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Dimensions of graphs of prevalent continuous maps

Richárd Balka1

Abstract. Let K be an uncountable compact metric space and let C.K;Rd / denote the set

of continuous maps f W K ! R
d endowed with the maximum norm. The goal of this paper

is to determine various fractal dimensions of the graph of a prevalent f 2 C.K;Rd /.

As the main result of the paper we show that if K has at most �nitely many isolated

points then the lower and upper box dimension of the graph of a prevalent f 2 C.K;Rd /

are dim
B

K C d and dimBK C d , respectively. This generalizes a theorem of Gruslys,

Jonušas, Mijovic̀, Ng, Olsen, and Petrykiewicz.

We prove that the packing dimension of the graph of a prevalent f 2 C.K;Rd / is

dimP K C d , generalizing a result of Balka, Darji, and Elekes.

Balka, Darji, and Elekes proved that the Hausdor� dimension of the graph of a prevalent

f 2 C.K;Rd / equals dimH K C d . We give a simpler proof for this statement based on a

method of Fraser and Hyde.

Mathematics Subject Classi�cation (2010). 28A78, 28C10, 46E15, 60B05, 54E52.

Keywords. Haar null, shy, prevalent, graph, continuous map, Hausdor� dimension, box

dimension, Minkowski dimension, packing dimension.

1. Introduction

Assume that G is a Polish group, that is, a separable topological group endowed
with a compatible complete metric. If G is locally compact then it admits a Haar

measure, i.e. a left translation invariant Borel measure which is regular, �nite on
compact sets, and positive on non-empty open sets. The concept of Haar measure
cannot be extended to groups that are not locally compact, but surprisingly the
idea of Haar measure zero sets can. The next de�nition is due to Christensen [5],
which was rediscovered later by Hunt, Sauer, and York [14].

1 The author was supported by the Hungarian Scienti�c Research Fund grant no. 104178.
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De�nition 1.1. Let G be an abelian Polish group and let A � G. Then A is called
shy or Haar null if there exists a Borel set B � G and a Borel probability measure
� on G so that A � B and � .B C x/ D 0 for all x 2 G. The complement of a
shy set is a prevalent set.

Shy sets form a �-ideal, and in a locally compact abelian Polish group they
coincide with the Haar measure zero sets, see [5]. We will apply this concept for
the Banach space G D C.K;Rd/.

Notation 1.2. The Hausdor�, lower box, upper box and packing dimension of a
metric space X is denoted by dimH X , dimBX , dimBX , and dimP X , respectively.
We use the convention dim ; D �1 for each of the above dimensions. We simply
write C Œ0; 1� D C.Œ0; 1�;R/.

Over the last three decades there has been a huge interest in studying properties
of typical objects, where typical might mean both generic in the sense of Baire
category and prevalent. Now we summarize the results on dimensions of graphs
of continuous maps. In the category setting Mauldin and Williams [22] proved
the following.

Theorem 1.3 (Mauldin–Williams). For a generic f 2 C Œ0; 1� we have

dimH graph.f / D 1:

Indeed, the strategy of Mauldin and Williams easily implies the following
result, see also [1].

Theorem 1.4. Let K be an uncountable compact metric space and let d 2 N
C.

Then for a generic f 2 C.K;Rd/ we have

dimH graph.f / D dimH K:

The following theorems were proved by Hyde et al. [15]. In fact, they con-
sidered the case K � R and d D 1, but their proof easily yields the following
theorems.

Theorem 1.5 (Hyde et al.). Let K be a compact metric space and let d 2 N
C.

Then for a generic f 2 C.K;Rd/ we have

dimB graph.f / D dimBK:
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Theorem 1.6 (Hyde et al.). Let K be an uncountable compact metric space

with at most �nitely many isolated points and let d 2 N
C. Then for a generic

f 2 C.K;Rd/ we have

dimB graph.f / D dimBK C d:

The following result was proved by Humke and Petruska [13].

Theorem 1.7 (Humke-Petruska). For a generic f 2 C Œ0; 1� we have

dimP graph.f / D 2:

Recently Liu et al. [19] proved the following generalization.

Theorem 1.8 (Liu et al.). Let K be an uncountable compact metric space. Then

for a generic f 2 C.K;R/ we have

dimP graph.f / D dimP K C 1:

Now consider graphs of prevalent continuous maps. First McClure proved
in [23] that the packing dimension (and hence the upper box dimension) of the
graph of a prevalent f 2 C Œ0; 1� is 2. For the lower box dimension the analogous
result was proved independently in [8], [12], and [26]. Moreover, Gruslys et al.
[12] proved the following theorem.

Theorem 1.9 (Gruslys et al.). Let K � R
m be an uncountable compact set.

