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Uniform scaling limits for ergodic measures

Jonathan M. Fraser and Mark Pollicott1

Abstract. We provide an elementary proof that ergodic measures on one-sided shift spaces

are ‘uniformly scaling’ in the following sense: at almost every point the scenery distri-

butions weakly converge to a common distribution on the space of measures. Moreover,

we show how the limiting distribution can be expressed in terms of, and derived from, a

‘reverse Jacobian’ function associated with the corresponding measure on the space of left

in�nite sequences. Finally we specialise to the setting of Gibbs measures, discuss some

statistical properties, and prove a Central Limit �eorem for ergodic Markov measures.
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1. Introduction

Given a set or measure one is often interested in studying the �ne structure, i.e.,

properties derived from in�nitesimal behaviour. As such it is important to un-

derstand ‘tangents’ and what is currently emerging in the literature on geometric

measure theory, ergodic theory and fractal geometry is that understanding the dy-

namics of the process of ‘zooming-in’ to the tangents is even more valuable. Some

of these ideas go back a long way, in particular to Furstenberg’s work in the 60s

and 70s, see [6], but the techniques and philosophies have recently been applied to

great e�ect, for example see [7, 8, 9, 10, 11]. First one de�nes a process of zooming-

in at a point in the support of a given measure. �is may not converge but one is

interested in weak accumulation points of this process in the appropriate space

1 �is work began while J. M. Fraser was a PDRA of M. Pollicott at the University of

Warwick and completed while J. M. Fraser was at the University of Manchester. J. M. Fraser

and M. Pollicott were �nancially supported in part by the EPSRC grant EP/J013560/1. �e au-

thors thank Pablo Shmerkin and Tuomas Sahlsten for providing helpful references.
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of measures. One drawback of this approach is that one may obtain too many

‘tangent measures’ and not be able to relate them sensibly back to the original

measure. As such one looks to de�ne a measure on the space of measures (com-

monly referred to as a distribution) which best describes which measures are most

prevalent during the process of zooming-in. We will make this precise in the con-

text of measures on shift spaces in Section 1.1. Gavish [8] introduced the concept

of a measure on Euclidean space being ‘uniformly scaling’ if at almost every point

in the support of the measure, the (continuous) zooming-in process generates the

same distribution. As such, uniformly scaling measures are very homogeneous

and it turns out that one can make very strong statements about their geometry.

In particular, see [10, 9, 11, 12, 13] for recent and in�uential developments in this

direction.

In this paper we study the process described above abstractly in the context of

ergodic measures on shift spaces and, in particular, the appropriate analogue of

Gavish’s notion of ‘uniformly scaling.’ Our main contributions are an elementary

proof that shift ergodic measures are uniformly scaling and a demonstration of the

relationship between the generated distribution in terms of the ‘reverse Jacobian’

of the naturally associated measure on the space of left in�nite sequences. Our

main result will be given in Section 2 and proved in Section 3. We also show that

the stronger form of uniform scaling (which requires convergence of the q-sparse

scenery distributions) also holds for strongly mixing measures, but not for all er-

godic measures. In Section 4 we discuss the simpler setting of Gibbs measures,

where the reverse Jacobian is the classical g-function. We consider some simple

examples and �nish by proving a Central Limit �eorem for the scaling scenery

of ergodic Markov measures.

�e fact that ergodic measures are uniformly scaling is at least implicit in other

works, in particular [9, 7], and even explicit in [10, Section 3] in the setting of

interval maps. �e main di�culties in most of these examples are structural com-

plications corresponding to the geometry of the speci�c setting. We consider the

problem in symbolic space, where these complications do not occur, and aim to

give a clear exposition of why the necessary convergence occurs relying only on

classical ergodic theory.

