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Abstract. In this paper, we study CGDMSs which are not necessarily �nitely irreducible.

We do this from two di�erent perspectives: by investigating irreducible in�nite systems

and by examining general (i.e. potentially reducible) �nite systems. In this latter case,

we derive a necessary and su�cient condition under which the Hausdor� measure of the

limit set is positive and �nite. We further show that if this condition doesn’t hold then

the Hausdor� measure, though in�nite, is �-�nite. �is condition is given in terms of

the strongly connected components of the directed graph. We also demonstrate that the

pressure and Hausdor� dimension of the limit set are completely determined by the strongly

connected components.
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1. Introduction

�e theory of the limit set generated by the iteration of �nitely many similarity

maps has been well developed for some time now. A more complicated theory

of the limit set generated by the iteration of in�nitely many uniformly contracting

conformal maps was developed by Mauldin and Urbanski in [7]. Several years af-

ter that, they explored the geometric and dynamic properties of a far reaching gen-

eralization of conformal iterated function systems, called Graph Directed Markov

Systems (GDMS’s) (see [9]).

Several concepts are at the core of the analysis of a conformal Graph Directed

Markov System (CGDMS); among them: the topological pressure function, the

Hausdor� dimension of the limit set and the conformal measure supported on the

limit set. �e connections between these concepts have been intensively studied
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by Mauldin and Urbanski, especially in the case when the incidence matrix of the

CGDMS is �nitely irreducible. In this paper particular attention is paid to the case

the system or matrix is �nite but not irreducible.

�e paper is organized as follows. In the second section we present the most

basic concepts for CGDMS’s. We show how one can construct the limit set by

performing an in�nite directed walk through the graph. �is leads to a natural map

from the coding space to the points of the limit set. We look at several properties

that the incidence matrix can have. �e most important is when the incidence

matrix is �nitely irreducible; in this situation most of the results from the theory

of the CIFS’s can be carried over. In the third section we recall the de�nition of

topological pressure for CGDMS’s. In the fourth section we give a precise and

alternative de�nition of the conformal measure supported on the limit set of a

CGDMS.

�e most well understood of these general systems, besides the iteration of

�nitely many or a countable in�nity of conformal maps, are the CGDMS with a

�nitely irreducible incidence matrix. We state several of the results concerning

them in the �fth section. We further show how these results change in the general

case when the incidence matrix is not assumed to be �nitely irreducible. Finally,

in the sixth section we study the properties of general, i.e. non necessarily irre-

ducible, �nite CGDMSs.

2. Preliminaries

To introduce graph directed Markov systems we need a directed multigraph

.V; E; i; t / and an associated incidence matrix A. �e multigraph consists of a

�nite set V of vertices, a (possibly in�nitely) countable set E of directed edges

and two functions i; t W E ! V , where i.e/ is the initial vertex of edge e and t .e/

is the terminal vertex of that edge. �ere is also a function A W E2 ! ¹0; 1º called

an incidence matrix, as this matrix indicates which edge(s) may follow any given

edge. �is matrix also respects the multigraph since Aef D 1 may happen only if

t .e/ D i.f /. �e set of one-sided in�nite A-admissible words is de�ned by

E1
A WD ¹! D !1!2 � � � 2 E1 W A!i !iC1

D 1; for all i � 1º:

�e set of all �nite subwords of E1
A will be denoted by E�

A . �e set of all subwords

of E1
A of length n shall be denoted by En

A. �ere is a unique word of length 0 in

E�
A called the empty word. �e length of any word ! will be denoted by j!j.
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If ! 2 E1
A and n � 1, then

!jn D !1!2 : : : !n:

A Graph Directed Markov System (GDMS) consists of a directed multigraph

.V; E; i; t /, an incidence matrix A, a set of non-empty compact metric spaces

¹Xvºv2V and a set of 1-to-1 contractions S WD ¹'e W Xt.e/ ! Xi.e/ºe2E with

Lipschitz constant s, where 0 < s < 1. In short, this latter set is called a GDMS.

For each ! 2 E�
A , the map coded by ! is de�ned by

'! WD '!1
ı � � � ı '!j!j

W Xt.!/ �! Xi.!/;

where t .!/ WD t .!j!j/ and i.!/ WD i.!1/. For ! 2 E1
A , the sets ¹'!jn.Xt.!n//ºn�1

form a descending sequence of non-empty compact subsets of Xi.!1/.

Since diam.'j!n
.Xt.!n/// � sndiam.Xt.!n// � sn max¹diam.Xv/ W v 2 V º for

every n � 1, the intersection

\

n�1

'!jn.Xt.!n//

is a singleton whose element is denoted by �.!/. �e map

� W E1
A �!

M

v2V

Xv DW X

de�ned in this way is called the coding map. �e set X is the disjoint union of the

compact sets Xv . �e set

J D JE;A D �.E1
A /

is called the limit set of the GDMS S .

From this point on in the paper, we make two simplifying assumptions about

the directed graph. First, we assume that for all e 2 E there exists f 2 E so that

Aef D 1. Otherwise, if there were e 2 E so that Aef D 0 for every f 2 E, then

the limit set JE;A would be the same as the limit set JEn¹eº;A (in the construction

of this latter set, A is restricted to .E n ¹eº/2). Second, we assume that for every

vertex v 2 V there exists e 2 E so that i.e/ D v. Otherwise, if there existed v 2 V

such that no edge has for initial vertex v, then the limit set J would be the same

if the vertex set were V n ¹vº.

If the set of vertices of a GDMS is a singleton and all the entries in the as-

sociated incidence matrix are 1, then the GDMS is an iterated function system

(IFS).
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We emphasize that we have two directed graphs that play an important role

in our study. �e �rst one is the given multigraph .V; E; i; t /. �e second one,

denoted by GE;A, is determined by the matrix A. �e vertices of GE;A are the

edges of the multigraph and GE;A has a directed edge from e to f if and only if

Aef D 1. �erefore GE;A has in�nitely many vertices and edges if and only if E

is an in�nite set.