Assume that K satis�es the following property: there is a ı0 > 0 such that for

all ı � ı0 and for every cube of the form Q D
Qm

iD1Œmiı; .mi C 1/ı� .mi 2 Z/

the intersection K \ Q is path connected. Then for a prevalent f 2 C.K;R/ we

have

dimB graph.f / D dimBK C 1;

dimB graph.f / D dimBK C 1:

As the main result of this paper, we generalize Theorem 1.9 in Section 3.

Theorem 1.10. Let K be an uncountable compact metric space with at most

�nitely many isolated points and let d 2 N
C. Then for a prevalent f 2 C.K;Rd/

we have

dimB graph.f / D dimBK C d;

dimB graph.f / D dimBK C d:
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In the proof of Theorem 1.9 prevalence is witnessed by a measure supported
on a one-dimensional subspace, see also Theorem 6.2 and the subsequent discus-
sion. The proof (in the case of upper box dimension) uses that if K satis�es the
connectivity condition of Theorem 1.9 then for all f; g 2 C.K;R/ we have

dimB graph.f C g/ � max¹dimB graph.f /; dimB graph.g/º:

The next theorem shows that the above inequality is not true even for the triadic
Cantor set K. That is why in the proof of Theorem 1.10 prevalence will be
witnessed by a more complicated ‘in�nite dimensional’ measure.

Theorem 1.11. Let K � Œ0; 1� be the triadic Cantor set. Then there exist functions

f; g 2 C.K;R/ such that

dimB graph.f C g/ > max¹dimB graph.f /; dimB graph.g/º:

Note that if K has in�nitely many isolated points, then Theorem 1.10 may not
hold. For the following example see [15].

Example 1.12 (Hyde et al.). Let K D ¹0º [ ¹1=nW n 2 N
Cº. Then

sup
f 2C.K;R/

dimB graph.f / � 1 < 3=2 D dimBK C 1:

For packing dimension Balka, Darji, and Elekes [2] proved the following.

Theorem 1.13 (Balka–Darji–Elekes). Assume that m; d 2 N
C and K � R

m is

an uncountable compact set. Then for a prevalent f 2 C.K;Rd/ we have

dimP graph.f / D dimP K C d:

In Section 4 we generalize the above theorem based on Theorem 1.10.

Theorem 1.14. Let K be an uncountable compact metric space and let d 2 N
C.

Then for a prevalent f 2 C.K;Rd/ we have

dimP graph.f / D dimP K C d:

Fraser and Hyde [10] showed that the graph of a prevalent f 2 C Œ0; 1� has
maximal Hausdor� dimension. This improves the analogous results concerning
box and packing dimension, see Fact 2.4.
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Theorem 1.15 (Fraser–Hyde). For a prevalent f 2 C Œ0; 1� we have

dimH graph.f / D 2:

The following generalization is due to Bayart and Heurteaux [4].

Theorem 1.16 (Bayart–Heurteaux). Let K � R
m be compact with dimH K > 0.

Then for a prevalent f 2 C.K;R/ we have

dimH graph.f / D dimH K C 1:

Remark 1.17. Recently Peres and Sousi [25] proved a stronger result for compact
sets K � R. Let X W K ! R

d be a fractional Brownian motion restricted to K

and let f 2 C.K;Rd/ be given. In [25] the almost sure Hausdor� dimension of
graph.X C f / is determined in terms of f and the Hurst index of X .

The proof of Theorem 1.16 is based on the energy method, see [4, Theorem 3].
A lower estimate for the Hausdor� dimension of graph.X C f / is given there,
where X W K ! R is a fractional Brownian motion restricted to K � R

m and
f 2 C.K;R/ is a continuous drift. In fact, the proof easily extends to vector
valued functions, and (as pointed out in [3]) Dougherty’s result on images handles
the case dimH K D 0, see Theorem 5.1. These yield the following theorem.

Theorem 1.18. Assume that m; d 2 N
C and K � R

m is an uncountable compact

set. Then for a prevalent f 2 C.K;Rd/ we have

dimH graph.f / D dimH K C d:

Balka, Darji, and Elekes proved in [2] that the condition K � R
m is super�u-

ous.

Theorem 1.19 (Balka–Darji–Elekes). Let K be an uncountable compact metric

space and let d 2 N
C. Then for a prevalent f 2 C.K;Rd/ we have

dimH graph.f / D dimH K C d:

In [2] the above theorem is a corollary of a much deeper result concerning the
�bers of a prevalent f 2 C.K;Rd/. Following Fraser and Hyde [10], in Section 5
we give a simpler proof for Theorem 1.19 based on the energy method.

