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Structure of the class of iterated function systems

that generate the same self-similar set

Qi-Rong Deng1 and Ka-Sing Lau2

Abstract. Let HK denote the family of homogenous IFSs that satisfy the open set condition

(OSC) and generate the same self-similar set K, we call the IFSs in HK isotopic, and

give the isotopic class HK a multiplication operation de�ned by composition. The �nitely

generated property of HK was �rst studied by Feng and Wang on R [FW], and by the

authors on R
d under the strong separation condition [DL]. In this paper, we continue the

investigation of the isotopic class on R
d . By using a new technique with the OSC, we

prove that HK is �nitely generated if either (i) K is totally disconnected, or (ii) the convex

hull Co.K/ is a polytope, and there exists a line L passing through a vertex of Co.K/ such

that L \K is a totally disconnected in�nite set. The conditions are easy to check and are

satis�ed by many standard self-similar sets.
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1. Introduction

By an iterated function system (IFS), we mean a �nite family of contractive maps

¹�iºN
iD1; N � 2 on R

d . If we apply these maps repeatedly on a seed set, we

obtain a unique compact subsetK such thatK D
SN

iD1 �i.K/, which is called the

attractor of the IFS (see [11] and [15]). In particular, if the �i ’s are similitudes, i.e.,

�i .x/ D �iRi .x C ˛i /; i D 1; : : : ; N (1.1)

where 0 < �i < 1 and the Ri is an orthonormal matrix, then we call K a self-

similar set.

1 The corresponding author is supported by NNSF of China (no. 11471075) and NSF of Fujian

(no. 2015J01001).

2 The second author is supported by an HKRGC grant, and NNSF of China (no. 11171100 &
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This simple setup provides the most fundamental framework in the study of

fractals; not only that it has far reaching theoretical aspects, it also o�ers a very

e�cient way to generate many fascinating self-similar patterns [3]. As a quote

from [4]: iterated function systems have been at the heart of fractal geometry

almost from its origins. In fact in the main development, there is a vast literature

on dimension theory, multifractal structure and dynamical systems of the self-

similar sets/measures for given IFSs (see [2], [4], [10], [11], [13], [18], [19], [23],

and the references therein). More recently, there is a lot of interest on the study of

Lipschitz equivalence of self-similar sets (see [8], [12], [21], [25], and [28]) and

topological classi�cations (see [1], [17], [20], and [27]) of certain fractal sets.

In another direction, it is natural to ask what are the IFSs that produce a given

attractor. The problem was originated from the image compression point of view,

and had been studied considerably (see, e.g., [5] and [7]). Recently Feng and

Wang [14] initiated an interesting investigation on a new aspect on the following

problem. Let HK be the class of homogenous IFSs on R that satisfy the open

set condition (OSC) and generate the same self-similar set K. Giving HK a

multiplication operation by composition, they proved the following result

Suppose K is not a �nite union of intervals, then HK has either one

or two generators according to K is non-symmetric or symmetric (with

respect to some point).

(Note that if K D Œ0; 1�, then it is easy to see that HK has in�nitely many

generators.) The proof depends very much on the special properties of R, and they

posed the question on extending this to higher dimension. This was considered by

the authors [9] under the more restricted strong separation condition (SSC) on K

(i.e., �i .K/ \ �j .K/ D ;, for i 6D j ). In this paper, we will continue the study

under the open set condition (OSC), which has far richer structure, and include a

lot more self-similar sets.

We call an iterated function system (IFS) ¹�iºm
iD1; m � 2 on R

d homogeneous

if the �i ’s are as in (1.1) and have identical �i and Ri for all i . For simplicity,

we will use ˆ (or ‰) to denote such IFS, and use I to denote the family of all

homogeneous IFSs. For ˆ1, ˆ2 2 I, we de�ne

ˆ1ˆ2 WD ˆ1 ıˆ2 WD ¹f1 ı f2W fi 2 ˆi ; i D 1; 2º;

then clearly, I is a semi-group under this multiplication.
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De�nition 1.1. Two IFS’s ˆ, ‰ 2 I are said to be isotopic if they generate the

same self-similar set K. We use both Œˆ� and IK to denote the isotopic classes,

and also IK.�/ for the subfamily of IK with contraction ratio � > 0.

It is clear that the isotopic relation is an equivalent relation on I, and Œˆ� is

an equivalent class; also, Œˆ� D IK is a sub-semigroup of I. We say that IK is

�nitely generated, if there exists a �nite subset F � IK such that every ‰ 2 IK

can be written as ‰ D ˆ1 : : : ˆk for some ˆ1; : : : ; ˆk 2 F .

We say that an IFS ¹�iºN
iD1 satis�es the open set condition (OSC) (see [11]

and [23]) if there exists a non-empty bounded open set U such that

�i .U / � U and �i .U / \ �j .U / D ;; for i 6D j:

The OSC is one of the most fundamental conditions on an IFS, and it will

be assumed throughout the paper unless otherwise stated. We use H .� I/

to denote the family of homogeneous self-similar IFSs that satisfy the OSC,

and use the same type of notations as the above for the restriction of I on H

(e.g., HK ;HK.�/ etc.). Note that H is not close under multiplication, but HK

will be (Corollary 6.2), and is hence a sub-semigroup of I. We also assume the

self-similar sets under consideration span R
d without explicitly mentioning. Our

main theorems are

Theorem 1.1. IfK � R
d is totally disconnected and spansRd , then HK is �nitely

generated.