�e incidence matrix A is said to be irreducible if for any two edges e; f 2 E

there exists a word ! 2 E�
A so that e!f 2 E�

A . �is is equivalent to saying that the

directed graph GE;A is strongly connected, i.e. for any two vertices of that graph

there exists a path starting from one and ending at the other.

�e matrix A is called primitive if there exists p � 1 such that all the entries of

Ap are positive (written Ap > 0) or, in other words, for any two edges e; f 2 E

there exists a word ! 2 E
p�1
A so that e!f 2 E

pC1
A .

�e matrix A is said to be �nitely irreducible if there exists a �nite set � � E�
A

so that for any two edges e; f 2 E there is a word ! 2 � so that e!f 2 E�
A .

�e matrix A is called �nitely primitive if there exist p � 1 and a �nite set

� � E
p�1
A such that for any two edges e; f 2 E there is a word ! 2 � so that

e!f 2 E
pC1
A .

A GDMS is called conformal, and hence a CGDMS, if the following conditions

are satis�ed.

(1) For every v 2 V , the set Xv is a compact connected subset of a Euclidean

space Rd (the dimension d common for all vertices) and Xv D Int.Xv/.

(2) (Open Set Condition (OSC)) For every e; f 2 E, e ¤ f ,

'e

�

Int.Xt.e//
�

\

'f

�

Int.Xt.f //
�

D ;:

(3) For every vertex v 2 V there exists an open connected set Wv � Xv so

that for every e 2 E with t .e/ D v, the map 'e extends to a C 1 conformal

di�eomorphism of Wv into Wi.e/.

(4) (Cone property) �ere exists 
; l > 0, such that for every x 2 X there exists

an open cone Con.x; 
; l/ � Int.X/ with vertex x, central angle of measure


 , and altitude l .

(5) �ere are two constants L � 1 and ˛ > 0 so that
ˇ

ˇj'0
e.y/j � j'0

e.x/j
ˇ

ˇ � Lk.'0
e/�1k�1ky � xk˛

for every e 2 E and for every pair of points x; y 2 Wt.e/, where j'0
e.x/j

represents the norm of the derivative of 'e at x. �is says that the norms of

the derivative maps are all Hölder of order ˛ with Hölder constant depending

on the map.
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Remark 2.1. Condition (5) plays a central role in dimension d D 1. If d � 2 and

a GDMS S D ¹'e W Xt.e/ ! Xi.e/ºe2E satis�es conditions (1) and (3), then it also

ful�lls condition (5) with ˛ D 1.

As a straightforward consequence of (5), we get the famous

(6) (Bounded Distortion Property (BDP)) �ere exists K � 1 such that for all

! 2 E�
A and for all x; y 2 Wt.!/

j'0
!.y/j � Kj'0

!.x/j: (1)

3. Topological pressure for CGDMSs

We now de�ne the topological pressure function, a central object in the theory of

CGDMSs.

Given t � 0 and n � 1, let

Zn;E;A.t / D
X

!2En
A

k'0
!kt :

�e non-increasing function Zn D Zn;E;A is called the nth-level partition func-

tion. �e partition functions form a submultiplicative sequence of functions since

for every t � 0 and for every p; q � 1,

ZpCq;E;A.t / � Zp;E;A.t /Zq;E;A.t /:

Remark 3.1. For a CGDMS with a �nitely irreducible incidence matrix, the se-

quence of partition functions is boundedly supermultiplicative, i.e. for every t � 0

there exists a constant C D C.t/ > 0 so that

C.t/Zp;E;A.t /Zq;E;A.t / � ZpCq;E;A.t /

for every p; q � 1. However, if the incidence matrix is not �nitely irreducible,

this may not hold anymore. An example is given in Remark 3.3.

We de�ne the topological pressure function

P D PE;A W Œ0; 1/ �! Œ�1; 1�

as follows.
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First, let

� D �E;A WD inf
®

t � 0 W Zn;E;A.t / < 1 for all but �nitely many n’s
¯

:

If t > �E;A, then the submultiplicativity of the Zn’s allows to de�ne

PE;A.t / WD lim
n!1

1

n
log Zn;E;A.t / D inf

n!1

1

n
log Zn;E;A.t / < 1:

If t < �E;A, we de�ne PE;A.t / WD 1.

If Zn;E;A.�E;A/ < 1 for all but �nitely many n’s, we put

PE;A.�E;A/ WD lim
n!1

1

n
log Zn;E;A.�E;A/ D inf

n!1

1

n
log Zn;E;A.�E;A/:

Otherwise, PE;A.�E;A/ WD 1.

�e number �E;A is thus the �niteness parameter for the pressure of the system.

For every n � 1, let

�n D �n;E;A WD inf
®

t � 0 W Zn;E;A.t / < 1
¯

be the �niteness parameter for the nth-level partition function of the system.

�e next result is a slight generalization of Proposition 4.2.8 in [9].

Proposition 3.2. �e following statements hold:

(a) �kn � �n for all k; n � 1;

(b) inf
n�1

�n D lim inf
n!1

�n � � � lim sup
n!1

�n;

(c) if A is �nitely irreducible, then �n D � for every n � 1;

(d) the pressure function P is non-increasing on Œ0; 1/, strictly decreasing to

�1 on Œ�; 1/, and convex (so continuous) on .�; 1/;

(e) P.0/ D 1 if and only if jEj D 1;

(f) P.t/ D inf
°

u 2 R W there exists nu � 0 so that
X

!2E�
A

W j!j�nu

k'0
!kte�uj!j < 1

±

.
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Remark 3.3. Note that part (c) does not necessarily hold if the matrix is not

�nitely irreducible. For example, take the standard continued fractions conformal

iterated function system SN (see [8]). We may conceive this system as a graph

directed Markov system having a single vertex v with in�nitely many self-loops.

