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Abstract. We con�rm, in a more general framework, a part of the conjecture posed by

R. Bell, C.-W. Ho, and R. S. Strichartz [Energy measures of harmonic functions on the

Sierpiński gasket, Indiana Univ. Math. J. 63 (2014), 831–868] on the distribution of en-
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1. Introduction

Energy measures associated with strong local regular Dirichlet forms describe

certain local structures of Dirichlet forms. For the standard energy form on a

Euclidean space, the energy measure of a function f is given explicitly by

jrf .x/j2 dx. On the other hand, for canonical Dirichlet forms on fractals, en-

ergy measures do not usually have simple expressions and it seems a di�cult

problem to know how they are distributed in the state space. For example, en-

ergy measures are singular with respect to self-similar measures for self-similar

Dirichlet forms on most self-similar fractals [7, 12, 14, 2]. Recently, Bell, Ho,

and Strichartz [1] studied several properties of energy measures associated with

the canonical Dirichlet form on the two-dimensional standard Sierpinski gasket.

1 �is research was partially supported by JSPS KAKENHI Grant Number 24540170 and

15H03625.
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In particular, they introduced non-negative coe�cients ¹b.w/j º3jD1 for describing

the distribution of the energy measures of harmonic functions on the cells corre-

sponding to each word w (see Section 2 for details), and posed conjectures about

properties of the limiting behavior of ¹b.w/j º3jD1 as w converges to an in�nite se-

quence of words ([1, Conjectures 7.1 and 7.2]). In this paper, we con�rm a part of

the conjecture in a slightly generalized setting. �e proof suggests that the conjec-

tured properties depend strongly on the fractals under consideration having three

vertices. Our approach is more straightforward than the original one [1]: we use

only primitive linear operators for the analysis and utilize some results on limits

of random matrices (cf. [3, 8, 9, 10, 14]).

�e remainder of this paper is organized as follows. In Section 2, we provide

a framework for Dirichlet forms on self-similar sets and give some preliminary

results. �e conjectures in [1] are also stated. In Section 3, we prove the main

theorem. Section 4 provides some concluding remarks and discussions.

2. Framework and preliminaries

We �rst introduce a class of self-similar sets and the Dirichlet forms de�ned on

them, following [13]. Let K be a compact, connected, and metrizable space. Let

¹ iºi2S be a family of continuous injective mappings from K to itself having

a �nite index set S with #S � 2. Denote SN by † and each element of † by

!1!2!3 : : : with !n 2 S for every n 2 N. For i 2 S , a shift operator �i W † ! †

is de�ned by �i .!1!2 : : : / D i!1!2 : : : . We assume that there exists a continuous

surjective map � W † ! K such that  i ı � D � ı �i for each i 2 S . �e triplet

.K; S; ¹ iºi2S / is then called a self-similar structure. De�ne Wm D Sm for m 2
ZC WD N[¹0º and denote

S

m2ZC
Wm byW�. Forw D w1w2 : : : wm 2 Wm � W�,

we de�ne  w D  w1
ı  w2

ı � � � ı  wm
and Kw D  w.K/. For w D w1 : : :wm 2

Wm and w0 D w0
1 : : :w

0
n 2 Wn, ww0 denotes w1 : : : wmw

0
1 : : : w

0
n 2 WmCn. We set

P D
1
[

mD1

�m
�

��1
� [

i;j2S; i¤j

.Ki \Kj /
��

and V0 D �.P/;

where �m W † ! † is de�ned by �m.!1!2 : : : / D !mC1!mC2 : : : . We assume

that P is a �nite set. In such a case, .K; S; ¹ iºi2S/ is called post-critically �nite.

�en, from [13, Lemma 1.3.14], each  i has a unique �xed point �.i i i : : : /.
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For a �nite set V , let l.V / denote the space of all real-valued functions on V .

A canonical inner product .�; �/l.V / on l.V / is de�ned by

.u; v/l.V / D
X

p2V

u.p/v.p/:

�e associated norm is denoted by j � jl.V /. Let D D .Dpq/p;q2V0
be a symmetric

linear operator on l.V0/ with the following properties:

(D1) D is non-positive de�nite;

(D2) Du D 0 if and only if u is constant on V0;

(D3) Dpq � 0 for all p; q 2 V0 with p ¤ q.

De�ne

E
.0/.u; v/ D .�Du; v/l.V0/ for u; v 2 l.V0/.

