(€), x)(x(e) x)”_l)el
+ f;(e,x(e))e”

with (n — [)-multilinear maps

Lin—1, fi,x(e),x): X" — Y
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by using (2.3) in Proposition 2.2. Here

[P @@ =) = £ @) (e + -+ xn€" + Fule)e™*

= Y FPW@net . xi €) + MUk €, x)e"

I yeees ir=1

for k > 1 is satisfied. Thus we obtain the form of f(e, x(¢)). We see the fact
|7n(€)|ly — 0 as € — 0 by the definition of ¥, (¢). Hence the assertion is given.
O

Finally we recall an asymptotic solution of the equation P(sf(e,-)) = 0 for
s € R [14]. Here P(f) is the topological pressure of a function f € C(E® R)
which is defined by

k—1
P(f)= lim % logZexp(supZ f(crja))>, 2.5)
T @ =0

where this first summation is over all paths t = 77 --- 1% € E¥ ie.
1(tj) =i(tj4+1) forl<j=<k-—1,

and the supremum is taken over all w € E( with wg---wg_; = . It is known
that if f(e,-) € C(E©®,R) is negative, then the equation P(c,sf(e,)) = 0 has
an unique solution s = s(¢). Suppose that there exist both 6, 6(¢) € (0, 1), and
fofireos fn € Fo(E©®) R) with f < 0, as well as fu(€,) € Fpe(EC, R)
such that

fle,) = f + fie+ -+ fu€" + fule,)e"

and
”fn(éy)”oo —>0 ase —0.

Then we obtain the following result.

Theorem 2.4 ([14]). Under the above condition, there exist s1,...,5, € R such
that

s(€) =s +s1€+---+sp€” +o(") inR, (2.6)

where s is an unique solution of the equation P(sf) = 0.
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Note that in Theorem 2.6 of [14] this theorem is shown when 6(¢) = 6. On the
other hand, in the case when 6(¢) — 1, Theorem 2.4 also follows from the proof
of the same Theorem 2.6 in [14] with no change at all. In fact, in this Theorem,
the asymptotic expansion of the eigenvector v(e, -) corresponding to the Perron
eigenvalue of the dual of the Ruelle operator of s¢(e, -) can be proven from the
condition 6(¢) € (0, 1) for € > 0.

3. Proofs

In this section, we will show Theorem 1.1 and Theorem 1.3 which are given in
Section 1. We use the notation defined in Section 1 and Section 2. For the
sake of convenience, we denote the composite map T, - - T, by Twyw, and
To(€,) - T, (€,°) BY Tipgoo, (€, ) for @ € E Further, we sometimes write
% T, (€, x) as T, (e, x) when no confusion is possible. We first prove the following
lemma.

Lemma 3.1. Assume that (G), is satisfied. Choose any 0, € (r,1). Then there
exist wy, ..., my € Fp, (E©)  RP) such that (e, -) has the form
n(e,")=m + €+ -+ mpe” + Ty(e,)e”
and
|7, oo — O ase — 0.

Proof. First we show this assertion in the case when n = 0. For each w € E ()
and k > 0, we have

|7(e, w) — rw|

= | Ty (€, (€, 5T 0)) = Tpoao (¥ T 1)

< | Ty (7(€, KT 0)) = Ty (m* L)
k
+ Y N Twgwi1 Topa (€. w(€. 05 w)))

i=0
T Ty (Topy oy (6. 7. 0*H 0)))]

k+1 k+1 T
< czsupzeUt(wk)|(Tw0...wk)/(z)||n(e,0 o) — oMol + [Tyyole, )|

k
+ea ) SUP v, | (Togwi—1)' () Ty 0 (€. Ty (€ (e, okt 1w)))|
i=1

k+1

< casup, ey diam(Uy)r + supe€E|Te,0(e, N+ cor +-+-+ 02rk)
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from inequality (2.2) in Proposition 2.1 by putting 7 = T,,..«; - Letting k — oo,
l7(e,r) — oo < supe€E|Te,0(e, J)lea/(1 — r) is satisfied. Thus we obtain the
assertion in the case when n = 0.

Next we prove the form 7 (e,-) = 7 + m€ + 71(€,-)e and ||71(€, ) ||o — O
for some 7;(e,) € C(E©) RP) under condition (G);. To see this, we claim
limsup,_, |77 (€, -) — || oo/€ < 00. We note the inclusion 7 (e, E©) C |,y Uy
for sufficiently small € > 0. In particular, trw + (1 — )7 (€, ) is in Uy (4, for any
we E® 0 <t <1andsmall e > 0 from uniform convergence of (e, -). For
each w € E(*) and small € > 0, we have

|7(€. 0) — o)
= |Tpy(€, (€, 00)) — Ty, (ToW)|
= |Tpy(7w(€,00)) — To, (ToW)
+ Tpp,1 (7w (e, 00))€e + Two,l(e, (€, 0w))€|

< sup ||TL;0(t7r(€,oa)) + (I —t)mwow)|||w(e,00) — Tow
tef0,1]

+max(|Te, 1| + | Te,1(e. ) |)e
ecE
< (e, ) = mlloo + max(Tei| + |Te,i(e.))e

by using condition (G); and Mean value theorem. Thus

w(e,")—m T,
limsupM < max Tel

€e—>0 € ecE (1 —}")

is satisfied. We consider the expansion

(e, w) = Ty (m(e,00)) + Tey,1( (€, 0w))e + Two,l(e, (e, 0m))e

=rnw+ T;,O (mow)(w(e,00) —mow) + Ty, 1(mow)e + R, (e, w)e,
(3.1

where

(n(e, ow) — Jma))

Ri(e.0) = Lo(e, w) + Li(€,®) + Twy1(€, (e, 0w)),

Lo(e,w) = /01 T, (1 =t)wow + tn(e, 0w)) — T, (wow) dt

and

Li(e.®) = Tog1(1(e.00)) — T 1 (10w). (3.2)
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Note that these last two expressions also satisfy

Lo(e,w) = L(1, Ty, (€, 0w), mOW®)
and

Li(e,w) = L(0, Tpy,1, (€, 00w), mow),

where L(n, f, x, y) is defined in Proposition 2.2. We see ||§1 (€¢,)]loo = O from
the facts that ||L(n, f,x, y)|l./llx — ¥ g is uniformly bounded (Proposition 2.2)
and |7 (e, -) — 7|00 /€ is bounded. By using the form (3.1) repeatedly,

1
n(e,w) —nw = 1_[ Ta/)j (o Tlw) (e, o' Tlw) — 7o' T lw)

j=0
I k—1 . B .
+ Z l_[ Ta’)j (JTUJHw)(ka,l(ncrkHa))e + Ri(e, 0’ w)e)
k=0,j=0
(3.3)
is fulfilled for each /. Letting / — oo we obtain the form
w(e,w) =nmw + m(w)e + 71(€, w)e
and convergence
|71(€, )loo —> 0 ase — 0,
where
[e.¢]
m1(@) =Y T g (165 0) (T 1 (r0* H 00)) (3.42)
k=0
e ~
(e 0) =Y Th 0 (T0*0)(Ri(e. 0% 0)). (3.4b)
k=0