1.1. Scaling scenery for measures on shift spaces. Let I D ¹1; : : : ; kº be a �nite

alphabet,†C D
Q1

0 I be the space of one-sided sequences over I and � denote the

usual (left) shift map. Abusing notation slightly we write x D .x0; : : : ; xn�1/ 2
Qn�1

0 I and x D .x0; x1; : : : / 2 †C. We equip †C with the standard metric
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de�ned by

d.x; y/ D 2�n.x;y/

where for x ¤ y, n.x; y/ D max¹n 2 N W xk D yk for all k D 0; : : : ; nº or �1 if

no such n exists. Write P.†C/ for the space of Borel probability measures on†C

and P� .†
C/ for the space of shift invariant measures from P.†C/. Equip both

these spaces of measures with the weak topology, which can be metrised with

either the Levy–Prokhorov or Wasserstein metric for example, and write spt.�/

for the support of a measure �. Let x D .x0; x1; x2; : : : / 2 †C and n > 1 and

de�ne “blow up” maps

Tn;x W †C �! †C

by

Tn;x.y0; y1; y2; : : : / D .x0; : : : ; xn�1; y0; y1; y2; : : : /

i.e., inserting the �rst n terms from the sequence x at the front of y. We de�ne

cylinder sets as

Œx0; : : : ; xn�1�
n�1
0 D Tn;x†

C D ¹y 2 †C W yi D xi for 0 6 i 6 n � 1º

and the following de�nition allows us to blow up � on the cylinders containing x.

De�nition 1.1. �e maps Tn;x induce a sequence of new measures�x;n 2 P.†C/,

which are called minimeasures, de�ned by

�x;n.A/ D �.Tn;xA/

�.Tn;x†C/

for measurable A � †C, provided �.Tn;x†
C/ > 0. �is sequence of minimea-

sures is called the scaling scenery of � at x and any weak-� accumulation point

of the scaling scenery is called a micromeasure of � at x.

Recently, there has been considerable interest in understanding the limiting

behaviour of the scaling scenery and many closely related concepts. It is perhaps

unreasonable to expect the scaling scenery to converge, but one is interested in

which minimeasures are most prevalent in the scaling scenery and to this end we

de�ne a sequence of measures on the space of measures by taking Cesàro averages

of Dirac measures on the minimeasures along the scaling scenery and then hope

that this converges. Let D.†C/ D P.P.†C// be the space of Borel measures on

P.†C/, which we call the space of distributions.
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De�nition 1.2. �e N th scenery distribution of � at x 2 spt.�/ is

1

N

N �1
X

nD0

ı�x;n
2 D.†C/

and any weak-� accumulation point of the sequence of N -th scenery distributions

is called a micromeasure distribution.

It is straightforward to see that any micromeasure distribution at x is supported

on the set of micromeasures of � at x. Motivated by Gavish [8], we de�ne the

analogue of uniformly scaling for shift spaces as follows.

De�nition 1.3. A measure � 2 P.†C/ is a uniformly scaling measure if there

exists a distribution Q 2 D.†C/ such that at � almost every x 2 †C

1

N

N �1
X

nD0

ı�x;n
�!
w�

Q:

In this case we say that � generates the distribution Q.

One is often interested in a stronger notion of uniform scaling. Motivated

by [11], we make the following de�nitions.

De�nition 1.4. Given q 2 N, the q-sparse N th scenery distribution of � at x 2
spt.�/ is

1

N

N �1
X

nD0

ı�x;qn
2 D.†C/:

We say that a measure � 2 P.†C/ is a strongly uniformly scaling measure if there

exists a family of distributions ¹Qqºq2N from D.†C/ such that at � almost every

x 2 †C and for every q 2 N

1

N

N �1
X

nD0

ı�x;qn
�!
w�

Qq :

We note that for applications it is not usually important if the Qq vary with

q or not. However, from a philosophical point of view it seems sensible to high-

light measures for which Qq is constant and indeed this will be the case in our

�eorem 2.2.



Uniform scaling limits for ergodic measures 5

1.2. Ergodic measures and the reverse Jacobian. Let† D
Q1

�1 I be the space

of in�nite two-sided sequences where we write .xm; : : : ; xn/ 2
Qn

m I (withm < n)

and .: : : ; x�1I x0; x1; : : : / 2 †. We also write � for the (invertible) left shift map

on † given by

�.: : : ; x�2; x�1I x0; x1; x2; : : : / D .: : : ; x�1; x0I x1; x2; x3; : : : /

and let P� .†/ denote the space of shift invariant Borel probability measures on†.