For m 2 N, let

Vm D
[

w2Wm

 w.V0/:

For r D ¹riºi2S with ri > 0 for all i 2 S , de�ne a bilinear form E
.m/ on l.Vm/ by

E
.m/.u; v/ D

X

w2Wm

1

rw
E
.0/.u ı  w jV0

; v ı  w jV0
/; u; v 2 l.Vm/;

where rw D
Qm
iD1 rwi

for w D w1w2 : : : wm 2 Wm. �e pair .D; r/ is called a

harmonic structure if

E
.0/.u; u/ D inf¹E.1/.v; v/ j v 2 l.V1/; vjV0

D uº for every u 2 l.V0/:

�en, for m � 0, the identity

E
.m/.u; u/ D inf¹E.mC1/.v; v/ j v 2 l.VmC1/; vjVm

D uº

holds for every u 2 l.Vm/. If, moreover, 0 < ri < 1 for all i 2 S , the harmonic

structure is called regular. Henceforth, we assume that a regular harmonic struc-

ture .D; r/ is given. Let � be a �nite Borel measure on K with full support. �en

E.u; v/ D lim
m!1

E
.m/.ujVm

; vjVm
/; u; v 2 F

with

F D ¹u 2 C.K/ � L2.K; �/ j sup
m2ZC

E
.m/.ujVm

; ujVm
/ < 1º
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de�nes a bilinear form .E;F/ on L2.K; �/ associated with .D; r/. Under a mild

condition on �, .E;F/ becomes a strong local regular Dirichlet form on L2.K; �/

(self-similar measures are adequate, for example; see [13, �eorem 3.4.6]).

We will assume such a � is chosen; the choice is not important for subsequent

arguments. We always take continuous functions as �-versions of elements of F.

Example 2.1. Typical examples are two-dimensional level l Sierpinski gaskets

SGl for l � 2, which are realized by compact subsets of R2 (see Figure 1).

�ey are constructed by l.lC1/=2 contraction mappings i de�ned as i .z/ D
l�1zCbl;i with suitable bl;i 2 R

2 and characterized by nonempty compact subsets

satisfying SGl D
Sl.lC1/=2
iD1  i .SGl /. We call SG2 the two-dimensional standard

Sierpinski gasket. �e set V0 consists of the three vertices p1, p2, and p3 of the

largest triangle in SGl . We renumber ¹ iºl.lC1/=2iD1 so that  i denotes the contrac-

tion mapping whose �xed point is pi for i D 1; 2; 3 and de�ne the matrix D by

D D .Dpipj
/3i;jD1 D

2

4

�2 1 1

1 �2 1

1 1 �2

3

5 :

Figure 1. Two-dimensional level l Sierpinski gaskets SGl (l D 2; 5).

�en, there exists a unique number r such that 0 < r < 1 and .D; r/ is a regular

harmonic structure with r D ¹r; : : : ; rº. �is example satis�es conditions (A1),

(A3), and (A4) that are stated later. If we take the normalized Hausdor� measure

as �, the di�usion process associated with the Dirichlet form as stated above is

regarded as the Brownian motion on SGl .

We now resume our discussion of the general situation. For each x 2 l.V0/,

there exists a unique function h 2 F such that hjV0
D x and h attains the in�mum

of ¹E.g; g/ j g 2 F and gjV0
D xº. Such a function h is called a harmonic function

and the totality of h is denoted by H. �e map � W l.V0/ 3 x 7! h 2 H is linear, so

we can identify H with l.V0/ by this map. For i 2 S , we de�ne a linear operator

Ai W l.V0/ ! l.V0/ by .Aix/.p/ D .�.x//. i .p// for x 2 l.V0/ and p 2 V0.
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For w D w1w2 : : : wm 2 Wm, we set Aw D Awm
Awm�1

: : : Aw1
. With an abuse

of notation, D and Aw can also be considered as linear maps from H to l.V0/ by

identifying H with l.V0/. Let 1 2 l.V0/ denote a constant function on V0 with

value 1. Set
Ql.V0/ D ¹x 2 l.V0/ j .x; 1/l.V0/ D 0º

and let P W l.V0/ ! l.V0/ be the orthogonal projection onto Ql.V0/.

Lemma 2.2. �e range of D is Ql.V0/.

Proof. For x 2 l.V0/,

.Dx; 1/l.V0/ D .x;D1/l.V0/ D 0:

�erefore, D.l.V0// � Ql.V0/. Since the dimensions of D.l.V0// and Ql.V0/ are

both #V0 � 1, we obtain the result.

