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Abstract. Starting with a substitution tiling, we demonstrate a method for constructing

in�nitely many new substitution tilings. Each of these new tilings is derived from a graph

iterated function system and the tiles have fractal boundary. We show that each of the new

tilings is mutually locally derivable to the original tiling. �us, at the tiling space level, the

new substitution rules are expressing geometric and combinatorial, rather than topologi-

cal, features of the original. Our method is easy to apply to particular substitution tilings,

permits experimentation, and can be used to construct border-forcing substitution rules.

For a large class of examples we show that the combinatorial dual tiling has a realization as

a substitution tiling. Since the boundaries of our new tilings are fractal we are led to com-

pute their fractal dimension. As an application of our techniques we show how to compute

the Čech cohomology of a (not necessarily border-forcing) tiling using a graph iterated

function system of a fractal tiling.
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1. Introduction

A tiling of the plane is a covering of R2 by closed subsets, called tiles, such that
the interiors of two distinct tiles are disjoint. One method of producing tilings is
by substitution: a rule which expands each tile by a �xed amount and then breaks
each expanded tile into smaller pieces, each of which is an isometric copy of an
original tile. �e most famous substitution tiling is the Penrose tiling [25]; many
other substitution tilings have been constructed and can be found online in the
Tilings Encyclopedia [31].

1.1. Overview of the �eld. �e study of substitution tilings is motivated by
several disparate �elds of mathematics and science. One thing they all have in
common is that tilings are always constructed using a �nite set of tiles called
prototiles as their building blocks. �e study of aperiodic prototile sets – �nite
prototile sets that can only form nonperiodic tilings – began with logician Hao
Wang [32]. He tied them to the decidability of the Domino Problem, which asks
if there is an algorithm that can determine whether any given set of (square) pro-
totiles, with speci�ed edge matching rules, can tile the plane. He conjectured that
the problem was decidable, but his conjecture depended upon non-existence of
aperiodic prototile sets. Wang’s student Robert Berger [11] proved the conjecture
false by producing an aperiodic prototile set with 20,426 prototiles. It was the
search for small aperiodic prototile sets that led Penrose to discover his famous
tiles.

Research on aperiodic tilings was purely academic until Dan Shechtman’s
Nobel Prize-winning discovery of quasicrystals [28]. In a sense, Shechtman’s
discovery was predicted by Alan L. Mackay [22] when he computed the di�rac-
tion of a Penrose tiling. Its ‘impossible’ symmetry was found again in Shectman’s
quasicrystal and it became clear that Penrose tilings could be used as a mathemat-
ical model. Di�raction patterns of quasicrystals are now modeled by the spectral
theory of tiling spaces, in particular the dynamical spectrum of the translation
operator (see [3] for a beautiful exposition of the most recent advances in this
theory). �e dynamical spectrum of tilings is best understood in the case of sub-
stitution tilings.

An understanding of tiling spaces at this physical level led Bellissard to his
gap-labelling conjecture [8], which connects the spectral gaps of the Schrödinger
operator associated with a tiling space to the K-theory and cohomology of that
space. Bellissard’s conjecture was proven independently in [8, 10, 18]. By the same
token, tiling spaces provide interesting examples of C �-algebras, and the geome-
try imposed by tilings makes them excellent candidates for study using Connes’
noncommutative geometry program [13].
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1.2. Results and applications. �e main goal of this paper is to establish a novel
method for producing, from some given substitution tiling, in�nitely many new
substitution tilings. �e method produces �nite sets of prototiles which have frac-
tal boundaries, so we call them fractal realizations of the original tiling.
�e construction depends on a synthesis of combinatorics and geometry in a way
that has not previously been capitalized upon in the study of substitution tilings.
Moreover, it allows for hands-on experimentation with an in�nitude of choices,
and for now it is not completely clear the signi�cance of making one choice over
another. In [15], we gave a somewhat ad-hoc method for making a fractal real-
ization of the Pinwheel tiling. In this paper we show that a similar construction
works for every primitive substitution tiling where tiles meet singly edge-to-edge
and remove the ad-hoc nature of the construction in [15].

One advantage to our method is that it provides access to some of the informa-
tion described above. For instance, our new substitutions are easily made to force

the border, an essential property for cohomology computations. When a tiling
does not force the border, our method requires less information than the original
approach in [1] and uses the same amount of information, but is geometrically
more elegant, than the most e�cient known method [5].

�e real power behind our approach comes from the geometric information
encoded in the new substitution. One important application of our fractal dual
tilings is to construct spectral triples on Kellendonk’s C �-algebra of a tiling [23].
Spectral triples are the fundamental object in Connes’ noncommutative geometry
program [13], and the existence of a spectral triple on a C �-algebra is the non-
commutative analogue of the existence of a Riemannian metric on a manifold.
�e spectral triples constructed in [23] are signi�cant not only because of their
existence, but because they provide the �rst class of spectral triples on
Kellendonk’sC �-algebra [19] that respect the hierarchy of the substitution system.
Moreover, each distinct fractal realization of a tiling provides a distinct noncom-
mutative Riemannian metric on Kellendonk’s algebra. We believe that this type of
geometric information is an important aspect of tiling theory. After all, the space
of tilings should not just be viewed as a topological object but also as a geometric
object whose geometry must arise from the rigid structure of the prototiles and
the way they �t together geometrically.

�ere are further interesting questions invoked by our fractal substitution
tilings. For example, we give a formula for the fractal dimension of the boundary
of the prototiles for any of our fractal tilings. But what information does the set of
all possible fractal dimensions for a given tiling substitution carry? �e answer to
this question seems to rely on a deep connection between the combinatorial graph-
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theoretic properties of the tiling and the geometric property of fractal dimension.
An example of how fractal dimension is used appears in the spectral triples con-
structed in [23] where the dimension gives a scaling factor for the distance function
between m- and n-supertiles. Further questions arise from a combinatorial stand-
point; for example, which substitution tilings admit combinatorial dual tilings1

that are also substitution tilings? We provide su�cient conditions but have not yet
been able to provide a complete characterization.

Our method of obtaining fractal substitution tilings is di�erent than those that
have appeared in the literature. For example, fractal tilings arise in the seminal
work of Kenyon [20] characterizing the possible expansion factors for substitu-
tion tilings. Since then fractal tilings have appeared many times, for instance in
[2, 4, 7, 26, 15]. Our construction distinguishes itself from these in a few ways.
�e �rst is that we begin with a known substitution rule and construct an in�nite
family of substitutions whose tiling spaces are mutually locally derivable. In par-
ticular, we are able to construct substitution tilings that are mutually locally deriv-
able to their original but with speci�ed geometric properties that lend themselves
more easily to computation. Our construction di�ers, also, because it is not sim-
ply a redrawing of existing tiles but rather a recomposition that creates new tiles.
We can understand, and indeed have some control over, the combinatorics of the
new tiles within their tilings.

1.3. Methodology – an example. �e main tool in our construction is a recur-

rent pair .G; S/, which is a combinatorial and geometric structure that is com-
patible with the original substitution. �e best way to illustrate how to construct
a recurrent pair is with a simple example. We begin with a two-dimensional ver-
sion of the �ue–Morse substitution rule, which we call the “2DTM” substitution.
It has two prototiles, labelled ˛ and ˇ, that are both unit squares. �e substitution
expands each prototile by a factor of four and replaces it with the patches shown
in Figure 1.

To construct a recurrent pair .G; S/, we begin by embedding a planar graphG
into each of the prototiles ˛ and ˇ, as shown on the left of Figure 2. Note that we
have chosen G so that it has one vertex in the interior of each tile and connects to
the interior of each edge. IfG were placed in every tile in an in�nite tiling of these
tiles, it would construct a new tiling that is combinatorially dual to the original.
In general it is natural to start with such a dual graph for several reasons that will
be outlined in this paper.

1 Two tilings are combinatorially dual if there is a one-to-one correspondence between their
edge sets, between the tiles of one and the vertices of the other, and vice versa.
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˛

!.˛/

ˇ

!.ˇ/

Figure 1. �e two-dimensional �ue–Morse substitution rule.

Next we construct a new graph S on the prototiles by substituting the prototiles,
this time without expanding, embedding the initial graph into each sub-tile, then
selecting a subgraph S that is combinatorially equivalent to the initial graph if we
ignore all vertices of degree two.2 In Figure 2, the embedding stage is labelled
R.G/, and the selection stage is labelled S . We have made a choice of S that
breaks the inherent symmetry of the 2DTM tilings, but this was not necessary.

G˛ R.G/˛ S˛ Fractal G˛

Gˇ R.G/ˇ Sˇ Fractal Gˇ

Figure 2. A recurrent pair on the 2-dimensional �ue–Morse substitution leading to a fractal
graph.

2 It is important to note that selecting such a graph is not necessarily possible in general and
depends on the combinatorics of the tiling, the substitution, and G.
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We call .G; S/ a recurrent pair, and S can be thought of as of graph substitution
of G. In fact, a recurrent pair forms a graph iterated function system (GIFS) and
has an attractor (which is a fractal). Under the right conditions the attractor is a
graph that is combinatorially equivalent to both G and S . We show the attractor
for this example in the far right of Figure 2.

Figure 3 shows what happens when the attractor is placed into every tile of a
2DTM tiling. Everything works perfectly in this example and we obtain a combi-
natorially dual tiling that is itself a substitution tiling. �e fact that it is a substi-
tution tiling follows from the fact that the attractor of the recurrent pair .G; S/ is
invariant under the substitution rule of T .

Figure 3. A patch of the 2-dimensional �ue–Morse tiling with a fractal dual tiling overlaid.

1.4. Organization of the paper. Given a substitution tiling, our main result is
to construct new substitution tilings using a recurrent pair .G; S/. �ere is a
natural map from the edges of G to the edges of the attractor associated with
.G; S/. If this natural map is injective, then �eorem 5.7 says that the result-
ing tiling is mutually locally derivable to the original substitution tiling. In �e-
orem 6.2 we provide su�cient injectivity conditions on the recurrent pair for
the map to be injective. �eorem 6.6 implies that every primitive substitution
tiling whose tiles meet singly edge-to-edge has an in�nite number of distinct re-
current pairs satisfying the injectivity conditions and whose fractal realization
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is border-forcing. We conjecture that every substitution tiling of the plane with
�nite local complexity has a recurrent pair with the necessary injectivity condi-
tions. We also believe that our techniques should extend to tilings with in�nite
rotational symmetry, such as the Pinwheel tiling, but have not addressed that in
this paper.

We have organized the paper as follows. In Section 2 we introduce substitution
tilings along with the de�nitions we require in the paper. Section 3 introduces the
combinatorics of tilings. We give an alternative description of tiling substitutions
in Section 4 using digit sets, and describe how these digit sets give rise to a con-
traction map on prototiles. Section 5 introduces the notion of a recurrent pair on a
substitution tiling T and shows how a recurrent pair produces a fractal realization
of T . In Section 6 we give injectivity conditions on a given recurrent pair and we
prove they are what is needed to guarantee existence of a border-forcing fractal re-
alization. We then show that every primitive substitution tiling with tiles meeting
singly edge-to-edge has such a recurrent pair. In Section 7 we compute the fractal
dimension of the new prototile boundaries. Section 8 shows how a recurrent pair
can be used to compute the Čech cohomology of the original tiling space. Finally,
in Appendix A we give several examples of fractal realizations of some famous
substitution tilings.

Acknowledgements. We are extremely grateful to Michael Baake and Franz
Gähler for helping to rectify an error in the cohomology computations from an
early version of the paper. We are also indebted to Lorenzo Sadun for several
helpful conversations and ideas and to Michael Mampusti for the Mathematica
code used to produce some of the �gures. Finally, we are indebted to the anony-
mous reviewer for several extremely helpful comments and suggestions.

2. Tiling de�nitions

In this section we introduce the basics of tilings. We provide the assumptions
that will be used in the paper and introduce substitution rules. We establish the
relationship between tiling substitution rules and self-similar tilings so that we
may use these two notions interchangeably for the remainder of the paper.

�e tilings in this paper are built out of a �nite number of labelled shapes
called prototiles. A prototile p consists of a closed subset of R2 that is homeomor-
phic to a topological disk, denoted supp.p/, and a label `.p/. �e purpose of the
labels is to distinguish between prototiles that have the same shape, and a common
visualization is by color (for instance white vs. black unit squares). A prototile set

P is a �nite set of prototiles.
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A tile t is any translate of a prototile: for p 2 P and x 2 R
2 we use the notation

t D pC x to mean the topological disk supp.p/C x with label `.t/ D `.p/. Two
tiles that are translates of the same prototile are said to be equivalent; we note that
equivalent tiles have congruent supports and carry the same label.