We next show thatif w(e,-) = 7 + e+ -+ mp_1€" 1 + 7p_1(€,-)e" ! and
|77n—1(€, -)|loc — O with some functions =1, ..., 7,—1, then so is for n. Consider

(e, ) = Two (€.x(e)) = Two(x(f)) + Z Two,k(x(e))ek + Two," (€. x(e))Gn
k=1
n—1
x(e) = x + Z nk(oa))ek + Fin1(e.00)e" ™,
k=1
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where x(€) = 7 (e, 0w) and x = wow. A simple result of Proposition 2.3 implies
that 7 (¢, w) has the form

m(e,w) =nmw + Ta’)0 (mrow)(m(e,0w) — mow)

+ Ri(w)e + -+ Ry(w)e™ + 13,,(6, w)e”

and

||§,,(e, Jloo — 0 ase — 0,
by putting

Rj(w) = Ty, j(mow)
T® (r0w) (1, (0w). ..., 7y (00))

AP IR Ve T

Oo<l<j— i1.0ees ip=1:

1<k<j —l —1
Cizo. 1=

X () (i, (00), . . ., 7, (00))

Ru(e, w) = Z Z Z ®o.l - cimntl

(1)<ll<<n l’ i=n—I+1 1<11 ..... ik.fnfl
THZ0.1) b=
k (k)l
+ Z Z wo ((6) o Tipi(e, o), ..., x(€) —x)el !
O0</=<n-—1 .
l<k<n—I: i-th
R)ZO.1)
X(é) ~
+Zm&m +uwmm»
=0
(3.5)
where
n—1
z(e) = Z e (ow)er
k=1
and

Li(e,w) = L(n—1,Ty,1,x(€),x)
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in Proposition 2.3. Thus by a similar argument in the case when n = 1, we obtain
the form

(e, w) =nw + m(w)e + - + Tp(w)e" + Tp(e, w)e™

with
T (@) = Y Th o, (T0F @) (R (0% ), (3.62)
k=0
Tn(e.®) =Y T) o (T0*0)(Ry(e. 0% w)). (3.6b)
k=0

Choose any 6, € (r, 1). We will show 71,..., 7, € Fp, (E© RP). We first
prove this assertion in the case whenn = 1. Letr; € (r,6,) and w, v € E( with
W0+ Wm—1 = Vg -+ Um—1 and @m # Unm. To see m; € F,, (E©, RP), consider

(Tog-or—1) (T @) (R1(0* @) = (Tugy_,) (w6 V) (R1 (6% v))

= (Twg-wr_,) (T0* @) — (Tog_,) (T V) (R1 (0% w))
+ (Tygvi_y) (@F V) (R (0% ) — Ri(0%V)) = [ (0, v) + i (v, V).

Put 7 = wg - - wi—1. Recall that for x, y € Oy(w),
I T/(x) = T}(»)| < r¥eslx — y|
is satisfied for a constant

172N~ (c2)?
¢z =max ———
ecE 1-=r)

from the bounded distortion of the GIFS (G, (Jy), (T¢)). Moreover, in the case
when k < m, we have

(0, V)] < c3r¥|mo*w — wo*v||Ri oo < 3l R lool]r, (r/11)*dy, (@, V).

Note that since Rj(w) = Tiy,,1(wow) holds by the definition, this implies in a
straightforward way that [R;],, < oco. Furthermore,

(@, V)| < r*[R1]y dr, (0% 0, 0% V) < [Rily, (r/r)¥dr, (0, V).
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On the other hand, in the case when k > m,
Tk (@, ). M (@, V)| < 2r% | Rilloo < 2l R1[loo(r/r1)¥dr, (@, v)

are satisfied. Consequently, we obtain

1 (@) — 1 ()] suZ(:) dry (©.V) = — % —d, (. )
k=0

- /
by putting
¢4 = max(c3||Riflool]ry + [Rilr. 2] R1lloo)-

Thus, 71 € Fp, (E©),RP) by ry < 6; is fulfilled.

We finally show that if we have ny,...,m,—1 € F,_, (E(°°), RD) for some
Fn—1 € (rp—2,6>), then m, is in F,, (E©) RP) with r, € (rp—1,6). We prove
that R, is in F,,_, (E, RP) by using the above argument. Note that for e € E
and/,k > 1 with/ +k < n, the function Te(,];) is atleast of C! on Oy(). Therefore,

for each w, v € E©) with wg = vy,

T8 (row) (1, (0w). ... i\ (0w)) — T (wov) (i, (0V). . . .. 77, (0V)))|
< T, (row) (1, (o). . ... 1, (00)) — T (mov) (i, (00). ... 73, (0w))|
+ |1 >, (mov) (i, (0w). . ... T, (00))
W (o) (i, (V). ... i, (0V)))|
§c2|T"‘+“||mw 76| |74, lloo - 1745 [l oo

+ Z |70 (20V) (71, (00), . .. 77, (0@) = i, (V). ..., 7y (0V))|

j-th

k+1 -1
< e T VNl I lloo 17 oo (1) "V, (@, V)

k
k _
TP Mmilloo i, Traey 1703 oo (Pne1) ™V, (@, 0)
/=t j-th

(3.7)
is fulfilled by using the inequality (2.2) as
T(x) = T, () (i, (00). . ... mi, (00)).
where

|T()|—max sup |T (k)(x)|.

ec x€U;(e)
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Therefore R, € F;,_, (E (00) RD ) by the definition of R,. Thus by a similar proof
which 7y is in F;, (E©®) RP), 7, € F,, (E©) RP)is yielded for r, € (rp,—1, 62).
Hence we obtain the assertion of this lemma. O

Lemma 3.2. Assume that (G), is satisfied. Let 03 = Gf . Then there exist func-
tions ¢1,...,¢n € Fy, (E©) R) and §u(€,-) € Fg(e)(E("O), R) with 6(¢) € (0,1)
such that ¢(e, -) has the form

p(e.) =@+ @re+ -+ @ne" + Gnle. )e"

and

[ @n(€,)loo —> 0 ase — 0,

where ¢ is defined in (1.2).
Proof. Note that the equation
1 /
pe,w) = D log|detT,, (¢, (e, 0w))|

follows from T, (¢, -) is conformal.
First we show that the function det 7} (e, -) has an asymptotic expansion. Re-

call that when we write T (€, x) = (fe.1(€, X), tea(€,X), ..., te.p(€, x)) in RP for
e € FEandx = (x1,x2,...,xp) € Oy (), the function det T,(e, x) satisfies the
form

ate,1(€7x) ate,z(évx) ate,D(E’x)
Ixpy  Oxp(2) 3y (D)

det T/(e.x) = Y _&(n) . 6B
n

where 7 runs through the finite set of all permutations of {1,2,..., D}, and &(n)
denotes the signature of the permutation 7. Since the expansion

