
J. Fractal Geom. 3 (2016), 331–376

DOI 10.4171/JFG/39

Journal of Fractal Geometry

© European Mathematical Society

Local dimensions of measures of �nite type
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Abstract. We study the multifractal analysis of a class of equicontractive, self-similar

measures of �nite type, whose support is an interval. Finite type is a property weaker

than the open set condition, but stronger than the weak separation condition. Examples

include Bernoulli convolutions with contraction factor the inverse of a Pisot number and

self-similar measures associated with m-fold sums of Cantor sets with ratio of dissection

1=R for integer R � m.

We introduce a combinatorial notion called a loop class and prove that the set of

attainable local dimensions of the measure at points in a positive loop class is a closed

interval. We prove that the local dimensions at the periodic points in the loop class are

dense and give a simple formula for those local dimensions. These self-similar measures

have a distinguished positive loop class called the essential class. The set of points in the

essential class has full Lebesgue measure in the support of the measure and is often all but

the two endpoints of the support. Thus many, but not all, measures of �nite type have at

most one isolated point in their set of local dimensions.

We give examples of Bernoulli convolutions whose sets of attainable local dimensions

consist of an interval together with an isolated point. As well, we give an example of a

measure of �nite type that has exactly two distinct local dimensions.
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1. Introduction

It is well known that if � is a self-similar measure arising from an IFS satisfying

the open set condition, then the set of local dimensions of the measure is a closed

interval whose endpoints are easily computed. Further, the Hausdor� dimension

of the set of points whose local dimension is a given value can be determined

using the Legendre transform of the Lq-spectrum of the measure. This is known

as the multifractal formalism and we refer the reader to [5] for more details.

For measures that do not satisfy the open set condition, the multifractal analysis

is more complicated and, in general, much more poorly understood. In [16],

Hu and Lau discovered that the 3-fold convolution of the classical middle-third

Cantor measure fails the multifractal formalism as there is an isolated point in

the set of local dimensions. Subsequently, in [2, 26, 28] further examples of this

phenomena were explored and it was shown, for example, that there is always an

isolated point in the set of local dimensions of the m-fold convolution of the Cantor

measure associated with a Cantor set with ratio of dissection 1=R; when the integer

R � m. More recently, it was proven in [1] that continuous measures satisfying a

weak technical condition have the property that a suitably large convolution power

admits an isolated point in its set of local dimensions.

In [21], Ngai and Wang introduced the notion of �nite type (see Section 2

for the de�nition). This property is stronger than the weak separation condition

introduced in [18], but is satis�ed by many self-similar measures which fail to

possess the open set condition. Examples include Bernoulli convolutions, �%,

with contraction factor % equal to the reciprocal of a Pisot number [21] and the

Cantor-like measures mentioned above.
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Building on earlier work (c.f., [12, 15, 19, 25]), Feng undertook a study of

equicontractive, self-similar measures of �nite type in [7, 8, 9]. His main results

were for Bernoulli convolutions. In particular, he proved that despite the failure

of the open set condition, the multifractal formalism still holds for the Bernoulli

convolutions whose contraction factor was the reciprocal of a simple Pisot number

(meaning, a Pisot number whose minimal polynomial is of the form xn � xn�1 �
� � ��x�1). A particularly interesting example is when the contraction factor is the

golden ratio with minimal polynomial x2 � x � 1 (also called the golden mean).

In this paper we study the local dimension theory of equicontractive, self-

similar measures � of �nite type, whose support is a compact interval and for

which the underlying probabilities are regular. We �rst give a simple formula for

the value of the local dimension of � at any “periodic” point of its support. As

a corollary we get that the local dimension exists at “periodic” points. The �nite

type condition leads naturally to a combinatorial notion we call a “loop class”.

For a “positive” loop class we prove that the set of attainable local dimensions of

the measure is a closed interval and that the set of local dimensions at periodic

points in the loop class is a dense subset of this interval. Similar results are also

given for upper and lower local dimensions. Given two values ` � u within this

interval, we can �nd an x in this positive loop class with lower local dimension

equal to ` and upper local dimension equal to u.

Similar results have been proven in this directions before. In [9], Feng, with-

out the restrictions on the probabilities that we require, constructed a family (�nite

or countably in�nite) of closed intervals Ij with disjoint interiors, where on each

of these closed intervals the set of attainable local dimensions of the measure

restricted to this interval was a closed interval. These closed intervals, Ij , cor-

respond to net intervals within the essential class, a distinguished positive loop

class. It is worth observing that, except at the end points, the local dimension of

the measure, and the local dimension of the measure restricted to the interval will

be the same. At the end points, these may be di�erent. However our results, with

the addition of the mild technical assumption on the probabilities, gives this result

for the original measure, as well as for positive loop classes other than the essen-

tial class. Under the less restrictive assumption of the weak separation condition,

Feng and Lau [10] similarly proved that the range of the local dimensions of the

measure restricted to a certain open ball is a closed interval.

A consequence of our result is that the set of attainable local dimensions is the

union of a closed interval together with the local dimensions at points in �nitely

many loop classes external to the essential class. We will say that a point is an

essential point if it is in the essential class. The set of essential points has full
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Lebesgue measure on the support of the measure and in many interesting examples

the set of essential points is the interior of the support of the measure. This is the

case with many Bernoulli convolutions, �%, including when %�1 is the golden ratio

(c.f. Section 8.1.1), and with the m-fold convolution of the Cantor measure on a

Cantor set with ratio of dissection 1=R when R � m (see Section 7).

When the essential set is the interior of the support of the measure �; then � has

no isolated point in its set of attainable local dimensions if and only if dimloc �.0/

coincides with the local dimension of � at an essential point. In that case, the set

of attainable local dimensions of � is a closed interval. The Bernoulli convolution

�%, with %�1 a simple Pisot number, has this property.

However, we construct other examples of Bernoulli convolutions (with con-

traction factor a Pisot inverse) which do have an isolated point in their set of at-

tainable local dimensions (see Subsection 8.1.2). As far as we are aware, these

are the �rst examples of Bernoulli convolutions known to admit an isolated point.

We also construct a Cantor-like measure of �nite type, whose set of local dimen-

sions consists of (precisely) two distinct points (see Example 6.1). In all of these

examples, the essential set is the interior of the support of the measure.

The convolution square of the Bernoulli convolution, �%, with %�1 the golden

ratio, is another example of a self-similar measure to which our theory applies.

It, too, has exactly one isolated point in its set of attainable local dimensions,

although in this case the set of non-essential points is countably in�nite (see

Subsection 8.2).

The computer was used to help obtain some of these results. In principle, the

techniques could be applied to other convolutions of Bernoulli convolutions and

other measures of �nite type, however even with the simple examples given here,

the problem can become computationally di�cult.

The paper is organized as follows. In Section 2, we detail the structure of self-

similar measures of �nite type, introduce terminology and describe a number of

examples that we will return to throughout the paper. The notion of transition ma-

trices and properties of local dimensions of measures of �nite type are discussed

in Section 3. In Section 4 we introduce the notion of loop class, essential class

and periodic points. A formula is given for the local dimension at a periodic point

and we prove that the essential class is always of positive type. In Section 5 we

prove that the set of local dimensions at periodic points in a positive loop class is

dense in the set of local dimensions at all points in the loop class. We also show

that the set of local dimensions at the points of a positive loop class is a closed

interval. In particular, this implies that the set of local dimensions at the essential

points is a closed interval.
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In Section 6 we give a detailed description of our computer algorithm by means

of a worked example. We also explain our main techniques for �nding bounds on

sets of local dimensions and illustrate these by constructing a Cantor-like measure

of �nite type whose local dimension is the union of two distinct points. In Section 7

we show that with our approach we can partially recover results from [2, 16, 26]

about the local dimensions of Cantor-like measures of �nite type. We also show

that some facts about the endpoints of the interval portion of the local dimension,

that are known to be true for Cantor-like measures in the “small” overlap case,

do not hold in general. Bernoulli convolutions, �%, where % is the reciprocal of a

Pisot number of degree at most four, are studied in Section 8 and we see that two

of these measures admit an isolated point. We also study the convolution square

of the Bernoulli convolution with the golden ratio in this �nal section.

For the examples in this paper, we present only minimal information. A more

detailed analysis of all of these examples can found as supplemental information

appended to the arXiv version of the paper [14].

2. Terminology and examples

2.1. Finite type. Consider the iterated function system (IFS) consisting of the

contractions Sj WR ! R, j D 0; : : : ; m, de�ned by

Sj .x/ D %x C dj (1)

where 0 < % < 1, d0 < d1 < d2 < � � � < dm and m � 1 is an integer. By

the associated self-similar set, we mean the unique, non-empty, compact set K

satisfying

K D
m[

j D0

Sj .K/:

Suppose pj , j D 0; : : : ; m are probabilities, i.e., pj > 0 for all j andPm
j D0 pj D 1. Our interest is in the self-similar measure � associated to the

family of contractions ¹Sj º as above, which satis�es the identity

� D
mX

j D0

pj � ı S�1
j : (2)

These measures are sometimes known as equicontractive, or %-equicontractive if

we want to emphasize the contraction factor %. They are non-atomic, probability

measures whose support is the self-similar set.
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We put A D ¹0; : : : ; mº. Given an n-tuple � D .j1; : : : ; jn/ 2 A
n, we write S�

for the composition Sj1
ı � � � ı Sjn

and let

p� D pj1
� � � pjn

.

De�nition 2.1. The iterated function system, ¹Sj .x/ D %x C dj W j D 0; : : : ; mº,
is said to be of �nite type if there is a �nite set F � RC such that for each positive

integer n and any two sets of indices � D .j1; : : : ; jn/, � 0 D .j 0
1; : : : ; j 0

n/ 2 A
n,

either

%�n jS� .0/ � S� 0.0/j > c or %�njS� .0/ � S� 0.0/j 2 F;

where c D .1 � %/�1.max dj � min dj / is the diameter of K.

If ¹Sj º is of �nite type and � is an associated self-similar measure, we also say

that � is of �nite type.

It is worth noting here that the de�nition of �nite type is independent of the

choice of probabilities.