�ese self-loops are labeled by the positive integers and to self-loop n is associated

the conformal map 'n.x/ D 1=.n C x/ mapping X D Xv D Œ0; 1� into itself. Let

S be the subsystem of SN generated by E D ¹2; 3; 4; : : :º and the edge incidence

matrix

Aef D 1 () je � f j � 1:

�e limit set J of S is the set of all irrational numbers between 0 and 1 whose

standard continued fraction expansions have entries at least 2 such that any

two adjacent entries di�er by at most 1. Clearly, the incidence matrix A is ir-

reducible, though not �nitely irreducible. For every n � 1, one can also show that

�n D 1=2n. By Proposition 3.2(b), the �niteness parameter for the pressure func-

tion is hence � D 0. Furthermore, if the sequence of partition functions were

boundedly supermultiplicative (cf. Remark 3.1), then for every n � 1 we would

have �n D � . �us the sequence of partition functions is not boundedly supermul-

tiplicative.

4. Conformal measures for CGDMSs

We shall now de�ne conformal measures. For each ! 2 E�
A , let

E1
A;! WD ¹� 2 E1

A W !� 2 E1
A º D

[

Qe2E W A!j!j QeD1

Œ Qe�

be the set of all A-admissible in�nite words to which the �nite word ! can be

pre�xed.

De�nition 4.1. Let S D ¹'eºe2E be a CGDMS. A Borel probability measure m

on X is said to be t -conformal provided it is supported on the limit set J and the

following two conditions are satis�ed.

For every e 2 E and for every Borel set B � �.E1
A;e/, we have

m.'e.B// D

Z

B

j'0
ejt dm; (2)

and for all letters e1; e2 2 E

m.'e1
.Xt.e1// \ 'e2

.Xt.e2/// D 0: (3)
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By induction the conformality cascades down to all �nite words. Indeed, a

Borel probability measure m on X is t -conformal if and only if it is supported on

the limit set J , for every ! 2 E�
A and for every Borel set B � �.E1

A;!/, we have

m.'!.B// D

Z

B

j'0
! jt dm; (4)

and for all incomparable words !; � 2 E�
A

m.'!.Xt.!// \ '� .Xt.�/// D 0: (5)

Unlike the de�nition given in (4.28) on p. 77 of [9], we claim that condition (2)

can generally be only imposed on the Borel subsets of �.E1
A;e/, e 2 E. Indeed,

assume that the CGDMS S satis�es the strong separation condition, that is, that

its �rst-level sets are mutually disjoint. Condition (3) holds for any measure in

such a case. Furthermore, the coding map � is injective. By de�nition, � is

also surjective and continuous from a compact space to its compact, and thus

Hausdor�, image. �erefore it is a homeomorphism. Fix e 2 E and let

Jt.e/ D J \ Xt.e/ and E1
A;e D ¹� 2 E1

A W e� 2 E1
A º:

Let us suppose �.�/2'e.Jt.e/n�.E1
A;e// for some � 2E1

A . If �1 De then �� 2E1
A;e

and thus �.��/ 2 �.E1
A;e/. Consequently, �.�/ D '�1

.�.��// 2 'e.�.E1
A;e//.

Hence we deduce that �.�/…'e.Jt.e/n�.E1
A;e// by the injectivity of 'e . So �1 ¤e.

But then '�1
.Xt.�1// \ 'e.Xt.e// D ;. Since �.�/ 2 '�1

.Xt.�1//, this implies that

�.�/ … 'e.Xt.e//. �is contradiction implies that 'e.Jt.e/n�.E1
A;e// \ J D ; and

consequently m.'e.Jt.e/n�.E1
A;e/// D 0. If ˆ admits a t -conformal measure m,

then

0 D m.'e.Jt.e/n�.E1
A;e///

D

Z

Jt.e/n�.E1
A;e

/

j'0
ejtdm � K�tk'0

ektm.Jt.e/n�.E1
A;e//:

�erefore m.Jt.e/n�.E1
A;e// D 0 for every e 2 E. Note that

E1
A;e D

[

g2E W AegD1

Œg�

and thus

�.E1
A;e/ D

[

g2E W AegD1

�.Œg�/:
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It follows from the injectivity of � that

Jt.e/n�.E1
A;e/ D

[

g2E W t.e/Di.g/; AegD0

�.Œg�/:

Suppose additionally that V consists of a single vertex, that E D ¹1; 2; 3º, and

that the matrix A is

A D

2

4

1 0 1

1 1 0

0 1 1

3

5 :

�en

Jt.1/n�.E1
A;1/ D

[

A1;gD0

�.Œg�/ D �.Œ2�/;

Jt.2/n�.E1
A;2/ D

[

A2;gD0

�.Œg�/ D �.Œ3�/;

Jt.3/n�.E1
A;3/ D

[

A3;gD0

�.Œg�/ D �.Œ1�/:

Hence

m.J / D
X

e2E

m.�.Œe�// D
X

e2E

m.Jt.e/n�.E1
A;e// D 0:

�is means that such a system cannot admit a t -conformal measure as de�ned

in (4.28) on p.77 of [9], i.e. if the Borel sets B � Xt.e/ are allowed to intersect

Jt.e/n�.E1
A;e/. However, any such system is regular as it is �nite and primitive

(A2 > 0).

Given a word ! 2 E�
A , set

X! WD
[

e2E W A!j!je
D1

'e.Xt.e//:

We now enunciate a characterization of conformality in terms of the sets Xe,

e 2 E.

Lemma 4.2. A Borel probability measure m on X is a t -conformal measure if

and only if it is supported on J and is such that (3) holds and that (2) is satis�ed

for all e 2 E and all Borel sets B � Xe.
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Proof. One implication is immediate since �.E1
A;e/ is a Borel subset of Xe for all

e 2 E. For the opposite direction, suppose that m is a t -conformal measure. Fix

e 2 E. We just need to show that (2) is satis�ed for all Borel sets B � Xe. Let

Ee D ¹Qe 2 E W Ae Qe D 1º. We claim that it is su�cient to establish (2) for all

Qe 2 Ee and all Borel sets B � 'Qe.Xt.Qe//. Indeed, if that is the case and B � Xe,

then order Ee D ¹Qenºn2N as a �nite or in�nite sequence, let B0 D ; and de�ne

successively

Bn D B \ 'Qen
.Xt.Qen//n

n�1
[

j D0

Bj ; n D 1; 2; : : : .