T)(e.) =T, + T, e+ +T,," +T,,(c.)e"

and || 7~"e/’n (¢,7)]| = 0as e — 0 follow, so has for each element %te,k (e,). We de-

note Tp x (x) as (e k,1(x), tek,2(X), ..., tex,p(x)) fork =0,1,...,nand T"e,n (e,x)
as (Ten,1(€6, %), Tenn(€,X), ..., len.p(€, x)), where T, o(x) = T.(x). We also ob-
tain an n-order asymptotic expansion

detT,(e,) = detT, + ke,1€ + - + Ken€" + Ke (e, -)€" (3.9)
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and |[Ken(€,’)lco — 0 as € — 0 by the form (3.8), where each «, x(x) and
Ke.n(€,x) have the forms

Ke,k(x) — Ze(n) Z at&il,l(x) ate,iz,Z(x) 8l‘e,iD,D(x)’ (3.10a)

" oy i ipen: 0% Xy 9xn (D)

i1 +tip+-+ip=k

Ken(€,x) = 25(77) Z Z ein,1 () 3te,i2,2(x) at‘-’ JiDs D(x)

i=n+1 0<iy.ip....ip<n: axn(l) axn(2) ax'l(D)

i1 tipg+-+ip=i
D -
al‘es l(x) atenj(évx) 0te,p (€, X)
+ 8(7]) {( e > e > }
2,7: ]; Z dxy (1) ) dxy(j) dxy (D)
j-th
(3.10b)
In particular, since the function Te/, S is of C"=J+B for J=0,1,....n,each k. x

is of C"~¥*# from this definition.
Next we give the n-order asymptotic expansion of
w +—> T, (€, (e, ow)).

By virtue of the above argument together with Proposition 2.3 and Lemma 3.1, the
function det 7, (¢, w (e, ow)) has

det T, (¢, (e, 0m))
= det T, (T0w) + fup,1(OW)e + - + fug.n(0®)e" + fuoon(e, ow)e"
and

| faogn (€, ) loo —> 0

by putting f(e,-) = detT, (¢,-), x = mow, and x(¢) = 7 (€, o) in Proposi-
tion 2.3. Here each f,, ; and fwo,n (€, -) are given by

j=1j-1 g‘) x)(mi, (ow), ..., m (ow))
Jwo,i (00) = Ky, j (Tow) + Z Z Z of A
1=0k=1 ij..ig=1: '

i\ etig=j—1
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and

n—1 n—I o (x)(ml(Uw) .. iy (0w)) i—n—+1
€

o =35 3y T

I=0k=1i=n—1+1 1=iy..... i <n:

i1+ tip=i
n n—l k el
(9] ~ —x)—
+IZOI;;Kwo’l(x)(z(e),...,nn(e,oa)),...,x(e) x)k!
=0k=11= i-th

30 L= Lt x(@ 0 (2L e ex(e
=0
(3.11)

where

z(€) = Z e (ow)ek.
k=1

Now we show that w +— f,,.j(0w) is a dg,-Lipschitz function. In this form,
the function K, ; is of C"~/*# and at least of C#. Similarity, since IC( ) o1 is of
C"~I=*+B with n — [ —k > 0, this function is also of C#. By a similar argument
in (3.7), we obtain that for w, v € E© with wy = vy

ke, (TO®) = Ka,j (T0V)| < e5(j. 0)[]} 05 ' dp, (. V) (3.12)
and
K (row) (i, (00). . ... i, (0w)) — k&) (xov) (3, (0V). . ... it (V)]
< es(l, k)[n]’;ze;luml oo+ 11773 llood, (@, v)
+ Zmax sup |K (x)| ”7[1'1 ”oo Tt [nii]Gz T ||7Tik ”ood@z(a)v U)’
€E x€Jy(e) th—’
-t
(3.13)
where
e () = k&) ()]
¢s5(1, k) = max sup 3
ecE xX,y€Jt(e): XFY |)C - y|

Thus the inequalities (3.12) and (3.13) imply f,,.; € Fg5 (E©).
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Finally, we prove the assertion of this lemma. For any small € > 0, the signa-
ture

sign(det 7, (€, (€, 00))) = sign(det 7, ,(Tow)) = s(wo)

depends only on wg. Therefore

p(e,w) = —log(s(a)o) detT, O(E (e, ow)))

is satisfied. By applying Proposition 2.3 with x(¢) = s(wo) det T, (6 (e, 0w))
and f(e,x) = (1/D)logx, we obtain the asymptotic expansion of (e, w) and
also see ||@n(€,-)]loo — O by the definition of y,(¢) in Proposition 2.3. Conse-
quently, each ¢ and ¢y, (¢, -) have the forms

Ji .

k
ok (@) = %Z(—l)i_l(z’ et Y A
i=1

beea !’
Jijk J1 Jk

Jk
Xk

Pn(€, )

1 n k (_1)k—1 n . 3
+BZZ o {(ije])...fwo,n(e,gw)...(y(g)_x)}

i-th

n—1 ne1 (X" = (x +1(y(e) —x))"\ y(€) —x\"
_/ (=0""CD ( (x +1(y(€) —x))"x" )( c )‘“’
(3.14)

where the second summation of ¢ () is taken over all integers j, ..., ji so that
0<jiv.-sjksj1+-++ jr=1and j1 +2j>+ -+ kjr =k, and where

x = detT,, (row),
Xj = fwg.j(0w) forl=<j<n,

and

y(€) = detT,, (e, m(e,0w)).
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The fact that each ¢ is a dg,-Lipschitz function is yielded by this definition.
To see that ¢y(e,-) is a dg()-Lipschitz function, it is sufficient to show that
¢(e,”) € F,(e)(E("O)) with r(e) = rP© for each € > 0. For w,v € E©® with
wo = Vg, We have

lo(e, @) — @(e, v)|

1
< T (e,m(e,0w)) =T (¢, 7(e,0U
~ mineeg infres,,, ITé(EJC)I| o0 (€ 7(6,00)) = T (€ 7€, 0V))]

ce(€)
mineeg infxey,,, |74 (€, X)|

IA

|7(e, ow) — 7 (e, ov)|[P©.

with ) )
_ |Te(€7x)_Te(€’y)|
ce(€) = max sup 30
ecE x,y€Jt(e): XF#Y |)C _y|
Now we will prove
sup[r(e, )], < ¢ (3.15)

€>0

for some constant c; > 0. Choose any w,v € E () §o that
T=wo* " Wm—1 = Vo Un—1
and wy, # vy, for an integer m > 1. We obtain

| (e, w) — (e, V)| = |Te(e, (e, 0" w)) — Te (€, w (€, 0™V))|

<cy  sup  |Tl(e, x)||m(e,0™w) — w(e,0™V)|
ert(wm_l)