Recall that an algebraic integer greater than 1 is called a Pisot number if all

its Galois conjugates are less than 1 in absolute value. Examples include integers

greater than 1 and the golden ratio, .1 C
p

5/=2. In [21, Theorem 2.9], Ngai and

Wang showed that if %�1 is a Pisot number and all dj 2 QŒ%�1�, then the measure

� satisfying (2) is of �nite type. This result allows us to produce many examples

of measures of �nite type that do not satisfy the open set condition.

The case when the IFS is generated by two contractions is of particular interest.

Notation 2.2. We will use the notation �% to denote the self-similar measure

�% D 1

2
�% ı S�1

0 C 1

2
�% ı S�1

1 ;

where Sj D %x C j.1 � %/ for j D 0; 1.

Example 2.3. When 0 < % � 1=2; the measures, �%; are known as Cantor

measures (or uniform Cantor measures). Their support is the Cantor set with ratio

of dissection % and they satisfy the open set condition. When 1=2 < % < 1;

these measures are called Bernoulli convolutions. They fail to satisfy the open set

condition, but are of �nite type whenever %�1 is a Pisot number.

Given two probability measures, �; �, the convolution of � and � is de�ned as

� � �.E/ D � � �¹.x; y/W x C y 2 Eº:
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The name “Bernoulli convolution” comes from the fact that

�% D �1
nD1

�ı0 C ı.1�%/%n

2

�
;

where the in�nite convolution is understood to converge in a weak sense.

Bernoulli convolutions, �%, with contraction factor % the inverse of a Pisot

number, have been long studied. They have unusual properties and are of inter-

est in fractal geometry, number theory and harmonic analysis. For example, al-

though almost every Bernoulli convolution is absolutely continuous with respect

to Lebesgue measure, and even has an L2 density function, those with a Pisot

inverse as the contraction factor are not only purely singular, but their Fourier

transform, c��.y/, does not even tend to zero as y ! ˙1. We refer the reader to

[24] and [27] for some of the interesting history of these measures.

Example 2.4. Suppose � and � are %-equicontractive measures, say

� D
X

i

pi� ı S�1
i and � D

X

j

qj � ı T �1
j ;

where

Si .x/ D %x C di and Tj .x/ D %x C ej :

Index

¹di C ej ºi;j D ¹ftºt :

Then � � � is the %-equicontractive, self-similar measure satisfying

� � � D
X

t

rt .� � �/ ı U �1
t

where

Ut .x/ D
X

i;j
di Cej Dft

%x C ft and rt D
X

i;j
di Cej Dft

piqj :

It follows directly from Ngai and Wang’s result [21] that any m-fold convolution

power of the Bernoulli convolution or Cantor measure, �%; is of �nite type when

%�1 is Pisot.

Example 2.5. Another consequence of [21] is that the IFS

°
Sj .x/ D 1

R
x C j

Rm
.R � 1/W j D 0; : : : ; m

±
;
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where R � 2 is an integer, is of �nite type. The convex hull of the self-similar

set is Œ0; 1� and the self-similar set is the full interval Œ0; 1� when m � R � 1.

When m � R, the open set condition is not satis�ed. The m-fold convolutions

of Cantor measures with contraction factor 1=R are examples of self-similar

measures associated with such an IFS.

These Cantor-like measures were studied in [2, 26] using di�erent methods.

In Section 7 we will see how our approach relates to some of their results.

2.2. Standard technical assumptions. We will refer to the following conditions

on a self-similar measure � as our standard technical assumptions:

(1) the measure � D
P

j pj � ı S�1
j is a %-equicontractive, self-similar measure,

as in equation (2), that is of �nite type;

(2) the probabilities, ¹pj ºm
j D0 satisfy p0 D pm D min pj (we call these regular

probabilities);

(3) the support of � (equivalently, the underlying self-similar set) is a closed

interval. By rescaling the dj appropriately, we can assume without loss of

generality that this interval is Œ0; 1�.

We remark that supp� D Œ0; 1� if and only if (the rescaled) ¹dj º satisfy d0 D 0,

dm D 1 � % and diC1 � di � % for all i D 0; : : : ; m � 1. In this case, c D 1 in the

de�nition of �nite type.

Although some of what we say is true more generally for self-similar measures

of �nite type, we make use of the standard technical assumptions at key points

throughout the paper.

The Bernoulli convolutions �% and the m-fold convolutions of uniform Cantor

measures �% with % > 1=.mC1/ are examples of measures satisfying the standard

technical assumptions. (See Examples 2.3 and 2.4). The measures of Example 2.5,

where m � R � 1, are also examples of such measures when regular probabilities

are chosen.

2.3. Net intervals and Characteristic vectors. As we have seen, measures that

are of �nite type need not satisfy the open set condition. Our primary interest

is in this case. The �nite type property is, however, stronger than the weak

separation condition (see [22] for a proof), and the multifractal analysis of self-

similar measures of �nite type is somewhat more tractable because of their better

structure. This structure is explained in detail in [7, 8, 9], but we will give a quick

overview here.
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For each integer n, let h1; : : : ; hsn
be the collection of elements of the set

¹S�.0/; S�.1/W � 2 A
nº, listed in increasing order. Put

Fn D ¹Œhj ; hj C1�W 1 � j < snº.

Elements of Fn are called net intervals of level n. For each � 2 Fn, n � 1, there

is a unique element y� 2 Fn�1 which contains �. We call y� the parent of � and

� a child of y�. We denote the normalized length of � D Œa; b� by

`n.�/ D %�n.b � a/.

Note that by de�nition there is no � 2 A
n with a < S�.0/ < b, nor can we

have a < S� .1/ < b. Furthermore, there must be some �1; �2 with S�1
.x/ D

a; S�2
.y/ D b for suitable choices of x; y 2 ¹0; 1º.

Next, we consider all � 2 A
n with � � S� Œ0; 1�. As S� Œ0; 1� is a closed interval

of length %n; this is the same as the set of all � 2 A
n with a � %n < S�.0/ � a.

We suppose

¹%�n.a � S� .0//W � 2 A
n, � � S� Œ0; 1�º D ¹a1; : : : ; akº

and assume a1 < a2 < � � � < ak. We de�ne the neighbour set of � as

Vn.�/ D .a1; : : : ; ak/:

Let y� 2 Fn�1 be the parent of �, and �1; : : : ; �j (listed in order from left to

right) be all the net intervals of level n which are also children of y� and have the

same normalized length and neighbour set as �. De�ne rn.�/ to be the integer r

with �r D �. The characteristic vector of � is the triple

Cn.�/ D .`n.�/; Vn.�/; rn.�//:

We also speak of the pair of characteristic vectors, ˛; ˇ; as parent and child if

˛ D Cn�1. y�/ and ˇ D Cn.�/ for a parent/child pair y�; �. The characteristic

vector is important because it carries the neighbourhood information about �.

Put

� D ¹Cn.�/W n 2 N, � 2 Fnº.

If the measure is of �nite type, then � will contain only �nitely many distinct

characteristic vectors.

Suppose the net interval, y�; has two children, �1 and �2; that di�er only in the

value of rn.�i /, that is, they have the same length and the same neighbourhood set.

The characteristic vectors for the children of �1 and �2, will be identical as they
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depend only on `n.�i/ and Vn.�i/; and not on rn.�i /. For notational reasons,

we �nd it convenient to take advantage of this when drawing the directed graph

relating parents to children by suppressing rn.�i /; equating these two children

on the graph, and allowing multiple edges from y� to �1. We will call the

characteristic vectors where we have suppressed the numbers rn.�i/ the reduced

characteristic vectors, and we will call the resulting graph the reduced transition

graph.

Example 2.6. In [8, Section 4] and [9, Section 6], Feng studied the Bernoulli

convolution �%, with %�1the golden ratio, and found that there were seven char-

acteristic vectors. Their normalized lengths and neighbourhood sets are given by

� characteristic vector 1: .1; .0/; 1/;

� characteristic vector 2: .%; .0/; 1/;

� characteristic vectors 3a and 3b: .1 � %; .0; %/; 1/ and .1 � %; .0; %/; 2/;

� characteristic vector 4: .%; .1 � %/; 1/;

� characteristic vector 5: .%; .0; 1 � %/; 1/;

� characteristic vector 6: .2% � 1; .1 � %/; 1/

Notice there are only six reduced characteristic vectors; we label the two

characteristic vectors with identical length and neighbourhood set as 3a and 3b.

In [8] these were labelled as 3 and 7. The directed graphs in Figure 1 show the

parent/children relationships. The term “essential class”, referred to in the �gure,

is de�ned in Section 4.

By an admissible path, �; of length L.�/ D n; we will mean an ordered n-tuple,

� D .
j /n
j D1; where 
j 2 � for all j and the characteristic vector, 
j ; is the parent

of 
j C1.

By the symbolic expression of � 2 Fn we mean an admissible path of length

n C 1, denoted

Œ�� D .C0.�0/; : : : ;Cn.�n//;

where � D �n and for each j < n, �j 2 Fj . Here �0 is Œ0; 1�. Feng [7] proved

that the symbolic expression uniquely determines �.

For x 2 Œ0; 1�, the symbolic representation for x, denoted Œx�; will mean the

sequence .C0.�0/;C1.�1/; : : : / of characteristic vectors where x 2 �n for all n

and �j 2 Fj is the parent of �j C1. We note that unless x is an endpoint of a net

interval and not equal to 0 or 1 (in which case there are two representations of x),

Œx� is unique. The notation ŒxjN � will mean the admissible path consisting of the

�rst N characteristic vectors of Œx�.
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Essential Class

1

2

3a

4

5 6

3b

(a) Transition graph.

Essential Class

1

2

3

4

5 6

(b) Reduced Transition graph.

Figure 1. Transition graph for �% with %�1 the golden ratio.

We frequently write �n.x/ for the net interval of level n containing x. Thus

Œx� is the sequence where the �rst n C 1 terms gives the symbolic representation

of �n.x/ for each n.

3. Transition matrices and local dimensions

3.1. Local dimensions of measures of �nite type

De�nition 3.1. Given a probability measure �, by the upper local dimension of

� at x 2 supp�, we mean the number

dimloc�.x/ D lim sup
r!0C

log �.Œx � r; x C r�/

log r
:

Replacing the lim sup by lim inf gives the lower local dimension, denoted

dimloc�.x/. If the limit exists, we call the number the local dimension of � at

x and denote this by dimloc �.x/.
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Multifractal analysis refers to the study of the local dimensions of measures.