For self-similar sets that are not con�ned to totally disconnected sets, we have:

Theorem 1.2. Suppose the self-similar set K � R
d is such that the convex hull

Co.K/ is a d -dimensional polytope, and there exists a line L passing through a

vertex of Co.K/ such that L\K is a totally disconnected in�nite set, then HK is

�nitely generated.

The condition that the convex hull of K is a d -dimensional polytope in the

above theorem has the following simple characterization.

Proposition 1.3. Let K � R
d be a self-similar set generated by a homogeneous

IFS ˆ D ¹�j .x/ D �R.x C j̨ /ºm
j D1 2 I (no OSC is assumed). Assume K spans

R
d , then Co.K/ is a d -dimensional polytope if and only if Rk D Id, the identity

matrix, for some positive integer k > 0.
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As a direct consequence of Theorem 1.2 and Proposition 1.3, we have:

Proposition 1.4. Suppose the orthonormal matrix R in ˆ satis�es Rk D Id for

some k > 0 , and dimH .K/ < d , then HK is �nitely generated.

The logarithmic commensurability of the IFSs in HK follows from Theo-

rems 1.1 and 1.2.

Theorem 1.5. LetK be a self-similar set satisfying the assumptions of Theorem 1.1

or Theorem 1.2. If ˆ D ¹�j .x/ D �R.x C j̨ /ºN
j D1 and ‰ D ¹ j .x/ D

%S.x C ǰ /ºM
j D1 are two IFSs in HK , then there exist positive integers k; ` > 0

such that ˆk D ‰`.

It follows immediately from Theorem 1.5 that HK is closed under multiplica-

tion, and is hence a �nitely generated semi-group. The above theorems apply to

a large number of standard self-similar sets. Theorem 1.2 also include some sets

with dimH .K/ D d (they are self-similar tiles); we can adjust the second condition

in the theorem to the existence of an edge Œ�1; �2� of Co.K/ such that Œ�1; �2�\K
is not a �nite union of intervals, and obtain the same conclusion (Proposition 5.6).

This is an analog of the condition on R in [14].

The proofs of the two main theorems depend on the fact that the contraction

ratios of the IFSs inHK are logarithm commensurable as in [14] and [9]. However,

the techniques are quite di�erent, we need to bring in two new ingredients in the

proofs. In Theorem 1.1, themajor technique is from [28]. In their study of Lipschitz

equivalence of totally disconnected self-similar sets, Xi and Xiong [28] extended

the SSC assumption in [12] to the OSC by devising a subtle “neighborhood

decomposition” on the self-similar sets. Their main e�ort is to show that the

Lipschitz equivalence of the self-similar sets (which applies to our case) implies

the logarithmic commensurability of the IFS’s; but the proof is complicate and

lengthy. By adapting their decomposition to our situation, we give a clearer and

shorter proof. We show that for a totally disconnected self-similar set K,

`K WD sup¹#.HK.�
n//W n � 1º < 1

(Proposition 4.1), which is used to prove the logarithm commensurable property

of the contraction ratios (Proposition 4.2), and is a key step in the proof of

Theorem 1.1.
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For Theorem 1.2, Proposition 1.3 allows us to assume R to be the identity ma-

trix, and reduces our proof of the logarithmic commensurability of the contraction

ratios in HK toL\K (using Proposition 2.3 and Lemma 5.3). For Proposition 1.3,

we remark that Kirat [16] has another characterization of Co.K/ to be a polytope,

in which the number of vertices can be estimated. Also, Strichartz and Wang [24,

Theorem 4.2] gave another characterization that Co.K/ is a polytope by consider-

ing the outward unit normal vectors of the .d�1/-dimensional faces of the convex
hull of set ¹ j̨ ºm

j D1.

For the question on the existence of a single generator, or the more speci�c

information of the generators inHK , we do not have a complete answer like the one

dimensional case [14]. We only have some partial results for the case in Theorem

1.2 through Proposition 1.3. Wewill discuss this through some basic examples such

as the Sierpiński gasket, the twin dragon, etc. (Section 6); we show that essentially

it is related to the number theoretic properties of the IFSs and the symmetry of the

set K. We also give some examples to show that the conditions in the theorems

are optimal.

The paper is organized as follows. In Section 2, we de�ne the neighborhood

decomposition for the totally disconnected sets, and provide some preliminary re-

sults. In Section 3, some essential properties of the neighborhood decomposition

are discussed in detail. The proofs of Theorem 1.1 and Theorem 1.2 are given in

Section 4 and Section 5, respectively. Finally in Section 6, we prove Theorem 1.5,

and provide a number of examples to illustrate the theorems. Some remarks and

open questions are also discussed.