Observe that each set Bn is a Borel subset of 'Qen
.Xt.Qen//, that the sets Bn, n 2 N ,

are mutually disjoint and that their union is B . Using the injectivity of 'e , we then

obtain that

m.'e.B// D
X

n2N

m.'e.Bn// D
X

n2N

Z

Bn

j'0
ejt dm D

Z

B

j'0
ejt dm:

�is proves our claim. So we can �x Qe 2 Ee and assume that B � 'Qe.Xt.Qe//. Split

B into the two sets

B1 WD B \ �.E1
A;e/ and B2 WD Bn�.E1

A;e/:

As B1 � �.E1
A;e/ and m is t -conformal, the Borel set B1 satis�es (2). Regarding

B2, note that B2 \ J � .'Qe.Xt.Qe//n�.E1
A;e// \ J . Let �.�/ 2 'Qe.Xt.Qe//n�.E1

A;e/

for some � 2 E1
A . If �1 2 Ee then � 2 E1

A;e . Hence �1 … Ee. �is implies that

.'Qe.Xt.Qe//n�.E1
A;e// \ J �

[

Ne…Ee

' Ne.Xt. Ne// \ 'Qe.Xt.Qe//

and hence

m.B2/ D m.B2 \ J / � m..'Qe.Xt.Qe//n�.E1
A;e// \ J /

�
X

Ne…Ee

m.' Ne.Xt. Ne// \ 'Qe.Xt.Qe///

D 0:

Moreover,

'e.B2/ \ J � 'e.Xt.e/n�.E1
A;e// \ J:
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Let �.�/ 2 'e.Xt.e/n�.E1
A;e// for some � 2 E1

A . If �1 D e then �� 2 E1
A;e and

thus �.��/ 2 �.E1
A;e/. Consequently,

�.�/ D '�1
.�.��// 2 'e.�.E1

A;e//:

Hence �.�/ … 'e.Xt.e/n�.E1
A;e// by the injectivity of 'e . So �1 ¤ e and

�.�/ 2 '�1
.Xt.�1// \ 'e.Xt.e//. �is implies that

'e.Xt.e/n�.E1
A;e// \ J �

[

Ne2En¹eº

' Ne.Xt. Ne// \ 'e.Xt.e//

and hence

m.'e.B2// D m.'e.B2/ \ J /

� m
�

[

Ne2En¹eº

' Ne.Xt. Ne// \ 'e.Xt.e//
�

�
X

Ne2En¹eº

m.' Ne.Xt. Ne// \ 'e.Xt.e///

D 0:

So m.'e.B2// D 0 D m.B2/ and the Borel set B2 satis�es (2). We conclude that

the Borel set B D B1 [B2 satis�es (2) since these latter two disjoints sets do.

�e following lemma reveals the behavior of a conformal measure with respect

to any Borel set.

Lemma 4.3. Suppose that m is a t -conformal measure on X . For all ! 2 E�
A and

all Borel sets B � Xt.!/, we have

m.'!.B// D m.'!.B \ X!// D m.'!.B/ \ '!.X!//:

Moreover,

m.'!.B// �

Z

B

j'0
! jt dm:
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Proof. �e nth-level sets '!.Xt.!//, ! 2 En
A , cover J and are m-measure-theo-

retically mutually disjoint. Consequently,

1 D
X

!2En
A

m.'!.Xt.!///:

Consider the sets '!.X!/, ! 2 En
A . Since X! � Xt.!/, we have

m.'!.X!// � m.'!.Xt.!///:

Observe that

'!.X!/ D
[

e2E W A!j!je
D1

'!.'e.Xt.e/// D
[

�2E
nC1
A

W � jnD!

'� .Xt.�//:

�at is, the family '!.X!/, ! 2 En
A , is a particular grouping of the .nC 1/th-level

sets. �ereafter,

1 D
X

�2E
nC1
A

m.'� .Xt.�/// D
X

!2En
A

m.'!.X!// �
X

!2En
A

m.'!.Xt.!/// D 1:

�is means the above inequality is in fact an equality. Since

m.'!.X!// � m.'!.Xt.!///

for all ! 2 En
A , it ensues that

m.'!.X!// D m.'!.Xt.!///

and

m.'!.Xt.!//n'!.X!// D 0

for all ! 2 En
A . Now, let B � Xt.!/. �en

m.'!.B \ X!// D m.'!.B/ \ '!.X!//

D m.'!.B/ \ '!.X!// C m.'!.B/ \ .'!.Xt.!//n'.X!///

D m.'!.B/ \ '!.Xt.!///

D m.'!.B//:

Using Lemma 4.2, we conclude that

m.'!.B// D m.'!.B \ X!// D

Z

B\X!

j'0
! jt dm �

Z

B

j'0
! jt dm:
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For CIFSs, a stronger statement can be made still.

Lemma 4.4. Suppose that S is a CIFS and that m is a t -conformal measure on

X . For all ! 2 E�
A and all Borel sets B � X , we have

m.'!.B// D m.'!.B \ X1// D m.'!.B/ \ '!.X1//;

where

X1 WD
[

e2E

'e.X/

is the �rst stage in the construction of the limit set J of S . Moreover,

m.'!.B// D

Z

B

j'0
! jt dm:

Proof. A CIFS consists of a single vertex and its matrix comprises only ones, i.e.

all transitions are allowed. �erefore Xt.!/ D X and X! D X1 for all ! 2 E�
A .

�e �rst part of the statement was thus proved in Lemma 4.3. For the last part,

since m is supported on J , we deduce that m.J / D m.X1/ D m.X/. It follows

that m.B/ D m.B \ X1/ for all Borel sets B � X . Consequently,

m.'!.B// D m.'!.B \ X!// D

Z

B\X1

j'0
! jt dm D

Z

B

j'0
! jt dm:

5. Finitely irreducible vs. irreducible systems

Next, we present some results about �nitely irreducible CGDMSs and discuss

which part(s) of these results are valid for irreducible systems. We recall the fol-

lowing de�nition.