For a %-equicontractive measure �, it is easy to check that

dimloc �.x/ D lim
n!1

log �.Œx � %n; x C %n�/

n log %
for x 2 supp�; (3)

and similarly for the upper and lower local dimensions.

Our �rst several lemmas will enable us to show that we can replace the interval

Œx � %n; x C %n� by �n.x/.

Lemma 3.2. Suppose � satis�es the standard technical assumptions. Let � D
Œa; b� 2 Fn; with Vn.�/ D .a1; : : : ; ak/. Then

�.�/ D
kX

iD1

�Œai ; ai C `n.�/�
X

�2An

%�n.a�S� .0//Dai

p� :

Proof. This argument can basically be found in Feng [7], but we give the details

here for completeness. Iterating (2) n times gives

�.�/ D
X

�2An

p��.S�1
� .�//:

Since � is a non-atomic measure supported on Œ0; 1�, we have

�.�/ D
X

�2An

S� .0;1/\�¤;

p��.S�1
� .�//

Now, S� .0; 1/ \ � ¤ ; implies that � � S� Œ0; 1�, hence by de�nition of the

neighbourhood set %�n.a � S�.0// D ai for some i . Thus S�.0/ D a � ai%
n, so

S� Œ0; 1� D Œa � ai%
n; a � ai%

n C %n�. This implies that

�.�/ D
kX

iD1

X

�2An

%�n.a�S� .0//Dai

p��.S�1
� .�//

We observe that S� .x/ D %nx C S�.0/, and hence

S�.Œai ; ai C `n.�/�/ D Œai%
n C a � ai%

n; ai%
n C a � ai%

n C `n.�/%n�

D Œa; a C `n.�/%n�

D Œa; b�

D �:
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Hence

�.�/ D
kX

iD1

X

�2An

%�n.a�S� .0//Dai

p��Œai ; ai C `n.�/�

D
kX

iD1

�Œai ; ai C `n.�/�
X

�2An

%�n.a�S� .0//Dai

p�

as claimed. �

Notation 3.3. For i D 1; 2; : : : ;card.Vn.�// D k, put

P i
n.�/ D p�n

0

X

�2AnW%�n.a�S� .0//Dai

p�

and

Pn.�/ D
kX

iD1

P i
n.�/:

Here we have chosen to normalize by multiplying by p�n
0 . This is done so

that the minimal non-zero entry in the transition matrices (de�ned in the next

subsection) is at least 1.

Corollary 3.4. There is a constant c > 0 such that for any n and any � 2 Fn;

cpn
0 Pn.�/ � �.�/ � pn

0 Pn.�/:

Proof. The upper bound is clear from the lemma. For the lower bound we note that

each � Œai ; ai C `n.�/� > 0 as the support of � is the full interval Œ0; 1�. The �nite

type condition ensures there are only �nitely many choices for Œai ; ai C`n.�/�. �

Lemma 3.5. Suppose � satis�es the standard technical assumptions. There are

constants c1; c2 > 0 such that if �1, �2 are two adjacent net intervals of level n,

then

c1

1

n
Pn.�2/ � Pn.�1/ � c2nPn.�2/:

Proof. The proof is similar to that of [8, Lemma 2.11] and proceeds by induction

on n. The base case holds as there are only �nitely many choices for P1.�j / when

�j 2 F1. Now assume the result for level n � 1 and we will verify it holds for

level n.
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If �1; �2 have the same parent y�, the result follows easily from the observation

that

Pn�1. y�/ � Pn.�j / � mp�1
0 max pj Pn�1. y�/.

Otherwise, �1 and �2 are children of adjacent net intervals of level n � 1,
c�1; c�2 respectively, and we can suppose �1 is to the left of �2. As in [8], put

D1 D ¹� 2 A
n�1W c�1 � S� Œ0; 1� and they share the same right endpoint ºI

D2 D ¹� 2 A
n�1W c�2 � S� Œ0; 1� and they share the same left endpoint ºI

Ej D ¹� 2 A
n�1ŸDj W c�j � S� Œ0; 1�º, j D 1; 2:

The de�nitions ensure that E1 D E2,

pn�1
0 Pn�1.c�j / D

X

�2Dj

p� C
X

�2Ej

p�

and

pn
0 Pn.�1/ �

X

�2D1

p�pm C
X

�2E1

p�

mX

j D0

pj

� pm

X

�2D1

p� C pm

X

�2E1

p� C
X

�2E2

p� C
X

�2D2

p�

� pmpn�1
0 Pn�1.c�1/ C pn�1

0 Pn�1.c�2/

Applying the induction assumption gives

p0Pn.�1/ � pmPn�1.c�1/ C Pn�1.c�2/

� pmc2.n � 1/Pn�1.c�2/ C Pn�1.c�2/

� .pmc2.n � 1/ C 1/Pn�1.c�2/:

Taking c2 � 1=p0 D 1=pm � 1 gives

p0Pn.�1/ � .c2pm.n � 1/ C c2pm/Pn�1.c�2/

� c2pmnPn�1.c�2/

� c2pmnPn.�2/:

By observing that p0 D pm > 0 this implies that Pn.�1/ � c2nPn.�2/ as

required.

The other inequality is similar. �
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Note that in the proof the assumption that ¹pj º were regular probabilities was

important.

The following is immediate from the two previous results.

Corollary 3.6. There are constants C1; C2 such that if �1; �2 are adjacent net

intervals of level n, then

C1

1

n
�.�2/ � �.�1/ � C2n�.�2/:

Together these results yield the following useful approach to computing local

dimensions.

Corollary 3.7. Suppose � satis�es the standard technical assumptions. Let

x 2 supp � and �n.x/ denote a net interval of level n containing x. Then

dimloc�.x/ D lim sup
n!1

log �.�n.x//

n log %

D log p0

log %
C lim sup

n!1

log Pn.�n.x//

n log %
: (4)

A similar statement holds for the (lower) local dimensions.

Proof. Since any net interval of level n has length at most %n, the interval

Œx�%n; xC%n� contains �n.x/. The �nite type property ensures it is contained in a

union of a uniformly bounded number of n’th level net intervals, say
SN

j D1 �n.xj /,

where �n.xj / is adjacent to �n.xj C1/ and for a suitable index j , xj D x. Thus

for constants c, C (independent of the choice of n and x),

cpn
0 Pn.�n.x// � �.�n.x// � �.Œx � %n; x C %n�/ �

NX

j D1

�.�n.xj //

�
NX

j D1

pn
0 Pn.�n.xj // � Npn

0 C N nN Pn.�n.x//:

Thus the limiting behaviour of the three expressions

log �.Œx � %n; x C %n�/

n log %
;

log �.�n.x//

n log %

and
log p0

log %
C log Pn.�n.x//

n log %

coincide. �
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Remark 3.8. If � D Œ0; b�, then Vn.�/ D ¹0º and hence Pn.�/ D 1. Conse-

quently, dimloc �.0/ D log p0= log %. More generally, since Vn.�/ is never empty

and p0 is the minimal probability, it follows that Pn.�n.x// � 1 for all n and x.

Consequently,

dimloc �.x/ � dimloc �.0/ for all x 2 supp�:

3.2. Transition matrices. The results of the previous subsection show that for

studying the local dimensions of these measures it will be helpful to make accurate

estimates of Pn.�n.x//. Towards this, slightly modifying [7] we de�ne primitive

transition matrices, T .Cn�1. y�/; Cn.�//; for a net interval � D Œa; b� of level n

and parent y� D Œc; d � as follows:

Notation 3.9. Suppose Vn.�/ D .a1; : : : ; aK/ and Vn�1. y�/ D .c1; : : : ; cJ /.

For j D 1; : : : ; J and k D 1; : : : ; K; we set

Tjk WD .T .Cn�1. y�/;Cn.�///jk D p�1
0 p`

if ` 2 A and there exists � 2 A
n�1 with S� .0/ D c�%n�1cj and S�`.0/ D a�%nak.

This is equivalent to saying

Tjk D p�1
0 p` if c � %n�1cj C %n�1d` D a � %nak:

We set .T .Cn�1. y�/;Cn.�///jk D 0 otherwise.

As � is �nite for a measure of �nite type, there is an upper bound on the size

of these matrices. The entries are non-negative and all non-zero entries are at least

one. Each column has at least one non-zero entry because ak 2 Vn.�/ if and only

if there is some cj 2 Vn�1. y�/ which “contributes” to it, in the sense de�ned above.

It is also important to note that the standard technical assumption that supp� D
Œ0; 1� guarantees that given � 2 A

n�1 such that S�.0/ D c � %n�1cj , there exists

` 2 A such that S�`.0/ D %n�1d` C S�.0/ 2 .a � %n; a�. This means that each

row of the matrix .T .Cn�1. y�/;Cn.�/// also has a non-zero entry.

For K D card.Vn.�//, put

Qn.�/ D .P 1
n .�/; : : : ; P K

n .�//:

The same reasoning as in [7, Theorem 3.3] shows that

Qn.�/ D Qn�1. y�/.T .Cn�1. y�/;Cn.�///:
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Thus if Œ�� D .
0; : : : ; 
n/ (that is, 
j D Cj .�j / and 
0 D C0.Œ0; 1�/), then since

Q0Œ0; 1� D .1/ we have

Pn.�/ D kQn.�/k D kT .0; 
1/ � � � T .
n�1; 
n/k ;

where by the norm of matrix M D .Mjk/ we mean

kMk WD
X

jk

jMjk j:

Given an admissible path � D .
1; : : : ; 
n/, we write

T .�/ D T .
1; : : : ; 
n/ D T .1; 
2/ � � � T .
n�1; 
n/

and refer to such a product as a transition matrix.

With this notation, the results of the previous subsection can be stated as

Corollary 3.10. Suppose � satis�es the standard technical assumptions. If x 2
supp �, then

dimloc�.x/ D log p0

log %
C lim sup

n!1

log kT .Œxjn�/k
n log %

(5)

and similarly for the (lower) local dimension.

Example 3.11. Again, consider the Bernoulli convolution, �%, with %�1 the

golden ratio. Feng [8] showed that 0 has symbolic representation .1; 2; 2; : : : /

and that T .1; 2; 2; : : : / D Œ1�. Applying Corollary 3.10 gives another proof that

dimloc �%.0/ D log 2= jlog %j.