2. Basic setup

For E � R
d , we use jEj to denote the diameter of E, and let Eı D ¹x 2

R
d W dist.x; E/ < ıº be the ı-neighborhood of E. Also we use Co.E/ to denote

the closed convex hull of E. For an a�ne map f .x/ D AxCb onRd , we consider

f as a point in R
d2Cd , and de�ne a norm by

kjf kj WD
p

tr.AtA/C kbk2:

Then kf .x/k � cKkjf kj for x 2 K, where cK D max¹kxk C 1W x 2 Kº
(use kAk2 � tr.AtA/ where kAk is the L2-norm of A). Without loss of generality,

we adopt the following convention throughout the paper to simplify notations:

the set K under consideration spans Rd and jKj D 1.
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For a totally disconnected compact setK and for �xed 0 < � < 1, we consider

K�k , k � 0, the �k-neighborhood of K, and let ¹Ck;1; Ck;2; : : : ; Ck;nk
º be the

family of connected components of K�k . Denote

Kk;j D K \ Ck;j ; j D 1; 2; : : : ; nk; k � 0 (2.1)

and

Kk D ¹Kk;1; : : : ; Kk;nk
º; K D

[1

kD0
Kk : (2.2)

Since we have assumed jKj D 1, it is clear that for k D 0, there is only one

connected component C0;1, hence K0 D ¹Kº. For k � 1, Kk is a �nite partition

of K with distance at least 2�k to each other. Moreover, for K a self-similar set

of an IFS ˆ with N maps and contraction ratio �, then #Kk � N k . We remark

that this neighborhood decomposition plays the similar role as the SSC in that the

cells in each level of iteration are uniformly separated.

As a simple example, we let ˆ D ¹�i.x/º3
iD1 be the IFS on R with

�i .x/ D 1

5
.x C ˛i / such that ˛1 D 0; ˛2 D 3; ˛3 D 4:

The attractorK is the so-called ¹1; 4; 5º-self-similar set in view of the selection of

the three subintervals in each iteration. The attractor is a totally disconnected set.

In Figure 1, the connected components of
S

jI jDk �I .Œ0; 1�/ are Lk;j , and Ck;j are

the intervals de�ned by the dotted ellipses, and Kk;j D Lk;j \K D Ck;j \K.

Figure 1. The neighborhood decomposition of the ¹1; 4; 5º-self-similar set.

The interest of this example is the surprising result in [25] that the ¹1; 4; 5º-
self-similar set and the ¹1; 3; 5º-Cantor set are Lipschitz equivalent, answering

an open question of David and Semmes. It further motivated the deep study

of the Lipschitz equivalence of totally disconnected self-similar sets in [28], in

which the present neighborhood decomposition was introduced. The right �gure

is the corresponding graph with the vertices representing the intervals, and the
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horizontal edges joining the dots, representing the connected components. The

graph is called an augmented tree for the additional edges, and is a hyperbolic

graph; it has also been used to study the Lipschitz equivalence problem in the

context of hyperbolic graphs (see [21] and [8]).

Lemma 2.1. Let K � R
d be a totally disconnected compact subset and spans

R
d . Then for 0 < � < 1, the following statements hold:

(i) for k � 0,

Ck;j D .Kk;j /�k ; j D 1; : : : ; nkI

(ii) for any KkC1;j 2 KkC1, there is a unique Kk;i 2 Kk such that

KkC1;j � Kk;i I

(iii) each x 2 K corresponds to a unique sequence ¹jkºk with

\1

kD0
Kk;jk

D ¹xºI

(iv) there exists an integer k > 0 and a neighborhood V � R
d2Cd of the identity

map Id on R
d such that for 1 � j � nk ,

(a) f .Kk;j / � .Kk;j /�k for any f 2 V , and

(b) ¹y2 � y1; y3 � y1; : : : ; ynk
� y1º spans Rd whenever yj 2 Co.Kk;j /.

Proof. Statement (i)–(iii) are obvious. For (iv), since K spans R
d , there exist

xi 2 K, 1 � i � d C 1, such that ¹x2 � x1; x3 � x1; : : : ; xdC1 � x1º is a basis of
R

d . Hence there exists " > 0 such that ¹y2 �y1; y3 � y1; : : : ; ydC1 � y1º is also
a basis ofRd whenever yi 2 B.xi ; "/. AsK is a totally disconnected compact set,

there exists an integer k > 0 such that jKk;j j < " for all Kk;j 2 Kk (by (iii)); also

let

V D ¹f a�neW kjf � Idkj < c�1
K �k; for all x 2 Kº (2.3)

where cK D max¹kxk C 1W x 2 Kº. Hence, for f 2 V , kf .x/ � xk < �k for all

x 2 K (see the �rst paragraph of this section). As ¹.Kk;j /�k ºnk

j D1 is a disjoint cover

of K (by (i)), the connected component property implies f .Kk;j / � .Kk;j /�k for

f 2 V , and (a) follows. Also note that Kk is a partition of K, each xj belongs to

a unique Kk;tj � B.xj ; "/. Hence Co.Kk;tj / � B.xj ; "/ and (b) follows. �
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Proposition 2.2. Let K � R
d be a totally disconnected compact set and spans

R
d . Then for any invertible a�ne map f on R

d , there is a neighborhood

V � R
d2Cd of f such that g.K/ 6� f .K/ for all g 2 V n ¹f º.

Proof. Since f is invertible, we can assume, without loss of generality, that

f D Id. We show that the V in (2.3) satis�es the proposition. Suppose otherwise,

g.K/ � K for some g 2 V n ¹Idº. We let k be as in (2.3) as well, then for any

E 2 Kk , g.E/ � E�k \K D E. Hence

g.Co.E// � Co.E/; for all E 2 Kk :

By Brouwer’s �xed point theorem, there exist yj 2 Co.Ek;j / such that

g.yj / D yj and yj 2 Co.Ek;j /; j D 1; 2; : : : ; nk:

Lemma 2.1(iv)(a) shows that ¹y2 � y1; y3 � y1; : : : ; ynk
� y1º contains a basis of

R
d . This means that g is the identity map, a contradiction. �

To conclude this section, we give a simple proposition which is used in [14]

on R.