Finally, in Section 6 we pose some open problems.
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2. Preliminaries

Probability and expectation will be denoted by Pr and E, and j � j denotes absolute
value. The compact metric space K is called a Cantor space if it is perfect and
totally disconnected. Let .X; �/ be a metric space. We endow X � R

d by the
metric

�X�Rd ..x1; z1/; .x2; z2// D
p

�.x1; x2/2 C jz1 � z2j2:

For x 2 X and r > 0 let B.x; r/ and U.x; r/ denote the closed and open ball
of radius r centered at x, respectively. For A; B � X let us de�ne dist.A; B/ D

inf¹�.x; y/W x 2 A; y 2 Bº. Let diam A, int A, and cl A denote the diameter,
interior, and closure of A, respectively. Given ı > 0 we say that a set S � X is a
ı-packing if �.x; z/ > ı for all distinct x; z 2 S . For n 2 N

C de�ne

Nn.X/ D max¹#S W S � X is a 2�n-packingº:

If X is non-empty and totally bounded then the lower and upper box dimension

of X are respectively de�ned as

dimBX D lim inf
n!1

log Nn.X/

n log 2
;

dimBX D lim sup
n!1

log Nn.X/

n log 2
:

Let dimBX D dimBX D 1 if X is not totally bounded. The packing dimension

of X is de�ned as

dimP X D inf
°

sup
i

dimBAi W X �

1
[

iD1

Ai

±

:

For the following lemma see [21, Lemma 3.2] or [9, Lemma 4].

Lemma 2.1. Let K be a compact metric space and let s 2 R. If dimP K > s then

there is a compact set C � K such that dimP .C \U / � s for all open sets U with

C \ U ¤ ;.

For the following lemma see the proof of [27, Proposition 3] or [7, Corol-
lary 3.9].

Lemma 2.2. Let K be a compact metric space and s 2 R. If dimB.K \ U / � s

for every non-empty open set U � K, then dimP K � s.



Dimensions of graphs of prevalent continuous maps 413

For s � 0 the s-dimensional Hausdor� content of X is de�ned as

H
s
1.X/ D inf

°

1
X

iD1

.diam Ai /
sW X �

1
[

iD1

Ai

±

:

The Hausdor� dimension of a non-empty X is de�ned as

dimH X D inf¹s � 0WHs
1.X/ D 0º:

Recall that dim ; D �1 by convention for each of the above dimensions. For a
Borel probability measure � on X and s > 0 we de�ne the s-energy of � by

Is.�/ D

“

X2

d�.x/ d�.y/

�.x; y/s
:

For the following theorem see [20, Theorem 8.9] and Frostman’s lemma for
compact metric spaces [20, Theorem 8.17].

Theorem 2.3. For a compact metric space K we have

dimH K D sup¹s > 0W there exists � on K such that Is.�/ < 1º:

For the following facts and for more on these concepts see [7].

Fact 2.4. For any metric space X we have

dimH X � dimBX � dimBX and dimH X � dimP X � dimBX:

Fact 2.5. Let dim be one of the above dimensions. Then for every non-empty

metric space X and d 2 N
C we have

dim.X � Œ0; 1�d / D dim X C d:

The next lemma is [6, Proposition 8].

Lemma 2.6. Assume that G1; G2 are abelian Polish groups and ˆW G1 ! G2 is a

continuous onto homomorphism. If S � G2 is prevalent then so is ˆ�1.S/ � G1.

Lemma 2.6 and Tietze’s extension theorem in R
d imply the following corol-

lary.

Corollary 2.7. Assume that K1 � K2 are compact metric spaces and d 2 N
C.

Let

RW C.K2;Rd / �! C.K1;Rd /; R.f / D f jK1
:

If A � C.K1;Rd / is prevalent then R�1.A/ � C.K2;Rd / is prevalent, too.
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3. Upper and lower box dimensions

The aim of this section is to prove Theorems 1.10 and 1.11.

Proof of Theorem 1.10. We may remove the �nitely many isolated points from
K without changing the lower and upper box dimensions of the set. This and
Corollary 2.7 yield that we may assume that K is perfect. By Fact 2.5 it is enough
to show only the lower bounds. That is, we need to prove that for a prevalent
f 2 C.K;Rd/ we have

dimB graph.f / � dimBK C d and dimB graph.f / � dimBK C d: (3.1)

For every n 2 N
C de�ne the open set

An D ¹f 2 C.K;Rd/W Nn.graph.f // � Nn.K/2nd n�2d º;

where recall that Nn.X/ denotes the cardinality of the maximal 2�n-packing in X .
In order to show (3.1) it is enough to prove that the set

A WD lim inf
n

An D

1
[

kD1

�

1
\

nDk

An

�

is prevalent. As An are open, A is Borel. We need to construct a Borel probability
measure � on C.K;Rd/ such that �.A � g/ D 1 for all g 2 C.K;Rd/.