<cr™
with ¢; = ¢ max,ey diam J,. Therefore (3.15) is satisfied. Consequently, ¢(e, -)

is a d,(-Lipschitz function. Hence ¢, (€, ") is a dg()-Lipschitz function with
0(¢) = max(6s, r(€)). O

Proof of Theorem 1.1. By virtue of Lemma 3.2, the function ¢(e, -) fulfills the con-
dition in Theorem 2.4. Thus the assertion follows from Theorem 2.4. O

Lemma 3.3. Assume that (G)), is satisfied. Let 04 € (62, 1). Then we have

lim sup(7, (€, -)]p, < 00,
e—0

where 1y (€, -) is defined in Lemma 3.1.
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Proof. First we show the assertion in the case when n = 0. Since 7 (e, -) satis-
fies (3.15) and since 7 is in F,(E©, RP), we obtain

sup[o(e, -)]g, < c7 + [r]p, < 00

€>0
by r < 04.
Next we consider the case when n = 1. Since 71 (¢, -) has the form
5 w(e,)—m
.7T1(€, ) = % + i1,

it is sufficient to show that

limsup[(n (€, ) — ) /€], < oo withry € (62, 0s).

e—0
We give some notation below. Recall the definition of U, and § in (2.1). We take
8€(0,6/(1+1/(1 —r))) and put
U,= | B(x.§) forveV.
xedy
Note the inclusion .
JoCU, CU, CU, CU, C Oy.

We see T, (Uy(e)) C Uiey and T (e, Uye)) C Uy(ey- We also obtain

B(U,.8/(1—r)) C U,. (3.16)

Indeed, for any x € B(U,,8/(1 — r)), there exist y € U, and z € J, such that
|x —y| <68/(1—r), |y —z| <6 and

Ix—z|<|x—yl+|y—z| < (/A —r)+ 1) < 8.
Let To(€,-) € C(Oy(e), RP) be
ﬁ(e, )=Te+ Te 1€ + Te,l(e, )¢ foreache € E.

We see T, (€,+) = Te(e, ) on Jy(e) by condition (G);. We need to show the bound-
edness of 7, | (€, -) on Uy (). By virtue of condition (G)), there exists € > 0 such
that for any 0 < € < ¢g and for x € Uy ()

T < T, (.2 + (cr + DIx =z <1+ (1 + 18P = ¢

for some element z € J;) with [x —z| < § by SUPyeJ, e, |7~“e”1(e,y)| — 0 as
€ — 0. Therefore, we have that for any e € E, x € Uy() and € € (0, €o)

T/ (€. x) = T)(x)| = | T, 1 (x)e + T, 1 (e, x)e| < coe, (3.17)
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and
|Te(e, x) = To(x)] = |Te 1 (x)€ + Te,1(€, x)el

<(sup |TeqaO)|+ |Tea(e. )+ sup |T) (. y)llx —z|)e
V€U (e) Y€U;(e)

<(sup [Tea)+ sup [Tei(e.y)| + csd)e < cioe.
Y€U¢(e) Y€Jt(e)

(3.18)

with some point z € J;(.), where we put

co =max sup [T, ()| + cs,
€€L yeUs(e)

and

cio =max( sup |T.1(»)|+ sup |Te1(e,y)| + csd).
e€E yeU () y€Jt(e)

Choose a small number €; € (0, €¢) so that

sup [T,(y)| +coe <,
Y€Us(e)
C10€ < 8
and

(1 —tmw+tr(e.w) e | ) Oy
veV

are satisfied forany 0 < € < €;,e € E, t € [0,1] and w € E(. By inequal-
ity (3.17), we see

sup |7A"e/(e,x)| <r
x€U;(e)

and therefore T, (¢, Uy o)) C Us(e) for 0 < € < ;.
To see that the map w + (n(e,w) — ww)/e is in Fy (E©), we note the
following:

n(e,w) = Tr(e. ) (e, 0" w))
= T(e, m0™w)

1
+ / T/(e,(1—t)mo"w + tw(e,0™w))(n(e,0™w) — no™w) dt.
0
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Therefore we have

‘n(e, w)—nw 7€, v)—mv ‘

- (éTr(e,-)—Tr)(me’”w) ~ (Tx(e.) = To)(mo™v) +2rmHn(e,-)—nH
- € € o0
= I1(¢,w, V) +2H7T(€—7TH

dr(w,v)
oo

and

(Te(e.) = T)(wo"w)  (Tele,”) — To)(wa™v)
Ii(e,w,v) = ‘ . — z

Te(e,-)
()

<11 sup
x€Urw,,_1)

@|1n0"w) — 26" )

=cC12 sup

m—1 m—1
[1 7. e.xite.x) = T 70, (i (x))‘ (3.19)
i=0 i=0

xeﬁt(wm_l) €
m—1 T /
Ty, (€, xi(e,x)) = T, (€, yi(x))
<ci2 sup Zrm_l‘ o : L : .
xeﬁt(wm—l) i=0 €
with
diam(Jy)
€11 = max {1,max —A}
veV dist(Jy, 0U,)
C12 = C11 maxdiam(Jv),
veV
and

xl(6 x) (Dl+1 Wiy — 1(6 x)
yi(x) = To; 4w 1 ()

fori =0,1,...,m—2, and

Xm—1(€,X) = ym—1(x) = x.
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We note y; (x) € 0t(wi+1) for x € Uy(w,,_,)- Now we show

€
|xi (e, x) — yi(x)| < C101

for each i. By (3.18), we have

A

(I—=r)

for 0 < € < € and therefore tx;,2(€,x) + (1 — 1) ym—2(x) € Us(y,,_,) for all
t € [0, 1] from (3.16). When we assume

Xm—2(€, %) = Ym=2(X)| = [Ty, (€, %) = Tupp,_, (X)| < cr0€ <8 <

Ixi (e, x) — yi(x)] < croe(1 +7 +---+r™27) foreachl <i <m—2,
x; (€, x) also satisfies 7x; (€, x) + (1 — 1) yi(x) € Up(w,;, ) forallz € [0, 1] and

|xi—1(€, x) — yi—1(x)|
< [T, (€. Xi (€, X)) — Ty, (xi (€. X))| + | Ty (xi (€, X)) — Ty, (i (X))

< croe + sup [Ty, (txi(e,x) + (1 —1)yi (x))|]xi (€, x) — yi (x)]
t€f0,1]

< ciro€ +r(cioe(l 4+ 7 +--- 4 rm277))

€
< Ci0

Thus we see

|x,~(e,x)—yl-(x)|<c1016 fori =0,1,...,m—2.