Next, we give a useful simple lemma.

Lemma 3.12. Suppose � satis�es the standard technical assumptions. Let A and

B be transition matrices. Then kBk � kABk and kBk � kBAk.

Proof. We have

kABk D
X

ij

� X

k

AikBkj

�
D

X

jk

� X

i

Aik

�
Bkj :

Since all the entries of each of the matrices is nonnegative and each column of A

has an entry � 1, it follows that kABk � kBk :

The argument for the other inequality is similar, noting that each row of A has

an entry � 1 as a consequence of the standard technical assumptions. �
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An important consequence of this result is that the local dimension of � at x

depends only on the tail of the symbolic representation of x.

Corollary 3.13. Suppose Œx� D .
0; 
1; : : : /. For any N ,

dimloc�.x/ D log p0

log %
C lim sup

n!1

log kT .
N ; 
N C1; : : : ; 
N Cn/k
n log %

and similarly for the (lower) local dimension.

If Œy� D .
0; ˇ1; : : : ; ˇn; 
N ; 
N C1; : : : /, then the (upper or lower) local di-

mensions of � at x and y agree.

Proof. This holds since

kT .
N ; 
N C1; : : : ; 
N Cn/k � kT .
0; : : : ; 
N /T .
N ; 
N C1; : : : ; 
N Cn/k
D kT .
0; : : : ; 
N ; 
N C1; : : : ; 
N Cn/k
� kT .
0; : : : 
N /kkT .
N ; 
N C1; : : : ; 
N Cn/k: �

Notation 3.14. By sp.M/ we mean the spectral radius of the square matrix M;

the largest eigenvalue of M in absolute value. Recall that

sp.M/ D lim
n

kM nk1=n
:

We will call a matrix M positive if all its entries are strictly positive and write

M > 0. We record here some elementary facts about positive matrices that will

be useful later.

Lemma 3.15. Suppose � satis�es the standard technical assumptions. Assume

A; B; C are transition matrices and B is positive.

(1) Then kABC k � kAk kC k.

(2) There is a constant C1 D C1.B/ such that if AB is a square matrix, then

kABk � C1 sp.AB/.

(3) Suppose B is a square matrix. There is a constant C2 D C2.B/ such that

sp.Bn/ � kBnk � C2 sp.Bn/ for all n.
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Proof. To see (1), let B D .Bjk/. As all Bjk � 1; a simple calculation gives

kABC k D
X

ijkl

Aij BjkCkl �
X

ijkl

Aij Ckl D kAk kC k :

For (2), assume A D .Ajk/ is a q � p matrix. Let b D max Bjk. As the entries

of A are non-negative and the entries of B are at least 1, it is easy to see that

kABk D
X

j;k

.AB/jk D
X

j;k;l

AjlBlk

� b

qX

j;kD1

pX

lD1

Ajl � bq

qX

j D1

pX

lD1

AjlBlj

D bq

qX

j D1

.AB/jj � bq2 sp.AB/;

with the �nal inequality holding because the sum of the diagonal entries of AB is

the sum of the eigenvalues of AB , counted by multiplicity.

For (3), let B D PJP �1 be the Jordan decomposition of B and let ˇ D sp.B/.

By the Perron-Frobenius theory, ˇ is a simple root of the characteristic polynomial

of B and all other eigenvalues of B are strictly less than ˇ in modulus. Since

all entries of B are at least 1, it can be easily seen that ˇ > 1. As kBnk �
kP k kJ nk



P �1


, it is enough to prove kJ nk � C1ˇn where C1 depends on B ,

but not n.

Assume B is of size d � d . Since the Jordan block for ˇ is 1 � 1, all entries

of J n, other than the .1; 1/ entry which is ˇn, are either 0 or of the form
�

n
j

�
˛n�j

where j � min.d � 1; n/ and ˛ is an eigenvalue of B with j˛j < ˇ. Thus

kJ nk � ˇn C d 2nd ˇn
0

where ˇ0 < ˇ is the maximum of 1 and the modulus of the eigenvalues of B other

than ˇ. As .ˇ=ˇ0/n � d 2nd for all n su�ciently large depending on d; ˇ; ˇ0, it

follows that for some constant C2; depending on ˇ; ˇ0; d; (and hence depending

only on B) we have kJ nk � C2ˇn for all n. This proves the right hand inequality.

The left hand inequality is obvious. �

4. Loop classes and periodic points

4.1. Essential and Loop classes. Feng in [9] also introduced the notion of an

essential class for measures of �nite type. Here we introduce the more general

de�nition of a loop class, of which the essential class is a special case.
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De�nition 4.1. (i) A non-empty subset �0 � � is called a loop class if whenever

˛; ˇ 2 �0, then there are characteristic vectors 
j , j D 1; : : : ; n, such that ˛ D 
1,

ˇ D 
n and .
1; : : : ; 
n/ is an admissible path with all 
j 2 �0.

(ii) A loop class �0 � � is called an essential class if, in addition, whenever

˛ 2 �0 and ˇ 2 � is a child of ˛, then ˇ 2 �0.

(iii) We call a loop class maximal if it is not properly contained in any other

loop class.

The �nite type property ensures that every element in the support of � is

contained in a loop class. Clearly every loop class is contained in a unique

maximal loop class. Feng in [9, Lemma 6.4], proved there is always precisely

one essential class. Of course, the essential class is a maximal loop class.

Notation 4.2. We will denote the essential class by �0 and here-after speak of

“the” essential class.

De�nition 4.3. If Œx� D .
0; 
1; 
2; : : : / with 
j 2 �0 for all large j , we will say

that x is an essential point (or is in the essential class) and call x a non-essential

point otherwise. The phrase, x is in the loop class �0; will have a similar meaning.

An admissible path will be said to be in a given loop class if all its members are

in that class.

Remark 4.4. Note that if Œx� D .
j / is non-essential, then none of the character-

istic vectors 
j belong to �0. A non-essential point necessarily has its tail in some

loop class external to the essential class.

We remark that the essential class is dense in Œ0; 1�. This is because the

uniqueness of the essential class ensures that every net interval contains a net

subinterval of higher level whose characteristic vector is in the essential class.

In fact, we show next that the set of essential points has full Lebesgue measure in

Œ0; 1�.

Proposition 4.5. Suppose � satis�es the standard technical assumptions. Then

the set of non-essential points is a subset of a closed set of Lebesgue measure 0.

Proof. As we already observed, every net interval contains a descendent net

subinterval whose characteristic vector is in the essential class. (We will abuse

notation slightly and call such a net subinterval “essential”.) The �nite type

property ensures we can �nd such a net subinterval in a bounded number of
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generations and that there exists some � > 0 such that the proportion of the length

of the net subinterval to the length of the original interval is � �.

We now exhibit a Cantor-like construction. We begin with Œ0; 1�. Consider the

�rst level at which there is a net subinterval that is essential. Remove the interiors

of all the net subintervals of this level that are essential. The resulting closed

subset of Œ0; 1� is a �nite union of closed intervals, say U1, whose lengths total at

most 1 � �. We repeat the process of removing the interiors of the essential net

subintervals at the next level at which there are essential net subintervals in each

of the intervals of U1. The resulting closed subset now has length at most .1��/2.

After repeating this procedure k times one can see that the non-essential points

are contained in a �nite union of closed intervals, Ck ; whose total length is at most

.1 � �/k. It follows that the non-essential points are contained in the closed setT1
kD1 Ck; and this set has measure 0. �

Remark 4.6. It is worth remarking that the construction above may leave some

essential points within the Cantor-like construction. As the resulting set is measure

0, the smaller set of just the non-essential points will also be measure 0.

Example 4.7. From Figure 1 one can see that the Bernoulli convolution �%, with

%�1 the golden ratio, has seven distinct loop classes: ¹3a; 3b; 5; 6º, ¹3a; 3b; 5º,
¹3a; 5; 6º, ¹3a; 5º, ¹3b; 5º, ¹2º, and ¹4º. Of these, ¹2º, Œ4º and the essential class,

¹3a; 3b; 5; 6º (with 4 elements and 3 reduced elements) are maximal. The two

loop classes external to the essential class, ¹2º and ¹4º; are associated to the two

endpoints, 0 and 1. These are the only two non-essential points, in other words,

the set of essential points is .0; 1/.

De�nition 4.8. We will say the loop class �0 is of positive type if there is an

admissible path � in �0 such that T .�/ is a positive matrix.

Remark 4.9. We note that as there is a non-zero entry in each row and column

of each primitive transition matrix, then any loop class �0 of positive type has the

property that for every ı; ı0 2 �0 there is an admissible path � D .ı; ı1; : : : ; ır ; ı0/

in �0 such that T .�/ is positive.

Example 4.10. The loop classes ¹2º and ¹4º of Example 4.7 are of positive type

since (as shown in [8, Section 4]) T .2; 2/ D T .4; 4/ D Œ1�. As T .5; 6; 3a/ D
�

1 1
1 1

�
;

the essential class, ¹3a; 3b; 5; 6º; is also of positive type. However, the loop class,

¹3a; 5º; is not of positive type since all transition matrices from this loop class are

of the form
�

1 0
n 1

�
for some n.
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Remark 4.11. In Example 8.2 we give a Bernoulli convolution where a maximal

loop class is not of positive type.

However, the essential class is always of positive type under our standard

technical assumptions.

Proposition 4.12. Suppose � satis�es the standard technical assumptions. Then

the essential class is of positive type.

Proof. Fix ı 2 �0. We recall that Feng in [9, Lemma 6.4] showed that given

any positive integer k � cardinality.V .ı//, there is an admissible path 
 in the

essential class, going from ı to ı; such that all entries of the k’th row of T .
/ are

non-zero.

Choose such a path, �1; with all the entries of row 1 of T .�1/ non-zero.

Row 2 of T .�1/ has a non-zero entry in some column, say k; and, of course,

the .1; k/ entry is also non-zero. Choose an essential, admissible path �2 from

ı to ı; with all entries of row k non-zero. Matrix multiplication shows that all

entries of both rows 1 and 2 of T .�1/T .�2/ D T .�1; �2/ are non-zero. By repeated

application of this reasoning we can construct an admissible path � in �0; from ı

to ı; such that all entries of T .�/ are strictly positive. �

4.2. Periodic points and their local dimensions

De�nition 4.13. We call x 2supp� a periodic point if x has symbolic represen-

tation

Œx� D .
0; : : : ; 
s; ��; ��; : : : /

where � is an admissible cycle (a non-trivial path with the same �rst and last letter)

and �� is the path with the last letter of � deleted. We refer to � as a period of x.