Lemma 1.5. �ere is a natural bijection between the spaces P�.†
C/ and P� .†/.

Moreover, this map is also a bijection between ergodic measures on †C and †.

Proof. For the �rst part we use the (unique) extension of an invariant measure �

on †C to † given by �.Œxm; : : : ; xn�
n
m/ WD �.Œxm; : : : ; xn�

n�m
0 / (with m < n). �e

fact that ergodic measures are paired with ergodic measures is straightforward and

omitted.

Given an ergodic measure � 2 P� .†/, de�ne a sequence of functions gn W
† ! Œ0; 1� by

gn.x/ D �.Œx�n; x�.n�1/; : : : ; x�1�
�1
�n/

�.Œx�n; x�.n�1/; : : : ; x�2��2
�n/

for x D .xl /
1
lD�1

2 spt.�/ and gn.x/ D 0 for x 2 †nspt.�/ . From this sequence

of functions we are able to de�ne the reverse Jacobian g which we will need to

state our main result, �eorem 2.1.

Lemma 1.6. �e limit g.x/ WD limn!C1 gn.x/ exists for � almost every x 2 †

and, moreover, g 2 L1.†; �/.

Proof. Consider the space of left in�nite sequences †� and let �� be the push

forward of � to †� via the natural restriction. Let ��1 be the associated right

shift and note that �� need not be ��1 invariant. Observe that gn only depends

on past coordinates, i.e. gn.x/ D gn.x
0/ if x and x0 are such that xn D x0

n for all

n < 0, and so for x 2 spt.�/

gn.x/ D ��.Œx�n; x�.n�1/; : : : ; x�1�
�1
�n/

�� ı ��1.Œx�n; x�.n�1/; : : : ; x�1��1
�n/

which is the reciprocal of the Radon-Nikodym derivative d.�� ı ��1/=d�� with

respect to the �-algebra generated by the cylinders of length n in†�. Even though

�� may be singular, the Radon-Nikodym derivative is well-de�ned because ��1

is countable to one, see [16, Section 10-1] and also [18]. It follows from [19, Propo-

sition 48.1] that gn converges almost surely to an L1 function g, which is the Ja-

cobian of d.�� ı ��1/=d�� with respect to the full Borel �-algebra.
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2. Scaling scenery for ergodic measures

We now wish to make more precise statements about the scaling scenery and to

do so we need to introduce some more notation. Given any word e D .e0; e1; : : : ,

em�1/ 2
Qm�1

0 I, and b > a > 0 the open sets

U
e.a; b/ WD ¹� 2 P.†C/ W �.Œe0 : : : em�1�

m�1
0 / 2 .a; b/º

generate the weak-� topology on P.†C/ and so determining the value of a distri-

bution on these generating sets determines it uniquely.

�eorem 2.1. Every ergodic measure � 2 P� .†
C/ is a uniformly scaling mea-

sure. Moreover, for a given ergodic � 2 P� .†
C/ the generated distribution

Q 2 D.†C/ is characterised as follows. Also write � for the associated two-

sided ergodic measure from Lemma 1.5 and let g 2 L1.†; �/ be given by Lemma

1.6. �en

Q.U.Œe0 : : : em�1�
m�1
0 ; a; b// D �

�°

y 2 † W a <
m

Y

kD1

g.�k.y�e// < b
±�

for any cylinder Œe0 : : : em�1�
m�1
0 and a < b and where we write

y�e D .: : : ; y�2; y�1; e0 : : : em�1; : : :/

observing that since g only depends on past coordinates it does not matter how

we complete the sequence to the right.

�is can be compared with the result for interval maps which appears in [10,

Proposition 3.6]. �e relevance of extensions to bi-in�nite sequences in the con-

text of blowing up a set or measure has also been observed before. In particular,

see Sullivan’s limit di�eomorphisms [20] and subsequent developments and ap-

plications of these ideas [4, 1, 11, 10]. One heuristic justi�cation is that the posi-

tive coordinates give location and the negative coordinates give distortion as one

zooms in at that location. Recall that a measure� 2 P� .†
C/ is completely ergodic

if it is �q-ergodic for all q 2 N and observe that any strongly mixing measure is

completely ergodic.