We obtain
‘mmm@m—mmwmw
€
(ﬂm@m@m—uxm@nwwm@m@m—m@mww

€ €

xi(f’x)_yi(x)‘

<co+ sup [T, (txi(e, x) + (1 —1)yi(x))|
t€l0,1]

c13 =max sup |T)(x)|.
ec x€U;(e)
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Therefore we see

C€13C€10 _
)mrm L

Ii(e,w,v) < 012<09 + 1
—r

Choose any ry € (r, 84). Since the equation
mr™t = m(r/r)" " )"

and the inequality
1

(exp(l):—1 log (:—1)) —o

C13C10 _
)6’14V1 Y™,
1—r

m(r/r)""! < -

follow for any m > 1, we have

Ii(e,w,v) < c12 (69 +

Thus, for any 0 < € < €3

T\E,:)— T C13€10 _
[¥] < C12(C9 + )Cl4r1 '+ 2¢15 = c16
€ r 1—
holds with
7w(e, ") — Too
ers = sup | HE) =T
€>0 € 00

Consequently we obtain
[T1(e, )]s, < ci6 + [m1]r, forany 0 <e <e;.
We have the assertion in the case n = 1.

Let n > 2. Finally we show that if lim sup,_,¢[,—1(€, *)]o(n—1) < o0 is sat-
isfied for some 8(n — 1) € (6(n — 2), 64), then so is 7,(¢, -). Recall the form of
7n (€, -) defined in (3.6b). We will prove

lim sup[ﬁ,,(e, N, <00 forr, € (6(n—1),0s),

€e—>0
where R, (e, -) is given in (3.5). The boundedness of Lipschitz constant of
w +—> T, (100)(m;, (0w). ... T, (00))

immediately follows from the inequality (3.7). Put

t(e,w) = Ta()ﬁ?l(ncra))(z(e, ow),...,z(€,0m),

i—1
Tn—1(€, ow),
——

i-th position

n(e,0w) —now, ..., n(e,00) — TOW)

k—i
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and

n—1
z(€,w) = Z T (w)ek.
k=1

By a similar argument of the inequality (3.7), we obtain that for w, v € E© with
wo = Yo

|t(e. @) —1(e., V)|

= {ea TSVl Nz (e 1 e, )
— 7 N 7n (e, ) oo
+ (= DITP Iz (e )2l e )
— w5 71 (€. ) loolz (€. ),
+ (k= DITP (e )15 (e )
— 7|5 71 (e ) o[ (€, )y + [7]r,)

+ 1T P12 (NS e ) = 7l Bnmr (e, )™ (0, V),

where |T_,(lk+1)| appears by (3.7). By virtue of limsup,_, o[7n—1(€, ")]gn—1) < 00,
we get limsup,_, [ (€. -)],, < co. We also have

‘LI(E,w)(”(é,Uwe) —T[Uw)n—l B Ll(e’v)<m)n—l‘
= |Ll(€"’))—Ll(€,v)|Hw :l

T

+(n—l)|L,(e,U)|H% ”‘I‘I[M

| ey, @.0)

o] €

and
|Li(e, ) — Li(e, V)|
1 —I-1
(1—0" (n—1) (n—1)
= S Y <|Twz,l (row) — Tw:l),l (mov)]
+ T D((1 = Hmow + tr(e, ow))

wo,!

7D = t)ymov + tr(e, UU))|)dl

wo,!

¢ c n—I+1) -
< (ﬁ[n]m e + (e M) )ITS 0 10) s, (0, 0),
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for any 0 < € < €1, where
diam(U,)
17 = max {1,max A—}
veV dist(Uy, dU,)

Moreover,

Tiwg.n (€. 70(€,00)) = Ty n (€. (€, V)|

<c, sup |T/

wo,n(E’ x)||7T(E, O—a)) - H(E, O"U)|
ert(wO)

< ca(max sup |T),(e,2)| + (c1 + DEP)[m(e, )]y (rn) " i, (0, V)

eeFE ZeJt(e)

holds. Consequently, lim supe_,o[ﬁn (¢,)], < oo is fulfilled. By the proof of
71 € Fp, (E®) in Lemma 3.1, we have the assertion

lim sup[7, (€, )]gn) < 00 for O(n) € (ry, 04).

e—0

Hence the proof of this Lemma is complete. U

Lemma 3.4. Assume that (G), are satisfied. Then

lim sup[@y (. -)]o; < 00
e—0

with
65 = 67,

where ¢, (€, ) is defined in Lemma 3.2 and 0, is given in Lemma 3.3.

Proof. Recall the small order part i, (¢, ) defined in (3.9). By virtue of the as-

sumption (G),,, the function

Te,n(éa ') = (fe,n,l(év ')’ fe,n,2(€’ ')7 LN Ee,n,D(é’ '))

fulfills the condition

d - 0 .
—len,i (e,x) — —len,i (,)
. dx; dx;
lim sup sup 5 <00
€20  x,y€0/(e): x#Yy |x =yl
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for each i, j € {1,2,..., D}. This condition implies that &, , (e, -) is of C# and

li |’ze,n(€’x)_’ze,n(€vy)|
im sup sup <00

€>0  x,yeJi(e): XFEY |x _y|ﬂ

by the form (3.10). Thus the small order part of the map w + det Ta’)0 (e, (e, 0w))
defined by (3.11) is bounded uniformly in any small € > 0 with respect to [-]gs.
The definition of ¢y, (¢, -) in (3.14) yields the assertion. ]

Proof of Theorem 1.3. The map € — (dimg K(€))p(e, -) has an n-order asymp-
totic expansion by Theorem 1.1 and Lemma 3.2. Moreover, it is not hard to check
that this small order part is bounded uniformly in any small € > 0 with respect to
[-]os from Lemma 3.4. Hence the assertion is yielded from Theorem 2.4 in [14] by
replacing ¢ (e, -) as (dimg K(€))g(e, -). ]

4. Examples

In the final section, we will give two concrete examples of asymptotic perturbed
GIFSs in Example 4.1 and Example 4.2. We also formulate degeneration of graph
iterated function systems and calculate the Hausdorff dimension of this limit sets
in Example 4.3.

Example 4.1. Let
e B€(0,1),
e G=(V={},E={1,2},i,t)withi(l)=t(1) =i(2) =t(2) = v, and
e J, =[0,1] C R

We define two maps T (¢, -) and T» (e, -) in C(Jy, Jy) by

248
Ty(e.x) =~ e+ % 4+ x1TBe 4 x1t+ee?,
and
X2t x 1
To(e, x) = Ta(x) = A
2(€, x) 2(x) 3 + 6 + 3

It is easy to see that the triplet (G, (Jy), (Te(e€, -))) satisfies the condition of GIFS.
In this case, the map 77 (€, x) has the form

Ti(e,))=T1+ Tr,1€e + j:1,1(6, e
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if we put

2+8

X
+_7

Ty(x) = 5

T11(x) = x!th

and

Ti1(e,x) = x'Te.

Therefore this GIFS fulfills condition (G); by choosing B(¢) = €. In particular,
T (e, ) is of C'*€ for each € > 0. Theorem 1.1 implies that the limit set K(¢) has
the form

dimg K(¢) = dimyg K + s1€ + o(¢)

in R', where s; is given by

p(p1)

s1=—(img K)~ 08

(for example, Section 5.1 in [14]) and u is the Gibbs measure of (dimg K)¢.