Proposition 2.3. Supposeˆ;‰ 2 HK , and assume

ˆ D ¹�i.x/ D �S.x C ˛i /ºN
iD1 and ‰ D ¹ j .x/ D �S.x C ǰ /ºM

j D1;

then

ˆ D ‰:

Proof. The proof is the same as [14, Proposition 2.1]. The basic idea is that

logN=j log �j D dimH K D logM=j log �j implies M D N . The normalized s-

dimensional Hausdor� measure � is the self-similar measure with equal weights

for both ˆ and ‰. Hence the Fourier transform of � satis�es

O�.�/ D P.�S t�/ O�.�S t�/ D Q.�S t�/ O�.�S t�/;

where P.�/ D 1
N

PN
j D1 e

�2�i˛i �S t � ; Q.�/ D 1
N

PN
j D1 e

�2�iˇi �S t � are the cor-

responding mask polynomials. This implies P.�/ D Q.�/, so that ¹˛iºN
iD1 D

¹ ǰ ºN
j D1. Hence ˆ D ‰. �

3. The neighborhood decomposition

For an IFS ˆ D ¹�j ºN
j D1, we let † D ¹1; : : : ; N º and use †� D

S1
kD0†

k to

denote the set of �nite indices, i.e., J D j1 : : : jk 2 †k; we let jJ j D k be the
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length of J , and �J D �ji
ı � � � ı �jk

. We denote

ˆk D ¹�J W jJ j D kº:

(As convention ˆ0 D ¹Idº.) Note that for ˆ 2 HK.�/, then ˆ
k 2 HK.�

k/. The

following lemma shows that the neighborhood decomposition is compatible with

the IFS.

Lemma 3.1. Let ˆ 2 HK.�/ with K totally disconnected, and let f 2 ˆk . Then

f .K/�k is connected; f .K/ \Kk;j ¤ ; if and only if f .K/ � Kk;j ; and

Kk;j D
[

¹f .K/W f 2 ˆk ; f .K/ � Kk;j º: (3.1)

Moreover, for any K`;i , f .K`;i / � KkC`;j for some j .

Proof. Since we have assumed jKj D 1, K1 is connected, the �rst statement

follows from f .K/�k D f .K1/. For the second statement, assume f .K/\Kk;j ¤
;. Since Ck;j is a connected component of K�k , we have f .K/�k � Ck;j . Hence

f .K/ � Kk;j , which veri�es the second statement. This also implies that

[

j
Kk;j D K D

[

j
¹f .K/ � Kk;j W f 2 ˆkº;

and the disjointness yields Kk;j D
S

¹f .K/ � Kk;j W f 2 ˆkº for each j .
For the last statement, we letKkC`;j be such that f .K`;i /\KkC`;j 6D ;. Since

C`;i is connected, so is f .C`;i /. It follows that
�

f .K`;i/
�

�kC`.D f .C`;i // is also

connected. As CkC`;j is a connected component,
�

f .K`;i /
�

�kC` � CkC`;j for

some j , and hence f .K`;i/ � KkC`;j by the de�nition of KkC`;j . �

We remark that the last statement also holds for any similitude h with contrac-

tion ratio �k and h.K/ � K. In Lemma 3.3, we will show that for some special

Kk;j , we can actually have equality, f .K`;i / D KkC`;j .

The following proposition contains two crucial estimates of the decomposition.

Proposition 3.2. Let ˆ 2 HK.�/ with K totally disconnected. Then

(i) �0 WD sup¹��kjKk;j jW k � 0; 1 � j � nkº < 1, hence

�k � jKk;j j � �0�
kI

(ii) `0 WD maxk;j#¹f 2 ˆkW f .K/ � Kk;j º < 1, hence in (3.1), the number of

sets in the union � `0.
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Proof. The main idea is from [28]. For completeness, we provide a simpler proof

adapted to our situation. For any E � R
d , ı > 0, and a 2 Eı , we use Eı;a to

denote the connected component of Eı that contains a.

(i) We �rst give some auxiliary notations. It follows from a basic property of

the OSC [11] that

M WD sup
x2Rd ;k�0

#¹f 2 ˆkW f .K/ \ B.x; �k/ 6D ;º < 1: (3.2)

Let ¹giºi2I denote a family of isometries, and let

G D
°

¹giºi2I W #I � M; gi .K/ \ B.0; 1/ 6D ;; and 0 2
[

i2I
gi .K/

±

:

Let

F D
®

F D
[

i2I
gi .K/W ¹giºi2I 2 G

¯

;

then F is compact under the Hausdor� metric. Note that any F 2 F is totally

disconnected, as it is the �nite union of totally disconnected compact sets; this

implies for any �xed 0 < � < 1, there exists a ı > 0 such that Fı;0, the component

of Fı at 0, is contained in B.0; �/. Denote

ıF D sup¹ı � 0WFı;0 � B.0; �/º:

It is direct to check that ı.�/ is a continuous function on F 2 F , it implies that

infF 2F ıF > 0. Choose an integer N such that 0 < �N �1 < infF 2FıF . Then

F�N ;0 � B.0; �/ for all F 2 F : (3.3)