De�nition 2.1. Given a set of prototiles P, a tiling is a countable collection of
tiles ¹t1; t2; : : : º each of which is a translate of a prototile, and such that

(1)
S1

iD1 supp.ti/ D R
2 and

(2) Int.supp.ti // \ Int.supp.tj // D ¿ for i ¤ j .

�e �rst condition implies that the tiles cover the plane and the second that they
intersect on the boundaries only. �ese are sometimes referred to as the covering
and packing conditions.

A patch is a �nite set of tiles whose supports cover a connected set that inter-
sect at most on their boundaries. Connected �nite subsets of tilings are patches,
and tilings are sometimes thought of as in�nite patches. We denote the set of all
patches from a prototile set P by P

�.
Given a patch or tiling Q and x 2 R

2, the set Q C x WD ¹t C x j t 2 Qº is
also a patch or tiling. Like tiles, patches and tilings are called equivalent if they
are translations of the same patch or tiling.

De�nition 2.2. A tiling T has �nite local complexity (FLC) if the set of all two-
tile patches appearing in T is �nite up to equivalence. A tiling is nonperiodic if
T C x D T implies x D 0.

If Q is a patch of tiles or a tiling and S is a subset of R2, we de�ne the patch

ŒS�Q WD ¹q 2 Q j supp.q/ \ S ¤ ¿º:

We note that if Q is a tiling, the support of ŒS�Q contains S . Sometimes we may
abuse notation and put a tile or patch in place of S , in which case it is understood
to mean the Q-patch intersecting its support.

A very important form of equivalence between tilings with (potentially) dif-
ferent prototile sets is mutual local derivability.

De�nition 2.3. We say a tiling T 0 is locally derivable from a tiling T if there is
an R > 0 such that if ŒBR.x/�

T D ŒBR.y/�
T C z then Œx�T

0

D Œy�T
0

C z. If both T
and T 0 are locally derivable from each other then we say they are mutually locally

derivable (MLD).
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Remark on notation and assumptions. �roughout this paper, unless otherwise
noted, reference to a tiling T implies the presence of a �nite prototile setP that will
only be mentioned explicitly if there is danger of confusion. Tilings will always
be assumed to have �nite local complexity.

2.1. Tiling substitutions and self-similar tilings

De�nition 2.4. A function ! W P ! P� is called a tiling substitution if there exists
� > 1 such that for every p 2 P,

� supp.p/ D supp.!.p//:

In this case � is called the expansion factor of the substitution.

It is natural to extend the substitution ! to tiles, patches, and tilings. �e sub-
stitution of a tile t D pCx, for p 2 P and x 2 R

2, is the patch!.t/ WD !.p/C�x.
�e substitution of a patch or tiling is the substitution applied to each of its tiles.
Substitution rules naturally give rise to tilings by constructing a self-similar tiling
as described in [27, p. 13].

An alternative approach to substitution tilings is to consider a self-similar
tiling, and then �nd the substitution ! it determines. In order to de�ne a self-
similar tiling we require some notation. �e boundary of a tiling T , denoted @T ,
is the subset of R2 given by the boundaries of all the supports of tiles in T , i.e.
@T WD

S

t2T @.supp.t //.

De�nition 2.5. A tiling T is self-similar if

(1) there exists some � > 1 such that �@T � @T ; and

(2) if t1; t2 2 T are translationally equivalent, then the patches enclosed by
� supp.t1/ and � supp.t2/ are translationally equivalent.

�e central patch of a self-similar tiling for the 2DTM substitution is shown
in Figure 4 with the origin of R2 marked at the center. It is routine to check that
the same patch sits at the center of a substituted version of this patch, and so on.
�us, we can extend this patch to a tiling by substituting an in�nite number of
times. Since the (ever expanding) central patch is always invariant under sub-
sequent substitutions, we obtain a self-similar tiling of the plane. We call this
particular tiling a self-similar version of the 2DTM tiling.
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Figure 4. A portion of a self-similar 2DTM tiling, with the origin at the center.

To extract! from a self-similar tiling T , for each prototile p �nd any equivalent
tile t D p C x 2 T , then de�ne !.p/ to be the patch with support � supp.t /
translated by ��x. For the self-similar version of the 2DTM tiling, notice that the
white prototile is sitting in the unit square in the �rst quadrant, its substitution is
sitting at the 4 � 4 square in the �rst quadrant, its second substitution will be the
16 � 16 square in the �rst quadrant, and so on.

3. �e combinatorics of tilings

Key to our methodology is the connection between the combinatorics of tilings
and their geometry. In this section we collect the de�nitions necessary for our
construction.

3.1. Combinatorial and geometric graphs. A combinatorial graphK consists
of a set V.K/, whose elements we call vertices, and a set E.K/, whose elements
we call edges. Each edge in E.K/ is de�ned to be an unordered pair of vertices;
we call these vertices the endpoints of that edge. �e degree of a vertex is the
number of edges for which it is an endpoint, and a dangling vertex is a vertex of
degree 1. In this paper we will never need to consider vertices with degree 0.

Following Gross and Tucker [16], we de�ne the topological realization zK of
a combinatorial graph K as follows. Each edge of K is identi�ed with a copy
of Œ0; 1�, where 0 represents one endpoint vertex of the edge and 1 represents the
other. Whenever two edges share a common vertex we identify the appropriate
endpoints of their copies of Œ0; 1�. �e end result is a topological space zK that
encodes the combinatorics of K.

It is essential for our purposes to visualize combinatorial graphs in the plane
by their topological realizations. Intuitively, we to do this by �rst choosing a point
set in the plane in one-to-one correspondence with V.K/. �en any pair of points
whose associated vertices make up an edge are connected by a Jordan arc.
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De�nition 3.1. A geometric graph G is an embedding of the topological realiza-
tion zK of a combinatorial graph K into the plane. Let �G denote the embedding
map. We say that two geometric graphs G;H are equivalent if they are embed-
dings of the same combinatorial graph, and write G � H .

Combinatorial graphs that can be embedded in the plane are often called pla-

nar or plane graphs, and we call their embeddings geometric graphs. �e combi-
natorial graph that gives rise to a given connected geometric graphG is not unique
because degree two vertices cannot be detected. However, there is always a unique
combinatorial graphK with no vertices of degree two for whichG D �G. zK/. �is
makes the following de�nition of the edge set E.G/ quite natural.

De�nition 3.2. LetG be a geometric graph andK a combinatorial graph with no
vertices of degree two such that �G. zK/ D G, where zK is the topological realiza-
tion of K. An edge (resp. vertex) of G is the image under �G of the topological
realization of an edge (resp. vertex) in K.

3.2. Tilings as geometric graphs. A tiling T in the plane gives rise to a canon-
ical geometric graph: each point at which three or more tiles meet represents a
vertex, and any arc along which two tiles meet represents an edge. Although this
combinatorial graph is quite natural, it can cause problems because ideally, pro-
totiles would have well-de�ned edges and vertices that carry throughout T . How-
ever, there are the tilings, such as the chair tiling, whose prototiles will not have a
well de�ned vertex set unless either the prototile set or the vertex set is enlarged to
account for them. �us we choose to make a more subtle de�nition for the graph
of a tiling.

Suppose T is a tiling with �nite local complexity and prototile set P with
boundary @P. We form an equivalence relation on @P by a �T b if there ex-
ists x; y 2 R

2 and p; q 2 P such that pC x; qC y 2 T and aC x D bC y. A set
F � @P is T -consistent if it is a union of equivalence classes of �T .

De�nition 3.3. A natural vertex of T is a point at which three or more tiles meet;
the natural vertices of P are their representatives on the prototile set. �e vertex

set of P is the T -consistent set of points generated by the natural vertices of P. An
edge in p 2 P is a Jordan arc connecting pairs of neighboring vertices along the
boundary of p.

In this way the boundary of each prototile is associated with a combinatorial
and geometric graph. In Figure 5 we show how the vertex set for a chair tile is
determined in this perspective.
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Figure 5. A patch from the third substitution of the chair tiling (see Example 4.3).
�e natural vertices marked with a �, and the vertices in the T -consistent set generated
by the natural vertices are marked with an �.

We use this de�nition of prototile edges and vertices to de�ne a canonical
combinatorial graph KT associated with T . Since every tile in T is a translation
of a prototile, the edges and vertices of the tile are inherited from the prototile by
translation. Since the edges and vertices of tiles are embedded on the boundaries
of the tiles, they appear in the supports of more than one tile. To de�ne the edge
and vertex sets of KT we include only one vertex and one edge from any given
pair of adjacent tiles. �is combinatorial graph is conveniently equipped with the
embedding �T that places the vertices and edges where they came from in the �rst
place; the image of �T is @T , the boundary of T . We note that if T and T 0 are
translates of one another, then KT and KT 0 are graph isomorphic.

De�nition 3.4. A tiling is de�ned to be edge-to-edge if any two tile edges intersect
either completely, at a common vertex, or not at all. A tiling is de�ned to be singly

edge-to-edge provided any two tiles intersect along at most one edge.

If T is a FLC tiling whose edges and vertices come from the edges and vertices
of @T , then T is automatically edge-to-edge. �e chair tiling is an instructive
example; by adding vertices, as in Figure 5, we have ensured that tile edges always
line up. However, doing so means that chair tilings are no longer singly edge-to-
edge.

3.3. Geometric graphs on prototiles and the tilings they induce. A key con-
struction used in this work is to make new tilings from a given tiling T by marking
all its tiles in a speci�ed way. �is process of turning old tilings into new ones
by carving up the prototile set is what is referred to as recomposition in [17]. Our
method for doing this is by embedding geometric graphs into the supports of the
prototiles, then extending to all the tiles of T .
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De�nition 3.5. A geometric graph G on a prototile set P is the disjoint union
F

p2P Gp of �nite geometric graphs such that Gp � supp.p/ for all p 2 P.
We denote by Kp the underlying combinatorial graph of Gp that has no degree 2
vertices; we call its embedding map .�G/p. A vertex ofGp that is contained on the
boundary of supp.p/ is called a boundary vertex of G and a vertex contained in
the interior of supp.p/ is called an interior vertex.

We now introduce a condition ensuring that edges of geometric graphs always
meet when we translate prototiles to make a tiling.

De�nition 3.6. Suppose T is a FLC tiling and let G be a geometric graph on its
prototile set P. We say that G is T -consistent if

(i) for allp 2 P,Gp only intersects the boundary of supp.p/ at boundary vertices
and

(ii) the boundary vertices of G form a T -consistent set.3

�e next de�nition gives su�cient (but not necessary) conditions on G so that
it induces a tiling TG by recomposition.

De�nition 3.7. Suppose T is a FLC tiling and let G be a T -consistent geometric
graph on its prototile set P. We say that G is a quasi-dual graph if

(i) the graph Gp is a connected tree for all p 2 P,

(ii) the interior of each prototile edge contains exactly one boundary vertex ofG,
situated on the interior of that prototile edge, and

(iii) every interior vertex of G has degree at least 3.

If G is a quasi-dual graph such that every prototile contains exactly one interior
vertex then we call G a dual graph.

An example of a dual graph for the 2DTM tiling is given on the left hand side
of Figure 2 in the introduction.

A T -consistent graph G on P extends to a graph in R
2 as follows. For each

t 2 T , denote by xt the translation vector of t for which t D pC xt for its p 2 P.
�en we de�ne

�.T;G/ D
[

p2P

[

¹t2T Wt is of type pº

.Gp C xt / (3.1)

3 For readers familiar with the Anderson–Putnamcomplex [1] of a tiling space, a T -consistent
embedding is a geometric graph G on the Anderson-Putnam complex with no dangling vertices.
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�is is a union of Jordan arcs that can also be seen as a geometric graph in R
2.

It has no dangling vertices since G is T -consistent; the only way it can fail to be
a tiling is if some of the Jordan arcs do not close up to become Jordan curves.

An empty Jordan curve in �.T;G/ is a Jordan curve that contains no portion
of �.T;G/ in its interior. In the following lemma we de�ne labelled empty Jordan
curves to be the tiles of a new tiling induced by a T -consistent graph.