For f 2 F, �f denotes the energy measure of f (cf. [6]); in our situation, �f
is the unique �nite Borel measure on K such that

Z

K

g d�f D 2E.f; fg/� E.f 2; g/ for all g 2 F:

In particular, the energy measures of the constant functions are the zero measure in

our framework. From the general theory, it is known that every energy measure for

strong local regular Dirichlet forms does not have a point mass (from the energy

image density property; see, e.g., [5, �eorem 4.3.8] or [4, �eorem I.7.1.1] for the

proof). �erefore, energy measures �f do not have a mass on the countable set

V� WD
S

m2ZC
Vm for any f 2 F. A concrete expression for �f with f 2 H can

be provided as follows.

Lemma 2.3 (cf. [12, Lemma 4]). For any f 2 H and w 2 W�,

�f .Kw/ D � 2

rw

t .Awf /D.Awf /: (2.1)

We remark that the right-hand side of (2.1) is also described as

2

rw
E.f ı  w ; f ı  w/:

�is expression justi�es an intuitive meaning of �f .Kw/ as a “local energy of f

on Kw .”1

1 Compare this expression also with the following classical situation: for a Dirichlet form

.Q;H1.Rd // onL2.Rd ; dx/, whereQ.f; g/ D .1=2/
R

Rd .rf;rg/Rd dx forf; g 2 H1.Rd /,

the energy measure of f 2H1.Rd / is given by jrf j2
Rd dx.
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�e mutual energy measure �f;g for f and g in F is a signed measure on K

de�ned by �f;g D .�fCg � �f � �g/=2. For every Borel subset B of K, the

inequality

j�f;g.B/j2 � �f .B/�g.B/ (2.2)

holds.

We assume the following condition.

(A1) Each point of V0 is a �xed point of some  j . More precisely, there exists a

subset S0 of S such that #S0 D #V0 and, for each p 2 V0, there exists j 2 S0
such that  j .p/ D p. Furthermore, K n ¹pº is a connected set for every

p 2 V0.

Under this condition, we have the following two lemmas.

Lemma 2.4 (cf. [13, �eorem A.1.2] and [12, Lemma 5]). Let j 2 S0. Takep 2 V0
such that  j .p/ D p and let uj denote the column vector .Dqp/q2V0

. �en

(1) rj is a simple eigenvalue of Aj and tAj . Moreover, the modulus of all the

eigenvalues of Aj and tAj other than 1 and rj are less than rj ;

(2) the vector uj belongs to Ql.V0/ and is an eigenvector of tAj with respect to

the eigenvalue rj ;

(3) there is a unique eigenvector vj of Aj with respect to the eigenvalue rj such

that .uj ; vj /l.V0/ D 1. Moreover, every component of vj is non-negative.

Lemma 2.5 (cf. [12, Lemma 6]). For j 2 S0 and x 2 l.V0/,

lim
n!1

r�n
j PAnj x D .uj ; x/l.V0/Pvj :

Let h1; : : : ; hN .N 2 N/ be a �nite number of harmonic functions such that H

is spanned by h1; : : : ; hN and constant functions. We denote
PN
kD1 �hk

by �.

Lemma 2.6. For every f 2 H, �f is absolutely continuous with respect to �.

Proof. For some ˛i 2 R .i D 1; : : : ; N / and ˇ 2 R, f can be written as

f D
PN
iD1 ˛ihi C ˇ. �en, �f D

PN
i;jD1 ˛i j̨�hi ;hj

. By (2.2), this is absolutely

continuous with respect to �.
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We further assume the following condition.

(A2) For every i 2 S , Ai is invertible.

For SGl with the canonical harmonic structure in Example 2.1, (A2) has been

con�rmed for l � 50 by numerical computation (cf. [9, p. 297]). It is conjectured

that it is true for all l � 2. See the �nal note “Added in proof.”

Lemma 2.7. For j 2 S0 and w 2 W�, tAwuj belongs to Ql.V0/ and is nonzero.

Proof. �is is clear because of the identity Aw1 D 1 and condition (A2).

For j 2 S0 and w 2 W�, let

a
.w/
j D

N
X

kD1

.uj ; Awhk/
2
l.V0/

:

From Lemma 2.7, a
.w/
j is strictly positive due to the choice of ¹hkºN

kD1
.

We have some explicit information on the Radon–Nikodym derivative d�f =d�

for harmonic functions f .

Lemma 2.8. For any f 2 H, w 2 W�, and j 2 S0,

lim
n!1

�f .Kwjn/

�.Kwjn/
D
.uj ; Awf /

2
l.V0/

a
.w/
j

;

where Kwjn denotes Kw j :::j
„ƒ‚…

n

.

We denote this limit by
d�f
d�
.wj1/. Although this precise notation may look

like
d�f
d�
.�.wj1//, it is not clear whether the relation �.wj1/ D �. Qw Q|1/ implies

the identity
d�f
d�
.wj1/ D d�f

d�
. Qw Q|1/.