Now, for any k > N and E 2 Kk , we �x an a 2 E and de�ne an (expanding)

similitude T by T .y/ D �N �k.y � a/. Let

T D ¹T ı f W f 2 ˆk�N ; T ı f .K/\ B.0; 1/ 6D ;º:

As a 2 f .K/ for some f 2 ˆk�N (by ˆ 2 HK) and T .a/ D 0, it follows

from (3.2) that T 2 G . Let

F D
[

¹T ı f .K/WT ı f 2 T º;

then F 2 F , and hence F�N ;0 � B.0; �/ (by (3.3)); also a 2 .T �1.F //�N ;a.
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We claim that E � T �1.F�N ;0/. If f 2 ˆk�N and T ı f .K/ \ B.0; 1/ D ;,
then T ı f .K/�N is disjoint from F�N ;0. On the other hand, note that

F [
[

¹T ı f .K/W f 2 ˆk�N ; T ı f .K/\ B.0; 1/ D ;º D T .K/:

Therefore F�N ;0 is the connected component of .T .K//�N containing 0, and

T �1.F�N ;0/, which is the connected component of K�k (D T �1.T .K/�N /) and

contains a. Since a 2 E (2 Kk), we haveE � T �1.F�N ;0/. This proves the claim.

Observe that x 2 F�N ;0 implies jxj < � < 1 (by (3.3)); also the de�nition of

T implies that jT �1.F�N ;0/j � 2�k�N . These together with the claim verify that

��k jEj � 2��N , and statement (i) follows.

(ii) Let

¹fk;j;`º
nk;j

`D1
D ¹f 2 ˆkW f .K/ � Kk;j º;

and let O be a bounded open set in the OSC such that O \K ¤ ;, see [23]. By
considering O \ K1 where K1 WD ¹xW dist.x;K/ < 1º, we can assume, without
loss of generality, that O � K1. As the contraction ratio of fk;j;` is �

k, we have
Snk;j

`D1
fk;j;`.O/ � .Kk;j /�k . Let L be the d -dimensional Lebesgue measure.

Then

L.O/ � nk;j � �dk � L.O/

nk;j
X

`D1

�dk

D L

�

nk;j
[

`D1

fk;j;`.O/
�

� L..Kk;j /�k /

� L.B.0; 1//.�0 C 2/d � �dk

(the last inequality is by (i)), and statement (ii) follows from the inequalities. �

Corollary 3.3. With the assumption and notation as in Proposition 3.2, there

exists a constant c � 1 such that

c�1 �
Xnk

j D1
jKk;j js � c; k D 0; 1; 2; : : :

where s D dimH .K/.
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Proof. We observe that fk;j;` has contraction ratio �
k, hence Proposition 3.2(ii)

implies

1 D
nk
X

j D1

nk;j
X

`D1

�ks � `0

Xnk

j D1
jKk;j js:

(The �rst identity is the dimension formula under the OSC.) Also by Proposi-

tion 3.2(i), we have

Xnk

j D1
jKk;j js �

Xnk

j D1
.�0�

k/s � �s
0

nk
X

j D1

nk;j
X

`D1

�ks D �s
0:

The corollary follows. �

The following lemma is another consequence of Proposition 3.2, it allows us to

choose aKk;i so that for anymulti-index I 2 †�, �I .Kk;i/ is also a full component

in the neighborhood decomposition. It will be used in the proof of Propositions 4.1

and 4.2 in the next section.

Lemma 3.4. Let ˆ 2 HK.�/ with K totally disconnected. Then there exist k0

and Kk0;i0 2 Kk0
, such that for any similitude h with contraction ratio �n and

h.K/ � K,

h.Kk0;i0/ 2 Kk0Cn:

In particular, for any multi-index I 2 †n, we have �I .Kk0;i0/ 2 Kk0Cn:

Proof. For any k � 1, Lemma 3.1 and Proposition 3.2(ii) imply that each E WD
Kk;j can be written as the union of �J .K/, jJ j D k, and the number in the

union is at most `0; moreover, the union is Hs-measure non-overlap by OSC

(s is the Hausdor� dimension of K). Observe that Hs.�J .K// D �skHs.K/,

hence ¹��skHs.E/WE 2 Kkº takes at most `0 possible values. We conclude that

there is an integer k0 > 0 and Kk0;i0 2 Kk0
such that

��sk0H
s.Ek0;i0/ D sup

k>0

¹��sk
H

s.E/WE 2 Kkº: (3.4)

Now for the given h, h.Kk0;i0/ is contained in some Kk0Ct;` 2 Kk0Ct (by

Lemma 3.1 and the remark). By (3.4), we have

��s.k0Ct/
H

s.h.Kk0;i0// D sup
k>0

¹��sk
H

s.E/WE 2 Kkº:

Therefore, h.Kk0;i0/ D Kk0Ct;` 2 Kk0Ct , and the lemma follows. �
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4. Proof of Theorem 1.1

The proof of Theorem 1.1 depends on the following two propositions.