Lemma 3.8. Suppose G is a T -consistent graph such that each arc in �.T;G/ is

part of an empty Jordan curve. �en �.T;G/ is the boundary of a tiling TG such

that every empty Jordan curve is the boundary of a tile in TG .

Proof. We begin by constructing a prototile set PG which we will use to de�ne
the tiling TG. A label set L is de�ned by

L WD ¹ŒJ C x�T W J is an empty Jordan curve and J C x 2 �.T;G/º= �;

where � denotes translational equivalence on patches of tiles in T . Since T has
FLC the set L is �nite. A set of prototiles PG is de�ned by taking the closed set
bounded by a representative from each translational equivalence class of empty
Jordan curves for each label in L. �en each empty Jordan curve in �.T;G/
uniquely de�nes a tile that is a translation of a prototile in PG . �e union of
all the tiles de�ned by empty Jordan curves in �.T;G/ de�nes a tiling TG,
as required.

If G is a quasi-dual graph on a substitution tiling T , then the hypotheses of
Lemma 3.8 are satis�ed and TG is a tiling. We call tilings arising from quasi-dual
graphs quasi-dual tilings. Moreover, if G is a dual graph, then TG is a labelled
combinatorial dual of T .

Proposition 3.9. Suppose T is a tiling with FLC and G is a quasi-dual graph on

P, then the quasi-dual tiling TG has FLC and is mutually locally derivable to T .

Moreover, the vertex patterns in T are in one-to-one correspondence with the tiles

in TG.

Proof. Let v be a vertex in T . Consider the edges emanating from v in clockwise
order; there is a unique path through �.T;G/ connecting each edge to the next by
conditions (i) and (ii) of De�nition 3.7. �ese edges form the boundary of the tile
in TG that corresponds to v. Moreover, De�nition 3.7(i) guarantees that there can
be no additional tiles in TG.

Mutual local derivability follows from the fact that vertex patches in T give
rise to tiles in TG while tiles in TG specify their corresponding patches in T by
their label.
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4. Alternate views of tiling substitutions

In this section we describe tiling substitutions using digit sets and digit matrices.
We then use digit sets to de�ne a contraction map on substitution tilings, which
turns out to be essential for our construction. At the end of the section we calculate
the digit matrix and contraction map for the chair substitution.

4.1. Matrices associated with tiling substitutions. We follow the method of
Moody and Lee [21, Section 2]. Consider a �xed tiling substitution ! on prototile
set P with expansion factor � as in De�nition 2.4. Suppose jPj D m and that when
P is used as an index set for the rows and columns of a matrix we keep some �xed
order.

We now introduce the substitution matrix of a substitution tiling. We note that
our de�nition is the transpose of what is usually called the substitution matrix,
but is better suited to our subsequent de�nitions.

De�nition 4.1. �e substitution matrix of ! is the m � m matrix M indexed by
P whose .p; q/-entry is equal to the number of copies of the prototile q occurring
in !.p/.

�e substitution matrix contains basic information about !. A matrix that
keeps more geometric information about the substitution is the digit matrix

D D .Dpq/;

which contains the translation vectors required to implement the tiling substitu-
tion. �e patch given by !.p/ is a collection of translates of the prototiles q 2 P,
where the number of copies of each q isMpq . �e translation vectors for q in !.p/
are denoted d1

pq ; d
2

pq ; :::; d
Mpq

pq and we de�ne the entries of the digit matrix D to
be these sets of translation vectors:

Dpq D

8

<

:

¹dk
pq 2 R

2 W k D 1; : : : ;Mpqº if Mpq ¤ 0,

¿ if Mpq D 0.

We will use D to translate both subsets of R
2 (especially geometric graphs

on P) and prototiles q as follows. For S � R
2 and Dpq ¤ ¿ de�ne

S CDpq WD

Mpq
[

kD1

.S C dk
pq/:
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If Dpq D ¿ we take the convention that S C ¿ D ¿. For a tile q and Dpq ¤ ¿,
we de�ne q C Dpq to be the set of tiles ¹q C dk

pq W k 2 1; 2; :::;Mpqº, and again
use the convention that q C ¿ D ¿. With this notation we can write

!.p/ D
[

q2P

.q CDpq/: (4.1)

4.2. Tiling contraction maps. In this section we will de�ne a tiling contrac-
tion map R. When restricted to prototiles we want R to be equal to ��1!, which
subdivides each prototile into subtiles rather than in�ating and then subdividing.
However, we want R to be a more general map and we will see that the domain
of R plays an important role in its de�nition. In particular, we would like R to be
a ‘shrink-and-replace’ rule on patches of tiles and on disjoint unions of compact
subsets of R2, though our prototypical application is to geometric graphs embed-
ded in tiles. We will use the notation R regardless of what type of object is being
acted on, with the understanding that the output is always the same type as the
input.

Before de�ning R we will de�ne its domain. In order to de�ne the domain
of R we need to decide whether we want it to act on disjoint unions of compact
subsets of R2 or on patches of scaled tiles. For the former, let H.R2/ denote the
set of nonempty compact subsets of R2 and de�ne the domain of R to be

X WD
G

p2P

H.R2/:

�e latter is slightly trickier. Given a prototile set P, consider the set of all
nonempty patches of translated prototiles, denoted P

�. For any 0 < � � 1 the
set �P� is the set of all nonempty patches of prototiles scaled by �. When we
want R to act on scaled patches of tiles the domain is then

XP WD
[

0<��1

G

p2P

�P�:

De�nition 4.2. We de�ne tiling contraction map R as follows. LetB D
F

p2P Bp

be an element of X or XP. For each p 2 P let

R.B/p D
[

q2P

��1
�

Bq CDpq

�

; (4.2)

and then R.B/ D
F

p2P R.B/p.
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Since R has the same de�nition regardless of the domain we now illustrate the
di�erence. �e �rst case is if B 2 X , and then R.B/ 2 X as well. By comparing
equation (4.2) to equation (4.1) we see that if B D

F

p2P supp.p/ then we have

R.B/ D
G

p2P

[

q2P

��1.supp.q/CDpq/ D
G

p2P

supp.p/ D B:

�us the disjoint union of prototile supports is �xed under the action of R and
is therefore the attractor of the dynamical system .X;R/. In the special case that
G is a geometric graph on P, then R.G/ is also a geometric graph on P. If G is
T -consistent then R.G/ will be T -consistent with no dangling vertices in its in-
terior. Moreover, if G is quasi-dual then R.G/ will be connected but will have
too many boundary vertices to be quasi-dual itself. In the next section we will be
selecting subgraphs of R.G/ to de�ne recurrent pairs.

On the other hand, ifB 2 XP, thenR.B/may fail to be inXP. �is can happen
when the patches that make upR.B/p have overlapping interiors. To deal with this
annoyance we will restrict our attention to thoseB for which supp.Bp/ D supp.p/
for all p 2 P, in which case both R.B/ and R

n.B/ are elements of XP for all
n 2 N. With a slight abuse of terminology we write R

n.P/ for R
n.

F

p2P p/.
�en R.P/p D ��1!.p/ for all p 2 P. We call a tile in R.P/p a subtile; and R can
be applied repeatedly so that Rn.P/ consists of patches of P-tiles scaled by ��n

that we call n-subtiles.

Example 4.3 (the chair tiling). Let P be the set of four prototiles with long side
length 1 and the origin in the corner marked by the dot, as depicted in Figure 6.
�ese are the prototiles of the chair tiling.

�e expansion factor for the chair substitution is � D 2, and the substitution of
prototile p1 also appears in Figure 6; the substitution of each of its three rotations
are just the rotation of this substitution about the origin. �e digit matrix for the
chair substitution is

D D

0

B

B

B

B

@

®

.0; 0/;
�

1
2
; 1

2

�¯

¹.0; 2/º ¿ ¹.2; 0/º

¹.0;�2/º
®

.0; 0/;
�

1
2
;�1

2

�¯

¹.2; 0/º ¿

¿ ¹.�2; 0/º
®

.0; 0/;
�

� 1
2
;�1

2

�¯

¹.0;�2/º

¹.�2; 0/º ¿ ¹.0; 2/º
®

.0; 0/;
�

� 1
2
; 1

2

�¯

1

C

C

C

C

A

:
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�
p1

�
p2

�
p3

�
p4

�
p1

�
p1

p1

p2

p4

Figure 6. �e 4 prototiles of the chair tiling and the substitution of prototile p1.

�us, for B D
F4

iD1 Bi in X or XP, the tiling contraction map R is given by

R

0

B

B

B

@

B1

B2

B3

B4

1

C

C

C

A

D
1

2

0

B

B

B

B

B

B

B

@

B1 [
�

B1 C
�

1
2
; 1

2

��

[ .B2 C .0; 2// [ .B4 C .2; 0//

.B1 C .0;�2//[ B2 [
�

B2 C
�

1
2
;�1

2

��

[ .B3 C .2; 0//

�

B2 C
�

� 2; 0
��

[ B3 [
�

B3 C
�

� 1
2
; 1

2

��

[ .B4 C .0;�2//

.B1 C .�2; 0//[ .B3 C .0; 2//[ B4 [
�

B4 C
�

� 1
2
; 1

2

��

1

C

C

C

C

C

C

C

A

:

5. Constructing fractal tilings from self-similar tilings

In this section we construct fractal substitution tilings. Our method uses a self-
similar tiling to construct the fractal tiling explicitly. We use this method rather
than standard techniques from fractal geometry because we obtain more informa-
tion about the relationship between the the original tiling and a fractal realization.
In particular, our techniques allow for the possibility of experimentation and we
are able to pinpoint a necessary condition for a recurrent pair on a substitution
tiling to give rise to a fractal substitution tiling.

Here is a brief overview of the method. Suppose T is a �xed self-similar tiling
with prototile set P and substitution map !. Given a geometric graph G on P

satisfying the consistency conditions of De�nition 3.6, we let T .0/ WD TG be the
tiling de�ned in De�nition 3.8 obtained by embedding G in all the tiles of T .
We then select a geometric graph S � R.G/ with the same combinatorics as G,
forming a recurrent pair .G; S/. �e map taking G to S acts as a substitution
rule on edges, and we de�ne the map  to be the extension of the substitution
to the boundary of T .0/ and obtain a tiling T .1/ WD  .T .0//. Assuming certain
injectivity conditions on the recurrent pair .G; S/ and iterating this process leads
to a limiting tiling T .1/, which is also a self-similar tiling.
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5.1. Recurrent pairs and edge re�nement maps. Recall that two geometric
graphs B and C are said to be equivalent, and we write B � C , provided there
exists a combinatorial graphK and embeddings �B and �C of the topological real-
ization of K such that Image.�B/ D B and Image.�C / D C . In this case there is a
homeomorphism between B and C given by �C ı ��1

B .

De�nition 5.1. A pair of T -consistent geometric graphs .G; S/ on P is said to be
a recurrent pair for .T; !/ if the following conditions hold:

(i) S � R
N .G/ for some N 2 N,

(ii) for all p 2 P, Gp � Sp with homeomorphism denoted by z p W Gp ! Sp.

(iii) v is a boundary vertex of Gp if and only if z p.v/ is a boundary vertex of Sp,
in which case both lie in the same edge of p.

Notice also that we can always take N D 1 in the de�nition of a recurrent pair
by replacing R with R

N . So after we �nd a recurrent pair .G; S/ we will typically
assume S � R.G/.

Figure 2 of the introduction shows how a recurrent pair for the 2DTM substi-
tution is constructed. �e leftmost images show the prototiles ˛ and ˇ with dual
graphsG˛ andGˇ inscribed. �e disjoint union ofG˛ andGˇ is the graphG. �e
images labelled R.G/˛ and R.G/ˇ show the graph G inscribed in each tile of the
substitution. �e images labelled S˛ and Sˇ show the selection of a graph S that
makes .G; S/ a recurrent pair for the 2DTM substitution.