�eorem 2.2. Every completely ergodic measure � 2 P� .†
C/ is a strongly uni-

formly scaling measure. Indeed, for all q 2 N and almost every x 2 †C, the

q-sparse scenery distributions converge to the distribution Q 2 D.†C/ described

in �eorem 2.1. In particular, this holds if � is strongly mixing.
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Finally we point out that it is easy to construct invariant measures which are not

uniformly scaling, see Example 4.4. For such examples the scenery distributions

almost surely converge to a common distribution within each ergodic component,

but the distributions can vary between components. Also, it is easy to construct

ergodic measures which are not strongly uniformly scaling, see Example 4.5.

3. Proof of �eorems 2.1 and 2.2

�roughout this section we will write � both for the original ergodic measure in

P� .†
C/ and for the associated ergodic measure in P� .†/ from Lemma 1.5. Given

a word e D .e0; e1; : : : ; em�1/ 2
Qm�1

0 I, let us de�ne a sequence of functions

ge
n W † �! Œ0; 1�

by

ge
n.x/ D �.Œx�n; x�.n�1/; : : : ; x�1I e0; e1; : : : ; em�1�

m�1
�n /

�.Œx�n; x�.n�1/; : : : ; x�1��1
�n/

for x D .xl /
1
lD�1

2 spt.�/ and ge
n.x/ D 0 for x 2 † n spt.�/.

Lemma 3.1. For � almost every x 2 †, the sequence ge
n.x/ converges and

lim
n!C1

ge
n.x/ D

m
Y

kD1

g.�k.x�e// DW ge.x/

where

x�e D .: : : ; x�n; x�.n�1/; : : : ; x�1I e0; e1; : : : ; em�1; : : : /

recalling that g only depends on the past coordinates and so it does not matter

how x�e is �lled in to the right.

Proof. We assume that

�.Œx�n; x�.n�1/; : : : ; x�1I e0; e1; : : : ; em�1�
m�1
�n / > 0; n 2 N;

and that x 2 spt.�/. If this is not the case then the result is trivial and ge.x/ D 0.
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Abusing notation slightly, we have

ge
n.x/ D �.Œx�n; x�.n�1/; : : : ; x�1I e0; e1; : : : ; em�1�

m�1
�n /

�.Œx�n; x�.n�1/; : : : ; x�1��1
�n/

D
m

Y

kD1

�.Œx�n; x�.n�1/; : : : ; x�1I e0; e1; : : : ; ek�1�
k�1
�n /

�.Œx�n; x�.n�1/; : : : ; x�1I e0; e1; : : : ; ek�2�k�2
�n /

D
m

Y

kD1

gnCk.�
k.x�e//

�!
m

Y

kD1

g.�k.x�e//

for � almost every x 2 † as n ! C1 by Lemma 1.6.

Lemma 3.2. Let e 2
Qm�1

0 I. �en for any �; ı > 0 we can choose a measurable

set B � † with �.B/ < ı and n0 such that for n > n0 we have

sup
x2†nB

jge
n.x/ � ge.x/j < �:

Proof. �is is an immediate consequence of Egorov’s �eorem.

Lemma 3.3. Fix a measurable set B � † and a; b 2 R with a < b. �en for �

almost every x 2 †, as N ! C1 we have

1

N
#¹0 6 n 6 N � 1 W �nx 2 Bº �! �.B/

and

1

N
#¹0 6 n 6 N � 1 W ge.�nx/ 2 .a; b/º �! �.¹y 2 † W ge.y/ 2 .a; b/º/:

Proof. �is follows immediately by applying the Birkho� ergodic theorem for

� W † ! † and �, to the indicator function on the sets B and .ge/�1.a; b/ respec-

tively.