First we de�ne �. For all n 2 N
C let us de�ne Sn � R

d as

Sn D 2�nC3¹0; 1; : : : ; b2nn�2cºd ;

where bxc denotes the integer part of x. Then clearly Sn is a 2�nC2-packing such
that #Sn � 2nd n�2d . For all n 2 N

C let

sn D #Sn and kn D Nn.K/:

Let ¹Xn
i ºi;n�1 be independent random variables de�ned on a measurable space

.�;F/ such that ¹Xn
i ºi�1 is an i.i.d. sequence for each n 2 N

C with distribution
given by

Pr.Xn
i D y/ D

1

sn

for all y 2 Sn:

For each n; i � 1 de�ne the generated �-algebra

F
n
i D �.Xn

j W 1 � j � i � 1/;

where F
n
1 D ¹;; �º.
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Statement 3.1. Let n 2 N
C. There exists `n 2 N

C with the following property.

For every random sequence ¹yiºi�1 in R
d such that yi is Fn

i -measurable we have

Pr
�

Nn

�

`n
[

iD1

¹Xn
i C yiº

�

< sn

�

�
1

kn2n
:

Proof of Statement 3.1. De�ne `n D snmn, where mn 2 N
C is so large that

�

1 �
1

sn

�mn

�
1

snkn2n
: (3.2)

Fix an arbitrary random sequence ¹yiºi�1. For all s 2 ¹1; : : : ; snº let

Zs D

smn
[

iD1

¹Xn
i C yiº and N.s/ D Nn.Zs/:

Now we prove by induction that for all s 2 ¹1; : : : ; snº we have

Pr .N.s/ < s/ �
s

snkn2n
; (3.3)

and the case s D sn will complete the proof. If s D 1 then (3.3) is straightforward.
For the induction step we need to prove that

Pr.N.s C 1/ < s C 1/ � Pr.N.s/ < s/ D Pr.N.s C 1/ D N.s/ D s/

�
1

snkn2n
:

(3.4)

Suppose that N.s/ D s and i 2 ¹smn C 1; : : : ; .s C 1/mnº is �xed. First we prove
that there is an F

n
i -measurable random xi 2 Sn such that

Nn.Zs [ ¹xi C yiº/ D s C 1: (3.5)

Indeed, the distance between any two balls of ¹B.x; 2�n/ºx2Sn
is at least 2�nC1,

so Nn.Zs � yi / D Nn.Zs/ D s < sn implies that there is an xi 2 Sn such that
B.xi ; 2�n/ \ .Zs � yi / D ;. Thus dist.Zs; ¹xi C yiº/ > 2�n, so (3.5) holds. As xi

depends only on yi and Zs , it is clearly F
n
i -measurable. Let Bi be the event that

Xn
j ¤ xj for all smn < j < i , then Bi 2 F

n
i . As xi is Fn

i -measurable and Xn
i is

independent of Fn
i , we have

Pr.Xn
i ¤ xi j Bi / D Pr.Xn

i ¤ xi / D 1 �
1

sn

: (3.6)
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Therefore (3.5), (3.6), and (3.2) imply that

Pr.N.s C 1/ D N.s/ D s/ � Pr
�

Xn
i ¤ xi for all smn < i � .s C 1/mn

�

D

.sC1/mn
Y

iDsmnC1

Pr.Xn
i ¤ xi j Bi /

D
�

1 �
1

sn

�mn

�
1

snkn2n
:

Thus (3.4) holds, and the proof of the statement is complete. 4

Now we return to the proof of Theorem 1.10. For all n let ¹xn
k
º1�k�kn

be a
2�n-packing in K and assume that for some "n > 0 for all j ¤ k we have

�.xn
j ; xn

k/ � 2�n C 3"n; (3.7)

where � denotes the metric of K. As K is perfect, for each n 2 N
C and

k 2 ¹1; : : : ; knº we can de�ne distinct points ¹xn
k;i

º1�i�`n
in B.xn

k
; "n/ such that

En D

kn
[

kD1

`n
[

iD1

¹xn
k;iº

satisfy
Em \ En D ; for all m < n: (3.8)

Let us de�ne the random function fnW En ! R
d such that

fn.xn
k;i / D Xn

i :

Tietze’s extension theorem for the coordinate functions and (3.8) imply that the
sample functions fn D fn.!/ can be extended to fn 2 C.K;Rd/ such that

(1) fn.x/ D 0 if x 2 Em for some m < n;

(2) fn.x/ 2 8n�2Œ0; 1�d for all x 2 K.