Notice that in a recurrent pair, since S � R.G/, an edge of S is made up of
a union of edges from G rescaled by ��1, and S passes through many vertices
of R.G/ that do not a�ect the mutual underlying combinatorial graph K since
they are of degree 2. �ere is a very meaningful sense in which we think of S as
being the substitution of the graphG; describing how to iterate the substitution to
produce fractals is our next task.4

In all that follows, we suppose that when G is drawn in all the tiles of T ,
it forms the boundary of a tiling called TG , de�ned by Lemma 3.8, which we take
to be our initial tiling T .0/. Since the boundary graph of T .0/ consists of translated
elements of G we can extend the z p maps to a map  W @T .0/ ! R

2 that redraws
an edge of T .0/ the same way z p redrew it in its corresponding prototile. �at is,
if z 2 @T .0/ is in the support of the tile t D p C x 2 T for p 2 P and x 2 R

2,
then  .z/ D z p.z � x/C x.

4 We will make this de�nition with the aid of our self-similar tiling T ; a di�erent but equiv-
alent formulation can be made using the prototile set P only.



Fractal dual substitution tilings 285

Lemma 5.2. �e map  W @T .0/ ! R
2 is a homeomorphism onto its image.

Proof. Since  restricted to the interior of any T -tile is the translation of a home-
omorphism, the only question is what happens on @T .0/ \ @T . Part (iii) in the
de�nition of a recurrent pair along with the fact that S is T -consistent imply that
 is well-de�ned and continuous. �e fact that G is T -consistent implies that  
is injective. �us  is a homeomorphism.

We de�ne the tiling T .1/ to be the tiling with boundary  .@T .0//; its tiles are
given by the empty Jordan curves in this graph and we allow a tile in T .1/ to inherit
the label of its corresponding tile in T .0/. It should be noted that @T .1/ D  .@T .0//

is the boundary of the tiling TS induced by S on T . Like T .0/, the tiling T .1/ is
typically not self similar but is pseudo-self-similar [26] and the two tilings are
combinatorially equivalent and mutually locally derivable.

�e set .@T .0// D @.T .1// is not contained in @T .0/, but because it is induced
from the self-similar tiling T it is contained in ��1.@T .0//. �us if we wish to
apply  again, we must do so on � .@T .0//. Taking this into account we de�ne
 .n/ W @T .0/ ! R

2 by

 .n/.z/ D ��n.� /n.z/ (5.1)

�at is, the edges in @T .0/ are redrawn and then in�ated by � so that the result
is again in @T .0/, after which they are redrawn and in�ated again until this has
happened n times. Rescaling the result by ��n brings it back to the original scale.
�e map .� /n can be thought of as a kind of ‘in�ate-and-subdivide’ rule for
edges of G, taking an edge in @T .0/ to a sequence of edges in @T .0/ of length
approximately �n times as long.

�e map  .n/ is a homeomorphism for any �nite n and we de�ne T .n/ to be
the tiling with boundary graph  .n/.@T .0// whose tiles inherit the labels of their
corresponding tiles in T .0/:

De�nition 5.3. For each tile t 2 T .0/ we de�ne the tile t .n/ in T .n/ as being
supported by the set enclosed by  .n/.@t/ and carrying the label of t .

We de�ne  .1/ to be the pointwise limit of  .n/, whose existence is proved
in the following lemma.

Lemma 5.4. �e sequence . .n//1nD1 is uniformly Cauchy. Hence the pointwise

limit, denoted  .1/, is continuous.
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Proof. Fix " > 0. Let C D maxt2T diam t , and choose N 2 N such that
C��N < ". Fix m; n > N , and assume without loss of generality that m < n.
For z 2 @T we have

j .m/.z/ �  .n/.z/j

D j��m.� /m.z/ � ��n.� /n.z/j

D ��mj. �/m.z/ � ��.n�m/.� /n�m.� /m.z/j

D ��mjy �  .n�m/.y/j .letting y D .� /m.z//

� ��mC .since y and  .n�m/.y/ are in the same tile of T /

< ":

So . .n//1nD1 is uniformly Cauchy, and  .1/ is continuous.

5.2. �e limiting fractal tiling. When  .1/ is injective its image forms the
boundary of a tiling which we denote T .1/ and which we will show is self-similar.
Under the condition of injectivity we make the formal de�nition of a fractal real-
ization.

De�nition 5.5. For each tile t 2 T .0/ we de�ne the tile t .1/ in T .1/ as being
supported by the set enclosed by  .1/.@t/ and carrying the label of t . We call
T .1/ a fractal realization of T .0/ (or of G).

We collect a few observations about .n/, .1/, T .n/ and T .1/ in the following
lemma.

Lemma 5.6. When  .1/ is injective,

(1)  .1/ D  ;

(2) if z 2 @T .0/ and z 2 supp.t / for a T -tile t , then  .n/.z/ 2 supp.t / for all nI

(3) T , T .0/, T .n/, and T .1/ are MLD for all n 2 N, and

(4) For any z 2 @T .0/ and n 2 N;

�n .1/.z/ D  .1/..� /n.z//: (5.2)
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Proof. �e �rst part follows directly from the de�nition of  .k/. �e second
follows from the construction of  .n/ by induction, since it is true for  D  .1/.
�e fact that T .0/; T .n/; and T .1/ are MLD is immediate from the de�nitions.
Since every tile in T .0/ corresponds to a patch in T we see that T .0/ and T are
MLD. Part (3) can be seen by considering only k > n in the following:

�n .1/.z/ D lim
k!1

�n�k.� /k.z/

D lim
k!1

�n�k.� /k�n..� /n.z//

D  .1/..� /n.z//:

�eorem 5.7. Let T be self-similar tiling with expansion factor �, and let .G; S/

be a recurrent pair for T . If  .1/ is injective then T .1/ is a self-similar tiling

with expansion factor � and �nite local complexity.

Proof. Since �nite local complexity is preserved by MLD equivalence, by
Lemma 5.6(3), T .1/ has �nite local complexity.

To prove T .1/ is self-similar we show that its boundary is invariant under
scaling by � and that equivalent tiles in�ate to equivalent patches. �e former
follows directly from Lemma 5.6, since if x D  .1/.z/ 2 @T .1/,

�x D  .1/..� /.z// 2 @T .1/;

as desired. To prove the latter suppose t1 and t2 are equivalent tiles in T .0/ so that
t

.1/
1 and t .1/

2 are equivalent tiles in T .1/ . Denote by Œt1�T and Œt2�T the patches
in T that intersect the supports of t1 and t2, respectively; these are also equivalent,
by de�nition, since t1 and t2 carry the same label. Since T is self-similar the
T -patches in � suppŒt1�T and � suppŒt2�T are equivalent. �is means that the
T .0/- and T .1/-patches contained completely inside them are equivalent as well.
Since supp.t .1/

1 / is contained in Œt1�T the same way supp.t .1/
2 / is contained in

Œt2�
T , � supp.t .1/

1 / and� supp.t .1/
2 / support equivalentT .1/-patches, as required.

Under these circumstances we will let P.1/ denote the set of prototiles for the
self-similar tiling T .1/, and let !.1/ denote its substitution map.

6. �e existence of fractal dual and quasi-dual tilings

�e process described in the previous section can be used to �nd recurrent pairs
with injective  .1/ maps by experimentation. �is section contains technical
results related to the existence of such pairs in general.
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In the �rst part of this section we provide su�cient conditions on a recurrent
pair .G; S/ for the map  .1/ to be injective. �ese conditions result in fractal
tilings that are quasi-dual to their original self-similar tilings. In the second part
of the section we show that every singly edge-to-edge self-similar tiling has a
recurrent pair satisfying the injectivity conditions. In the third part of this section
we prove that if a singly edge-to-edge self-similar tiling has convex prototiles, then
its labelled combinatorial dual has a fractal realization.

6.1. Conditions under which  .1/ is injective. We introduce conditions that
ensure that the combinatorics of .1/.@T .0// are identical to the combinatorics of
T .0/. One way this can fail if the interior of an edge in  .n/.@T .0// approaches the
boundary of a tile in the original self-similar tiling T as n ! 1. If  .1/.z/ 2 @T

and z … @T , it can happen that an additional tile (or tiles) can arise in T .1/ either
by two edges coming together that were apart in T .0/ or by an edge doubling back
on itself. In�nitely many arbitrarily small tiles are also a danger in this situation.
We can avoid these troubles by keeping  .n/.@T .0// away from the boundary of
T except at T -consistent boundary vertices.

Another way the combinatorics of  .1/.@T .0// can fail to be those of @T .0/ is
if  .n/.z/ approaches the vertex of a tile in T as n ! 1. In this situation there
may still be a perfectly good self-similar tiling T .1/, but we’ve lost control of its
combinatorics and its substitution rule is not guaranteed to be border forcing.

Before we give the injectivity conditions we set some notation. In what follows,
for a real number k > 0 and any tiling T , the notation kT represents the tiling
obtained by rescaling all the tiles of T by a factor of k and keeping the labels the
same. Recall that if B is any subset of R2 or patch of tiles and Q is a tiling or
patch the notation ŒB�Q represents the patch in Q whose support intersects B . In
particular, for p 2 P note that ŒB�R

n.P/p is the patch of n-subtiles of Rn.P/ in p
that intersect B .

De�nition 6.1 (injectivity conditions). Let S be a geometric graph on P. If there
is an N 2 N for which the following four conditions hold, we say that S satis�es

the injectivity conditions for N -subtiles.

(I1) For any p 2 P and edges e ¤ f in Sp, the patches Œe�R
N .P/p and Œf �R

N .P/p

have intersecting interiors if and only if e and f share a common vertex v.

(I2) If e ¤ f 2 Sp share a common vertex v then

Œe�R
N .P/p \ Œf �R

N .P/p D Œv�R
N .P/p ;

the single subtile containing v, and this subtile is contained in the interior of
supp.p/.
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(I3) For each p 2 P, ŒSp�
RN .P/p does not contain any vertex of p in its support.

(I4) For e in Sp, the support of Œe�R
N .P/p intersects the boundary of p if and only

if e does, in which case suppŒe�R
N .P/p \ @p is connected.

Notice that if .G; S/ is a recurrent pair, G is a quasi-dual graph, and S satis-
�es the injectivity conditions for N -subtiles, then condition (I3) along with the
de�nition of a recurrent pair implies that S is also a quasi-dual graph. In general
these conditions imply that the interior of the patch of subtiles that S runs through
retracts to a geometric graph that has nearly the same combinatorics as S . If the
combinatorics di�er it is at interior vertices of S , several of which could be col-
lapsed into a single vertex in the retraction.

Given a recurrent pair .G; S/ we make two assumptions on the embeddings
�G and �S , which can be considered “without loss of generality.” �e �rst is that
G is a piecewise linear graph. If for some reason it is not, it can be redrawn
as one: the topological realization of the combinatorial graph K corresponding
to the geometric graph G can always be embedded into supp.P/ in a piecewise
linear fashion. We assume, then, that such an embedding has been chosen for G.
�e second is on the embedding �S of S , which we can control since S , being
a subgraph of R.G/, is also a piecewise linear graph. Letting B � e 2 E.G/

or E.S/, denote by jBj the arc length of the smallest sub-arc of e containing B .
In this case we assume that �S has been chosen so that for any e 2 E.G/ there is
a Ke such that for all B � e we have j�S ı ��1

G .B/j D KejBj. In other words, z is
a piecewise constant-speed parameterization taking G to S .

One further technical note is on the edge set of @.T .0//, which can be thought
of in two di�erent ways. One way is to consider the vertex set endowed by the
tiling T .0/, and another is to allow @.T .0// to inherit the edge and vertex sets ofG.
�e latter has extra vertices wherever the boundary of T .0/ intersects the boundary
of T . In all the proofs in this section we consider an edge of T .0/ to mean a copy
of an edge in G.

Proposition 6.2. Suppose .G; S/ is a recurrent pair such that G is quasi-dual

and the parameterization z W G ! S is piecewise constant-speed. If S satis�es

the injectivity conditions on N -subtiles for some N , then  .1/ W @T .0/ ! @T .1/

is injective.

We prove Proposition 6.2 using a sequence of lemmas, each of which implic-
itly has the assumptions of Proposition 6.2. For convenience of notation we will
assumeN D 1; the general case can be surmised by replacing the substitution rule
! by!N , which changes the expansion factor to �N and the tiling contraction map
to R

N .
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�e injectivity conditions (I1)–(I4) are designed to keep .n/.e/ away from the
boundaries of both of T .0/ and T except where the combinatorics of @T explicitly
require it, while the constant-speed assumption keeps edges from collapsing onto
themselves in the limit.