Proof of Lemma 2.8. From Lemma 2.3, Lemma 2.5 and the identity D D tPDP ,

�f .Kwjn/

�.Kwjn/
D

t .PAnjAwf /D.PA
n
jAwf /

PN
kD1

t .PAnjAwhk/D.PA
n
jAwhk/

n!1����!
.uj ; Awf /

2
l.V0/

t .P vj /D.Pvj /
PN
kD1.uj ; Awhk/

2
l.V0/

t .P vj /D.Pvj /
D
.uj ; Awf /

2
l.V0/

a
.w/
j

:
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We now consider the following rather restrictive condition.

(A3) D2 D �
D for some 
 > 0. In other words, all the eigenvalues of D are

either 0 or �
 .

In Example 2.1, (A3) holds with 
 D 3.

�e following proposition was proved in [1, �eorem 6.1] for the case of the

standard Dirichlet form on SG2; however, that proof was di�erent from the one

presented here.

Proposition 2.9. Assume conditions (A1)–(A3). For each w 2 W�, there exists a

set of positive numbers ¹b.w/j ºj2S0
such that

�f .Kw/

�.Kw/
D

X

j2S0

b
.w/
j

d�f

d�
.wj1/; f 2 H: (2.3)

If #V0 � 3, the ¹b.w/j ºj2S0
are uniquely determined.

Proof. Since tDD D D2 D �
D,

�f .Kw/

�.Kw/
D

t .Awf /D.Awf /
PN
kD1

t .Awhk/D.Awhk/

D �
�1 � t .DAwf /.DAwf /
�
�1

PN
kD1

t .DAwhk/.DAwhk/

D
P

j2S0
.uj ; Awf /

2
l.V0/

PN
kD1

P

i2S0
.ui ; Awhk/

2
l.V0/

D
X

j2S0

a
.w/
j

P

i2S0
a
.w/
i

d�f

d�
.wj1/:

�erefore, (2.3) holds by letting

b
.w/
j D

a
.w/
j

P

i2S0
a
.w/
i

: (2.4)

To prove the uniqueness of ¹b.w/j ºj2S0
, it su�ces to prove that

X

j2S0

ǰ .uj ; Awf /
2
l.V0/

D 0 for all f 2 H (2.5)
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implies ǰ D 0 for all j 2 S0. Let j and k be distinct elements of S0. Denote

the �xed points of  j and  k by pj and pk, respectively. From Lemma 2.2, there

exists an x 2 l.V0/ such that .Dx/.pj / D 1, .Dx/.pk/ D �1, and .Dx/.p/ D 0

for p 2 V0 n ¹pj ; pkº; in other words, .uj ; x/l.V0/ D 1, .uk; x/l.V0/ D �1, and

.ui ; x/l.V0/ D 0 for i 2 S0 n ¹j; kº. From the surjectiveness of Aw , there exists an

f 2 H ' l.V0/ such that Awf D x. �en, from (2.5), ǰ Cˇk D 0. �is relation

implies that ǰ D 0 for all j 2 S0 because #S0 D #V0 � 3.

From (2.4), we have the identity

X

j2S0

b
.w/
j D 1: (2.6)

�e coe�cients ¹b.w/j ºj2S0
provide some information on the distribution of the en-

ergy measures of harmonic functions. In a typical example, ¹b.w/j ºj2S0
describes

the skewness of � on the cell Kwj relative to Kw as follows, which is due to Bell,

Ho, and Strichartz [1].

�eorem 2.10 (cf. [1, �eorem 6.3]). We consider the standard Dirichlet form

on SG2 given in Example 2.1 and write S D S0 D ¹1; 2; 3º. As a choice of

¹hiºNiD1 � H, let N D 2 and take a pair h1; h2 2 H so that E.hi ; hj / D ıij=4

for any i; j 2 ¹1; 2º, where ıij represents the Kronecker delta. Accordingly,

� D �h1
C �h2

. �en, the identity

1

5

�

b
.w/
j � 1

3

�

D 1

4

��.Kwj /

�.Kw/
� 1

3

�

holds for any w 2 W� and j 2 S0.

It is easy to see that the measure � given above is a probability measure on K

and is independent of the choice of h1 and h2. For SGl with l � 3, such a clear

interpretation of ¹b.w/j ºj2S0
as in �eorem 2.10 seems di�cult to obtain.

Let � be a Borel probability measure on † D SN, which is de�ned as the in�-

nite product of the uniform probability measure .#S/�1
P

j2S ıj on S .

For ! D !1!2 � � � 2 † andm 2 N, Œ!�m denotes !1!2 : : : !m 2 Wm. Form 2 ZC,

let �m denote the image measure of � by the map † 3 ! 7! ¹b.Œ!�m/j ºj2S 2 R
#S .