Observe that �x;n.Œe�
m�1
0 / is de�ned for all x 2 spt.�/ and so we can extend

it to a function of x D .xl /
1
lD�1

2 † by setting it to zero whenever .xl /
1
lD0

…
spt.�/ � †C. �is has the advantage that

�x;n.Œe0; : : : ; em�1�
m�1
0 / D �Œx0; x1; : : : ; xn�1; e0; : : : ; em�1�

mCn�1
0

�Œx0; x1; : : : ; xn�1�
n�1
0

D ge
n.�

nx/:

(3.1)
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In particular, for x 2 † the terms �x;n.Œe�
m�1
0 / depend only on the future coordi-

nates.

We are now in position to prove �eorem 2.1.

Proof. Fix e D .e0; e1; : : : ; em�1/ 2
Qm�1

0 I and a; b 2 R with a < b. We will

estimate the measure of Ue.a; b/ for scenery distributions at generic x 2 †C.

�e following fact is stated merely for clarity.

Fact 3.4. If
�

1
N

PN �1
nD0 ı�x;n

�

.Ue.a; b// converges for � almost every x 2 † to a

constant then
�

1
N

PN �1
nD0 ı�x;n

�

.Ue.a; b// converges for � almost every x 2 †C to

the same constant.

Let B � † and n0 be taken from Lemma 3.2 and observe that for N > n0 and

for all x 2 †, we have

� 1

N

N �1
X

nD0

ı�x;n

�

.Ue.a; b//

D 1

N
#

®

0 6 n 6 N � 1 W �x;n.Œe0; : : : ; em�1�
m�1
0 / 2 .a; b/

¯

by.3.1/D 1

N
#¹0 6 n 6 N � 1 W ge

n.�
nx/ 2 .a; b/º

6
n0

N
C 1

N
#¹0 6 n 6 N � 1 W ge.�nx/ 2 .a � �; b C �/º

C 1

N
#¹0 6 n 6 N � 1 W �nx 2 Bº:

Letting N ! C1 we can apply Lemma 3.3 and deduce that for � almost every

x 2 †C if Q 2 D.†C/ is an accumulation point of the scenery distributions at x,

then

Q.Ue.a; b// 6 �.¹y 2 † : ge.y/ 2 .a � �; b C �/º/C ı:

A similar argument shows that

Q.Ue.a; b// > �.¹y 2 † : ge.y/ 2 .aC �; b � �/º/ � ı:
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Since �; ı > 0 are arbitrary and D.†C/ is sequentially compact by Prokhorov’s

�eorem, we deduce that for � almost every x 2 †C the scenery distributions at

x converge to a common distribution Q 2 D.†C/ satisfying

Q.Ue.a; b// D �.¹y 2 † W ge.y/ 2 .a; b/º/

D �
�°

y 2 † W a <
m

Y

kD1

g.�k.y�e// < b
±�

which completes the proof.

�eorem 2.2 follows by an almost identical argument to that used to prove

�eorem 2.1 and so we omit the details. Observe that

� 1

N

N �1
X

nD0

ı�x;qn

�

.Ue.a; b// D 1

N
#¹0 6 n 6 N � 1 W ge

qn..�
q/nx/ 2 .a; b/º

and then apply the Birkho� ergodic theorem for �q W † ! † in the same way

as before. We use the fact that if � 2 P� .†
C/ is completely ergodic, then the

associated measure � 2 P� .†/ from Lemma 1.5 is also completely ergodic.

4. Scaling scenery for Gibbs measures

In this section we specialise to the setting of Gibbs measures and consider some

simple examples. Let � W †C
A ! R be a Hölder continuous potential for a subshift

of �nite type †C
A . A measure � 2 P.†C/ supported on †C

A is called a Gibbs

measure for � if there exists constants C1; C2 > 0 such that

C1 6
�.Œx0; : : : ; xn�1�

n�1
0 /

exp.
Pn�1

kD0 �.�
kx/ � nP.�//

6 C2 (4.1)

for all x 2 †C
A and all n 2 N and where P.�/ is the pressure of �, see [2]. If

†C
A is topologically mixing, then there is a unique shift invariant Gibbs measure