De�nition 5.1. A CGDMS S is regular if there is t � 0 so that PE;A.t / D 0. If a

CGDMS is not regular, then it is said to be irregular.

We shall see shortly that any irreducible CGDMS that admits a conformal

measure is regular. First, we prove the following.

Lemma 5.2. If an irreducible CGDMS admits a conformal measure m, then

m.'e.Xe// > 0 and m.Xe/ > 0 for all e 2 E and

M WD min¹m.Xv/ W v 2 V º > 0:
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Proof. Let m be a t -conformal measure. We �rst claim that there exists e 2 E such

that m.Xe/ > 0. Otherwise, 1 D m.J / �
P

e2E m.Xe/ D 0, since J �
S

e2E Xe.

We now claim that m.Xf / > 0 for all f 2 E. Indeed, since the incidence matrix

is irreducible, there is a word ˛ 2 E�
A so that f ˛e 2 E�

A . �en

m.Xf / � m.'˛e.Xt.e///

� m.'˛e.Xe//

D

Z

Xe

j'0
˛ejt dm

� K�tk'0
˛ektm.Xe/

> 0:

It also follows that

m.'f .Xf // D

Z

Xf

j'0
f jt dm � K�tk'0

f ktm.Xf / > 0:

Now, let v 2 V . According to our standing assumptions, there is an edge fv such

that t .fv/ D v. �en m.Xv/ � m.Xfv
/ > 0. Since there are �nitely many vertices,

the result ensues.

�eorem 5.3. �e following statements hold.

(a) Let S be a CGDMS for which there is a �nite set F � E such that for every

e 2 E there is f 2 F with Aef D 1. If S admits a t -conformal measure m

such that m.Xf / > 0 for all f 2 F , then there is a constant C � 1 such that

1 � Zn.t / � C; for all n � 1: (6)

�erefore P.t/ D 0 and S is regular.

(b) Let S be an irreducible CGDMS for which there is a �nite set F � E such

that for every e 2 E there is f 2 F with Aef D 1. If S admits a t -conformal

measure, then P.t/ D 0 and S is regular.
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Proof. (a) For every n � 1 observe that

1 D m.J /

D m
�

[

!2En
A

'!.X!/
�

D
X

!2En
A

m.'!.X!//

D
X

!2En
A

Z

X!

j'0
! jt dm

�
X

!2En
A

k'0
!kt

D Zn.t /:

On the other hand, note that

1 D
X

!2En
A

Z

X!

j'0
! jt dm

�
X

!2En
A

K�tk'0
!ktm.X!/

� K�t inf
f 2F

m.'f .Xf //
X

!2En
A

k'0
!kt

� K�2t inf
f 2F

k'0
f ktm.Xf /

X

!2En
A

k'0
!kt DW C �1Zn.t /:

We deduce that

1 � Zn.t / � C; for all n � 1: (7)

We conclude that P.t/ D 0. Hence the system is regular.

(b) �is is a direct consequence of (a) and Lemma 5.2.
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Remark 5.4. �e contrapositive of part (b) a�rms that an irregular, irreducible

CGDMS which comprises a �nite set F � E such that for every e 2 E there is

f 2 F with Aef D 1 cannot admit a conformal measure.

�e next theorem states that for �nitely irreducible systems, the Hausdor� di-

mension of the limit set can be approximated by the Hausdor� dimension of the

limit sets generated by the �nite subsystems. It further reveals that the Hausdor�

dimension (abbreviated HD) of the limit set is equal to the parameter where the

pressure function turns from positive to negative. �is is a generalization of the

well-known Bowen’s formula and can be found in �eorem 4.2.13 of [9]. We will

return to this theme in the next section.

�eorem 5.5. For any �nitely irreducible CGDMS,

HD.JE;A/ D sup¹HD.JF;A/ W F � E; jF j < 1º

D inf¹t � 0 W PE;A.t / < 0º

� �E;A:

�us, if PE;A.t / D 0 for some parameter t , then t is the only zero of the pressure

function PE;A and t D HD.JE;A/.

6. General �nite CGDMSs

One may garner many properties of a general CGDMS from the structure of, and

the relationships between, its strongly connected components. We will demon-

strate this for the Hausdor� dimension and the Hausdor� measure of the limit set

of �nite CGDMSs.

6.1. Strongly connected components

De�nition 6.1. Let SE;A be a CGDMS. We say that edge c1 leads to edge c2,

and denote this by c1 Ý c2, if there is a word ! 2 E�
A such that !1 D c1 and

!j!j D c2. Equivalently, c1 Ý c2 if there is a path starting at c1 and ending at c2

on the associated directed graph GE;A. A set C � E of edges is called a strongly

connected component of SE;A (or of the directed graph GE;A) if c1 Ý c2 for any

c1; c2 2 C and C is a largest set, in the sense of inclusion, having this property.

Observe that any strongly connected component gives rise to an irreducible

(sub)system.
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De�nition 6.2. We say that a strongly connected component C1 leads to a strongly

connected component C2, and denote this by C1 Ý C2, if there is some edge in

C1 which leads to some edge in C2.

Note that if a component C1 leads to another component C2, then C2 cannot

lead to C1.

De�nition 6.3. An edge is called isolated if it does not belong to any strongly

connected component.

6.2. Pressure and Hausdor� dimension of the limit set. We �rst show that the

pressure of any �nite CGDMS is the maximum of the pressure of its component

subsystems.

�eorem 6.4. �e pressure function of any �nite CGDMS SE;A satis�es

PE;A.t / D max¹PC;A.t / W C is a strongly connected component of SE;Aº

for all t � 0.