Bell, Ho, and Strichartz [1] discuss some properties of �m for the canonical Dirich-

let form on SG2 and posed conjectures, which we call Conjecture 2.12 below.

Until the end of this section, we consider the Dirichlet form for two-dimensional

standard Sierpinski gasket SG2 DW K given in Example 2.1 and take the measure �
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as in �eorem 2.10. We write S D S0 D ¹1; 2; 3º and

D WD
°

.b1; b2; b3/ 2 R
3

ˇ
ˇ
ˇ

3
X

jD1

bj D 1 and

3
X

jD1

�

bj � 1

3

�2

<
1

6

±

�

D
°

.b1; b2; b3/ 2 R
3

ˇ
ˇ
ˇ

3
X

jD1

bj D 1 and

3
X

jD1

b2j <
1

2

±�

:

�eorem 2.11 (cf. [1, �eorem 6.5]). For all w 2 W�, .b
.w/
1 ; b

.w/
2 ; b

.w/
3 / belongs

to D; that is,
3

X

jD1

�

b
.w/
j � 1

3

�2

<
1

6
: (2.7)

�is inequality is sharp. In particular, �m concentrates on D for all m.

We note that (2.7) can be rewritten as

3
X

jD1

.b
.w/
j /2 <

1

2

because of (2.6).

Conjecture 2.12 (cf. [1, Conjectures 7.1 and 7.2]). Let .r; �/ be polar coordinates

for the disk D with center c D .1=3; 1=3; 1=3/. More speci�cally,

r.z/ D jz � cjR3 ;

�.z/ D Arg..z � c; a1/R3 C
p

�1.z � c; a2/R3/ 2 .��; ��

with a1 D .1=
p
2;�1=

p
2; 0/, a2 D .�1=

p
6;�1=

p
6; 2=

p
6/, where .�; �/R3 and

j� jR3 denote the standard inner product and norm on R
3, respectively. Form 2 N,

let Pm and Qm denote the image measures of �m by the mappings �.�/ and r.�/,
respectively. �en

(1) Pm converges weakly to an absolutely continuous measure on .��; �� as

m ! 1;

(2) Qm converges weakly to the delta measure at 1=
p
6 as m ! 1.

Bell, Ho, and Strichartz [1] also conjectured the invariance of the limit of Pm

under some rational maps, but we skip the details because we do not discuss such

kind of property in this paper.

In the next section we prove �eorem 2.11 and con�rm Conjecture 2.12(2) in a

slightly more general situation.
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3. Main results

We keep the notation used in the previous section and always assume condi-

tions (A1)–(A3).

Fix w 2 W�. For j 2 S0, let zj D tAwuj . Note that zj 2 Ql.V0/ and zj ¤ 0

from Lemma 2.7. Also, since
P

j2S0
uj D 0 from D1 D 0, we have

X

j2S0

zj D 0: (3.1)

For x; y 2 Ql.V0/ � l.V0/, we de�ne

hx; yi D
N

X

kD1

.x; hk/l.V0/.y; hk/l.V0/ and kxk D hx; xi1=2:

�en, h�; �i is an inner product on Ql.V0/ and the identity kzjk2 D a
.w/
j holds.

We remark that there exists a positive de�nite symmetric operator H on Ql.V0/
such that hx; yi D .Hx;Hy/l.V0/ for all x; y 2 Ql.V0/.

Fix an arbitrary k 2 S0 and let S 0
0 D S0 n ¹kº. �en we have the following

lemma.

Lemma 3.1. �e following identity holds:

X

j2S0

.b
.w/
j /2 D

�

2C
2

P

i;j2S 0
0
; i¤j kzik2kzjk2 �

� P

i;j2S 0
0
; i¤j hzi ; zj i

�2

P

j2S0
kzjk4

��1

:

(3.2)

Proof. From (2.4),

X

j2S0

.b
.w/
j /2 D

P

j2S0
.a
.w/
j /2

� P

j2S0
a
.w/
j

�2
D

P

j2S0
kzjk4

� P

j2S0
kzjk2

�2

D
�

2C
� P

j2S0
kzjk2

�2 � 2
P

j2S0
kzj k4

P

j2S0
kzjk4

��1

:

(3.3)
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Using the identity zk D �
P

j2S 0
0
zj from (3.1), we have

X

j2S0

kzjk4 D
X

j2S 0
0

kzjk4 C k
X

j2S 0
0

zjk4

D
X

j2S 0
0

kzjk4 C
� X

j2S 0
0

kzjk2 C
X

i;j2S 0
0
; i¤j

hzi ; zj i
�2

D 2
X

j2S 0
0

kzjk4 C
X

i;j2S 0
0
; i¤j

kzik2kzjk2

C 2
X

j2S 0
0

kzjk2
X

i;j2S 0
0
; i¤j

hzi ; zj i C
� X

i;j2S 0
0
; i¤j

hzi ; zj i
�2

(3.4)

and

� X

j2S0

kzjk2
�2

�
X

j2S0

kzjk4

D
X

i;j2S0; i¤j

kzik2kzjk2

D
X

i;j2S 0
0
; i¤j

kzik2kzjk2 C 2







X

j2S 0
0

zj








2 X

j2S 0
0

kzj k2

D
X

i;j2S 0
0
; i¤j

kzik2kzjk2 C 2
� X

j2S 0
0

kzjk2
�2

C 2
X

i;j2S 0
0
; i¤j

hzi ; zj i
X

j2S 0
0

kzjk2

D 3
X

i;j2S 0
0
; i¤j

kzik2kzj k2 C 2
X

j2S 0
0

kzjk4 C 2
X

i;j2S 0
0
; i¤j

hzi ; zj i
X

j2S 0
0

kzj k2:

(3.5)

�en,

� X

j2S0

kzj k2
�2

� 2
X

j2S0

kzj k4 D 2
X

i;j2S 0
0
; i¤j

kzik2kzjk2 �
� X

i;j2S 0
0
; i¤j

hzi ; zj i
�2

by combining (3.4) and (3.5). �is identity and (3.3) imply (3.2).



Energy measures on Sierpinski gasket type fractals 257

Lastly we consider the following condition.

(A4) #V0 D 3.

�e following extends �eorem 2.11 ([1, �eorem 6.5]) to more general situations,

and the proof is more straightforward.

�eorem 3.2. Under conditions (A1)–(A4),

X

j2S0

.b
.w/
j /2 <

1

2
(3.6)

for all w 2 W�. �is inequality is sharp.

Proof. Let S 0
0 D ¹1; 2º. �en, (3.2) can be rewritten as

X

j2S0

.b
.w/
j /2 D

�

2C 4 � kz1k2kz2k2 � hz1; z2i2
P

j2S0
kzjk4

��1

: (3.7)

Moreover, the inequality jhz1; z2ij � kz1kkz2k holds with equality if and only if

z1 and z2 are linearly dependent. Since u1 and u2 are linearly independent by

the property (D2) of D, the inequality is strict. �erefore, we obtain (3.6). �e

sharpness of this inequality is con�rmed by �eorem 3.6 below, so we omit the

proof here.

Remark 3.3. As can be seen from the proof above, it seems di�cult to ob-

tain a good estimate of
P

j2S0
.b
.w/
j /2 if #V0 > 3. Indeed, if #V0 D 4 and

S0 D ¹1; 2; 3; 4º, eq. (3.2) is rewritten as

X

j2S0

.b
.w/
j /2 D

�

2C 4I
P

j2S0
kzjk4

��1

with

I D
X

.i;j /2¹.1;2/; .2;3/; .3;1/º

.kzik2kzjk2 � hzi ; zj i2/

� 2
X

.i;j;k/2¹.1;2;3/; .2;3;1/; .3;1;2/º

hzi ; zj ihzj ; zki:

We may need other functionals to specify the range of ¹b.w/j ºj2S0
in such a case.
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Let zD denote the restriction ofD as a negative de�nite symmetric operator on
Ql.V0/. For w 2 W�, let zAw denote the restriction of PAw.D PAwP / as a linear

operator on Ql.V0/.
For the statement of the main theorem, we recall the concept of strong irre-

ducibility of random matrices.

De�nition 3.4. A set T of invertible linear operators on Ql.V0/ is called strongly

irreducible if there does not exist a �nite family L1; : : : ; Lk of proper linear sub-

spaces of Ql.V0/ such that M.L1 [ � � � [ Lk/ D L1 [ � � � [ Lk for all M 2 T.

Example 3.5. We again consider a canonical harmonic structure on the two-di-

mensional level l Sierpinski gasket in Example 2.1. Further, we assume (A2).

�en we can prove that ¹ zAiºi2S is strongly irreducible. Indeed, from (A2) and

the fact that the sequence ¹.j det zAj j�1=2 zAj /nº1
nD1 is unbounded for j 2 S0, as

shown in the proof of �eorem 3.6 below, it su�ces to prove the following claim

by [3, Part A, Chapter II, Proposition 4.3]:

for every x 2 Ql.V0/n¹0º, the set ¹ zAni x j i 2 S; n 2 ZCº has three ele-

ments y1; y2; y3 such that yj and yk are pairwise linearly independent

for j ¤ k.