We will say that periodic x is positive if the square transition matrix T .�/ is

positive.

It is worth noting that � and �� are not uniquely de�ned. For example, the path

.1; 3a; 5; 3a; 5; 3a; : : : / from Example 4.7 can be decomposed as .
0; 
1/ D .1; 3a/

and �� D .5; 3a/, or as .
0/ D .1/ and �� D .3a; 5/, or as .
0/ D .1/ and

�� D .3a; 5; 3a; 5/, etc. In what follows, it will not make any signi�cant di�erence

as to which choice is made.

Observe that

T .ŒxjN �/ D T .
0; : : : ; 
s; ı1/.T .�//n
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when N D s C 1 C L.��/n and ı1 is the �rst letter of � . (Recall L.��/ is the

length of path ��.) A periodic x is in the essential class if it has a period that is a

path in the essential class.

There is a simple formula for the local dimensions at periodic points.

Proposition 4.14. Suppose � satis�es the standard technical assumptions. Let x

be the periodic point with period � . Then the local dimension exists and

dimloc �.x/ D log p0

log %
C log.sp.T .�///

L.��/ log %
:

Proof. Suppose Œx� D .
0; : : : ; 
s; ��; ��; : : : / and �� D .ı1; : : : ; ıL.��//.

Let S D T .
0; : : : ; 
s; ı1/. According to Lemma 3.12, there is a constant c > 0

such that

k.T .�//nk � kS.T .�//nk � kS.T .�//nT .ı1; : : : ; ır/k � c k.T .�//nk

for any r < L.��/. Thus Corollary 3.10 implies that

dimloc �.x/ D log p0

log %
C lim

n!1

log k.T .�//nk
nL.��/ log %

:

Since the limit exists and 1
n

log k.T .�//nk ! log.sp.T .�///; the result follows.

�

5. Local dimensions of positive loop classes

In [8] and [9], Feng showed that the set of local dimensions for the Bernoulli

convolution �%; with %�1 the golden ratio, was an interval and determined its

endpoints. This is not true, in general, for measures of �nite type. For instance,

it is known that the set of local dimensions of the m-fold convolution of uniform

Cantor measures with contraction factor 1=R; for integer R � m; is the union of

an interval and an isolated point (see [2, 16, 26]).

Feng also proved that the set of attainable local dimensions of �% was the

closure of the set of local dimensions at periodic points. In this section we will

prove that if a loop class, �0; is of positive type, then the set of local dimensions

at points in �0 is a closed interval. Moreover, this interval is the closure of the

set of local dimensions at the periodic points in �0. These statements hold, in

particular, for the essential class, �0; since the essential class is a positive loop

class according to Proposition 4.12.
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In Sections 6, 7 and 8 we give examples to illustrate that the set of local

dimensions attained at points of a loop class external to the essential class can

overlap, or may be disjoint from the local dimensions of the essential class.

5.1. Local dimensions at periodic points are dense

Theorem 5.1. Suppose � satis�es the standard technical assumptions. Assume

that �0 is a loop class of positive type. The set of local dimensions of � at positive,

periodic points in the loop class �0 is dense in the set of all local dimensions at

points in �0. It is also dense in the set of all upper (or lower) local dimensions at

points in �0.

Remark 5.2. We remark that in this theorem (and other results of this section)

the assumption that the loop class is of positive type may not be necessary for

particular IFS and particular loops.

Proof. We will prove denseness in the set of lower local dimensions at points in

the loop class �0. The arguments for the (upper) local dimensions are the same.

Fix x in �0; say Œx� D .
0; 
1; 
2; : : : / with 
k 2 �0 for all k � M . Choose a

subsequence .nk/ such that

dimloc�.x/ D log p0

log %
C lim

k!1

log kT .
M ; : : : ; 
nk
/k

nk log %
:

As �0 is �nite, by passing to a further subsequence if necessary (not renamed) we

can assume all 
nk
D ı 2 �0. Put

D D lim
k!1

log kT .
M ; : : : ; 
nk
/k

nk log %
:

Let � be an admissible path in �0 going from ı to 
M ; such that T .�/ > 0.

(We remark that it is important that this transition matrix is independent of the

choice of k.) Of course, then �k D .
M ; : : : ; 
nk�1/� is an admissible cycle in �0.

As T .�/ is a positive matrix, Lemmas 3.12 and 3.15(2) imply that there are

constants, Kk, bounded above and bounded below away from 0 such that

kT .
M ; : : : ; 
nk
/k D Kk sp.T .
M ; : : : ; 
nk

/T .�// D Kk sp.T .�k//:

Consider the local dimension at the periodic point yk in �0 given by

Œyk� D .
0; : : : ; 
M �1; ��
k ; ��

k ; : : : /:
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Since T .�k/ D T .
M ; : : : ; 
nk
/T .�/ is positive, yk is a positive point. Further-

more, we have

dimloc �.yk/ D log p0

log %
C log.sp.T .�k//

L.��
k

/ log %

D log p0

log %
� log Kk

L.��
k

/ log %
C

log


T .
M ; : : : ; 
nk

/




L.��
k

/ log %
:

Fix " > 0. The choice of nk and boundedness of Kk ensures we can choose k

large enough so that

ˇ̌
ˇ̌
ˇ
log



T .
M ; : : : ; 
nk
/




nk log %
� D

ˇ̌
ˇ̌
ˇ < ";

ˇ̌
ˇ̌ log Kk

L.��
k

/ log %

ˇ̌
ˇ̌ < " and

ˇ̌
ˇ̌ nk

L.��
k

/
� 1

ˇ̌
ˇ̌ < ".

It is now easy to see that

jdimloc �.x/ � dimloc �.yk/j < .D C 2/": �

Since the essential class is of positive type, we immediately deduce the follow-

ing important fact about these measures of �nite type.

Corollary 5.3. The set of local dimensions at essential periodic points is dense

in the set of local dimensions at all essential points.

Here is another needed elementary fact whose proof is an exercise for the

reader.

Lemma 5.4. Let � D .ı1; ı2; : : : ; ıL; ı1/ be a cycle and let �� D .ık; : : : ; ıL;

ı1; : : : ; ık/ be any cyclic shift of � . Then

sp.T .�// D sp.T .��//

Theorem 5.5. Suppose � satis�es the standard technical assumptions. Assume

that the loop class, �0; is of positive type and suppose .xn/ is a sequence of

positive, periodic points in �0. Then there is some x in �0 such that

dimloc�.x/ D lim sup
n

dimloc �.xn/ and dimloc�.x/ D lim inf
n

dimloc �.xn/:
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Proof. Assume xn has period �n in �0 and that T .�n/ > 0. We put

S WD lim sup
n

log.sp.T .�n//

L.��
n /

and I WD lim inf
n

log.sp.T .�n//

L.��
n /

; (6)

so

lim sup
n

dimloc �.xn/ D log p0

log %
C log I

log %
:

and

lim inf
n

dimloc �.xn/ D log p0

log %
C log S

log %
:

By passing to a subsequence, not renamed, we can assume all
ˇ̌
ˇ̌ log.sp.T .�2n///

L.��
2n/

� S

ˇ̌
ˇ̌ < "2n and

ˇ̌
ˇ̌ log.sp.T .�2nC1///

L.��
2nC1/

� I

ˇ̌
ˇ̌ < "2nC1;

where "n is a decreasing sequence tending to 0. Further, we can assume that all

the even labelled paths, ��
n , have the same �rst letter, say ˛S , and the same last

letter, ˇS . Similarly, we can assume all the odd labelled paths have a common �rst

letter ˛I and common last letter ˇI .

Since �0 is of positive type, we can certainly choose two admissible paths in

�0, �SI going from ˇS to ˛I and �IS going from ˇI to ˛S , so that T .�SI / and

T .�IS/ are positive.

We want to inductively de�ne a rapidly increasing subsequence .kn/ such that

Œx� D .�; ��
1 ; : : : ; ��

1„ ƒ‚ …
k1

; �IS ; ��
2 ; : : : ; ��

2„ ƒ‚ …
k2

; �SI ; ��
3 ; : : : ; ��

3„ ƒ‚ …
k3

; : : : /

has the desired property, where � is an admissible path beginning with C0.Œ0; 1�/

and ending with the parent of ˛I .

Temporarily �x n. With abuse of notation we will write the truncated product

as

Œx�n D �

nY

iD1

.��
i /ki �i

where �i D �SI if i is even, and �IS if i is odd.

Recall that C2.B/ is a function on a square matrix B , as de�ned in

Lemma 3.15(3). De�ne Kn as the maximal Kn WD C2.T .��
nC1//, taken over all

cyclic shifts of ��
nC1 of �nC1. Let �0

n be any pre�x of �n and � 0
nC1 any pre�x of

��
nC1. The elementary lemmas of the Section 3 imply that

lim
k!1

ˇ̌
ˇ̌
ˇ
log.kT .Œx�n�1.��

n /k�0
n/k/

L.Œx�n�1.��
n /k�0

n/
� log.sp.T .�n///

L.��
n /

ˇ̌
ˇ̌
ˇ D 0 (7)
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and

lim
k!1

ˇ̌
ˇ̌
ˇ
log.kT .Œx�n�1.��

n /k�n� 0
nC1/k/

L.Œx�n�1.��
n /k�n� 0

nC1/
� log.sp.T .�n///

L.��
n /

ˇ̌
ˇ̌
ˇ D 0: (8)

Obviously,

lim
k!1

log.Kn/

L.Œx�n�1.��
n /k�n� 0

nC1/
D 0 (9)

and

lim
k!1

L.�n�nC1/

k
� log.sp.T .�n///

L.��
n /

D 0: (10)

We pick kn such that the left hand side of these four limits are each less than "n

for all choices of �0
n and � 0

nC1.