A key observation in everything that follows is that if e is an edge in @T .0/ for
which e D ep C z for some edge ep 2 Gp and z 2 R

2, then

Œ .e/��
�1T D Œ z .ep/�

R.P/p C z

by the self-similarity of T . �us edges is  .@T .0// follow the same injectivity
conditions, when intersected with ��1T , as edges in S do when intersected with
R.P/.

Lemma 6.3. Suppose that e 2 E.@T .0// and B is an edge in @T such that

B \ e D ¿. �en Œ� .e/�T \ �B D ¿.

Proof. If e has no vertex in @T then by (I4), Œ .e/��
�1T \B D ¿. If e has a vertex

in @T then by (I3) and (I4), Œ .e/��
�1T must intersect @T only on the edge that e

does. However, B \ e D ¿, and Œ� .e/�T \ �B D ¿.

Lemma 6.4. Suppose that x; y 2 @T .0/ and that there exists n 2 N such that

.� /n.x/ and .� /n.y/ are on disjoint edges in @T .0/. �en .1/.x/ ¤  .1/.y/.

Proof. Denote by ex and ey the edges in @T .0/ containing x and y, respectively.
If x and y are in distinct tiles in T , then even if those tiles share a common bound-
ary segment, that segment cannot intersect both ex and ey without violating either
the fact that G is quasi-dual or that ex \ ey D ¿. �us, in this case, it follows that
 .1/.x/ ¤  .1/.y/.

Next we consider the case where ex and ey are in the same T -tile. Since � is
injective, we have that .� .ex// \ .� .ey// D ¿. �en (I1) implies that

int.suppŒ� .ex/�
T / \ int.suppŒ� .ey/�T / D ¿:

If we have suppŒ� .ex/�
T \ suppŒ� .ey/�T D ¿, then we are done since

 .1/.x/ 2 supp��1Œ� .ex/�
T and  .1/.y/ 2 supp��1Œ� .ey/�

T . If not, then
Œ� .ex/�

T and Œ� .ey/�T share some part B of their boundary. Since G is quasi-
dual, neither � .ex/ nor � .ey/ intersect B , for otherwise � .ex/ would pass
through B into the interior of Œ� .ey/�T or vice versa. By Lemma 6.3, we have
that Œ.� /2.ex/�

T \ �B D ¿. So there exist tx; ty 2 T satisfying .� /2.x/ 2 tx,
.� /2.y/ 2 ty and tx \ ty D ¿. Since �2 .1/.x/ D  .1/..� /2.x// 2 supp.tx/
and �2 .1/.y/ D  .1/..� /2.y// 2 supp.ty/, we have  .1/.x/ ¤  .1/.y/.
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Now suppose that there exists n 2 N such that .� /n.x/ and .� /n.y/ are on
disjoint edges in E.@T .0//. �en by the previous argument,

 .1/..� /n.x// ¤  .1/..� /n.y//;

making

�n .1/.x/ ¤ �n .1/.y/;

and in turn

 .1/.x/ ¤  .1/.y/;

as desired.

Lemma 6.4 implies that edges that are disjoint in T .0/ remain disjoint in T .1/.
�e next lemma shows that  .1/ restricted to edges of T .0/ is injective, meaning
that an edge in T .0/ cannot loop back onto itself in T .1/. �is is the part of the
proof that uses the assumption that the parameterizations are piecewise constant-
speed.

Lemma 6.5. For each e 2 E.@T .0//,  .1/je is injective.

Proof. Fix x; y 2 e 2 E.@T .0//, and suppose that  .1/.x/ D  .1/.y/. We will
show x D y. Write xn WD .� /n.x/ and yn WD .� /n.y/. In order for  .1/.x/

and  .1/.y/ to be equal, Lemma 6.4 implies that for each n 2 N, xn and yn

are either on the same or adjacent edges in E.@T .0//. �is breaks into two cases:
either they are on the same edge for all n or there is an N such that if n � N ,
xn and yn are on adjacent edges.

We �rst suppose that xn and yn are on the same edge en in @T .0/ for all n.
For each n, we have enC1 � � .en/, and we let ln be the arc in en for which
� .ln/ D enC1. Set � D maxn2N.jlnj=jenj/. We can deduce that � < 1 by
injectivity condition (I2) because for every e 2 E.@T /, � .e/ is a union of at
least 2 edges inE.@T /. �e constant-speed assumption on z extends to guarantee
that � is piecewise constant-speed as well.

For each n 2 N and k � n we know that .� /�.n�k/.en/ and .� /�.n�k/.ln/

are in the same edge in @T .0/ and the constant-speed assumption implies that

j.� /�n.ln/j

j.� /�n.en/j
D

j.� /�.n�1/.ln/j

j.� /�.n�1/.en/j
D � � � D

jlnj

jenj
� �:
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Since x; y 2 .� /�n.ln/ for all n, we have that

jx � yj � j.� /�n.ln/j � �j.� /�n.en/j

D �j.� /�.n�1/.ln�1/j

� �2j.� /�.n�1/.en�1/j

D �2j.� /�.n�2/.ln�2/j

�

:::

� �nje0j:

Since this is true for all n and � is strictly less than one we have shown x D y

when xn and yn are on the same edge of @T .0/ for all n.
Now suppose there is an N such that if n � N then xn and yn are on adja-

cent edges that share a vertex vn. Since  is continuous, the edges containing
.� /n.xN / and .� /n.yN / share the vertex .� /n.vN / for all n 2 N. �en

k.� /n.xN / � .� /n.vN /k � max
t2T

diam.t /

for all n 2 N. Multiplying both sides by ��n then gives

k .n/..� /N .x// �  .n/.vN /k � ��n max
t2T

diam.t /

for all n 2 N. �is implies that  .1/.xN / D  .1/.vN /, and since xN and vN

are always on the same edge the �rst case in this proof shows that xN D vN . �is
argument shows that also yN D vN . Since .� /N is injective this implies that
x D y and we have shown that  .1/ is injective on edges of @T .0/.

Proof of Proposition 6.2. Fix x; y 2 @T and suppose that x ¤ y. If  .n/.x/ and
 .n/.y/ are on the same or on disjoint edges for some n, then Lemmas 6.4 and 6.5
imply that  .1/.x/ ¤  .1/.y/. �e only other option is that  .n/.x/ and  .n/.y/

are on adjacent edges for all n, but the proof of Lemma 6.5 shows that this cannot
happen if x ¤ y. �us  .1/ is injective.

6.2. Existence of recurrent pairs with injective edge re�nements. In this sec-
tion we prove that every singly edge-to-edge, primitive self-similar tiling T with
�nite local complexity has a recurrent pair .G; S/ satisfying the conditions of
Proposition 6.2. In this case the map  .1/ is injective and the tiling T gives
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rise to a fractal substitution tiling T .1/. �e construction of the recurrent pair
often requires multiple iterations of the substitution !, so the expansion factor of
T .1/ is always a power of the expansion factor of T .

�eorem 6.6. Suppose T is a singly edge-to-edge, primitive self-similar tiling

with FLC. Let T have substitution ! and prototile set P. �en T has a recurrent

pair .G; S/ satisfying the conditions of Proposition 6.2, and hence T has a fractal

realization.

�e proof of the �eorem 6.6 is an algorithm for constructing the recurrent
pair .G; S/. �e algorithm begins with Lemma 6.7 followed by a �nite number of
iterations of Lemma 6.8. Lemmas 6.7 and 6.8 are implicitly assumed to have the
assumptions of �eorem 6.6.

Recall that we say that a graph G satis�es the injectivity conditions for
N -subtiles if conditions (I1)–(I4) of De�nition 6.1 are satis�ed with respect to the
subtiles R

N .P/. Also recall that we say a graph G0 is T -consistent if it satis�es
De�nition 3.6.

Lemma 6.7. Let G0 be a T -consistent dual graph in P. �en there exists N 2 N

and a T -consistent quasi-dual graph G1 � R
N .G0/ such that G1 satis�es the

injectivity conditions for N -subtiles.

Proof. By primitivity, there exists n 2 N such that for each p 2 P, there is a copy
of p interior to R

n.P/p. More precisely, there exists x 2 R
2 such that the n-subtile

p0 D ��np C x has support contained in the interior of Rn.P/p.

Now �x p 2 P and let Vp denote the vertices of p. Since p0 � int.p/, there
exists a geometric graphHp � p n int.p0/ consisting of jVpj disjoint edges, where
the edge associated to v 2 Vp has endpoints v 2 p and v0 D ��nv C x 2 p0.
Let V 0

p denote the collection of such vertices. Note that the geometric graph Hp

connects the vertices of p with their corresponding vertices p0, and the existence
of Hp is guaranteed since p n p0 is an annulus. Let H be the disjoint union

H WD
G

p2P

Hp:
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Let M 2 N be large enough so that for each p 2 P there are at least three
M -subtile edges along each edge of p and threeM -subtile edges along each edge
of p0. Now let E.Hp/ denote the set of edges of Hp. Set " to be less than the
minimum of

"1 D min
p2P

¹d.e; f / j e ¤ f 2 E.Hp/º;

and

"2 D min
p2P

¹d.e; f / j e 2 E.Hp/; f 2 @p n @.ŒVp [ V 0
p �

R
M .P/p/:º

�en since � > 1, we can choose N � M such that ��N maxp2P diamp < "=3.
Let

OB D
[

p2P

¹@p n @.ŒVp�
R

M .P/p/º and IB D @p0 n @.ŒV 0
p �

R
M .P/p/:

Choose a T -consistent set of vertices contained in the set OB \ R
N .G0/ with

exactly one vertex for each edge e 2 P, and denote the set of vertices by OV . By
our choice of N with respect to " > 0, for every edge e 2 P there is at least one
path in R

N .G0/ connecting OV with any vertex in IB \ R
N .G0/ that does not

cross any edge of Hp. We choose one such path, which we denote xe , with the
additional restriction that once it enters an interior N -subtile it continues through
interior subtiles until it reaches its destination on the boundary of p0. Note that xe

must connect the edge e 2 E.p/ to its counterpart ��neCx in p0, and Œxe�
R

N .P/p

must intersect the boundary of p in a connected set. Moreover, for e ¤ f 2 p, we
have Œxe�

RN .P/p \ Œxf �
RN .P/p D ¿. LetXp D

S

e2p xe. Although the component
graphs of X D

F

p2P Xp are disconnected, X satis�es the injectivity conditions
for N -subtiles.

In order to complete the proof, for each p 2 P, we need to connect the points
Xp \ IB � @p0 by a tree in p0. To that end, consider the connected graph
R

N .G0/p0
, which we can prune until we have a tree connecting the pointsXp \IB

with no dangling vertices. Let Yp denote this tree.
Set G1 WD

F

p2P Xp [ Yp. �en, by construction, the graph G1 is quasi-dual
and satis�es the injectivity conditions for N -subtiles.

WhenG0 � R
N .G/ is a geometric graph we have been interested in the patches

of N -subtiles intersecting the edges of G0. �e next lemma states that the paths in
R

N .G0/ running through those same patches are unique when G and G0 are both
quasi-dual.
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Lemma 6.8. Suppose that G and G0 � R
N .G/ are quasi-dual graphs in P such

that, for someM 2 N, G0 satis�es the injectivity conditions forM -subtitles. �en

there is a unique quasi-dual graphH � R
N .G0/ such that

ŒG0p�
R

N .P/p D ŒHp�
R

N .P/p for all p 2 P,

which satis�es the injectivity conditions for .M CN/-subtiles.

Proof. For each p 2 P, consider the patch of N -subtiles Qp WD ŒG0p�
RN .P/p and

boundary N -subedges Ep WD ¹e 2 R
N .P/p \ @p j e \ G0 ¤ ¿º. Since G0 is

quasi-dual and T is singly edge-to-edge there is a unique quasi-dual graph Hp

with edges in R
N .G0/p through the patch Qp with dangling vertices exactly on

the edges Ep . Let H WD
F

p2PHp. By construction, H is a quasi-dual graph

satisfying ŒG0p�
RN .P/p D ŒHp�

RN .P/p for all p 2 P.
Since G0 satis�es the injectivity conditions for M -subtiles and H � R

N .G0/,
it follows that H satis�es the injectivity conditions for .M CN/-subtiles.

We can now prove �eorem 6.6.

Proof of �eorem 6.6. Let G0 and G1 be the quasi-dual graphs from Lemma 6.7.
If G0 � G1, the proof is complete with G D G0 and S D G1. If not, apply
Lemma 6.8 with G0 D G and G1 D G0 to obtain G2 WD H .