Example 4.2. We use the notation 8, G, J,, T»(¢, -) defined in Example 4.1. Put
| x — E|2+ﬂ

Ti(e, x) = — +% for x € J,.

This map yields the expansion
Ti(e.x) =Ty + Ti1e + Ti1(e. -)e

and convergence

~ 0 ~
|T1,1(e,-)] — 0 and ‘a—Tl,l(e, ')‘ — 0 ase—0,
X
where
x2tB X
Ti(x) = 6 + g,
+2 xl+ﬂ
M) = - LEET

and Tl,l(e, -) is the remainder. Furthermore, we obtain

o _B+DB+2)
6157,
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where ¢ is defined in condition (G). Therefore the GIFS (G, (Jy), (Te(e,-)))
satisfies (G)}. Let f € Fo(E©®, C) with

B
0= cuplTi = (5+5)"

It follows from Theorem 1.3 and the results in [14] that the Gibbs measure (e, -)
of (dimg K(€))¢(e, -) has the form

ple, f) = p(f) +pi(fe+oe) inR!

and

h(u(e, ) = h(u) + Hie 4+ o(€) in R!
by putting

p1(f) = —v(fS(LE.sp(p1h))) — v(p18(hf))
and

Hy = —p1(p)

(see Section 5.1in [14]). Here the operator £ g 4, and the triplet (1, &, v) are defined
in the next example, and

8= (LEsy—P—AN1IT-P),
with P f = v(hf).
Example 4.3. Let €¢; = €;(¢) and €, = €,(¢) be positive functions with the

conditions
lim €;(¢) = lim e2(¢) = 0.
e—>0 e—>0

We consider a family of GIFSs
{(G. (Jv), (Te(e, ) : € > 0}

as follows.

(a) There exists a decomposition of the edge set £ into E(0) and E(1) with
E(0) # @ such that (T, (¢, -))ceE (o) satisfy condition (G); by putting € = €;
and (T, (¢, ))ecE(1) condition (G); by putting € = €, and T, = a.. Namely

Te + Te 161 + 7~"e,1(6,-)€1, e € E(0)
Te (Es ) = ~
ae + Te,IEZ + Te,1(€7 .)627 e G E(l)

Here the triplet (G, (Jy), (Te)eeE(0)) is a GIFS and each a., e € E(1) is a
constant with a, € Jj().
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(b) The subgraph G(0) = (V, E(0)) of G has exactly one strongly connected
component Go = (Vp, Eo). The Hausdorff dimension s = dimg K (Gy) of
the limit set K (Go) of the GIFS (Go. (Jv)vevy: (Te)ecE,) is positive. Further-
more, either s < 1 or condition (G)j is satisfied.

It follows from Theorem 1.1 that the limit set K (¢) of (Go, (Jv)vevy, (Te(€,))ecE,)
gives the form

dimg K(€) = s + s1€1 + o(e1). (4.1)
Denoted by K(¢) the limit set of the GIFS (G, (Jy), (Te (e, ))). We put
s(e) = dimgy K(¢).
Then we obtain the next theorem.

Theorem 4.4. Assume conditions (a) and (b). Then we have the form
s(€) = s + s1€1 + s1(€2)° + o(max(ey, (62)°)) in R,

where s1 and s are defined in this proof.

We will show this theorem by using a transfer operator method. Let £(X) be
the totality of bounded linear operators acting on a Banach space X. Denoted
by M(E©) the totally of Borel probability measures on E(). For a subset
F C Eand ¢ € Fp(E® R), we define a bounded linear operator £ F,p iN
L(Fy(E©),C)) by

Lrofl@)= Y  “f(e-w)

ecF : t(e)=i(w)

where e - w is the concatenation of ¢ and w, i.e.
e-w =¢ewywi---.

Assume that a graph (V, F) has only one strongly connected component
H = (Vy,Eg). Note that F©® £ ¢ is satisfied by Eg’o) £ @. Let
¢ € Fo(E (00) R). It is known (Theorem 3.1 in [8] and Theorem 4.1 in [13]) that
there exists an unique triplet (1,4, v) € R x Fp(E©) x M(E©) such that A
is the positive eigenvalue of the operator £ r , with maximal modulus, # is the
corresponding nonnegative eigenfunction and v is the corresponding eigenvector
of the dual L’;,(p with v(h) = 1. Moreover, supph = {w € E®): wy € Eg)}
and suppv = F () are satisfied. It also see that v becomes the Gibbs measure
of go|E1<1c>o) on Eg’o) and the equality logA = P(g0|E1<100)) holds. For the sake of
convenience, we call the triplet (4, &, v) a thermodynamic spectral characteristics
(TSC for a short) of LF .
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Assume condition (a). We take the coding maps = and n (e, -) defined in Sec-
tion 1. We set

o0
m(w) = Z(Two...wk_l)/(naka))ka,l(nakHa)) if o € E(0)
k=0

and 7y (w) = 0 otherwise. We define r;,; and w1, on E (c0) by

k—1
T11(@) =Y Tho o (10 0) Ty 1 (0 T 0),
i=0

mi2(w) =T, k+1p)

k
worwp_ O W) oy 1 (O

ifwg---wr_, € E(0)f andwy € E(1) forsome k > 0,and 7 1 (w) = 712(w) = 0
otherwise. In this setting, we have the following lemma.

Lemma 4.5. Assume condition (a) and s > 0. Then
w(e,”) = + (m1 + m1,1)€1 + w1262 + o(max(er, €2)) in C(E(°°)).

Proof. By Lemma 3.1, the expansion 7(e,-) = 7 + m1€; + o(e1) in C(E(0)©)
is satisfied. For w € E( \ E(0)(*), there exists k > 0 such that we have
wy...Wp_1 € E(O)k and w; € E(1). By using (3.3) in the proof of Lemma 3.1,
we have the equation

k—1i—1
(e, w) —ntw = € Z 1_[ TLf,j (Jrcrjﬂa))(Twi,l(ncriHa)) + ﬁl(e,aiw))
i=0j=0
k—1
+ 1_[ TLf,j (o’ P w)(n(e, c*w) — moFw)
j=0
= e1m1,1(w)
k—1
+ € Z T 0r_y (o' w)Ri (e, o' w)
i=0
+ EzT/

omop_; (T 0) Ty 1 ( (e, 0* o))

+ Ty 1(e, (e, w))).

We note that the maps 71 + 71,1 and 71 » become continuous functions in £ (00)
It is not hard to verify that this equation implies the assertion. U
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We give a decomposition
E® = 5(0)U =(1)

into
(i) ={w e E®:wy e E(i)} fori=0,1.