Let Pn be the probability measure on C.K;Rd/ corresponding to this method of
randomly choosing fn, and let Bn � C.K;Rd/ be its �nite support. Clearly we
have #Bn D s

`n
n and Pn.¹fnº/ D s

�`n
n for all fn 2 Bn. By (2) the sum

P1
nD1 fn

converges for all fn 2 Bn. Let P D
Q1

nD1 Pn be a probability measure on the
Borel subsets of B D

Q1
nD1 Bn and let

� WB ! C.K;Rd/; �..fn// D

1
X

nD1

fn:
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Let us de�ne

� D P ı ��1:

Let g 2 C.K;Rd/ be arbitrarily �xed, now we prove that �.A � g/ D 1. We
need to show that �.lim supn.Ac

n � g// D 0, where A
c
n denotes the complement

of An. By the Borel-Cantelli lemma it is enough to prove that

1
X

nD1

�.Ac
n � g/ < 1:

Fix n 2 N
C, it is enough to show that �.Ac

n � g/ � 2�n. Let h D g C
P1

iD1 fi ,
we need to prove that

P.h … An/ � 2�n: (3.9)

Let h0 D g and for all m 2 N
C let hm D gC

Pm
iD1 fi . For each k 2 ¹1; : : : ; knº

and i 2 ¹1; : : : ; `nº de�ne

yn
k;i D hn�1.xn

k;i /:

Fix k 2 ¹1; : : : ; knº. As yn
k;i

is F
n
i -measurable for all i � 1, Statement 3.1 yields

that

P

�

Nn

�

`n
[

iD1

¹Xn
i C yn

k;iº
�

< sn

�

�
1

kn2n
:

As hn.xn
k;i

/ D Xn
i C yn

k;i
, summing the above inequality from k D 1 to kn yields

that

P

�

there exists k � knW Nn

�

`n
[

iD1

¹hn.xn
k;i /º

�

< sn

�

� 2�n:

By (3.7) all k; k0 2 ¹1; : : : ; knº with k ¤ k0 and i; j 2 ¹1; : : : ; `nº we have

�.xn
k;i ; xn

k0;j / � 2�n C "n > 2�n:

Therefore

P.Nn.graph.hnjEn
// < knsn/ � 2�n:

Property (1) yields that hn.x/ D h.x/ for all x 2 En. As knsn � Nn.K/2nd n�2d ,
we have

P.h … An/ � P.Nn.graph.h// < knsn/ � 2�n:

Therefore (3.9) holds, and the proof is complete. �



418 R. Balka

Proof of Theorem 1.11. We may assume by scaling that

K D
°

1
X

iD1

ai3
�i W ai 2 ¹0; 1º for all i � 1

±

:

De�ne f; gW K ! R such that if x D
P1

iD1 ai3
�i 2 K then

f .x/ D

1
X

iD1

a2i�13�i and g.x/ D

1
X

iD1

a2i3
�i :

The squares of the form Œk9�n; .k C 1/9�n/� Œm9�n; .mC 1/9�n/ where k; m 2 Z

are called the 9�n-mesh squares. For a non-empty bounded set X � R
2 let Mn.X/

denote the number of 9�n-mesh squares that intersect X . It is easy to show that

dimBX D lim sup
n!1

log Mn.X/

n log 9
; (3.10)

see also [7, Section 3.1]. For I �N
C let 2I denote the set of functions hW I !¹0; 1º,

and for all h 2 2I let xh D
P

i2I h.i/3�i . First we prove that

dimB graph.f C g/ D
1

2
C

log 2

log 3
> 1: (3.11)

Fix n 2 N
C and let I D ¹1; : : : ; 2nº. For all h 2 2I and k 2 ¹0; : : : ; 3nº de�ne

Qh;k D Œxh; xh C 3�2n/ � Œ.f C g/.xh/ C k3�2n; .f C g/.xh/ C .k C 1/3�2n/:

Clearly Qh;k are distinct 9�n-mesh squares. As K CK D Œ0; 1�, the function f Cg

maps K \ Œxh; xh C 3�2n/ onto Œ.f C g/.xh/; .f C g/.xh/ C 3�n�. Thus all Qh;k

intersect graph.f C g/, and the union of Qh;k covers graph.f C g/. Hence

Mn.graph.f C g// D #¹Qh;kW h 2 2I ; 0 � k � 3nº D 22n.3n C 1/;

so (3.10) yields (3.11). Now we show that

dimB graph.f / D dimB graph.g/ D
log 8

log 9
< 1: (3.12)

We prove this only for f , the proof for g is analogous. Fix n 2 N
C and de�ne

J D ¹1; : : : ; 2nº [ ¹2n C 1; 2n C 3; : : : ; 4n � 1º:

Then #J D 3n. For all h 2 2J let

Qh D Œxh; xh C 3�2n/ � Œf .xh/; f .xh/ C 3�2n/:
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As the map h 7! .xh; f .xh// is one-to-one on 2J , the sets Qh are distinct
9�n-mesh squares. Each Qh intersects graph.f /, and the union of Qh covers
graph.f /. Thus

Mn.graph.f // D #¹QhW h 2 2J º D 23n:

Hence (3.10) implies (3.12). The theorem follows from (3.11) and (3.12). �

Remark 3.2. Using the notation of the above proof let F; G 2 C Œ0; 1� such that
F jK D f , GjK D g, and F; G are a�ne on the components of .0; 1/ n K. Liu et
al. [19] pointed out that

dimP graph.F C G/ > max¹dimP graph.F /; dimP graph.G/º:

This answers a question of Falconer and Fraser [8, (2.6) page 362] in the negative.