If G1 � G2 then we are done with G D G1 and S D G2. If not, we continue
iterating this process of applying Lemma 6.8 to the last two graphs in the sequence.
We claim that there exists n � 2 such that Gn � GnC1.

Since each prototile has only a �nite number of edges and each graph Gj

is quasi-dual, the number of interior vertices (with degree greater than two) is
bounded by half the number of edges of the prototile. Suppose Gi œ GiC1, for
i � 2, then there existsp 2 P such that .Gi /p œ .GiC1/p. �en the construction in
Lemma 6.8 implies that the number of interior vertices of .GiC1/p is greater than
the number of interior vertices of .Gi /p. Since the number of interior vertices of
each prototile is bounded, this process must end. So there exists n 2 N such that
Gn � GnC1, and we let G WD Gn and S WD GnC1.

Lemma 6.7 shows that G1 satis�es the injectivity conditions for N -subtiles.
Lemma 6.8 implies that each graph Gi in the algorithm satis�es the injectivity
conditions for iN -subtiles. �us, every graph in the sequence continues to sat-
isfy the injectivity conditions. In particular, S � R

N .G/ satis�es the injectiv-
ity conditions for .n C 1/N -subtiles. Moreover, since G0 is a dual tiling and
G � R

nN .G0/ and S � R
.nC1/N .G0/ the map z can be chosen to be piece-

wise constant-speed. �us, .G; S/ satis�es the conditions of Proposition 6.2 and
�eorem 6.6 is proved.
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6.3. Self-similar combinatorial dual tilings. �e construction in Section 6.2
invites the question of when the .G; S/ recurrent pair are both dual graphs.
We give a su�cient condition in the following result.

�eorem 6.9. Let T be a singly edge-to-edge, primitive self-similar tiling whose

tiles are all convex. �en the combinatorial dual tiling of T has a self-similar

realization.

Proof. Let G be a T -consistent dual graph P, embedded such that Gp has exactly
one boundary vertex in the interior of each edge of p and there is one interior
vertex that is connected by a straight-line edge to each boundary vertex. By prim-
itivity we can choose N such that

(1) R
N .P/p contains a tile of type p in its interior for each p 2 P and

(2) there is a T -consistent set of boundary vertices in R
N .G/ such that if v is in

this set and in p 2 P, then suppŒv�R
N .P/p does not contain any vertex of p.

Denote by VB such a T -consistent set that has exactly one vertex per prototile
edge.

We let the vertex set of Sp be .VB/p along with a single interior vertex vp;int

chosen from the interior of an N -subtile p0 of type p lying in the interior of
R

N .P/p. We construct the edges of Sp as follows. Let l.v/ be the line connecting
the boundary vertex v 2 Sp to its counterpart in p0. We take as the edge in Sp a
path in R

N .G/ through Œl.v/�R
N .P/p connecting v to vp;int.

Notice that if v ¤ w are boundary vertices in p, by convexity the
R

N .P/p-patches intersecting l.v/ and l.w/ cannot intersect except at p0 and per-
haps on their boundaries, and thus (I1) and (I2) are satis�ed. G was already dual
and thus quasi-dual and (I3) and (I4) follow from the construction and by con-
vexity. �e map z can be chosen to be piecewise constant-speed so that all the
conditions of Proposition 6.2 hold.

�us we have a recurrent pair .G; S/ for which TG D T .0/ is a labelled dual
tiling of T . Since T .1/ is combinatorially equivalent to TG the result follows.

6.4. Applications and comments on the main result. In �eorem 6.6 we
showed the existence of fractal realizations for a large class of tilings. We believe
the restriction of singly edge-to-edge tilings can be lifted and that every tiling has a
fractal dual tiling rather than a fractal quasi-dual tiling. In particular, we are fairly
convinced that every two-dimensional tiling that appears in the Tiling Encyclo-
pedia [31] has a fractal dual tiling. We also note that the proof of �eorem 6.6
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implies that there are an in�nite number of distinct fractal realizations for each
tiling satisfying the hypotheses.

In [17, Section 4.2], Grunbaum and Shephard show the importance of dual
tilings to the study of tilings. For instance, we can use [17, �eorem 4.2.1] to de-
duce that all fractal dual tilings T .1/ obtained in �eorem 6.9 are homeomorphic
(note that this is a very di�erent statement than that their tiling spaces are mu-
tually locally derivable). However, the usual combinatorial dual of a substitution
tiling is not typically a substitution tiling itself. �e combinatorial (quasi-) dual
tilings we construct are substitution tilings, and hence we bene�t from the dual
construction while maintaining a substitution system. As a particular application,
in Section 8 we show how this allows us to compute the cohomology of a tiling
that doesn’t force its border.

As mentioned in the introduction, in [23] spectral triples are constructed on
Kellendonk’sC �-algebra associated with a substitution tiling. In the construction,
the existence of a fractal realization corresponds to the existence of a fractal tree
overlaying the original tiling that uniquely connects every pair of tiles in each
self-similar tiling. Perron–Frobenius theory allows us to de�ne a fractal distance
function that scales appropriately between supertiles, which in turn de�nes the
Dirac operator required in a spectral triple. �us, each fractal realization provides
a distinct noncommutative geometry on Kellendonk’s algebra. In future work we
hope to explore the implications of making di�erent choices of recurrent pairs in
a noncommutative framework.

7. Edge contraction map and Hausdor� dimension of @T .1/

We mentioned earlier that it is possible to see the edge re�nement map z as a
substitution rule on prototile supports. We make this precise here, using the for-
malism of digit sets and the tiling contraction map used to describe a substitution
rule. For simplicity we assume that S � R.G/ but all results extend to the general
case of S � R

N .G/.

Once this is done it is possible to see the edges of T .1/, or more precisely their
counterparts in P, as the invariant set of a graph iterated function system. �is
system satis�es the strong open set condition, so [24] implies that the Hausdor�
dimension of its attractor (our edges) is the Mauldin-Williams dimension. In this
way we obtain a geometric invariant on the set of fractal realizations of a particular
tiling.
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7.1. Edge re�nement as a contraction map RE . Suppose that .G; S/ is a re-
current pair for a substitution ! with expansion �.

Let the edge set of G, denoted E.G/, be the collection of all edges in G:
E.G/ D

S

p2P E.Gp/. Analogous to the tiling contraction case, we assign a
copy of H.R2/ for each e 2 E.G/ and de�ne XE D

F

e2E.G/H.R
2/. Consider

a �xed e 2 E.Gp/ and consider its counterpart z .e/ � S . By de�nition we know
that z .e/ is a subset of R.G/p and thus is comprised of subedges of the form
��1.f C d/, where f is an edge in a prototile q and d is some element of the
digit set Dpq . We de�ne the matrix ME by letting ME

ef
be the number of copies

of f appearing in z .e/ for all f 2 E.G/. �is makes ME a nonnegative integer
matrix whose rows and columns are indexed by E.G/.

Suppose that f is an edge in the prototile q. �e digit set DE
ef

is obtained by

taking all of the digits in Dpq giving copies of f in z .e/:

DE
ef D ¹d 2 Dpq j z .e/\ ��1.f C d/ D ��1 .f C d/º (7.1)

For B 2 XE and e 2 E.G/ we de�ne

R
E .B/e D

[

q2P

[

f 2E.Gq /

��1.Bf CDE
ef / (7.2)

With this de�nition we see that for e 2 E.G/,

z .e/ D
[

q2P

[

f 2E.Gq /

��1.f CDE
ef / D

�

R
E

�

G

f 2E.G/

f
��

e
:

We can iterate R
E but not z , since the latter is only de�ned for edges e 2

E.G/. However we can de�ne z .n/.e/ for n 2 N[ ¹1º using  .n/: take any edge
e0 2 T .0/ for which e0 D e C x, then z .n/.e/ D  .n/.e0/ � x. It is a tedious, but
not di�cult, chase through notation to verify that if B D

F

f 2E.G/ f , then

z .n/.e/ D ..RE /n.B//e

Let A.1/ � XE represent the attractor of RE , and let S .1/ � X represent the
canonical projection of A.1/ onto the support of the prototiles:

S .1/
p D

[

e2E.Gp/

A.1/
e :

Proposition 7.1. Let .G; S/ be a recurrent pair and T a self-similar tiling for

the substitution !. �en  .1/.@T .0// D �.T; S .1//, where � is de�ned in (3.1).
If  .1/ is injective, then @T .1/ D @T

.1/
S .
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�e �rst part says that even if �.T; S .1// is not the boundary of a tiling, it still
corresponds to  .1/.@T .0//. �e second part does not quite extend to imply that
TS.1/ and T .1/ are actually equal, because there is the possibility that the tile
labels di�er slightly if the tiles of TS.1/ intersect larger T -patches than those that
T .0/ did, since, by de�nition, those endow the tiles of T .1/ with their labels.

Proof. We must show that if e 2 E.G/, then z .1/.e/ D A
.1/
e . We have

G

e2E.G/

z .1/.e/ D
G

e2E.G/

. lim
n!1

z .n/.e//

D lim
n!1

G

e2E.G/

z .n/.e/

D lim
n!1

R
n
E

�

G

e2E.G/

e
�

D A.1/;

since A.1/ is the attractor of RE .

7.2. Hausdor� dimension. We will prove the following theorem.

�eorem 7.2. Suppose that .G; S/ is a recurrent pair for a tiling T with sub-

stitution ! having expansion factor � which satis�es the injectivity conditions of

De�nition 6.1. LetME be the edge substitution matrix with largest eigenvalue �E .

�en the Hausdor� dimension of @T .1/ is
ln �E
ln �

.

It is important to notice that whileM is always a primitive matrix, by assump-
tion, it often happens that ME is not. We note that if ME is not primitive, then a
power of ME must be block triangular. Each block will contain classes of edges,
and the Hausdor� dimension of each block is related to the leading eigenvalue
of that block. �eorem 7.2 can be deduced almost directly from the de�nition of
the Hausdor� dimension when ME is primitive. In the interest of completeness
we prove �eorem 7.2 by describing a fractal realization as the �xed point of a
graph-directed iterated function system (GIFS), as de�ned in [14, 24]. In particu-
lar, [24] allows us to compute the Hausdor� dimension of the boundary of T .1/

by computing the Mauldin–Williams dimension of the GIFS.
We begin by de�ning a directed combinatorial graph � that has one vertex,

denoted ve, for each edge e 2 E.G/. �e edge set E.�/ contains an edge � from
ve to vf for each copy of f that appears as a subedge in z .e/. �at is, there are
ME

ef
edges pointing from ve to vf . To each vertex ve we associate a copy of R2.
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To each edge � 2 E.�/ from e to f we assign a digit d 2 DE
ef

and construct the
map x 7! ��1.x C d/ and call this map h�. �ese are the components necessary
to de�ne a GIFS; since the maps h� are taken directly from the de�nition of RE

we refer to this as the GIFS given by RE .
Our fractal graph A.1/ (as a vector of edges) is invariant for this GIFS in the

sense that for each vertex ve 2 V.�/,A.1/
e D

S

vf 2V.�/

S

�2Eef
h�.A

.1/
e /, where

Eef denotes edges from ve to vf .
�e Hausdor� dimension of the invariant set of a GIFS has bounds that depend

on the contraction factors of the maps h�. In our case, each contraction factor is
exactly ��1 and this leads to the lower and upper bounds being equal, and in fact
ln�E= ln� as soon as we can establish that the GIFS satis�es the strong open set
condition given here (and adapted to our notation.)

De�nition 7.3 ([14], De�nition 3.11). A GIFS with attractor set A.1/ satis�es the
strong open set condition if, for each ve 2 V.�/, there exists an open set Ue � R

2

satisfying:

(1) for all vertices ve; vf and � 2 Eef , h�.Uf / � Ue;

(2) for all vertices ve; vf and vf 0 , � 2 Eef and �0 2 Eef 0 with � ¤ �0, we have
h�.Uf / \ h�0.Uf 0/ D ¿;

(3) for each vertex ve, Ue \ A
.1/
e ¤ ¿.

Proposition 7.4. Suppose .G; S/ is a recurrent pair satisfying the injectivity con-

ditions (I1)–(I4) of De�nition 6.1. �en the GIFS given by R
E satis�es the strong

open set condition.