Certainly this process de�nes an x belonging to �0. We need to check that the

upper and lower dimensions of � at x are correct. By construction, the limiting

behaviour (as n ! 1) of

log.kT .Œx�n�1.��
n /kn�0

n//k/

L.Œx�n�1.��
n /kn�0

n//
and

log.kT .Œx�n�1.��
n /kn�n� 0

nC1/k/

L.Œx�n�1.��
n /kn�n� 0

nC1/

approach the values I and S along the odd and even n respectively. Hence it

remains to consider the case

log.


T .Œx�n�1.��

n /kn�n.��
nC1/pnC1� 0

nC1/


/

L.Œx�n�1.��
n /kn�n.��

nC1/pnC1� 0
nC1/

for 0 < pnC1 < knC1, and � 0
nC1 some pre�x of �nC1. This is equivalent to

log.kT .Œx�n�1.��
n /kn�n� 0

nC1.���
nC1/pnC1/k/

L.Œx�n�1.��
n /kn�n� 0

nC1.���
nC1/pnC1/

for some cyclic shift ��
nC1 of �nC1.
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For ease of notation, let

L0.n/ D L0 WD L.Œx�n�1.��
n /kn�n� 0

nC1.���
nC1/pnC1/:

First, observe that

En WD
log.kT .Œx�n�1.��

n /kn�n� 0
nC1.���

nC1/pnC1/k/

L0

�
log.kT .Œx�n�1.��

n /kn�n� 0
nC1k/

L0

C
log.kT .��

nC1/pnC1/k/

L0

�
L.Œx�n�1.��

n /kn�n� 0
nC1/

L0

� log.sp.T .�n///

L.��
n /

C log.Kn sp..T .�nC1//pnC1//

L0

C "n

�
L0 � L..��

nC1/pnC1/

L0

� log.sp.T .�n///

L.��
n /

C
L..��

nC1/pnC1/

L0

� log.sp.T .�nC1//pnC1/

L..��
nC1/pnC1/

C log Kn

L0

C "n

�
L0 � L..��

nC1/pnC1/

L0

� log.sp.T .�n///

L.��
n /

C
L..��

nC1/pnC1/

L0

� log.sp.T .�nC1///

L.��
nC1/

C 2"n

D .1 � tn/
� log.sp.T .�n///

L.��
n /

�
C tn

� log.sp.T .�nC1///

L.��
nC1/

�
C 2"n

for

tn D
L..��

nC1/pnC1/

L0

:

Here the second inequality comes from (8), Lemma 3.15(3) and Lemma 5.4, and

the �nal inequality from (9).

For the opposite inequality, we use the fact that T .�n� 0
nC1/>0 and Lemma 3.15

part 1 for the �rst inequality below, and (7) and (10) for the second and third
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inequalities to obtain

En D
log.kT .Œx�n�1.��

n /kn�n� 0
nC1.���

nC1/pnC1/k/

L0

� log.kT .Œx�n�1.��
n /knk/

L0

C
log.kT ..��

nC1/pnC1/k/

L0

� L.Œx�n�1.��
n /kn/

L0

� log.sp.T .�n///

L.��
n /

C
L..��

nC1/pnC1/

L0

� log.sp.T .�nC1//pnC1/

L..��
nC1/pnC1/

� "n

� .1 � tn/
� log.sp.T .�n///

L.��
n /

�
C tn

� log.sp.T .�nC1///

L.��
nC1/

�
� 2"n

Together these estimates prove En lies within 2"n of the same convex combination

of
log.sp.T .�n///

L.��
n /

and
log.sp.T .�nC1///

L.��
nC1

/
, and hence lim sup En and lim inf En both

belong to the interval ŒI; S�. That completes the proof. �

Combining Theorems 5.1 and 5.5, it follows that these measures satisfy the

following.

Corollary 5.6. The set of local dimensions at essential points coincides with the

set of lower (or upper) local dimensions at essential points. Moreover,

¹dimloc �.x/W x essential º

D closure¹dimloc �.x/W x essential, positive periodicº:

5.2. Set of local dimensions at points in a positive loop class is an interval.

The �nal result of this section will be to show that the set of local dimensions at

points in a loop class of positive type is a closed interval. Of course, in particular,

this applies to the essential class.

Theorem 5.7. Suppose � satis�es the standard technical assumptions. Further,

suppose that the loop class �0 is of positive type. Assume y and z are periodic,

positive points in �0. Then the set of local dimensions of � contains the closed

interval with endpoints dimloc �.y/ and dimloc �.z/.
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Proof. Suppose y has period ' and z has period � where A D T .'/ and B D T .�/

are positive matrices with spectral radii ˛ and ˇ, respectively. With this notation,

dimloc �.y/ D log p0

log %
C log ˛

L.'�/ log %

and

dimloc �.z/ D log p0

log %
C log ˇ

L.��/ log %
:

Let 0 < t < 1. We want to prove that there exists a x such that

dimloc �.x/ D t dimloc �.y/ C .1 � t / dimloc �.z/:

Appealing to Theorem 5.5, we see it will be enough to show that there is some

sequence of periodic, positive points xk; in the loop class �0; such that

lim
k

dimloc �.xk/ D log p0

log %
C t log ˛

L.'�/ log %
C .1 � t / log ˇ

L.��/ log %
: (11)

To do this, we start by choosing admissible paths in �0, �1 joining the last letter

of � to the �rst letter of ' and �2 doing the opposite, such that T .�j / > 0. Then

for any positive integers, n; m, BmT .�1/AnT .�2/ is a square transition matrix.

Select two sequences of integers, .nk/1
kD1

, .mk/1
kD1

; tending to in�nity, with

L.'�/nk

L.��/mk C L.'�/nk

! t:

We will prove that the periodic points with period �k satisfying

T .�k/ D Bmk T .�1/Ank T .�2/

work.

As T .�j / > 0, Lemmas 3.12 and 3.15 combine to imply that for all k;

sp.Bmk T .�1/Ank T .�2// � kT .�1/k kT .�2/k kBmk k kAnkk

� C.A; B; �1; �2/˛nk ˇmk ;

and

sp.Bmk T .�1/Ank T .�2// � C.�2/kBmk T .�1/Ank T .�2/k

� C.�2/kBmk k kAnk k

� C.�2/˛nk ˇmk :
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Thus

lim
k

log.sp.Bmk T .�1/Ank T .�2///

L.��/mk C L.'�/nk

D lim
k

nk log ˛ C mk log ˇ

L.��/mk C L.'�/nk

D t log ˛

L.'�/
C .1 � t / log ˇ

L.��/
:

It follows that (11) is satis�ed. �

Combining the three theorems we deduce that the set of local dimensions at the

essential points of such measures is a closed interval whose endpoints are given

by the in�mum and the supremum of the local dimensions at essential, periodic

points.

Corollary 5.8. Let

I D inf¹dimloc �.x/W x essential, positive periodicº
and

S D sup¹dimloc �.x/W x essential and positive periodicº:

Then

¹dimloc �.x/W x essentialº D ŒI; S�.

Another immediate corollary is that if the set of essential points is .0; 1/, then

the measure admits at most one isolated point.

Corollary 5.9. If the set of essential points of � is .0; 1/, then the set of lo-

cal dimensions of � consists of a closed interval together with dimloc �.0/ D
dimloc �.1/.

Example 5.10. As observed in Example 4.7, this is the situation for the Bernoulli

convolution �%, with %�1 the golden ratio. Further, since

sp.T .5; 3a; 5// D 1 D sp.T .2; 2// D sp.T .4; 4//;

and ¹3a; 5º is in the essential class, it follows that dimloc �.0/ coincides with the

local dimension at an essential point. Consequently, the set of local dimensions

of �% is equal to the closed interval ŒI; S� consisting of the local dimensions at the

essential points of �%. In [8, 15] it is shown that I D log 2=j log �j and S D IC1=2.
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More generally, we have the following result.

Corollary 5.11. If every maximal loop class is of positive type, then the set of

local dimensions of � is a �nite union of closed intervals.

These intervals can be disjoint. Indeed, in Example 6.1 we construct a measure

whose set of local dimensions consists of two points (degenerate intervals).

6. Algorithm

6.1. Algorithm for �nding characteristic vectors, the essential set and transi-

tion matrices. Given a family of contractions, Sj .x/ D %xCdj , and probabilities

pj , we have implemented an algorithm to �nd � and all of the associated tran-

sition matrices. We use a modi�ed version of [21] to perform these calculations.

We give an overview here, by means of a worked example.

For this we consider the six contractions, the maps Sj .x/ D 1
3
x C dj for

dj D 2j=15, for j D 0; 1; : : : ; 5: The corresponding self-similar set is the 5-fold

sum of the middle-third Cantor set rescaled to Œ0; 1�. Suppose the maps have

normalized probabilities 1; p1; p2; p3; p4; 1.

One can see that � D Œ0; 1� 2 F0 has characteristic vector .1; .0/; 1/. We will

call this characteristic vector 1. Here the �rst 1 is the normalized length of the

interval. The sequence .0/ is V0.�/ D .a1; a2; : : : ; ak/ is the neighbourhood set.

The last 1 is r0.�/. For the questions we are interested in, rn.�/ is not needed,

hence we will suppress it in the future, instead allowing multiple edges between

nodes in the graph. This gives a reduced characteristic vector of .1; .0//.

Instead of considering all intervals in F1, we only consider those that arise

from new reduced characteristic vectors found to be in �. So, initially, we look

at those children of reduced characteristic vector 1. In this case, these two things

are the same, but we will see later on that this is not always the case. We �rst

subdivide Œ0; 1� by considering the maps Sj .0/ � ai and and Sj .1/ � ai for all

ai 2 V.1/ and j D 0; 1; 2; 3; 4; 5. This partitions the interval at the points

¹k=15W k D 0; 2; 4; 5; 6; 7; 8; 9; 10; 11; 13; 15º.
Consider �rst � D Œ0; 2=15� coming from this subdivision. We see that its

normalized length is 3 � 2=15 D 2=5 and it has neighbourhood set .0/. We label

.2=5; .0// as the reduced characteristic vector 2. The dj that contributes to 0 is d0

and is associated to the normalized probability of 1. Hence the transition matrix

is T .1; 2/ D Œ 1 �.
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Now, consider � D Œ2=15; 4=15�. This again has normalized length 2=5 and

neighbourhood set .0; 2=5/. We label .2=5; .0; 2=5// as the reduced characteristic

vector 3. The 0 comes from d1 and the 2=5 from d0, hence the transition matrix

is T .1; 3/ D Œ p1 1 �.