4. Packing dimension

The goal of this section is to prove Theorem 1.14.

Proof of Theorem 1.14. We can remove countably many points from K without
changing the packing dimension of the set, so by [18, Theorem 6.4] we may assume
that K is perfect. Choose a sequence sn % dimP K and �x n. By Lemma 2.1 there
is a compact set Kn � K such that dimP .U \ Kn/ > sn for every U � K open
with U \ Kn ¤ ;. Clearly Kn is perfect.

As a countable intersection of prevalent sets is prevalent, it is enough to show
that dimP graph.f / � sn C d for a prevalent f 2 C.K;Rd/. By Corollary 2.7 it
is enough to prove that

An D ¹f 2 C.Kn;Rd /W dimP graph.f / � sn C dº

is prevalent. Let ¹Uiºi�1 be a basis of Kn consisting of non-empty open sets and
let Ci D cl.Ui /. We proved that dimP Ui > sn. Therefore the de�nition of Kn

implies that for all i 2 N
C we have

dimBCi � dimBUi � dimP Ui > sn:

As Kn is perfect, Ci are also perfect. Therefore Theorem 1.10 yields that

Bi D ¹f 2 C.Ci ;R
d /W dimB graph.f / � sn C dº

are prevalent. For all i 2 N
C de�ne

Ri W C.Kn;Rd / �! C.Ci ;R
d /; Ri .f / D f jCi

:
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By Corollary 2.7 the sets R�1
i .Bi / are prevalent in C.Kn;Rd /, so

T1
iD1 R�1

i .Bi/

is also prevalent. Therefore it is enough to prove that
T1

iD1 R�1
i .Bi/ � An.

Let us �x f 2
T1

iD1 R�1
i .Bi/, we need to show that f 2 An. Let V be an

arbitrary non-empty relatively open subset V of graph.f /. By Lemma 2.2 it is
enough to prove that dimBV � sn C d . As ¹Uiºi2N is an open basis of Kn,
there is an i 2 N

C such that graph.f jCi
/ � V . Thus f 2 R�1

i .Bi / yields that
dimBV � dimB graph.f jCi

/ � sn C d . The proof is complete. �

5. Hausdor� dimension

The goal of this section is to give an simple proof for Theorem 1.19 by following
the strategy of Fraser and Hyde [10]. First we need a theorem of Dougherty [6,
Theorem 11] stating that the image of a prevalent f 2 C.K;Rd/ is as large as
possible.

Theorem 5.1 (Dougherty). Let K be an uncountable compact metric space and

let d 2 N
C. Then for a prevalent f 2 C.K;Rd/ we have

int f .K/ ¤ ;:

Remark 5.2. In fact, Dougherty proved the above theorem only for the triadic
Cantor set. As each uncountable compact metric space contains a homeomorphic
copy of the triadic Cantor set (see [16, Corollary 6.5]), Corollary 2.7 implies the
more general result.

The next lemma generalizes [10, Lemma 4.1].

Lemma 5.3. Let p; q 2 .0; 1�, d 2 N
C, � 2 R

d , and u > d=2. Then there is a

constant c1 2 R
C depending only on d and u such that

Z

Œ0;p�d

Z

Œ0;p�d

d˛ dˇ

.q2 C j˛ � ˇ C � j2/u
� c1pd qd�2u:

Proof. Let 
 2 R
d be arbitrary. De�ne Q
 2 R

d such that for all i 2 ¹1; : : : ; dº

Q
i D

8

ˆ

ˆ

<

ˆ

ˆ

:

�1 if 
i < �1;


i if � 1 � 
i � 0;

0 if 
i > 0:
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Then we have
Z

Œ0;1�d

d˛

.q2 C p2j˛ C 
 j2/u
�

Z

Œ0;1�d

d˛

.q2 C p2j˛ C Q
 j2/u

�

Z

Œ�1;1�d

d˛

.q2 C p2j˛j2/u
:

Applying the above inequality for 
 D �ˇ C p�1� implies that
Z

Œ0;p�d

Z

Œ0;p�d

d˛ dˇ

.q2 C j˛ � ˇ C � j2/u

D p2d

Z

Œ0;1�d

Z

Œ0;1�d

d˛ dˇ

.q2 C p2j˛ � ˇ C p�1� j2/u

� p2d

Z

Œ�1;1�d

d˛

.q2 C p2j˛j2/u

� p2d

Z

Œ�1;1�d

d˛

.max¹q2; p2j˛j2º/
u

� p2d

Z

j˛j�q=p

d˛

q2u
C

Z

j˛j�q=p

d˛

p2uj˛j2u

� p2d
�

c2

� q

p

�d

q�2u C p�2u

Z 1

q=p

c3rd�1�2u dr
�

D
�

c2 C
c3

d � 2u

�

pdqd�2u:

As c2; c3 2 R
C depend only on d , setting c1 WD c2 C c3=.d � 2u/ �nishes the

proof. �

For the following lemma see the proof of [10, Lemma 4.5].