Proof. Fix an edge e 2 E.G/ in the prototile p; e is associated to a unique vertex
of our GIFS. Denote by e.1/ D A

.1/
e its counterpart in the attractor and de�ne Ue

as follows. Let ae be the set of interior vertices of e.1/ that are endpoints of e.1/

(i.e., endpoints of e.1/ interior to the support of p; by the injectivity conditions
this has either one or two elements). Let Ue;n D int.Œe.1/�R

n.P/p n Œae�
R

n.P/p /.
�en setUe D

S

n2N Ue;n. �en the injectivity conditions (I1)–(I4) then guarantee
that these Ue satisfy conditions (1)–(3) of De�nition 7.3.

�e Mauldin–Williams dimension [24] of the invariant set F of a GIFS is
de�ned as follows. Suppose each h� has similarity ratio r� < 1. De�ne a matrix
ME .s/ by ME

ef
.s/ D

P

�2Eef
rs

� , where e and f represent edges in G and there-

fore vertices in �. Let ˆ.s/ denote the spectral radius of ME .s/. �e Mauldin–
Williams dimension dimM W .F / of F is the unique s1 for which ˆ.s1/ D 1.
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Proof of �eorem 7.2. In [14, Section 3] it is shown that if kh�.x/ � h�.y/k D

r�kx � yk for each � 2 Eef and x; y in the copy of R2 associated with vf , and
if the GIFS satis�es the strong open set condition, then the Hausdor� dimension
dimH A

.1/
e D dimM W .A

.1/
e / for each vertex ve. Our GIFS satis�es the strong

open set condition by Proposition 7.4 and has r� D ��1 for all �. �is means that
ME .s/ D ��sME , where ME is the edge substitution matrix given by .G; S/.
�is implies that ˆ.s/ D ��s�E , where �E is the spectral radius ofME . Solving
��s�E D 1 gives s D ln�E= ln�.

8. Čech cohomology of a tiling space

In this section we relate our fractal tiling construction to the Anderson-Putnam
complex and Čech cohomology. Given an nonperiodic and primitive substitution
tiling along with a recurrent pair satisfying the injectivity conditions of De�ni-
tion 6.1, we show that de�ning an orientation on the recurrent pair .G; S/ gives
rise to the substitution maps and boundary maps for the associated fractal realiza-
tion. If the recurrent pair is quasi-dual then the fractal realization forces its border
and is mutually locally derivable to the original substitution tiling. Putting this
together, a recurrent pair .G; S/ can be used to compute the cohomology of the
original tiling. �e upshot of our construction is that Čech cohomology is read-
ily computable for tilings that do not force the border. We illustrate our method
by computing the cohomology for the 2-dimensional �ue–Morse (2DTM) tiling.
We begin with some background on substitution tiling spaces and their cohomol-
ogy.

8.1. A brief description of the tiling space of a substitution. A substitution !
with expansion � generates a topological space � of tilings often called the hull.
�is consists of all tilings T such that for every �nite patch of tiles in T there exists
a prototile p 2 P and an N for which a copy of the patch appears inside !N .p/.
�at is, every patch in T is admissible by the substitution.

�e topology on � is generated by the ‘big ball’ metric, which measures how
close two tilings are by how little they di�er on big balls around the origin.5
We will not de�ne it precisely here but refer readers to [29, p. 5] for details.
It is possible to de�ne� as the orbit closure of a �xed self-similar tiling T under
the action of translation, and in this view � is often called the hull of T .

5 �is is a continuous analogue to the standard metric used on shift spaces in symbolic dy-
namics.
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�e substitution ! extends to all tilings in � in a natural way. Given a tiling
T 2 � and a tile t 2 T , we place the patch !.t/ atop � supp.t /. Doing this for
all the tiles of T yields a tiling we call !.T / which also lives in �. When the
substitution on � is invertible we call the substitution recognizable. �is means
that in any location of any tiling T it is possible to determine the exact type and
location of the supertile !.t/ at that spot using only local information. Since all
the tilings considered in this paper are nonperiodic, [30] implies that they are
recognizable.

8.2. Border-forcing. For topological analysis of tiling spaces, it is crucial that
the substitution have the property of forcing its border. �is means that whenever
a supertile !N .t / appears in T 2 �, the patch Œ!N .t /�T of tiles (which includes
those immediately adjacent to !N .t / in T ) are independent of T and appear in
identical fashion anywhere else !N .t / appears in any tiling in �. Formally, the
substitution forces the border if whenever t and t 0 are equivalent tiles in T , then
Œ!N .t /�T and Œ!N .t 0/�T are equivalent patches.

When ! is border-forcing its tiling space is homeomorphic to the inverse limit
of its approximants as discussed below, which is key to cohomology computations
on�. �e following theorem gives conditions for border-forcing that are su�cient
but not necessary; it is often possible to tell by inspection whether a given recurrent
pair will produce a substitution with the desired result.

Proposition 8.1. Let .G; S/ be a recurrent pair for a self-similar tiling T satis-

fying the conditions of Proposition 6.2. �en the substitution map !.1/ for the

tiling T .1/ is border-forcing.

Proof. �e fact that G and S are quasi-dual and form a recurrent pair means that
for any t 2 T .0/ and its counterpart t .1/ 2 T .1/ we have Œt �T D Œt .1/�T , and
that both t and t .1/ are on the interior of the same patch of T -tiles. By def-
inition, the equivalence class of this patch forms the label for both t and t .1/.
Let k1 D maxt2T .0/ diamŒt �T . �en every ball of radius 2k1 contains a patch of
tiles in T which determine at least one tile in T .1/.

�ere is a strictly positive minimum distance k2 between the boundaries @t .1/

and @ suppŒt .1/�T , where the minimum is taken over all t .1/ 2 T .1/. Choose N
such that �Nk2 > 2k1. For this N , we know that !N .Œt .1/�T / determines all of
the T -tiles on its interior, and this includes all of the T -tiles a distance of 2k1 or
less from �N .supp t .1//. By choice of k1 this patch determines Œ!N

.1/
.t .1//�T

.1/

,
as desired.
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Corollary 8.2. Suppose T is a self-similar tiling satisfying the conditions of

�eorem 6.6 and let � denote its hull. �en there are in�nitely many border-

forcing substitutions !.1/ such that .�.1/; !.1// is topologically conjugate to

.�; !/.

Proof. �e proof of �eorem 6.6 can be adapted to produce an in�nite number of
distinct recurrent pairs. In particular, Lemma 6.7 can be adapted by

(1) using a quasi-dual graph in place of G0 or

(2) allowing N to increase, giving several distinct G1 graphs for each N .

8.3. Čech cohomology of a substitution tiling. We begin with a very brief de-
scription of the Anderson-Putnam complex and Čech cohomology of a border
forcing tiling space in two dimensions. We refer the reader to [1] or [27] for further
details. Suppose� is the tiling space of a border forcing nonperiodic substitution
tiling with �nite local complexity and prototile set P. A �nite CW complex �,
called the approximant, is de�ned by identifying edges and vertices in two pro-
totiles whenever those edges or vertices are common in any two translates that
occur in a patch in the tiling space. Anderson and Putnam [1] have shown that
the tiling space � is the inverse limit of the approximant for tilings that force the
border

� D lim
 �
.�; f /; (8.1)

where f is the forgetful map described in [27, Section 2.5].
Since the approximant is a �nite CW complex, we obtain a chain complex

in simplicial homology. However, homology is not well-behaved with respect
to inverse limits so we use cohomology instead, and consider the dual cochain
complex. Let �0, �1 and �2 denote the functions from the vertices, edges, and
tiles into the group of integers, respectively. �ere are coboundary maps ı0 W �0 !

�1 and ı1 W �1 ! �2 de�ned by taking the transpose of the matrix de�ning the
homology boundary maps. We then have the following cochain complex:

0 �! �0 ı0
�! �1 ı1

�! �2 �! 0:

From [27, �eorem 3.4], Čech cohomology and singular cohomology are equal on
�nite CW complexes. �us we obtain the cohomology groups of the approximant
� by

LH 0.�/ D ker.ı0/; LH 1.�/ D ker.ı1/= Im.ı0/; LH 2.�/ D �2= Im.ı1/:
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Since we have a substitution tiling there are substitution maps on vertices,
edges, and tiles, which we denote by A0, A1, andA2 respectively. Since cohomol-
ogy is contravariant, the inverse limit appearing in (8.1) turns into direct limits on
the cohomology groups of the approximant. �us, the Čech cohomology of � is
given by

LH i .�/ D lim
�!
.H i .�/; A�i / (8.2)

whereA�i denotes the map induced by the substitution on the singular cohomology
group H i .�/.

8.4. Cohomology from a recurrent pair .G; S/. We now relate the Anderson-
Putnam complex to our situation in order to compute the cohomology of a tiling
T using a fractal realization of T . In fact, it is not necessary to see the fractal at
all: once a recurrent pair .G; S/ satisfying the injectivity conditions is identi�ed,
it is possible to do all computations using the graphs G and S . We illustrate the
construction in Section 8.5 by computing the Čech cohomology of the two di-
mensional �ue–Morse tiling using a recurrent pair .G; S/. We note that it may
be useful to have the example in Section 8.5 at hand while reading this section.

Suppose T is a strongly nonperiodic tiling with �nite local complexity and pro-
totile setP admitting a recurrent pair .G; S/ satisfying the injectivity conditions of
De�nition 6.1. Let� be the tiling space associated with T . Using the construction
in Section 5 we obtain a fractal tiling T .1/ with tiling space �.1/ and prototile
set P.1/. Proposition 5.7 implies that T .1/ is a self-similar nonperiodic tiling and
Proposition 8.1 implies that T .1/ forces the border.

We will show that the Anderson–Putnam complex is completely determined
by the recurrent pair .G; S/. First the approximant � of �.1/.

Let VI denote the set of interior vertices ofG and for each v 2 VI let fv denote
the function that takes the value one on v and zero on VI nv. �en �0 is generated
by ¹fv j v 2 VI º and �0 Š Z

jvI j.
We now look at �1. Since we have assumed that .G; S/ satis�es the conditions

of Proposition 6.2,  .1/ is a bijective map from T .0/ to T .1/, which induces a
bijection taking edges in G to fractal edges whose translations make up T .1/.
More speci�cally, there are two types of edges involved in computing the coho-
mology of the approximant. �e �rst are pairs of edges in G that form a single
edge when we take the quotient by the equivalence relation �T described in Sec-
tion 3.2 (two boundary vertices are identi�ed if they ever meet in any patch in T ).
We call pairs of these edges a (single) boundary edge. �e second type are edges
that connect two interior vertices of G within a prototile, and we call these edges
interior edges. Let E be the union of the boundary edges and the interior edges.
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For e 2 E let fe denote the function that takes the value one on e and zero on
E n e. �en �1 is generated by ¹fe j e 2 Eº and �1 Š Z

jE j.
For �2, recall that the prototile set P.1/ is in bijective correspondence with

distinct vertex patterns in T . For p 2 P
.1/, let fp denote the function that takes

the value one on p and zero on P
.1/ np. �en �2 is generated by ¹fp j p 2 P

.1/º

and �2 Š Z
jP.1/j.

To compute the cohomology of the approximant it remains to determine the
coboundary maps. We accomplish this by �nding the boundary maps in homology
and then taking adjoints. �e �rst step is to assign an orientation to each edge in
E (forming the dual space of �1). As in [27, Section 3.2], let @2 be the matrix
with a row for each oriented edge in E and a column for each prototile in P

.1/.
For e 2 E and p 2 P

.1/, a C1 is added to the .e; p/ entry if edge e appears as an
edge in p in the same orientation and a �1 is added if it appears in the opposite
orientation. �e coboundary map ı1 W �1 ! �2 is the transpose matrix ı1 D @t

2.
Let @1 be the matrix with a row for each interior vertex VI , and a column for each
oriented edge in E. For each e 2 E, place a C1 in the .v; e/ entry if v is the
range vertex of e and place a �1 in the .w; e/ entry if w is the source vertex of e.
�e coboundary map ı0 W �0 ! �1 is the transpose matrix ı0 D @t

1. Putting all
of this together leads to the cohomology groups of the approximants LH.� i / for
i D 0; 1; 2.

In order to compute the Čech cohomology of the tiling space �.1/ the �nal
ingredients are the substitution maps. �e matrix A0 is the jVI j � jVI j substitution
matrix on interior vertices, described entirely by the substitution of interior ver-
tices from G to S . �e matrix A1 is an jEj � jEj matrix with a C1 added to the
.e; f / entry if f appears in the substitution of e in the same orientation as e and a
�1 if f appears in the opposite orientation, where the substitution is determined
by the graph S . �e matrix A2 is a jP.1/j� jP.1/j matrix where entry .p; q/ is the
number of translations of prototile q appearing in the substitution of prototile p.