Proposition 4.1. For 0 < � < 1 and K is totally connected, we have

`K WD sup¹#HK.�
n/W n � 1º < 1: (4.1)

Proof. To prove (4.1), we assume on the contrary that `K D 1. Then there exists

a sequence of positive integers ¹mkºk such that #HK.�
mk / > k, andwe can choose

distinct IFSs ˆk;j 2 HK.�
mk /, 1 � j � k. Fix an x0 2 K. For every k, there

exist similitudes hk;j 2 ˆk;j ; 1 � j � k, such that x0 2 hk;j .K/. Let xk;j 2 K

such that x0 D hk;j .xk;j /, then hk;j can be written as

hk;j .x/ D �mkTk;j .x � xk;j /C x0; 1 � j � k; k � 1

where �mkTk;j is the linear part of maps in ˆk;j . Furthermore, Proposition 2.3

shows that ¹Tk;j ºj are distinct orthogonal matrices, so hk;j are all distinct. Let

Sk;j D h�1
k;1

ı hk;j , then Sk;2; Sk;3; : : : ; Sk;k are all distinct and

Sk;j .x/ D T �1
k;1Tk;j .x � xk;j /C xk;1; 2 � j � k; k � 1:

Since T �1
k;1
Tk;j is an orthogonal matrix, and xk;j belongs to K, the sets ¹Sk;j ºj

and ¹S�1
k;j

ºj are contained in a compact set of Rd2Cd . Note that the number of

maps in ¹Sk;2; Sk;3; : : : ; Sk;kº tend to in�nity, this implies

lim
k!1

min¹kjSk;i � Sk;j kjW 2 � i < j � kº D 0:

Hence there exist 2 � ik < jk � k so that limk!1kjSk;ik �Sk;jk
kj D 0:As ¹S�1

k;j
ºj

and ¹Sk;j ºj are uniformly bounded, we have limk!1 kjS�1
k;ik

ı Sk;jk
� Idkj D 0:

This implies

lim
k!1

��mk khk;jk
.x/ � hk;ik .x/k D lim

k!1
kS�1

k;ik
ı Sk;jk

.x/ � xk D 0 (4.2)

uniformly for all x 2 K.

Next, by Lemma 2.1(iv), there exists an integer � such that ¹y2 � y1,

y3 � y1; : : : ; yn�
� y1º contains a basis of R

d for any yj 2 Co.K�;j /. By

Lemma 3.4, there exist �0, K�0;i0 , such that for the multi-indices Ij with jIj j D �

and �Ij
.K/ � K�;j , we have

�Ij
.K�0;i0/ 2 K�0C� ; for all 1 � j � n� :
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Since hk;i .K/ � K, by Lemma 3.4 again, we have hk;i .�Ij
.K�0;i0// 2 K�0C�Cmk

for 1 � j � n� . By (4.2), we see that there exists a large k such that

hk;ik .�Ij
.K�0;i0// � .hk;jk

.�Ij
.K�0;i0///��0C�Cmk ; for all 1 � j � n� :

Hence by the connected component property,

hk;ik .�Ij
.K�0;i0// D hk;jk

.�Ij
.K�0;i0//

necessarily. This implies

hk;ik .Co.�Ij
.K�0;i0/// D hk;jk

.Co.�Ij
.K�0;i0///; 1 � j � n� ;

and Brouwer’s �xed point theorem yields a yj 2 Co.�Ij
.K�0;i0// such that

hk;ik .yj / D hk;jk
.yj /; 1 � j � n� :

Since �Ij
.K�0;i0/ � �Ij

.K/ � K�;j for each j , so are their convex hulls.

Hence from our choice of � , ¹y2 � y1; y3 � y1; : : : ; yn Ok
� y1º contains a basis

of Rd . It follows that hk;ik ; D hk;jk
. This contradicts the distinctness of hk;j , and

completes the proof. �

Next we verify the logarithmic commensurability of the contraction ratios

in HK . It is instructive to compare this with Proposition 2.3 where the contraction

ratios and the orthogonal matrices are the same.

Proposition 4.2. Let K be a totally disconnected self-similar set, and let

ˆ;‰ 2 HK with

ˆ D ¹�i.x/ D �R.x C ˛i /ºN
iD1

and

‰ D ¹ j .x/ D %S.x C ǰ /ºM
j D1:

Then ¹log �; log %º are commensurable.

Proof. Let s D dimH .K/, �x theKk0;i0 as de�ned in Lemma 3.4 satisfying (3.4).

Since
log �

log %
is the limit of a sequence of rational numbers, there exist two sequences

of integers ¹nkº and ¹mkº such that lim
k!1

�nk%�mk D 1. We can assume, without

loss of generality, that

%mk � �nk < 2%mk ; k � 1: (4.3)

By Lemma 3.4, we have

�
nk

1 .Kk0;i0/ 2 Kk0Cnk
; k � 1: (4.4)
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Now consider ˆk0‰mk . For any f 2 ˆk0‰mk , f .K/ must intersects some

KnkCk0;j . By Lemma 3.1 and (4.3), we see that .f .K//�nkCk0 is connected,

and the assumption that f .K/ intersects KnkCk0;j implies that f .K/ must be

contained in KnkCk0;j . Therefore, by (4.4)

�
nk

1 .Kk0;i0/ D
[

¹f .K/W f 2 ˆk0‰mk ; f .K/ \ �nk

1 .Kk0;i0/ ¤ ;º:

Let `k D #¹f .K/W f 2 ˆk0‰mk ; f .K/\�nk

1 .Kk0;i0/ ¤ ;º, then the OSC implies

(s D dimH .K/)

��.nkCk0/s
H

s.�
nk

1 .Kk0;i0// D ��.nkCk0/s`k�
k0s%mks

H
s.K/:

On the other hand, by Proposition 3.2(ii) and (3.4), the left hand side of the equality

equals `0H
s.K/. Hence

`0 D `k�
�nks%mks:

Note that `k are integers, the assumption lim
k!1

�nk%�mk D1 implies `0 D`k for all

large k. Therefore, �nk D %mk for all large k. ¹log �; log%º are commensurable.
�

Now we prove the �rst main theorem (Theorem 1.1)

Theorem 4.3. If K is totally disconnected, then HK is �nitely generated.