Lemma 5.4. Let K be a compact metric space, let d 2 N
C and s 2 R

C. Then

A D ¹f 2 C.K;Rd/W dimH graph.f / � sº

is a Borel set in C.K;Rd/.

Now we are ready to prove Theorem 1.19.

Proof of Theorem 1.19. By Fact 2.5 it is enough to prove the lower bound.
If dimH K D 0 then Theorem 5.1 implies that for a prevalent f 2 C.K;Rd/

we have int f .K/ ¤ ;, so dimH f .K/ D d . As f .K/ is a Lipschitz image of
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graph.f / and Hausdor� dimension cannot increase under a Lipschitz map, we
obtain

dimH graph.f / � dimH f .K/ D d D dimH K C d;

which �nishes the proof.
Thus we may assume that dimH K > 0. As every uncountable compact

metric space contains a Cantor space with the same Hausdor� dimension [16,
Theorem 6.3], by Corollary 2.7 we may assume that K is a Cantor space. Fix
0 < t < s < dimH K, it is enough to prove that dimH graph.f / � t C d for
a prevalent f 2 C.K;Rd/. As dimH K > s, by Theorem 2.3 there exists a
Borel probability measure � on K such that Is.�/ < 1. Then we can de�ne
inductively for all n 2 N

C integers an 2 N
C and for all .i1; : : : ; in/ 2 In WD

Qn
kD1¹1; : : : ; akº non-empty compact sets Ki1:::in � K such that for all distinct

indices .i1; : : : ; in/; .j1; : : : ; jn/ 2 In we have

(1) Ki1:::in \ Kj1:::jn
D ;,

(2) Ki1:::inC1
� Ki1:::in for all i 2 ¹1; : : : ; anC1º,

(3) diam Ki1:::in � 2�n2

.

For all n 2 N
C let Sn D ¹0; 2�nºd , then #Sn D 2d . For all .i1; : : : ; in/ 2 In

de�ne countably many independent random variables Xi1:::in such that for all
y 2 Sn we have

Pr.Xi1:::in D y/ D 2�d : (5.1)

For each n 2 N
C and x 2 C there exists a unique .i1; : : : ; in/ 2 In such that

x 2 Ki1:::in . De�ne the random function fn 2 C.K;Rd/ such that

fn.x/ D Xi1:::in :

Let Pn be the probability measure on C.K;Rd/ which corresponds to the choice
of fn, and let Sn � C.K;Rd/ be the �nite support of Pn. Clearly jfn.x/j � 2�n

for all fn 2 Sn and x 2 K, thus
P1

nD1 fn always converges uniformly. Let
P D

Q1
nD1 Pn be a probability measure on the Borel subsets of S D

Q1
nD1 Sn

and let

� W S ! C.K;Rd/; �..fn// D

1
X

nD1

fn:

De�ne
� D P ı ��1:

Let us �x g 2 C.K;Rd/, and let f D
P1

nD1 fn be a random map. Let

A D ¹h 2 C.K;Rd/W dimH graph.h/ � t C dº:
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As A is a Borel set by Lemma 5.4, it is enough to prove that �.A� g/ D 1. Thus
it is enough to show that, almost surely, dimH graph.f C g/ � t C d . De�ne

F W K ! graph.f C g/; F.x/ D .x; .f C g/.x//:

Let �f D � ı F �1 be a random measure supported on graph.f C g/. Let � denote
the metric of K.

Statement 5.5. There is a constant c depending only on s; t; d such that for all

x; y 2 K, x ¤ y we have

E..�.x; y/2 C j.f C g/.x/ � .f C g/.y/j2/� tCd

2 / � c�.x; y/�s:

Proof of Statement 5.5. Let n D n.x; y/ be the largest natural number k such that
x; y 2 Ci1:::ik for some .i1; : : : ; ik/ 2 Ik , where max ; D 0 by convention. Then
(3) yields that there is a constant c4 which depends only on s; t; d such that

2nd � c4�.x; y/t�s: (5.2)

Clearly

f .x/ � f .y/ D

1
X

iDn.x;y/C1

fi .x/ �

1
X

iDn.x;y/C1

fi .y/ D X � Y;

where X and Y are independent random variables with uniform distribution on
Œ0; 2�n�d . Therefore (5.2) and Lemma 5.3 with q D �.x; y/, g.x/�g.y/ D � , and
u D .t C d/=2 yield that