� D �� 2 P� .†
C/ and this Gibbs measure is strongly mixing and thus com-

pletely ergodic. Two very simple examples of shift invariant Gibbs measures are

Bernoulli measures and Markov measures. We will use these as examples and so

brie�y recall their de�nitions. Let .pi /i2I be a strictly positive probability vector

associated to I. Given the potential �.x/ D logpx0
for the full shift, the unique

invariant Gibbs measure satis�es

�
�

Œx0; : : : ; xn�1�
n�1
0

�

D px0
: : : pxn�1
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and is called a Bernoulli measure. One more level of complexity yields Markov

measures. Given a right stochastic matrix P D ¹pi;j ºi;j 2I and a left invariant

(stationary) probability vector .�i/i2I, the associated Markov measure is de�ned

by

�.Œx0; : : : ; xn�1�
n�1
0 / D �x0

px0;x1
: : : pxn�2;xn�1

:

Markov measures are invariant Gibbs measures for the potential �.x/ D logpx0;x1

and are supported on the subshift of �nite type given by the transition matrix

formed by replacing all non-zero entries in P with 1s. If P is irreducible, then

there is a unique stationary probability vector and thus a unique associated Markov

measure and this measure is ergodic. Furthermore, if P is aperiodic, then the

associated subshift of �nite type is topologically mixing and the Markov measure

is strongly mixing. We will also utilise the theory of Gibbs measures on the two-

sided shift space † which are de�ned similarly, see [2].

Lemma 4.1. If � is an invariant Gibbs measure for a Hölder potential, then

 WD logg is a Hölder potential for the corresponding invariant Gibbs measure

on † given by Lemma 1.5 where g W † ! Œ0; 1� is the (almost everywhere de�ned)

reverse Jacobian function given by Lemma 1.6.

Proof. �is is a standard result in the general theory of g-measures, beginning

with Keane in the 70s [14]. �e fact that  is a potential for the two-sided Gibbs

measure � is due to Ledrappier [15], see also [21, �eorem 2.1].

�eorem 2.1 and Lemma 4.1 combine to yield the following result for Gibbs

measures.

Corollary 4.1. Let � 2 P� .†
C/ be an ergodic Gibbs measure for a Hölder con-

tinuous potential � de�ned on a subshift of �nite type †C
A . �en � is uniformly

scaling generating a distributionQ 2 D.†C/. Moreover, there exists a Hölder po-

tential  W †A ! R for the associated two-sided Gibbs measure from Lemma 1.5

(which is supported on the corresponding two-sided subshift of �nite type †A)

such that

Q.U.Œe0 : : : em�1�
m�1
0 ; a; b//

D �
�°

y 2 † W a < exp
�

m
X

kD1

 
�

�k.y�e/
��

< b
±�
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for any cylinder Œe0 : : : em�1�
m�1
0 and a < b and where we write

y�e D .: : : ; y�2; y�1; e0 : : : em�1; : : : /

observing that since  depends only on past coordinates it does not matter how

we complete the sequence to the right. Moreover, if †C
A is topologically mixing,

then � is strongly uniformly scaling and generates distributions Qq which are all

equal to Q above.

�e following proposition shows that for an ergodic Gibbs measure the support

of the distribution Q is very homogeneous in that all measures in the support are

uniformly equivalent to some �rst level blow up. A similar observation was made

in [5], where the uniform equivalence was needed to pursue geometric applica-

tions. For i 2 I, let �i 2 P.†C/ be de�ned by

�i.A/ D �.iA/

�.Œi �00/

for a measurable set A � †C.