Proof. We �x a ˆ D ¹�i.x/ D �S.xC j̨ /ºN
j D1 2 HK such that N is the smallest

number of maps for all the IFSs in HK . Write N as N D N
t1
1 : : :N

t�
� , where

N1 : : :N� are distinct primes. We �rst consider the case gcd¹t1; : : : ; t�º D 1. Let

s D dimH .K/, then the OSC implies

�s D N�1;

and � is the largest contraction ratio of IFS’s in HK .

For any ‰ D ¹ j .x/ D %T .x C ǰ /ºM
j D1 2 HK , we have %s D M�1.

Proposition 4.2 shows that %m D �n for some positive integers n; m. Hence

Mm D N n, andM D N
n
m

t1
1 : : :N

n
m

t�
� . Therefore u D n

m
is a positive integer and

% D �u by using the assumption gcd¹t1; : : : ; t�º D 1. Since ‰ D ¹ j .x/º 2 HK is

arbitrary, we have

HK �
1
[

uD1

¹¹�uT .x C ǰ /ºM
j D1WM D N u; T is orthogonalº: (4.5)
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By Proposition 4.1, we can write

HK.�
u/ D ¹‰u;1; ‰u;2; : : : ; ‰u;`u

º

with 1 � `u � `K . (Note that HK.�
u/ 6D ; as it always contain ˆu.) Hence

by (4.5),

HK D
1
[

uD1

HK.�
u/ D

1
[

uD1

¹‰u;j W 1 � j � `uº: (4.6)

Let � > 0 so the `� D supu `u. Then we see that for u D � C v,

HK.�
u/ � ¹‰v

1;1 ı‰�;j W 1 � j � `�º: (4.7)

The maximality of `� implies that the above “�” is actually “D.” Therefore, (4.6)

shows that every IFS in HK is a composition of the IFS’s in the set
S�

`D1 HK.�
`/:

Hence HK is �nitely generated as a semi-group.

If gcd¹t1; : : : ; t�º D t0 > 1, then N D N
t0s1

1 : : :N
t0s�
� . We let N0 D

N
s1

1 : : : N
s�
� , u D t0n

m
(an integer). Then % D �n=m D �u=t0 WD ru, and we have,

analogous to (4.5),

HK �
[

u2A
¹¹ruT .x C ǰ /ºM

j D1WM D N u
0 ; T is orthogonal º:

where A is the set of integers such that the subfamilies on the right side is non-

empty. (Note that there is no guarantee, say, u D 1 is in A, and we have to adjust

the ‰1;1 in the above proof.) Consider the congruence class of A modulus �. It is

easy to see that there exists a � � � so that A� WD ¹n 2 AW n � �º � A .mod �/.

Hence any u 2 A satisfying u > � can be written as u D k� C ` with ` 2 A� and

k > 0. Then we can replace the ˆv
1;1 ı‰�;j in (4.7) by ‰`;1 ı‰k�1

�;1 ı‰�;j . �

5. The polytope case

In this section we consider the self-similar setK in connection with its convex hull

Co.K/. Recall that F is a face of a convex set E if for x; y 2 E, �xC .1� �/y 2
F; 0 < � < 1 implies x; y 2 F .

Proposition 5.1. Let K be a self-similar set generated by an IFS ˆ D ¹�j .x/ D
�.x C j̨ /ºN

j D1 2 KK (no OSC is assumed). Suppose F is a face of Co.K/, then

F \K is the self-similar set generated by the subfamily ¹�j W�j .K/ \ F ¤ ;º.
In particular each vertex of Co.K/ is the �xed point of a unique �i 2 ˆ.
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Proof. For � 2 ˆ, we can write �.x/ D �.x � b/ C b, and b 2 K is the �xed

point of �. Hence �.x/ D �xC .1� �/b is a convex combination of x and b. Let
ˆF D ¹� 2 ˆW�.K/ \ F 6D ;º. Then for � 2 ˆF , there exist x 2 K such that

�.x/ 2 F . By the convex combination and the face property of F , �.x/ 2 F if

and only if both x; b 2 F . In this case, f .F \K/ � F \K . Hence F \K is the

attractor of ˆF , and the conclusion follows. �

Proposition 5.2. LetK be a self-similar set that spans Rd (no OSC is assumed).

Then Co.K/ is a d -dimensional polytope if and only if there is an integer k0 such

that Rk0 D Id for any orthogonal matrix R in ˆ D ¹�R.x C j̨ /ºN
j D1 2 KK .

Furthermore, there are only �nitely many such R.