We continue in this fashion, noting that for � D Œ2j=15; .2j C 1/=15�, where

j D 2; : : : ; 5, the characteristic vector is .1=5; .0; 2=5; 5=4//, which we label as

4. In Feng’s notation, we would distinguish these as four di�erent characteristic

vectors by use of their third component, r1.�/. We will not distinguish these, but

will instead allow multiple maps from the reduced characteristic vector 1 to the

reduced characteristic vector 4. These are

T .1; 4/ D Œ p2 p1 1 � or

Œ p3 p2 p1 � or

Œ p4 p3 p2 � or

Œ p5 p4 p3 �:

Continuing in this fashion, we can compute the �nite set of reduced character-

istic vectors obtaining

� reduced characteristic vector 1: .1; .0//;

� reduced characteristic vector 2: .2=5; .0//;

� reduced characteristic vector 3: .2=5; .0; 2=5//;

� reduced characteristic vector 4: .1=5; .0; 2=5; 4=5//;

� reduced characteristic vector 5: .1=5; .1=5; 3=5//;

� reduced characteristic vector 6: .2=5; .1=5; 3=5//;

� reduced characteristic vector 7: .2=5; .3=5//.

The characteristic vectors 4 and 5 comprise the essential set.

For a complete list of transition matrices, see [14].

6.2. Algorithm for �nding bounds on local dimensions. Given a loop class

of positive type, there are two main ways we obtain good estimates on the set of

local dimensions associated to this loop class. The �rst is to �nd explicit examples

of periodic points within the loop class and calculate their local dimensions by

determining the spectral radius of the transition matrix of the cycle. Applying

Theorem 5.1, this will produce an interval contained in the set of local dimensions

of the loop class.
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Essential Class

1

2

3

4

5

6

7

Figure 2. Transition graph for 3x � 1, with dj 2 ¹2j=15Wj D 0; 1; : : : ; 5º.

To �nd upper and lower bounds on the set of local dimensions we use the family

of pseudo-norms:

kT kC;min D min
° X

j 2C

jTjkjW k 2 C
±
;

kT kmin D min
° X

k

jTjk jW j
±

kT kmax D max
° X

k

jTjk jW j
±
:

These are the sub-norm on indices C , the total sub-norm and the total sup-norm

respectively. The total sup-norm is actually a norm. Here C is a subset of the

indices of the column vectors. Care must be take here that the subset C is valid

for all matrices within the loop class one is considering, as di�erent transition

matrices may have di�erent dimensions. For all matrices, T1; T2 � 0 we have

kT1T2kC;min � kT1kC;min kT2kC;min ;

kT1T2kmin � kT1kmin kT2kmin ;

kT1T2kmax � kT1kmax kT2kmax
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and

kT kmin ; kT kC;min � kT k � � kT kmax

where � is the number of columns in T . We can thus obtain upper and lower

bounds for the local dimensions at points in the loop class by calculating these

pseudo-norms for all admissible products of primitive transition matrices from

the loop class up to some �xed length and using formula (5).

We remark that pseudo-norms based on a subset of the indices of the row

vectors would serve, as well.

Example 6.1. A measure whose local dimension is two isolated points. We

continue with the example described above, but now take the normalized uniform

weights pi D 1. Let � denote the associated self-similar measure.

The essential class, as mentioned above, is ¹4; 5º and its primitive transition

matrices are

T .4; 4/ D

2
4

1 0 0

1 1 1

0 1 1

3
5 ; T .4; 5/ D

2
4

1 0

1 1

0 1

3
5 ;

T .4; 4/ D

2
4

1 1 0

1 1 1

0 0 1

3
5 ; T .5; 5/ D

"
1 1

1 1

#
;

T .5; 4/ D
"

1 1 1

1 1 1

#
; T .5; 5/ D

"
1 1

1 1

#
:

As the total column sub and sup-norms for all these matrices is 2, it follows that

all k-fold products of primitive transition matrices in the essential class will have

their (usual) norm in the interval Œ2k ; 3 � 2k �. It follows that the local dimension at

any point in the essential class is .log 6 � log 2/= log 3 D 1.

As the local dimension at 0 and 1 is equal to log 6= log 3, the set of local

dimensions of � consists of the two distinct points,

¹dimloc �.x/W x 2 Œ0; 1�º D ¹1º [ ¹1 C log 2= log 3º:
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7. Cantor-like measures

In Example 2.5 we considered the IFS

°
Sj .x/ D 1

R
x C j

mR
.R � 1/W j D 0; : : : ; m

±
(12)

for integers R � 2; and the self-similar Cantor-like measures � associated with

this IFS and probabilities ¹pj W j D 0; : : : ; mº. This class of measures includes, for

example, the m-fold convolution of the uniform Cantor measure with contraction

factor 1=R; rescaled to Œ0; 1�. The self-similar set is the full interval Œ0; 1� when

m � R � 1.

The results in [2] and [26], which extend [16], together imply that if m � R � 3

and p0; pm < min pj , j ¤ 0; m, then the set of local dimensions of � consists of

a closed interval and one (or two) isolated points, the local dimensions at 0 and 1.

These facts can be recovered by our methods as well, when, in addition, p0 D pm.

Proposition 7.1. Let � be the self-similar measure associated with the IFS (12)

with m � R � 2 and probabilities satisfying p0 D pm < minj ¤0;m pj . Then

the set of essential points is the open interval .0; 1/ and dimloc �.0/ is an isolated

point in the set of all local dimensions. Indeed, for x ¤ 0; 1,

dimloc �.x/ �
ˇ̌
log.min¹2p0; pj W j ¤ 0; mº/

ˇ̌

log R
<

jlog p0j
log R

D dimloc �.0/:

Proof. We note, �rst, that the iterates of 0 at level n (meaning the real values S� .0/

for � 2 A
n) occur every .R � 1/=.Rnm/, beginning at 0 and ending at 1 � R�n.

Similarly, the iterates of 1 are spaced the same distance apart, but start at R�n and

end at 1. In the subinterval ŒR�n; 1�R�n� they alternate, except in the special case

that m � 0 mod.R � 1/, when they coincide. We will assume m 6� 0 mod.R � 1/

and leave the easier case for the reader.

Adjacent n’th level net intervals contained in ŒR�n; 1 � R�n� are of the form

Œa; b�, Œb; c� where if a is an iterate of 0, then

a D j.R � 1/

Rnm
; b D 1

Rn
C k.R � 1/

Rnm
and c D .j C 1/.R � 1/

Rnm

for suitable integers j; k. There is a similar formula when a is an iterate of 1.

If m D L.R � 1/ C r for integer L and r 2 ¹1; : : : ; R � 2º, then it is easily seen

that L C k D j . Thus n’th level net intervals have either (non-normalized) length

r

Rnm
or

R � 1 � r

Rnm
;

and, in either case, have length between 1=.Rnm/ and 1=Rn.
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Let x 2 .0; 1/ and assume n is chosen so large that 3R�n < x < 1 � 3R�n.

Let ŒA; B� denote the n’th level net interval containing x. The choice of n ensures

that all the numbers of the form i.R � 1/=.Rnm/ for integer i with

0 < A � i.R � 1/=.Rnm/ < R�n

are iterates of 0 at level n and hence comprise the neighbour set of ŒA; B�. Thus

the neighbour set depends only upon whether A is an iterate of 0 or an iterate of 1.

It follows that there are only two reduced characteristic vectors associated with

these net intervals.

Furthermore, the length of these net intervals is su�ciently large to ensure that

that the interior of each such interval contains at least one n C 1-iterate of 0 and

one n C 1-iterate of 1. Consequently, each such n’th level net interval contains

both styles of net intervals of level n C 1 (and no other children). It follows that

their characteristic vectors belong to the essential class and that proves the set of

essential points is .0; 1/.

To prove the upper bound given in the statement of the proposition for

dimloc �.x/ with 0 < x < 1; we will show that if Œx� D .
0; 
1; : : : / and n is

su�ciently large, then kT .
n�1; 
n/kmin � min¹2; pj p�1
0 W j ¤ 0; mº where k�kmin

is the total column sub-norm introduced in the preceding section.

We can assume 3R�N < x < 1�3R�N and take n > N . Suppose 
n D C.�n/,

�n D Œa; b�, c�n D Œc; d �, and the neighbour sets are Vn.�n/ D .a1; : : : ; aK/ and

Vn�1.�n�1/ D .c1; : : : ; cJ / respectively, where c1 < � � � < cJ .

Temporarily �x k. By de�nition, T .
n�1; 
n/jk D p`p�1
0 when there is some

� 2 A
n and ` 2 A such that S� .0/ D c � R�.n�1/cj and S�`.0/ D a � R�nak ;

and T .
n�1; 
n/jk D 0 otherwise.

Of course, there is some choice of j with a valid choice of `. If ` ¤ 0; m

we are done. So assume this ` D 0. That means a � R�nak D c � R�.n�1/cj .

The bounds on x ensure that for some � 2 A
n�1,

S�.0/ D S�.0/ � .R � 1/=.Rn�1m/:

Furthermore,

0 < c � S� .0/ � a � S�.0/ C R � 1

Rn�1m
<

1

Rn
C R � 1

Rn�1m
� 1

Rn�1
:

This implies there is some i such that ci DR�.n�1/.c � S� .0//; indeed, i Dj C 1.
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Another routine calculation shows S�R.0/ D a � R�nak , thus

T .
n�1; 
n/j C1;k D pRp�1
0 :

If, instead, ` D m, similar arguments prove T .
n�1; 
n/j �1;k D pm�Rp�1
0 .

This completes the proof. �

Remark 7.2. We are not claiming that these bounds on dimloc �.x/ for x ¤ 0; 1

are sharp, merely illustrating that we can recover the property that dimloc �.0/ is

an isolated point with our approach.

In [2, Theorem 6.1], the minimum and maximum local dimensions, other than

at 0; 1, were investigated for the case of the m-fold convolution of the uniform

Cantor measure for small m. We show that there exists m outside of these ranges

where these formula do not hold.