Proof. Let C1; C2; : : : ; Ck be the strongly connected components of SE;A and �x

1 � j � k. Let b be the number of isolated edges. If � 2 E�
A , then each iso-

lated edge can appear at most once in � . So � can be written as a concatenation

of subwords from distinct components and no more than b isolated edges. �us

any A-admissible word � that contains at least one letter (edge) from Cj can be

uniquely written as ˇ j̨ 
 , where j̨ 2 .Cj /�
A and ˇ; 
 2 .E n Cj /�

A. (Note that ˇ

and/or 
 may be the empty word, while j̨ is the longest subword of � that has

letters from Cj only.) For each � 2 E�
A and 1 � j � k, let j̨ .�/ be the longest

subword of � in .Cj /�
A. For any t � 0, we have k'0

� kt �
Qk

j D1 k'0

j̨ .�/
kt . Since

the map � 7! .˛1.�/; : : : ; ˛k.�// is bounded-to-one, say at most T -to-1 for some

T � 0, the following inequality holds for all u 2 R:

X

!2E�
A

k'0
!kte�uj!j � T max¹1; e�ubº

k
Y

j D1

X

!j 2.Cj /�
A

k'0
!j

kte�uj!j j:

Using Proposition 3.2(f), we deduce that PE;A.t / � max1�j �k¹PCj ;A.t /º. �e

opposite inequality is obvious.
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It follows immediately that the Hausdor� dimension of the limit set of a �nite

CGDMS is the maximum of the dimension of its component subsystems.

Corollary 6.5. Let SE;A be a �nite CGDMS. �en

HD.JE;A/ D max¹HD.JC;A/ W C is a strongly connected component of SE;Aº:

Proof. �is is a consequence of Proposition 3.2(d,e) and �eorems 5.5 and 6.4.

We also obtain a generalization of Bowen’s formula to all �nite CGDMSs.

Corollary 6.6. For any �nite system, PE;A.t / D 0 if and only if t D HD.JE;A/.

Proof. �is is a consequence of Proposition 3.2(d,e) and �eorems 5.5 and 6.4.

�eorem 6.4 and Corollary 6.5 suggest making the following de�nition.

De�nition 6.7. Let h D HD.JE;A/, i.e. let h be the unique parameter t such that

PE;A.t / D 0. A strongly connected component C is called Hausdor�-maximal

if PC;A.h/ D 0. In other words, C is Hausdor�-maximal if and only if

HD.JC;A/ D HD.JE;A/.

Corollary 6.5 can thus be restated as a�rming that any �nite CGDMS has a

Hausdor�-maximal component.

6.3. Hausdor� measure of the limit set. Our next goal is to study the restriction

of the Hausdor� measure to the limit set of a �nite system. It it well known that

this measure is positive and �nite for any �nite irreducible system. We will show

that this measure is positive and �-�nite for any �nite system. Moreover, we will

�nd a characterization of the �niteness of this measure.

In general, the h-dimensional Hausdor� measure restricted to the limit set of

any �nite system is positive and �-�nite.

Proposition 6.8. Let SE;A be a �nite CGDMS and let h D HD.JE;A/. �en

H
hjJE;A

is positive and �-�nite.

Proof. It is well-known that the limit set of any �nite irreducible system has a posi-

tive and �nite h-dimensional Hausdor� measure (for instance, see �eorems 4.5.1

and 4.5.3 in [9]). We deduce from this that Hh.JE;A/ � H
h.JC;A/ > 0 for all

Hausdor�-maximal components C of the �nite system SE;A.
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To prove the �-�niteness, we shall need further notation. For every ! 2 E�
A ,

every F � E�
A and every G � E1

A , let

!F D ¹!� 2 E�
A W � 2 F º and !G D ¹!
 2 E1

A W 
 2 Gº:

Let I denote the set of isolated letters for the system SE;A. Let b D jI j < 1

and observe that I �
A D

Sb
j D0 I

j
A . Let C1; C2; : : : ; Ck be the Hausdor�-maximal

components of SE;A. Note that for every e … I , there exists a unique 1 � k.e/ � k

such that e 2 Ck.e/. For every ! 2 E�
A , let

K! D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

!.Ck.!j!j//
1
A if !j!j … I;

[

�2!I �
A

[

�2�.EnI/

K� if !j!j 2 I:

�e sequence of compact sets .Kn/n�1, where Kn D
S

!2En
A

K! , clearly consti-

tutes an exhaustion of E1
A . �erefore the sequence of compact sets .�.Kn//n�1

forms an exhaustion of JE;A. Moreover, for every n � 1,

H
h.�.Kn// �

X

!2En
A

H
h.�.K!//;

where, if !j!j … I then

H
h.�.K!// D H

h.�.!.Ck.!j!j//
1
A //

D H
h.'!.JCk.!j!j/

;A//

� k'0
!kh

H
h.JCk.!j!j/

;A/

� k'0
!kh max

1�j �k
H

h.JCj ;A/

< 1

whereas, if !j!j 2 I then

H
h.�.K!// �

X

�2!I �
A

X

�2�.EnI/

H
h.�.K�//

�
X

�2!I �
A

X

�2�.EnI/

k'0
� kh max

1�j �k
H

h.JCj ;A/

< 1:

Consequently, Hh.�.Kn// < 1 for every n � 1 and the h-dimensional Hausdor�

measure is �-�nite.
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To identify a characterization of the �niteness of the Hausdor� measure, we

need some intermediate results.

�e �rst of these results pertains to the words that do not have any letter from

a Hausdor�-maximal component.

Lemma 6.9. Let SE;A be a �nite CGDMS, h D HD.JE;A/, and C1; C2; : : : ; Ck

be the Hausdor�-maximal components of SE;A. Let C0 D E n
S

1�i�k Ci . �en

there exists k0 > 0 and 0 < a < 1 so that

Zn;C0;A.h/ D
X

!2.C0/n
A

k'0
!kh � k0an; for all n � 1:

Consequently, there exists M0 > 0 such that

X

!2.C0/�
A

k'0
!kh � M0:

Proof. If C0 does not contain any strongly connected component of GE;A, then it

consists solely of the isolated letters and thus Zn;C0;A.t / D 0 for all n su�ciently

large. If C0 contains strongly connected components of GE;A, then none of those

is Hausdor�-maximal. �erefore PC0;A.h/ < 0 according to �eorem 6.4 (applied

with E replaced by C0). Consequently,

lim
n!1

1

n
log Zn;C0;A.h/ D PC0;A.h/ < 0

and the lemma follows immediately.