We define a function

9: E® SR
by
log |7, (row)|l, o € Z(0)
p(w) =
0, w e x(1).
Set
9
®(e, ) = log HETQO(G, (e, aw))) :
%0(6’ ) = 45(67 ')XZ(O)y
and

Y(e,)) = P(e. ) Xz,
V1(@) = Ty 1 (Tow)[’,

where yx denotes an indicator function of a set .

Lemma 4.6. Assume conditions (a) and (b). Then there exists a function ¢y such
that

@(€,) = ¢ + @1€1 + o(max(ey, €3))
in C(E®) ifs < 1, and in C(E(0)) ifs > 1.

Proof. First we give the form of ¢(e, -). For e € E(0), T,(e, -) has the form
T/(e,) =T, + T, e1 + T, (e, )er
with

sup |7~"e/,1(e,x)| — 0 ase—0.
x€J¢(e)

For F C Eande € F, let

Fe(°°) ={we F®: wpy=e).
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Equation (2.4) in Proposition 2.3 implies that

T,(e. (e, w)) = T,((e,w)) + T, { (n(€, w))er + Te/,l(n(e,a)))el
~ T)(rw)
+ T) (nw) (7 (e, w) — Tw)
+ No(e, 0)(n(e, 0) — w)|n(€, 0) — w|? + T, | (nw)e;
+ Ni(e,)|7(e, w) — mw|Pe
+ Tyl oer
where we define
o ifi(e,w) # o,

L(1,T) (e, w), nw)

No(e,w) =
o(e. ) |7(e, w) —mw|P
and
LO, T |, 7w(e,w), tw
Ny(e.o) = 0.7, ;. 7(c. ), 7w)
|7(e, w) — mw|P
and

o if 1(c,w) = 1w,
No(e,w) = Ni(e,w) = 0.

Note that these functions are bounded uniformly in € > 0 and w € E§°°).
Lemma 4.5 implies for e € E(0)

T,(e.n(e,) = Ty(m) + T, (w-) (1 + m1,1)er + T, 1 ()€1 + o(max(ey, €3))

in C(EX, L(RP, RP))if s < 1and in C(E(0)”, £(RP, RP))if s > 1. Indeed,
the term 7)) (7-)7y 2€5 is a part of o(max(e;, €5)) if s < 1 and is equal to 0 on
E(0)*, Therefore the proof in Lemma 3.2 yields the form

detT,(e, m(e,-)) = det T, (m-) + ae,1(-)e1 + o(max(ey, €3))

in C(EX) if s < 1 and in C(E0)®) if s > 1. We see that the sign of
det T)(e, r-) is equal to the sign of det 7 (r-) for any small € > 0, and depends
only on e from 0 < || 7/||. We obtain the assertion by putting

aw(),l (UCU)
(D det T, (mow))

(@) =
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Note that the role of s in the statement of Lemma 4.6 and in this proof is
independent of dimgy K (Gy). The essential role of s = dimgy K (Go) comes later
in Lemma 4.8 and Lemma 4.9. For ¢ > 0, let (1, (e, -), v(e,-)) be the TSC of
LE s(©)d(e,)s (A(€), h(e,-), V(e, ) the TSC OfLE(O),s(E)w(e,.), and (1, i, v) the TSC
of £LE(0),5¢- We remark that u = hv is the Gibbs measure of s¢| B

Lemma 4.7. Assume conditions (a) and (b). Then s(€) converges to s.

Proof. First we prove

lim iglfs(e) > .

To see this, we need to show
0= P(s(e)P(e,") = P(S(é)fp(e,')lE(gow)'

Recall the definition of the topological pressure (2.5). For any k > 1 and for any
path t € E(’)‘ on the graph Gg, we have

k—1 k—1
sup Zs(e)go(e, o/ w) = sup Zs(e)cb(e, o’/ w)
a)eEéoo): j=0 weE(()oo j=0
wQ Wk —1=T wQ Wk —1=T
k—1
< sup Zs(e)cb(e,cr]a)).
(c0): %

This implies P (s(¢)¢(e, ')|E(()oo>) < P(s(e)®(e,-)) = 0. Since the map
R>1— P(tg(e. )| geo)
is monotone decreasing and
P((dimy R(€)g(e. )| o) =0

is satisfied from Bowen’s formula, we obtain s(¢) > dimg K (¢). The form (4.1)
yields liminfe_,¢ s(€) > s.
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Next we show the assertion. We consider the equation

LEs@d) — LE©).sE0E,) = LEM),s(e)P(e.)
(4.2)

= LE®1).5(0)0(.) (e5©V (),

Choose any positive sequence (e(n)) so that lim,_, €(n) = 0 and s(e(n)) con-
verges to a number s*. Note that s* satisfies 0 < s < s* < D. Let (A*,h*,v™)
be the TSC of the operator LE(O),s*<p~ Since LE(O),s(e(n))d?(e(n);) — LE(O),S*(p in

L(C(E©)) is fulfilled, we have v(e(n),-) — v* in sense of weakly convergence
by Proposition 4.8(2) in [13]. Equation (4.2) implies

(€, (LE s@)d(e,) — LEWO),s@)0E)h") = v(e, (= LE©),s@0E)h")
= (e, LE) ste)p(e.) (€ OVEIR™)).

Letting as € — 0 running through (¢(n)), we obtain
V(I = LE@©,s%0)h™) = (1 =2 *(h") = 0

by LE(O),s(e)(p(e,-) — LE(O),s*(p in L(C(E(oo))) and by es(e)v/(e,w) -0 uniformly
in w € E_ This yields A* = 1 from v*(h*) > 0 and therefore

log\* = P(S*(p|E(()oo)) =0.

By Bowen’s formula, we get s* = dimgy K(Go) = s. Hence s(¢) — s. U

Since £ £(0).s(e)pe.) = LE©).50 i L(C(EC)) and 5OV (€2) — 0 uniformly
inw € E(, we obtain LE©),s()B(e,) —> LE©0),50 iN L(C(E(‘X’))) by using equa-
tion (4.2). Therefore we see v(e,-) — v and vV(e,-) — v from Proposition 4.8(2)
in [13].

Lemma 4.8. Assume conditions (a) and (b). Then the form
V) = 19 1 0(39)  in C(EC)

is satisfied.
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Proof. We consider the function ¥ (e, -). Since for e € E(1), T/(e, -) has the form
T (6 ) - e 162 + 451(67 ')62’

we obtain
det T)(e.) = (€2)P det 7, , () + o((e2)).

and therefore

| det T, (e, )| = (e2)P] det T, ; ()] + o((€2)®).

Now we consider convergence of 5@V () /¢3() We have that when € is suffi-
ciently small,

eS©@Y(e,)
| KRS .
det T’ (e, 7(e,omw))|\ &
< sup ‘(' o D( ))|) 7 ldetT),  (n(e.00)| D
wex(1) €
+ sup ||detT, Ol(n(e ow))| ' —|detT, 01(7ma))| |
weX(1)
+ sup [|detT), |(row)] 5 _ | det T} 1 (mow)| |
weX(1)

= I(e) + II(e) + LI(e).