(3.8)

Let S0 D ¹1; 2; 3º. By the symmetry of the harmonic structure and Lemma 2.4(1),
zA1 has two di�erent eigenvalues and the eigenvectors of zA1 (up to multiplicative

constants) are z1 WD t .2;�1;�1/ and z2 WD t .0; 1;�1/. �e set of eigenvectors

of zA21 is the same as that of zA1. �e same claims hold for zA2 with z1 and z2 re-

placed by t .�1; 2;�1/ and t .1; 0;�1/, respectively. Now, let x 2 Ql.V0/ n ¹0º. If

x and zi are linearly dependent for i D 1 or 2, any two of ¹x; A2x; A22xº are lin-

early independent. Otherwise, any two of ¹x; A1x; A21xº are linearly independent.

�erefore, (3.8) follows.

We now resume our discussion of the general situation. �e following is the

main theorem of this paper.

�eorem 3.6. Assume conditions (A1)–(A4). Let � be a Borel measure on

† D SN. We further suppose either of the following cases.

(I) � is an in�nite product of a probability measure on S with full support, and

¹ zAiºi2S is strongly irreducible.

(II) �e image measure of � by � W † ! K is absolutely continuous with respect

to �.
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�en,

lim
n!1

X

j2S0

.b
.Œ!�n/
j /2 D 1

2
for �-a.e.!. (3.9)

In particular, the image measure of � by the map

† 3 ! 7�! ¹b.Œ!�n/j ºj2S0
2 l.S0/ Š l.V0/

converges weakly as n ! 1 to a measure that concentrates on the set

°

x 2 l.V0/
ˇ
ˇ
ˇ

X

p2V0

x.p/ D 1 and jxj2l.V0/
D 1=2

±

:

�e result for Case (I) gives an a�rmative answer to Conjecture 2.12(2).

We remark that the strong irreducibility of ¹ zAiºi2S is not necessary in Case (II).

Proof of �eorem 3.6. First, we note that Ql.V0/ is two-dimensional because

of (A4). Using the same notation as in �eorem 3.2, with w D Œ!�n for ! 2 †

and n 2 N,

kz1k2kz2k2 � hz1; z2i2 D jHz1j2l.V0/
jHz2j2l.V0/

� .Hz1; Hz2/
2
l.V0/

D jHz1 ^Hz2j2V2 Ql.V0/

D .detH/2.det zAŒ!�n/2ju1 ^ u2j2V2 Ql.V0/
:

Moreover, since u1 and u2 are linearly independent, the map

B 7�! .kBu1k4 C kBu2k4/1=4

provides a norm on the space L. Ql.V0// of all linear operators on Ql.V0/. �erefore,

X

j2S0

kzjk4 � k zAŒ!�nu1k4 C k zAŒ!�nu2k4 � ck zAŒ!�nk4op;

where k � kop represents the operator norm on L. Ql.V0// and c is a positive constant

independent of ! and n. �en

0 <
kz1k2kz2k2 � hz1; z2i2

P

j2S0
kzjk4 �

.detH/2.det zAŒ!�n/2 ju1 ^ u2j2V2 Ql.V0/

ck zAŒ!�nk4op

:

By virtue of (3.7), eq. (3.9) follows if we can prove that

lim
n!1

.det zAŒ!�n/2

k zAŒ!�nk4op

D 0 for �-a.e.!. (3.10)
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Suppose Case (I) and �x j 2 S0. Since zAj is invertible from (A2) and

has two eigenvalues with di�erent moduli from Lemma 2.4(1), the sequence

¹.j det zAj j�1=2 zAj /nº1
nD1 is unbounded. Together with strong irreducibility of

¹Aiºi2S , Furstenberg’s theorem (cf. [3, Part A, Chapter II, �eorems 4.1 and 3.6])

implies that for two elements x1; x2 2 Ql.V0/ which are linearly independent,

lim
n!1

ı. zAŒ!�nx1; zAŒ!�nx2/ D 0 for �-a.e.!:

Here, ı.�; �/ 2 Œ0; 1� denotes the angular distance, that is,

ı.y1; y2/ D
s

1�
� y1

jy1jl.V0/

;
y2

jy2jl.V0/

�2

l.V0/
for y1; y2 2 Ql.V0/ n ¹0º:

Let x1; x2 be an orthonormal basis of the inner product space . Ql.V0/; .�; �/l.V0//.

�en

ı. zAŒ!�nx1; zAŒ!�nx2/ D j det zAŒ!�nj
j zAŒ!�nx1jl.V0/j zAŒ!�nx2jl.V0/

� j det zAŒ!�n j
k zAŒ!�nk2op

:

�us we obtain (3.10).