E

�

.�.x; y/2 C j.f C g/.x/ � .f C g/.y/j2/� tCd

2

�

D 4nd

Z

Œ0;2�n�d

Z

Œ0;2�n�d

d˛ dˇ

.�.x; y/2 C j˛ � ˇ C .g.x/ � g.y//j2/
tCd

2

� c12nd �.x; y/�t

� c1c4�.x; y/�s;

so c WD c1c4 works. 4
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Now we return to the proof of Theorem 1.19. By Theorem 2.3 it is enough to
prove that ItCd .�f / < 1 almost surely, so it is enough to show that EItCd .�f / <

1. The de�nition of �f , Fubini’s theorem, Statement 5.5, and Is.�/ < 1 yield
that

EItCd .�f / D E

“

.graph.f Cg//2

d�f .x/ d�f .y/

�.x; y/tCd

D E

“

K2

d�.x/ d�.y/

.�.x; y/2 C j.f C g/.x/ � .f C g/.y/j2/
tCd

2

D

“

K2

E..�.x; y/2

C j.f C g/.x/ � .f C g/.y/j2/� tCd

2 / d�.x/ d�.y/

�

“

K2

c�.x; y/�s d�.x/ d�.y/ D cIs.�/ < 1:

The proof is complete. �

6. Open problems

De�nition 6.1. Let X be a Banach space. We say that the function �W X ! R

satis�es the intertwining condition if for all x; y 2 X and Lebesgue almost every
t 2 R we have

�.x � ty/ � �.y/:

Gruslys et al. [12, Theorem 1.1] proved the following.

Theorem 6.2 (Gruslys et al.). Let X be a Banach space and let �W X ! R

be a Borel measurable function satisfying the intertwining condition. Then for

a prevalent x 2 X we have

�.x/ D sup
y2X

�.y/:

Fraser and Hyde [11] proved that if K is an uncountable compact metric space
then ¹f 2 C.K;R/W dimH f .K/ D 1º is not only prevalent but 1-prevalent, i.e.
prevalence is witnessed by a measure supported on a one-dimensional subspace.
It would be interesting to decide whether this is a general phenomena. For more on
this notion and related problems see [11]. Specially, we are interested whether the
theorems of our paper can be generalized similarly. It was proved in [12] that if
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K � R
m satis�es the property of Theorem 1.9 then the intertwining condition

holds for �W C.K;R/ ! R, �.f / D dim graph.f /, where dim denotes the
upper or lower box dimension. Hence Theorem 6.2 yields that prevalence can be
replaced by 1-prevalence in Theorem 1.9. In the case of the Hausdor� dimension
the following problem is open even for C Œ0; 1�, see [10, Question 1.5].

Problem 6.3. Let dim be one of dimH , dimB , dimB , or dimP . Let K be a compact

metric space and let d 2 N
C. De�ne

�W C.K;Rd/ ! R; �.f / D dim graph.f /:

Does the intertwining condition hold for �?

Example 1.12 shows that Theorem 1.10 does not remain true if K may have
in�nitely many isolated points. In the generic setting Hyde et al. [15, Theorem 1]
proved the following theorem. It was stated only for K � R and d D 1, but the
proof works verbatim for the general case.

Theorem 6.4 (Hyde et al.). Let K be a compact metric space and let d 2 R
C.

For a generic continuous function f 2 C.K;Rd/ we have

dimB graph.f / D sup
g2C.K;Rd /

dimB graph.g/:

Kelgiannis and Laschos [17] explicitly computed this supremum in some non-
trivial cases. It would be interesting to know whether the analogue of the above
theorem holds for prevalent maps as well.

Problem 6.5. Let K be a compact metric space, let d 2 N
C, and let dim be one

of dimB or dimB . Is it true for a prevalent f 2 C.K;Rd/ that

dim graph.f / D sup
g2C.K;Rd /

dim graph.g/‹

De�nition 6.6. A function hW Œ0; 1/ ! Œ0; 1/ is de�ned to be a gauge function

if it is non-decreasing and h.0/ D 0. The generalized h-Hausdor� measure of a
metric space X is de�ned as

H
h.X/ D lim

ı!0C
H

h
ı .X/;

where

H
h
ı .X/ D inf

°

1
X

iD1

h.diam Ai/W X �

1
[

iD1

Ai ; diam Ai � ı
±

:
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This concept allows us to measure the size of metric spaces more precisely
compared to Hausdor� dimension. It is really needed to �nd the exact measure
for the level sets of a linear Brownian motion or for the range of a d -dimensional
Brownian motion. For more on applications and for other references see [24]. We
are not able to decide whether the graph of a prevalent continuous map is as large
as possible according to this �ner scale.

Problem 6.7. Let K be a compact metric space and let d 2 N
C. Let h; g be gauge

functions such that Hh.K/ > 0 and

lim
r!0C

g.r/

h.r/rd
D 1:

Is it true that for a prevalent f 2 C.K;Rd/ we have

H
g .graph.f // > 0‹

Note that for K � R with positive Lebesgue measure the above problem was
answered positively in [2].

Acknowledgments. We thank an anonymous referee for some helpful remarks
and for suggesting new references.
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