We note that for numbers a € (0,1] and b > 0, there exists ¢ > b such that
|x¢ — y4| < |x — y|* forany x, y € (b, ¢). Thus we see

s(e)/D ( )
— 0 with0< — <1.

0(62)
D

€

I(e) < |

We also have II(¢) — 0 by the same argument. Finally, since X (1) is compact,
we obtain that III(¢) vanishes. O

Lemma 4.9. Assume conditions (a) and (b), and s > 1. Then the form
X(€) = 1+ v(LE)sg W1)EE +0(39) inR

is satisfied.
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Proof. By virtue of condition (G)g, lim sup,_,[¢(€, -)]s < oo is yielded for some
6 € (0,1). Thus we have that (e, -) converges to / in C(E ) (Proposition 4.3
in [8]). Equation (4.2) implies

(1= X(e)v(e, h(e,)) = v(e. LE) s(e)oe.) (€ OV ED (e, ))).

Hence we obtain the assertion by Lemma 4.6 and by v(h) = 1. O

Lemma 4.10. Assume conditions (a) and (b). Then we have

s(€) — s| = O(max(e5, e;(e), €1)).

Moreover, if cither ¢; = O(5©) or e, = O(€3) is satisfied then €5 /€5 — 1
holds.

Proof. First we assume s < 1. We consider the equation

LE s@d) — LEO).s¢
= LE©.s@0) — LEO).sp.) T LEO).s0e) = LEO).s0 T LEW.s@(.)
= LE©).s0(e,) (@(€,))(5(€) = 8) + LE©).50(e,) (G€,))(s(€) — 5)°
+ LE©).s0(5(0(€. 1) — ©)) + LE©),s0 (H(e, ) (p(e.) — 0)*)

+ LEQ).s()0(e.) (e5@V(€)),

where we define

o0

G(e.)) = kZ(s(e) — ) (p(e, )/ (k +2)!
!
and
H(e,") = ki(s"“@(e, V= @))/(k+2)!.
o
We have

0 = v(e, LE).50.) (@€, V) (s(€) — 5)
+ V(€. LE©).s0(c,) (G (€. ) (s(€) — 5)*
+v(€, LE0).50(s((€, ) — )h)) (4.3)
+v(e, LE)sp(H(e, ) (p(e.) — 9)*h))
+ (€. LEM)s()p(e) (€ OV EIR))
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by using v(e, (LE s d(,) — LE©),s0)h) = 0. In this equation, we note that the
number v(e, LE(0),sp(,) (@(€, -)h)) converges to v(ph) = u(p) < 0ase — 0.

It follows from Lemma 4.6 and Lemma 4.8 that this equation implies the former

assertion by dividing equation (4.3) by max(e5, €5, €;) and by letting as € — 0.

Next we assume s > 1. Let yo = x g(g)=) - By the decomposition
LE®©).s)0(e,) — LE©0).50
= LE©0).500,) — LEO).s0(e.) T LEWO).50(c,) — LE©).50>
we have

(L(€) — 1)i(e, h) = D€, £ E0).s0e.) (Xop(€, V) (s(€) — )
+ 9(e, LE©).50(.) (X0G (€, 1)) (s(e) — 5)*

_ 4.4)
+ V(€. LE(0),s9 (X085 (@(€. ") — @)h))
+ (e, LE@©).50 (X0 H (€, ) (@(€,2) — ©)*h))
from a similar argument above and suppi(e,:) = E(0). By Lemma 4.6,

Lemma 4.8, and Lemma 4.9, we obtain the former assertion again.
Finally we assume either ¢; = 0(6;(6)) or €1 = O(e3). Then we have the
inequality
|s(€) — 5| < ¢ max(e3, 6;(6)) = ceé(e)

with a constant ¢ and
t(e) = min(s(e), s).

Therefore

1< e(t(e)—max(s(e),s)) loges _ e—ls(e)—sllogez < e—cexp(t(e)logez)logez —1

as € — 0 is satisfied. This gives €5 /el™¢©-) _ 1 Hence in particular,

6;(6)/ €5 — 1 follows. O
Proof of Theorem 4.4. Let

€3 = max(eg, €3).
Put

s1 = —sulp1)/u(p)

and
sy = —V(LEQ).se(V1h)/ ().
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First we assume s < 1. Equation (4.3) implies the form

s(€) —s —s1€1 — 5165

€3
1

= mv(e, LE(0),s0 (s

( z 75" LEOse ) 1)

(€,)— ¢ —
ple : 901€1h)>

—— V(€. LE@).sp(H(€. ) (@(€. ) — <P)2h))—

( )
s(e)w(e,)h e
€L _ ) s )
( © ( E(1),5()¢(e,") =] 1 €3

= Ji(e) + Ja2(€) + J3(€) + Ja(e),
with
a(e) = —v(e, LE(©),sp(c,) (@€, ) — v(€, LE(0),50(c,) (G(€, ) (s(€) — 5).

We see a(e) — —v(LE(0),s0(@h)) = —p(p) as € — 0. We will consider the two
cases:

@ € = 0(€5®) and
) & = o(ey).

In case (I), we have 62(6) /€5 — 1 by virtue of Lemma 4.10. We obtain
Ji(¢) — 0 by Lemma 4.6 and J>(¢) — 0 by € = O(e3). From Lemma 4.6
again, (¢(e,-) — ¢)/e3 is bounded uniformly in € > 0 and thus J3(¢) — 0.
Finally, J4(¢) — 0 follows from e*¥(€) /5 converges to ¥ in C(E*) with
Lemma 4.8.

In case (II), we have €5 = o(e1). Indeed, we suppose €; = O(e3). Then
Lemma 4.10 implies € /€5 — 1 and therefore ¢, = 0(e3). This contradicts
with the fact (II). Thus we see €; = €3 for any small € > 0. By a similar argument
in the case (I), we obtain J;(¢), J2(€), J3(¢) — 0. It remains to show J4(¢) — 0.
We notice

1 es(e)v/(e,-) E;(G) L€
Ja(e) = —a(E) v(e, LE®),5(6)0(e,) @ h) —51—=—0
2

€1 €1

from Lemma 4.8.
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Next we assume s > 1. By equation (4.4), we have

s(€) —s —s1€1 — s1€5

€3

_ %g(e’ LE©).50 (Xos‘/’(é, ) —6(3/) — ¢1€1 h))

(9(€,LE(0),S¢(X0S¢1h)) iy )6_1
b(e) Ve

(€, LE@©).sp(XoH (€, ) ((p(€. ) = <P)2h)))—

b( )

1 A(e) - €

— h) — ’

+ <b(6) € V(e h) >63

where
b(e) = —v(e, LE(0).sp(e,) (Xop(€, )h)) — V(€. LE(0),506,) (X0G (€, V1)) (s(€) —5)
is given. By a similar argument in the case s < 1 and by using Lemma 4.9, the
assertion is fulfilled. O
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