Proposition 4.2. Let � 2 P.†C/ be a Gibbs measure for a Hölder continuous

potential � de�ned on a subshift of �nite type †C
A . �en there exists a uniform

constant C > 1 depending only on the potential such that for all measurable A �
†C and all mini- or micromeasures �, for some i 2 I we have

C�1�i .A/ 6 �.A/ 6 C�i .A/:

Proof. It su�ces to prove the result for minimeasures because the bounds are

clearly preserved under weak convergence to any micromeasure. Let � D �x;n be

a minimeasure of � at x 2 †C
A and depth n 2 N and let i D xn�1. It su�ces to

estimate the measure only for cylinders, so let y 2 †C and m 2 N de�ne an ar-

bitrary cylinder Œy0; : : : ; ym�1�
m�1
0 � †C. Let the kth variation of the potential �

be de�ned by

vark.�/ D sup
x;y2†C

¹j�.x/ � �.y/j W x0 D y0; : : : ; xk�1 D yk�1º:

A simple consequence of � being Hölder is that it has summable variations, i.e.

V.�/ WD
1

X

kD0

vark.�/ < 1:
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�e choice of i implies that

�i .Œy0; : : : ; ym�1�
m�1
0 / D 0 () �.Œy0; : : : ; ym�1�

m�1
0 / D 0

and so assume without loss of generality that these measures are not zero.

We have

�.Œy0; : : : ; ym�1�
m�1
0 /

�i.Œy0; : : : ; ym�1�
m�1
0 /

D �.Œx0; : : : ; xn�1; y0; : : : ; ym�1�
mCn�1
0 /�.Œxn�1�

0
0/

�.Œx0; : : : ; xn�1�
n�1
0 /�.Œxn�1y0; : : : ; ym�1�

m
0 /

6
C 2

2 N1N2

C 2
1 D1D2

D C 2
2

C 2
1

exp
�

n�1
X

kD0

�.�k.x0; : : : ; xn�1 y// �
n�1
X

kD0

�.�k.x//
�

6
C 2

2

C 2
1

exp
�

n�1
X

kD0

varn�k.�/
�

6
C 2

2

C 2
1

exp.V .�//

< 1;

where

N1 D exp
�

mCn�1
X

kD0

�.�k.x0; : : : ; xn�1y// � .mC n/P.�/
�

N2 D exp.�..xn�1y// � P.�//;

and

D1 D exp
�

n�1
X

kD0

�.�k.x// � nP.�/
�

;

D2 D exp
�

m
X

kD0

�.�k.xn�1 y// � .mC 1/P.�/
�

:
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A similar argument going in the opposite direction yields

�.Œy0; : : : ; ym�1�
m�1
0 /

�i .Œy0; : : : ; ym�1�
m�1
0 /

>
C 2

1

C 2
2

exp.�V.�//

> 0

completing the proof.

Note that if †C
A is the full shift, then all of the �i are equivalent to �. �us

Proposition 4.2 shows that all micromeasures of a fully supported Gibbs measure

are themselves Gibbs measures for the same potential and a pleasant consequence

of this is that there is at most one invariant micromeasure for any (invariant or

non-invariant) fully supported Gibbs measure.

In the simpler setting of locally constant potentials, one can say even more. In

fact, an explicit expression for the generated distribution Q can be derived easily

from the de�nitions.

Example 4.2. Let � 2 P� .†
C/ be a Bernoulli measure. �en all minimeasures

and micromeasures at any point are equal to� itself and so� is strongly uniformly

scaling and generates the distribution ı� 2 D.†C/.

Proof. �is follows immediately from the de�nitions.

�e situation for Markov measures is only slightly more complicated. Here

there are k di�erent measures one can �nd in the scaling scenery, corresponding

to the �rst level blow ups �i .

Example 4.3. Let � 2 P�.†
C
A / be an ergodic Markov measure for a subshift of

�nite type †C
A . �en � is uniformly scaling and generates the distribution

X

i2I

�i ı�i
2 D.†C/:

If †C
A is topologically mixing, then � is strongly uniformly scaling.
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Proof. Let i 2 I, x 2 †C such that xn�1 D i and let y 2 †C and m 2 N be

arbitrary. �en

�x;n.Œy0; : : : ; ym�1�
m�1
0 / D �.Œx0; : : : xn�1; y0; : : : ; ym�1�

mCn�1
0 /

�.Œx0; : : : ; xn�1�
n�1
0 /

D �x0
px0x1

: : : pxn�2xn�1
pxn�1y0

: : : pym�2ym�1

�x0
px0x1

: : : pxn�2xn�1

D pxn�1y0
: : : pym�2ym�1

D �i .Œy0; : : : ; ym�1�
m�1
0 /;

and so for such x and n,

�x;n D �i :