Next, suppose Case (II). Again let x1; x2 be an orthonormal basis of Ql.V0/.
De�ne Ohi D �.xi / for i D 1; 2 and O� D � Oh1

C � Oh2
. Since the linear span of

Oh1, Oh2, and constant functions is H, � and O� are mutually absolutely continuous

from Lemma 2.6. �erefore, we may assume that the image measure of � by the

mapping � coincides with O� for proving (3.10).2 In our situation, the index ([9,

De�nition 2.9]) of the Dirichlet form under consideration is 1 (see [8, Proposi-

tion 3.4] or [10, �eorem 4.10] for the proof; see also [14]). In particular, we have3

rank
�d� Ohi ;

Ohj

d O�
�2

i;jD1
� 1 O�-a.e.

On the other hand, for i; j 2 ¹1; 2º,

d� Ohi ;
Ohj

d O� .�.!// D lim
n!1

� Ohi ;
Ohj
.KŒ!�n/

O�.KŒ!�n/
D lim
n!1

� txi
t zAŒ!�n zD zAŒ!�nxj

tr.� t zAŒ!�n zD zAŒ!�n/
for �-a.e.!;

2 Since O�.V�/ D 0, such a � is uniquely identi�ed. More speci�cally, for m 2 N and

A � Wm, �.¹! 2 † j Œ!�m 2 Aº/ is given by
P2

kD1

P

w2A 2r
�1
w E. Ohk ı  w; Ohk ı  w/ from

Lemma 2.3.

3 In fact, the equality holds from [9, Proposition 2.11].
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where the �rst equality follows from the martingale convergence theorem and the

second one is due to Lemma 2.3. �en, for �-a.e.!,

0 D lim
n!1

det
� � t zAŒ!�n zD zAŒ!�n

tr.� t zAŒ!�n zD zAŒ!�n/

�

D lim
n!1

.det zAŒ!�n/2 det.� zD/
k
p

� zD zAŒ!�nk4HS

� lim
n!1

.det zAŒ!�n/2 det.� zD/
c0k zAŒ!�nk4op

;

where k � kHS denotes the Hilbert–Schmidt norm on L. Ql.V0// and c0 is a positive

constant depending only on D. �us, (3.10) holds.

�e last claim of the theorem follows from the general fact that almost sure

convergence implies convergence in law.

4. Concluding remarks

We give some comments as concluding remarks.

(1) As can be seen from the proof, Condition (A4) is crucial for �eorem 3.2

and thus for �eorem 3.6. It may be an interesting problem to provide an

appropriate formulation when #V0 > 3.

(2) In both cases (I) and (II) in �eorem 3.6, � has no mass on ��1.V�/. �ere-

fore, the statements of �eorem 3.6 and Conjecture 2.12 can be rephrased in

terms of a measure on K instead of the measure � on †: that is, self-similar

measures on K in Case (I) and � in Case (II), respectively.

(3) In �eorem 3.6, the measure � of Case (I) and that of Case (II) are mutually

singular in many cases (cf. [12, �eorem 2]). Case (II) looks like a more

natural formulation in the sense that there is no need for the extra assumption

of the strong irreducibility of ¹Aj ºj2S and because the concept of the index of

Dirichlet forms, which also has probabilistic interpretations [9, 11], appears

naturally in the proof.

(4) At the moment, there are no clues concerning Conjecture 2.12(1). �e distri-

bution of Pm with m D 13 is given in the left-hand graph of Figure 2.
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�is �gure shows the normalized histogram (2000 slices) of P13 on

Œ��=3; �=3� for the Dirichlet form on SG2 assumed in Conjecture 2.12;

because of the symmetry it su�ces to consider only this interval.4 �is �gure

supports the validity of Conjecture 2.12(1). On the other hand, the right-hand

graph of Figure 2 shows the distribution on Œ��=3; �=3� of the image mea-

sure of � by the map † 3 ! 7! �.¹b.Œ!�m/j º3jD1/ 2 .��; �� with m D 13,

where � is taken so that its image measure by the map � W † ! K is equal to

the measure � given in �eorem 2.10. Here, the interval Œ��=3; �=3� is again

divided into 2000 slices. �e distribution looks very di�erent and the possi-

ble limit measure asm ! 1 might be singular with respect to the Lebesgue

measure.

Figure 2. Angular distributions.

Added in proof. After the acceptance of this paper, it was announced that con-

dition (A2) was con�rmed for SGl for all l � 2 with the canonical harmonic

structure in Example 2.1, see [15].
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