Computing the Čech cohomology of�.1/ is now an exercise in linear algebra.
Lemma 5.6(3) implies that�.1/ is mutually locally derivable to�, and hence the
Čech cohomology groups of the two tiling spaces are equal.

8.5. Cohomology of the two dimensional �ue–Morse tiling. We compute the
cohomology of the 2-dimensional �ue–Morse (2DTM) tiling using the recurrent
pair shown in Figure 2 of the introduction.

We label the edges of the graph G and de�ne an orientation on these edges
as in Figure 8 and extend the orientation to S . It is essential that the orientation
be consistent across pairs of edges connected by boundary vertices, since they
become edges in the AP complex of T .1/.
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Applying the machinery from Section 5 we obtain the tiles appearing in Fig-
ure 8 along with their substitution appearing in Figure 9.

1

3
2

4
5

7
6

8

Figure 7. �e prototiles of the 2DTM tiling with an oriented dual graph G inscribed.
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Figure 8. �e 8 prototiles of the fractal realization of the 2DTM tiling from .G; S/. Each
oriented (single) edge is labelled by a pair of edges from G as pictured in the bounding
squares (which are only present to label the edges).

Figure 9. �e substitutions of the 8 fractal prototiles (not to scale).
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We begin by de�ning the matrices used to compute the cohomology LH i .�.1//.
�e fractal edges of the tiles are in bijective correspondence with pairs of edges
in G whose endpoints are identi�ed in S by boundary vertices. Since we will be
interested in the substitution matrices of these edges, we label them in the ordered
set

¹42; 46; 82; 86; 31; 35; 71; 75º:

�e pictures above give rise to the matrices:

A0 D

�

1 0

0 1

�

;

ı1 D

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0

�1 1

1 �1

0 0

0 0

�1 1

1 �1

0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

; ı2 D

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 �1 1 0 0 1 �1 0

0 1 �1 0 0 �1 1 0

1 0 0 �1 0 0 0 0

�1 0 0 1 0 0 0 0

0 0 0 0 �1 0 0 1

0 0 0 0 1 0 0 �1

1

C

C

C

C

C

C

C

C

C

C

C

A

;

A1 D

0

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 0 0 0 0

0 2 1 1 0 0 0 �1

1 1 2 0 1 0 0 0

1 1 1 1 1 0 0 �1

0 0 0 0 1 1 1 1

1 0 0 �1 0 2 1 0

�1 0 0 1 1 1 2 1

0 0 0 0 1 1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

A

; A2 D

0

B

B

B

B

B

B

B

B

B

B

B

@

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 5 4 3 0 1 1

0 0 4 5 0 3 2 2

2 1 3 3 3 3 2 1

0 1 3 3 3 3 0 1

0 2 3 3 1 1 3 3

2 0 3 3 1 1 3 3

1

C

C

C

C

C

C

C

C

C

C

C

A

:

�e zeroth cohomology of the approximant � is generated by ker.ı0/ D .11/t ,
which is viewed as the function assigning the value 1 to each vertex in �. So

LH 0.�/ Š Z:

Since A0 is the identity matrix, it follows that

LH 0.�.1// Š Z

as well.
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�e �rst cohomology of the approximant � is given by

LH 1.�/ D ker.ı1/= Im.ı0/;

and routine linear algebra shows that

LH 1.�/ D span

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0

B

B

B

B

B

B

B

B

B

B

B

@

1

0

0

1

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

A

;

0

B

B

B

B

B

B

B

B

B

B

B

@

0

1

1

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

A

;

0

B

B

B

B

B

B

B

B

B

B

B

@

0

0

0

0

1

0

0

1

1

C

C

C

C

C

C

C

C

C

C

C

A

;

0

B

B

B

B

B

B

B

B

B

B

B

@

0

1

0

0

0

1

0

0

1

C

C

C

C

C

C

C

C

C

C

C

A

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

Š Z
4:

�e induced matrix A�1 on LH 1.�/ has eigenvalues ¹4; 4; 1; 1º and eigenvectors
EV.A�1/:

A�1 D

0

B

B

B

@

2 1 0 0

2 3 0 0

0 �1 2 2

1 0 1 3

1

C

C

C

A

; EV.A�1/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0

B

B

B

@

1

2

0

1

1

C

C

C

A

;

0

B

B

B

@

�1

�2

1

0

1

C

C

C

A
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:

�us, we have LH 1.�.1// Š ZŒ1=4�2 ˚ Z
2.

Finally, LH 2.�/ D Z
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:

�e induced matrixA�2 on LH 2.�/ has nonzero eigenvalues ¹16; 4; 4; 1º with eigen-
vectors EV.A�2/:
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:

�us, we have LH 2.�.1// Š ZŒ1=16�˚ ZŒ1=4�2 ˚ Z.
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Appendix A. Examples

A.1. A fractal dual for the Ammann–Beenker (“octagonal”) tiling. We con-
sider the version of this tiling using two labelled right triangles and a parallelo-
gram, where the labels keep track of the handedness of the tiles. �ese tiles come
in rotations by �=4, all of which we treat the same way. In Figure 10 we show the
parallelogram and one copy of the triangle; all rotations and re�ections will carry
along geometric graphs. Denoting P D ¹˛; ˇº we de�ne G to be a T -consistent
dual graph in both ˛ and ˇ. We showG;R.P/;R.G/; and select S as in Figure 10.
�e fractal realization of the Ammann–Beenker Tiling induced by .G; S/ is shown
in Figure 11.

In Figure 12 we show the substitution rule for the prototiles of the fractal re-
alization. We note that the 4 di�erent colours (labels) of the tiles with 8-fold
symmetry come from the distinct vertex patterns in the original octagonal tiling
making up each fractile. As in the proof of Lemma 3.8 these vertex patterns form
the label set L for the prototiles of the fractal realizaton.

A.2. Penrose’s “pentaplexity” tiling [25]. �e simplest self-similar version of
the Penrose tilings has a prototile set with forty triangles, the two tiles on the left of
Figure 13, their labelled re�ections, and all rotation by �=5 of these four prototiles.
�ese triangles can be combined to produce either the kite and dart or the rhombus
tilings, and all three prototile sets have matching rules that make them aperiodic
tile sets. �e kite/dart and rhombus versions are only pseudo-self-similar and not
actually self-similar, so we’ve chosen to work with the triangle version instead.
One interesting note about the fractal tiling we obtain is that it is closely related
to the pentaplexity version of the Penrose tiling that arises in the �rst six images
of [25].

We choose an initial graph G on the two prototiles as pictured in Figure 13
along with a choice of S that produces a recurrent pair. We then extend these
graphs to all forty prototiles by re�ection and rotation. What we gain in simplicity
by working with one iteration of the substitution we pay for with an inability to
construct S in a way that satis�es the injectivity conditions for any level of N -
subtiles. �e recurrent pair .G; S/ does not give rise to an injective  .1/ because
one edge in each prototile is collapsed into a vertex, so �eorem 5.7 does not apply.
Nonetheless .1/.@T .0// forms the boundary of a self-similar tiling T .1/, a patch
of which is shown in Figure 14.

�ere are �ve tile types in this fractal Penrose prototile set (ignoring rotations),
some of which are shown along with their substitutions in Figure 15. �e connec-
tion to the tiles developed by Penrose at the beginning of [25] were discussed in
a 2013 talk [12].
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˛ and G˛ R.G/˛ S˛

ˇ and Gˇ R.G/ˇ Sˇ

Figure 10. A recurrent pair and resulting fractal for the dual graph of the Ammann–Beenker
tiling.

Figure 11. A patch of a fractal dual Ammann–Beenker tiling.

Figure 12. �e substitution rules of this fractal realization of the Ammann–Beenker
octagonal tiling.
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˛ and G˛ R.G/˛ S˛

ˇ and Gˇ R.G/ˇ Sˇ

Figure 13. A recurrent pair for the Penrose triangles; note that each triangle come in two
re�ections and so do their geometric graphs.

Figure 14. A patch of the fractal pentaplexity tiling.

Figure 15. A fractal version of the pentaplexity substitution.
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A.3. Two ways to construct fractal realizations of the chair tiling. If we en-
dow the chair tiles with vertices from a tiling T as described in section 3.2, then
each tile is an octagon and the tiling is edge-to-edge but not singly edge-to-edge.
�us the existence theorem does not directly apply. Nonetheless it is possible
to use the existence algorithm in Section 6.2 to establish numerous fractal real-
izations by quasi-dual graphs. Interestingly, none of these quasi-dual graphs can
actually be duals.

Another approach is to label the tiles of T by the number of natural edges
they have. It turns out that there are three types of tiles in this case and they have
4, 5, and 6 edges. We can expand our prototile set to have twelve labels rather
than four (once rotations are accounted for) and it is routine to write down the
tiling substitution for each of the three tile types. We exhibit a self-similar fractal
realization for the dual tiling in this situation.

�ere are many other possible ways to manage the chair tiling, for instance by
passing to the “square chair” version [27, p. 16], which subdivides each chair tile
into three labelled squares. �e square chair is singly edge-to-edge so that fractal
realizations are guaranteed by �eorem 6.6. �is is an MLD operation and, as
above, yields equivalent hulls, but the geometry and combinatorics are not as well
preserved.

Example A.1 (chairs as octagons). We consider there to be four chair tiles, each
octagons, with natural and inherited vertices as shown in Figure 5. As usual, we
treat all rotations the same so our �gures contain only one tile.

We begin by noticing the simple reason why the dual tiling can never have a
self-similar realization. �e dual graphG0 has, on each prototile, a single interior
vertex of degree 8. Trying to �nd a subgraph S of R

N .G0/ that is equivalent
to G0 is doomed to failure: no matter which vertex of degree 8 is selected from
the interior, there will be two edges emanating from that vertex that come back
together in an adjacent subtile and cannot therefore both be part of a tree. �is
illustrates how essential the singly edge-to-edge condition is to our construction.

It is possible to run the algorithm guaranteeing existence in �eorem 6.6 to
obtain a quasi-dual recurrent pair for the octagonal chair tiling even though the
tiling is not singly edge-to-edge. �e ultimate choice of G has a minimum of
two vertices on the interior of the prototile and the minimum number of iterations
required to satisfy the injectivity conditions is 3. Instead, we choose to exhibit a
recurrent pair that is not quasi-dual and whose limiting fractal intersects prototile
vertices but for which  .1/ is injective nonetheless.

�e initial graphG has 9 edges and two interior vertices, and two of the bound-
ary vertices have degree 2; we show this graph on the left of Figure 16. Conve-
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niently, there is a subgraph of R.G/˛ that is isomorphic to G which we extract as
shown in the same �gure.

˛ and G˛ R.G/˛ S˛

Figure 16. A recurrent pair and limiting fractal for the chairs as octagons.

On the far right of Figure 16 we see the result of iterating the graph substitution
induced by this recurrent pair. �e central edge has migrated to the boundary of the
prototile and touches one of its vertices. �e fact that there is no problem with the
injectivity of  .1/ can be seen by looking at the patch of fractiles superimposed
on chairs shown in Figure 17.

Figure 17. A patch of the octagonal chair tiling with a fractal realization overlaid.

Example A.2 (Colored chairs). Figure 18 shows the three types of chairs along
with their dual graphs, embedded in their �nal fractal form. Although the graph
edges appear to intersect prototile vertices, they do not: the natural vertices of
these tile types do not include the graph vertices as they appear in the tiling.
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Figure 18. �e three chair tiles and their fractal dual graphs.

�e substitutions of the three tile types appear in Figure 19. It should be noted
that one substitution is not enough to �nd a recurrent pair for the dual substitution,
however: none of the three graphs in R.G/ contain combinatorially equivalent
subgraphs. �us, we used R

2.G/ to produce the graph S for our recurrent pair.

Figure 19. Substitution of the three chairs (not to scale).

In Figure 20 we show a patch of the chair with the self-similar dual tiling
overlaid atop it.

Figure 20. A patch of the chair tiling with its fractal dual overlaid.
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