We now turn our attention to those words which have a letter from a Hausdor�-

maximal component, assuming that this latter does not lead to any other Hausdor�-

maximal component.

Lemma 6.10. Let SE;A be a �nite CGDMS, h D HD.JE;A/, and C1; C2; : : : ; Ck

be the Hausdor�-maximal components of SE;A. Suppose that Ci 6ÝCj for every

1 � i ¤ j � k. For each 1 � i � k, let C ��
i be the set of all �nite A-admissible

words with at least one letter from Ci . �en there exists Mi > 0 such that

X

!2C ��
i

\En
A

k'0
!kh � Mi ; for all n � 1:
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Proof. Let

C0 D E n
[

1�i�k

Ci

and n � 1. Fix 1 � i � k. Since the Hausdor�-maximal component Ci generates

a �nite irreducible CGDMS, it admits an h-conformal measure and by Lemma 5.2

and �eorem 5.3(a), there exists, there exists Ni > 0 such that
X

!2.Ci /n
A

k'0
!kh � Ni ; for all n � 1:

For each j � 1, let C ��
i;j be the set of all words in C ��

i containing exactly j letters

from Ci . Every word of length n in C ��
i;j is of the form ˛!ˇ with ˛; ˇ 2 C �

0 and

! 2 .Ci/
j
A, where j˛jCjˇj D n�j (note that ˛ and/or ˇ may be the empty word).

Based on this observation and on Lemma 6.9, we obtain
X

!2C ��
i;j

\En
A

k'0
!kh � .n � j C 1/k2

0an�j Ni :

�erefore

X

!2C ��
i

\En
A

k'0
!kh D

n
X

j D1

X

!2C ��
i;j

\En
A

k'0
!kh

� k2
0Ni

n
X

j D1

.n � j C 1/an�j

� k2
0Ni

1
X

lD0

.l C 1/al

�
k2

0Ni

.1 � a/2
:

Set

Mi D
Ni k

2
0

.1 � a/2
:

We now demonstrate that the partition functions of a �nite system, at parameter

h, are uniformly bounded from above if the Hausdor�-maximal components of the

system do not communicate.

Proposition 6.11. Let SE;A be a �nite CGDMS and let h D HD.JE;A/. Let

C1; C2; : : : ; Ck be the Hausdor�-maximal components of SE;A. If Ci 6ÝCj for all

1 � i ¤ j � k, then there exists a constant M > 0 such that

Zn;E;A.h/ � M; for all n � 1:
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Proof. Let n � 1 and

C0 D E n
[

1�i�k

Ci :

Since the Hausdor�-maximal components are pairwise non-communicating, we

have

Zn;E;A.h/ D
X

!2En
A

k'0
!kh

D
X

!2.C0/n
A

k'0
!kh C

k
X

iD1

X

!2C ��
i

\En
A

k'0
!kh

�

k
X

iD0

Mi DW M;

where the constants Mi originate from Lemmas 6.9 and 6.10.

We can now establish the �niteness of the h-dimensional Hausdor� measure

of the limit set of any �nite system whose Hausdor�-maximal components do not

communicate.

Proposition 6.12. Let SE;A be a �nite CGDMS and let h D HD.JE;A/. Let

C1; C2; : : : ; Ck be the Hausdor�-maximal components of the system. If Ci 6ÝCj

for all 1 � i ¤ j � k, then 0 < H
h.JE;A/ < 1.

Proof. By Proposition 6.8, we know that 0 < H
h.JE;A/. On the other hand, for

every n � 1 the nth-level sets ¹'!.Xt.!//º!2En
A

form a cover of JE;A whose mesh

converges to 0 as n ! 1. �en
X

!2En
A

diam.'!.Xt.!///
h � Dh

X

!2En
A

k'0
!kh D DhZn;E;A.h/ � DhM;

where M is the constant in Proposition 6.11 and D is a constant coming from (4.20)

on page 73 of [9]. �us, Hh.JE;A/ < 1.

Next, we demonstrate that the partition functions of a �nite system, at parame-

ter h, are not bounded from above if some Hausdor�-maximal components of the

system communicate.

Proposition 6.13. Let SE;A be a �nite CGDMS and let h D HD.JE;A/. Let

C1; C2; : : : ; Ck be the Hausdor�-maximal components of the system. If there exists

1 � i ¤ j � k so that Ci Ý Cj , then

sup
n�1

Zn;E;A.h/ D 1:
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Proof. Without losing generality, let us assume that C1 D ¹e1;1; e1;2; : : : ; e1;pº

and C2 D ¹e2;1; e2;2; : : : ; e2;qº are Hausdor�-maximal components such that

C1 Ý C2. Reindexing if necessary, we may even assume that e1;p Ý e2;1 in such

a way that there exists !0 2 ŒE n .C1 [ C2/��A with e1;p!0e2;1 2 E�
A . For every

n � 1 and 1 � l � p, let C
l;n
1;A be the set of all A-admissible words of length n

with letters from C1 exclusively that terminate with the letter e1;l . De�ne

Zn;C1;A;l.h/ D
X

!2C l;n
1;A

k'0
!kh:

We shall prove that for every 1 � l � p,

inf
n�1

Zn;C1;A;l.h/ > 0:

First we show that there exists 1 � l0 � p so that infn�1 Zn;C1;A;l0
.h/ > 0.