�is observation combined with the Birkho� ergodic theorem implies that for �

almost all x we have

1

N

N �1
X

nD0

ı�x;n
D

X

i2I

� 1

N

N �1
X

nD0

1Œi�0
0
.�n.x//

�

ı�i

�!
w�

X

i2I

� Z

†C

1Œi�0
0
d�

�

ı�i

D
X

i2I

�iı�i
;

completing the proof. �e topologically mixing case follows similarly.

�ese results can easily be extended to “generalised Markov measures,” i.e.,

the Gibbs measures for locally constant functions. �e following examples are a

simple demonstration of the sharpness of �eorems 2.1 and 2.2.

Example 4.4. �e Markov measure associated with the stochastic matrix

0

@

1=2 1=2 0

1=2 1=2 0

0 0 1

1

A

and left invariant probability vector .1=3; 1=3; 1=3/ is invariant but not uniformly

scaling as the scenery distributions converge to di�erent limits almost surely

within the two ergodic components.
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Example 4.5. �e unique Markov measure associated with the stochastic matrix

0

@

0 0 1

0 0 1

1=2 1=2 0

1

A

is ergodic but not strongly uniformly scaling. In particular, for even q it is not �q

ergodic and the q-sparse scenery distributions converge to di�erent limits almost

surely within the �q ergodic components.

Note that both of these (counter) examples have positive entropy. �e simplic-

ity of the result in the case of Markov measures allows us to make more precise

statements about the statistical behaviour of the scenery distributions. For exam-

ple, we have the following Central Limit �eorem (CLT).

Corollary 4.3 (Central Limit �eorem). Let� be an ergodic Markov measure and

Q D
P

i2I �i ı�i
be the distribution it generates. Fix a cylinder Œe0 : : : em�1�

m�1
0

and a < b and write U D U.Œe0 : : : em�1�
m�1
0 ; a; b/. If Q.U/ 2 .0; 1/, then letting

�2 D Q.U/ �Q.U/2 > 0 we have

1p
N

N �1
X

nD0

ı�x;n
.U/ �

p
N Q.U/ ) N.0; �2/

where ) denotes convergence in distribution.

Proof. Write IU D ¹i 2 I W �i 2 Uº. Example 4.3 and the classical CLT yield

1p
N

N �1
X

nD0

ı�x;n
.U/ �

p
NQ.U/

D 1p
N

N �1
X

nD0

�

X

i2IU

1Œi�0
0
.�n.x//

�

�
p
NQ.U/

) N.0; �2/

which completes the proof. We have used the fact that

Xn WD
X

i2IU

1Œi�0
0
.�n.x//

is an i.i.d. sequence taking the value 1 with probability Q.U/ D
P

i2IU
�i and 0

otherwise.
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Other related statistical results follow similarly, but we omit further details. If

one was interested in obtaining a CLT for general Gibbs measures then, inspecting

the proof of �eorem 2.1, one obtains

1p
N

N �1
X

nD0

ı�x;n
.U/ �

p
NQ.U/

D 1p
N

N �1
X

nD0

1.ge
n/�1.a;b/.�

n.x// �
p
N Q.U/:

�is expression is more di�cult to handle for two reasons. �e �rst is that it

involves an ergodic sum for a sequence of functions and so one needs an analogue

of the CLT for Maker’s ergodic theorem. �e second and more important reason is

that the sequence Xn WD 1.ge
n/�1.a;b/

�

�n.x/
�

is not i.i.d. and moreover we cannot

guarantee that the functions 1.ge
n/�1.a;b/ or even 1.ge/�1.a;b/ are Hölder continuous,

despite the fact we know (in the Gibbs setting) that ge
n and ge are Hölder. �is

prevents us from using several standard results on CLTs for ergodic sums, see

[17, 3]. In the setting of ergodic non-Gibbs�, a CLT appears even harder to achieve

because we can only guarantee ge is L1.
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