Example 7.3. Consider the m-fold convolution of the uniform Cantor measure

with contraction factor 1=R, for integer R � 3. It is shown in [2] that if R � m �
2R � 2, then

min
x

dimloc �.x/ D dimloc �.xmin/ D
m log 2 � log

�
m

b m
2 c

�

log R
(13)

where

xmin D 1

m

jm

2

k
:

It was also shown there that for all even m, minx dimloc �.x/ D dimloc �.xmin/.

Using the computer, we have checked these formulas for R D 3 and 3 �
m � 10. We have found that the right hand side of (13) is not dimloc �.xmin/

and is not the minimal local dimension for m D 5; : : : ; 10: Moreover, for m D
5; 7; 9 the minimal local dimension does not occur at the point xmin. In fact, the

predicted value of the minimum local dimension is greater than the maximum

local dimension other than for x D 0; 1. See Tables 1 and 2. We note that in

Tables 1 and 2, when the formula is known to hold for theoretical reasons, we

put the precise value, otherwise we put a range, coming from the techniques of

Section 6.
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Table 1. Minimal local dimensions

m Left hand side Actual min dimloc �.xmin)

of Formula 13

3 .892790 .892790 .892790

4 .892790 .892790 .892790

5 1.05875 [.972382, .972639] .984145

6 1.05875 .976628 .976628

7 1.18029 [.993576, .993848] .997991

8 1.18029 .995246 .995246

9 1.27620 [.998541, .998658] .999739

10 1.27620 .999022 .999022

Table 2. Maximal local dimensions

m Left hand side Actual max dimloc �.xmax/

of Formula 14

3 1.13355 1.13354 1.13354

4 1.05875 1.05874 1.05874

5 1.02757 1.02757 1.02757

6 1.01434 1.01434 1.01434

7 1.01434 [1.00605, 1.00736] 1.00605

8 1.01434 [1.00342, 1.00346] 1.00343

9 1.02721 [1.00133, 1.00171] 1.00133

10 1.03074 [1.00079, 1.00082] 1.00079

In [2], there was also a formula given for the maximum local dimension other

than at x D 0; 1. Let r D b.m � R/=2c, `2j D r C 1 and `2j C1 D m � r � R. Put

xmax D 1

m

1X

j D1

.R � 1/R�j
j̀ :

It was shown that for R � m � 2R � 1,

max
x¤0;1

dimloc �.x/ D dimloc �.xmax/

and

dimloc �.xmax/ D � log..prCRC1 C pr C
p

.prCRC1 � pr/2 C 4prC1prCR/=2/

log R
:

(14)

Here pj should be understood as 0 if j … ¹0; 1; : : : ; mº.
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Using our methods, we can show that for R D 3, m D 6, these state-

ments continue to be true, that is, dimloc �.xmax/ D maxx¤0;1 dimloc �.x/ and

dimloc �.xmax/ is the value speci�ed by the right hand side of formula (14). But

for R D 3 and m D 7; : : : ; 10, the predicted maximum local dimension from the

right hand side of (14) is too big. We have not been able to determine if xmax is

the point where the maximum dimension occurs.

We refer the reader to [14] where this example is worked out in full detail.

8. Bernoulli convolutions with contraction factors Pisot inverses

8.1. Bernoulli convolutions with contraction factors Pisot inverses. In Ta-

ble 3, we list all Pisot numbers in the open interval .1; 2/ of degree less than or

equal to 4. For each of these, we give the number of vertices of the reduced transi-

tion graph and the size of the reduced essential class for the Bernoulli convolution

with contraction factor the inverse of this Pisot number. In the case where the size

is listed as ‘Unknown’, there are more than 10000 reduced characteristic vectors.

8.1.1. Bernoulli convolutions with no isolated point. It can be shown for

Bernoulli convolutions that whenever there are precisely three more elements in

the reduced transition graph than in the essential set, then the non-essential set

consists of the characteristic vector of Œ0; 1� and the characteristic vectors of the

right-most and left-most net intervals of level 1. The latter two are maximal loop

classes corresponding to the two endpoints of Œ0; 1�, the only two non-essential

points. Thus, with the exception of x3�x2�1; x3�x�1 and possibly x4�x3�1, for

the examples listed in Table 3 the open interval .0; 1/ is the set of essential points.

We have checked that in all of these examples (where the essential set is known

to be .0; 1//, the value of the local dimension of the measure at 0 is also the local

dimension at an essential point, hence there is no isolated point.

8.1.2. Bernoulli convolutions with an isolated point

Example 8.1 (minimal polynomial P1.x/ D x3 � x2 � 1). The uniform Bernoulli

convolution �%; with %�1 the Pisot number with minimal polynomial P1; has �ve

maximal loop classes. In addition to the essential class, there are two singletons

(corresponding to the points 0; 1), one doubleton and one of size 23. All are of

positive type. The set of local dimensions of �% consists of an isolated point

(dimloc �%.0/) and a closed interval which is the union of the closed intervals
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Table 3. Facts about Bernoulli convolutions with %�1 a small degree Pisot number.

Minimal Polynomial of Approx value of Size of reduce Size of Essential

Pisot Number % Transition graph set (reduced)

x2 � x � 1 .618034 6 3

x3 � x2 � 1 .682328 152 46

x3 � x � 1 .754878 1809 1207

x3 � 2x2 C x � 1 .569840 30 27

x3 � x2 � x � 1 .543689 11 8

x4 � x3 � 1 .724492 Unknown

x4 � x3 � 2x2 C 1 .524889 538 535

x4 � 2x3 C x � 1 .535687 190 187

x4 � x3 � x2 � x � 1 .518790 14 11

generated by the three non-trivial maximal loop classes. In particular, we have

Œ:970222; 1:07770� � ¹dimloc �.x/W x essentialº � Œ:848302; 1:53266�

and

Œ:970221; 1:07771� [ ¹1:81336º � ¹dimloc �.x/W x 2 Œ0; 1�º
� Œ:848302; 1:53265� [ ¹1:81336º

See [14] for this example worked out in full.

Example 8.2 (minimal polynomial P2.x/ D x3 � x � 1). The uniform Bernoulli

convolution �%; with %�1 the Pisot number with minimal polynomial P2; has six

maximal loop classes. In addition to the essential class, there are four singletons

(two corresponding to the points 0; 1) and one of size 6. The two corresponding

to the points 0 and 1, as well as the maximal loop of size 6, are of positive type.

The other two singletons, although not positive type, are easy to handle as each

has only one transition matrix. The set of local dimensions of �% consists of an

isolated point (dimloc �%.0/) and a closed interval which is the union of the closed

intervals generated by the four non-trivial maximal loop classes. In particular, we

have

Œ:997949; 1:00853� � ¹dimloc �.x/W x essentialº � Œ:747924; 1:97198�

and

Œ:997949; 1:00853� [ ¹2:46497º � ¹dimloc �.x/W x 2 Œ0; 1�º
� Œ:747923; 1:97198� [ ¹2:46497º

See [14] for this example worked out in full.
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8.2. The 2-fold convolution of �%. In this subsection we study the rescaled

measure �% D �% ��%; where �% is the Bernoulli convolution with %�1 the golden

ratio. This is the self-similar measure associated with the IFS of contractions

S1.x/ D %x, S2.x/ D %xC1=2�%=2 and S3.x/ D %xC1�%, with corresponding

(regular) probabilities .1=4; 1=2; 1=4/. It is of �nite type and has support Œ0; 1�.

The reduced transition diagram has 40 reduced characteristic vectors. The

essential class can be naturally identi�ed with those labelled by ¹28; 29; 30; 33,

34; : : : ; 40º. Two cycles in the essential class are �1 D .29; 35; 39; 29/ and

�2 D .28; 33; 28/. The spectral radius of T .�1/ is approximately 2:46916, while

the spectral radius of T .�2/ is approximately 2:48119. This shows that

Œ:992400; 1:00250� � ¹dimloc ��.x/W x essentialº:

We have also been able to �nd upper and lower bounds on the local dimensions

from the essential class using the method described in Subsection 6.2. We obtain

an upper bound by taking the column sub-norm with the subset C D ¹3; 4º and

taking admissible products of up to 20 primitive transition matrices. We obtain

a lower bound by using the total column sup-norm with products of up to 10

primitive transition matrices. These calculations give

¹dimloc ��.x/W x essentialº � Œ:815721; 1:40091�:

There are four non-essential maximal loops, each of which is a singleton. The

maximal loop classes ¹2º and ¹6º correspond to the two endpoints of the support,

0; 1. The transition matrix in both cases is the 1 � 1 identity matrix and the points

have local dimension

dimloc ��.0/ D dimloc ��.1/

D log 4

j log �j � 2:88084:

The other two maximal loop classes are ¹25º and ¹19º. The characteristic

vector of 25 is .% � 1=2; .1 � 3=2%; 1=2 � 1=2%; 1 � %; 3=2 � 3=2%; 1 � 1=2%; 3=2 �
%//. Its transition matrix has the same spectral radius as T .�2/, hence the local

dimension at any point in the loop class ¹25º coincides with the local dimension

at some essential point. Similar statements hold for the loop class ¹19º.
Thus the set of local dimensions of �� consists of an interval and an isolated

point, dimloc �%.0/.
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We recall that a point x can have a most two symbolic representations, and that

this will occur only if x 2 Fn. Let x.n/ be the point with symbolic representation

x.n/ D .1; 2; : : : ; 2„ ƒ‚ …
n

; 7; 8; 10; 19; 19; 19; : : : /:

This point also has symbolic representation

x.n/ D .1; 2; : : : ; 2„ ƒ‚ …
nC1

; 7; 9; 12; 25; 25; 25; : : :/:

We see that both representations of these points are external to the loop class, and

hence we have a countable number of non-essential points.

Not all points with a symbolic representation in a loop class external to the

essential set need be non-essential. To see this we observe that

.1; 4; 14; 22; 30; 37; 30; 37; 30; 37; : : :/ D .1; 6; 18; 16; 13; 19; 19; 19; 19; : : : /

are two symbolic representations for the same point, one of which is in the

essential class, and one of which is not. Hence this point is an essential point.

Remark 8.3. The transition matrices of the cycles �1 and �2 give the extreme

values of spectral radii over all transition matrices of essential cycles of length up

to 10. It would be interesting to know if these give the endpoints of the interval

portion of the set of local dimensions.
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