According to (6), there exists M � 1 such that

1 � Zn;C1;A.h/ D

p
X

lD1

Zn;C1;A;l.h/ � M; for all n � 1:

�erefore there exists 1 � l0 � p and an increasing subsequence .nj /j �1 of the

sequence of natural numbers .n/n�1 such that

inf
j �1

Znj ;C1;A;l0
.h/ �

1

p
:

For every n � 1 and j � 1 such that nj > n we have

1

p
� Znj ;C1;A;l0

.h/ � Znj �n;C1;A.h/Zn;C1;A;l0
.h/ � MZn;C1;A;l0

.h/:

Consequently,

inf
n�1

Zn;C1;A;l0
.h/ �

1

Mp
:

Let 1 � l � p. Since the matrix A restricted to C1 is irreducible, there exists 
l

such that e1;l0

le1;l 2 .C1/�

A. For every n � 1 we then obtain that

ZnCj
l jC1;C1;A;l.h/ �
X

!2C
l0;n

1;A

k'0
!
l e1;l

kh

� K�hk'0

l e1;l

khZn;C1;A;l0
.h/

�
K�hk'0


l e1;l
kh

Mp
:



240 A. E. Ghenciu, R. D. Mauldin, M. Roy

Since this is true for all 1 � l � p and n � 1, we deduce that

�1 WD inf
n�1;1�l�p

Zn;C1;A;l.h/ > 0:

Similarly, for every n � 1 and 1 � m � q, let C
m;n
2;A be the set of all A-admissible

words of length n with letters from C2 exclusively which begin with the letter e2;m.

De�ne

Zn;C2;A;m.h/ D
X

!2C
m;n
2;A

k'0
!kh:

By a similar argument as above,

�2 WD inf
n�1;1�m�q

Zn;C2;A;m.h/ > 0:

�us,

ZnCj!0j;E;A.h/ D
X

!2E
nCj!0j

A

k'0
!kh

�
X

1�k<n

X

˛2C
p;k
1;A

X

ˇ2C 1;n�k
2;A

k'0
˛!0ˇ kh

� K�2hk'0
!0

kh
X

1�k<n

X

˛2C
p;k
1;A

k'0
˛kh

X

ˇ2C
1;n�k
2;A

k'0
ˇ kh

D K�2hk'0
!0

kh
X

1�k<n

Zk;C1;A;p.h/ Zn�k;C2;A;1.h/

� K�2hk'0
!0

kh�1�2.n � 1/;

where K is a constant of bounded distortion. �e result ensues.

We can similarly prove the in�niteness of the h-dimensional Hausdor� mea-

sure of the limit set of any �nite system whose Hausdor�-maximal components

communicate.

Proposition 6.14. Let SE;A be a �nite CGDMS and let h D HD.JE;A/. Let

C1; C2; : : : ; Ck be the Hausdor�-maximal components of SE;A. If there exists

1 � i ¤ j � k so that Ci Ý Cj , then H
h.JE;A/ D 1.



Conformal graph directed Markov systems: beyond �nite irreducibility 241

Proof. We shall use the notation, ideas and facts from the proof of Proposition 6.13.

Without loss of generality, assume that

C1 D ¹e1;1; e1;2; : : : ; e1;pº

and

C2 D ¹e2;1; e2;2; : : : ; e2;qº

are Hausdor�-maximal components such that C1 Ý C2. Reindexing if neces-

sary, we may even assume that e1;p leads to e2;1 in such a way that there exists

!0 2 ŒE n .C1 [ C2/��A with e1;p!0e2;1 2 E�
A . For every 1 � j � q, let

J
.j /
C2;A D ¹�.!/ W ! 2 .C2/1

A ; !1 D e2;j º:

Since

JC2;A D
[

1�j �q

J
.j /
C2;A

and

H
h.JC2;A/ > 0;

there exists 1 � j0 � q such that Hh.J
.j0/
C2;A/ > 0. Since C2 is irreducible, for

every e 2 C2 choose 
e such that e
ee2;j0
2 .C2/�

A. For every word ! whose last

letter is in C2, de�ne


! WD 
!j!j
:

For every n � 1 and 1 � k < n, let

Cn;k D ¹˛!0ˇ
ˇ 2 E�
A W ˛ 2 C

p;k
1;A ; ˇ 2 C

1;n�k
2;A º

and

Cn D
[

1�k<n

Cn;k :

Observe that any two words in Cn are incomparable if and only if they are distinct.

Of course, for every n � 1,

JE;A �
[

�2Cn

'� .J
.j0/
C2;A/ D

[

1�k<n

[

˛2C
p;k
1;A

[

ˇ2C
1;n�k
2;A

'˛!0ˇ
ˇ
.J

.j0/
C2;A/:

Since C1 is a Hausdor�-maximal strongly connected component, Hh and the

unique h-conformal measure mC1
for the (�nitely) irreducible subsystem SC1;A

are equivalent when viewed as measures supported on JC1;A according to �eo-

rems 4.5.1 and 4.5.2 in [9]. �us, for every 1 � i ¤ j � p we know that

H
h.'e1;i

.Xt.e1;i // \ 'e1;j
.Xt.e1;j /// D 0:
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Similarly, for every 1 � i ¤ j � q we know that

H
h.'e2;i

.Xt.e2;i // \ 'e2;j
.Xt.e2;j /// D 0:

�us,

H
h.'!.Xt.!// \ '� .Xt.�/// D 0

for every incomparable (i.e. distinct) words !; � 2 Cn. �erefore

H
h.JE;A/

�
X

1�k<n

X

˛2C
p;k
1;A

X

ˇ2C
1;n�k
2;A

H
h.'˛!0ˇ
ˇ

.J
.j0/
C2;A//

�
X

1�k<n

X

˛2C
p;k
1;A

X

ˇ2C 1;n�k
2;A

K�hk'0
˛!0ˇ
ˇ

kh
H

h.J
.j0/
C2;A/

� K�4hk'0
!0

kh
X

1�k<n

X

˛2C
p;k
1;A

k'0
˛kh

X

ˇ2C
1;n�k
2;A

k'0
ˇ khk'0


ˇ
kh
H

h.J
.j0/
C2;A/

� K�4hk'0
!0

kh
X

1�k<n

Zk;C1;A;p.h/ Zn�k;C2;A;1.h/ min
e2C2

k'0

e

kh
H

h.J
.j0/
C2;A/

� K�4hk'0
!0

kh.n � 1/�1�2 min
e2C2

k'0

e

kh
H

h.J
.j0/
C2;A/:

In conclusion, Hh.JE;A/ D 1.
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