Proof. Necessity. Assume Co.K/ is a d -dimensional polytope. Let ¹�1,

�2; : : : ; �mº be the set of vertices of Co.K/. For each vertex �i of Co.K/, let

Ci D
°

m
X

`D1

p`.�` � �i /Wp` � 0
±

; 1 � i � m (5.1)

be the smallest convex cone (with vertex at 0) containingK��i WD ¹x��i W x 2 Kº.
Without loss of generality, we assume that C1 is such that the Lebesgue measure

of B.0; 1/\ C1 is minimal i.e.,

L.B.0; 1/\ C1/ D min
1�j �m

L.B.0; 1/\ Cj / (5.2)

For each vertex �i of Co.K/, there exists ˛i 2 R
d such that

˛i � .x � �i/ > 0; for all x 2 K n ¹�iº; 1 � i � m: (5.3)

For any ˆ D ¹�j .x/ D �R.xC j̨ /ºN
j D1 that generate K, there exist ! 2 K and j

such that �1 D �j .!/. Then (5.3) implies

�.Rt˛1/ � .x � !/ D ˛1 � .�j .x/ � �1/ > 0; for all x 2 K n ¹!º:

Hence ! is also a vertex of Co.K/. Let �i1 D !, then by �j .K/ � K and the cone

property, we have RCi1 � C1. The minimality in (5.2) implies RCi1 D C1.

Denote

Oi;j D ¹S orthogonalWSCi D Cj º; O D
m
[

i;j D1

Oi;j : (5.4)
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Since Ci is a convex cone with non-empty interior and �nitely many edges, Oi;j

and O are �nite sets. Note that the above R 2 O. Since ˆn also generates K, the

above argument implies Rn 2 O for all n > 0. Therefore, Rk D Id for some k by

the �niteness of O. Hence we can choose the least common multiple k0 of such

k > 0, and the necessity follows.

Sufficiency. Assume that there is an integer k > 0 such that, for any

ˆ D ¹�j .x/ D �R.x C j̨ /ºN
j D1 generating K, Rk D Id holds. Then ˆk

has the form ¹gj .x/ D �k.x C ǰ /ºM
j D1. Let !j be the �xed point of gj , and

� D Co.¹!1; !2; : : : ; !M º/. Then it is easy to see that gj .�/ � � for all j . Note

that all vertices of � are points of K that spans Rd , hence � D Co.K/ and is a

d -dimensional polytope. �

By taking R D Id, it follows from the above proposition that the Co.K/

in Proposition 5.1 is a convex polytope. Next we will prove a lemma for the

commensurability of the contraction ratios, which will be a key step to prove

Theorem 1.2. It is also an extension of [14, Theorem 1.1(i)], as the K in the

following lemma need not be a self-similar set.

Lemma 5.3. Let K � Œa; b� be a totally disconnected compact set and is not a

singleton. Suppose a 2 K, and there are �i .x/ D �i .x�a/Ca; i D 1; 2 satisfying

Œa; aC ı�\K � �i.K/ � K; i D 1; 2 (5.5)

for some ı > 0. Then �1 and �2 are logarithmic commensurable.

Proof. Suppose �i ; i D 1; 2 are not logarithm commensurable, then there exist

two sequences of positive integers ¹s1
nºn; ¹s2

nºn such that �n WD �
s1

n

1 =�
s2

n

2 converges

to 1, and we can assume, without loss of generality, �
s1

n

1 < �
s2

n

2 . Note that (5.5)

implies Œa; aC ı�\K D Œa; aC ı�\ �i .K/; i D 1; 2. By applying �i inductively,

we have

�
si

n

i .Œa; aC ı�\K/ D Œa; aC �
si

n

i ı�\K; i D 1; 2:

As �
s1

n

1 < �
ts2

n

2 , we have �
s2

n

2 .Œ0; ı�\ .K � a// � �
s1

n

1 .Œ0; ı�\ .K � a//. Therefore

Œ0; ı�\ .K � a/ � �n.Œ0; ı�\ .K � a//; n � 1:

This is a contradiction in view of Proposition 2.2 applying to Œ0; ı� \ .K � a/,

f D Id, and g.x/ D �nx for n su�ciently large. Hence �1 and �2 are logarithm

commensurable. �
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We now prove Theorem 1.2 in the Introduction.

Theorem 5.4. Suppose the self-similar set K � R
d is such that the convex hull

Co.K/ is a polytope, and there exists a line L passing through a vertex of Co.K/

and L\K is totally disconnected and in�nite, then HK is �nitely generated.

Proof. We �rst prove the logarithmic commensurability of contraction ratios. Let

¹�1; : : : ; �mº be the vertices of Co.K/. For any ˆ D ¹�i.x/ D �R.x C ˛i /ºN
j D1 2

HK and ‰ D ¹ i .x/ D %S.x C ˇi /ºM
j D1 2 HK . Proposition 5.2 implies that

there is k such that Rk D Sk D Id. Hence without loss of generality, we assume

that R D S D Id. Also, note that each vertex of Co.K/ is the �xed point of a

unique �i 2 ˆ (Proposition 5.1), we can assume �i.�i / D �j for i D 1; 2; : : : ; m.

It follows easily from the contraction of �i and the vertices of Co.K/ as �xed

points that �j … �i .K/ when i ¤ j . Similarly, we can assume  i .�i / D �i for

i D 1; 2; : : : ; m and �j …  i .K/ when i ¤ j .

LetLK D K\L, without loss of generality, we assume thatL passes v1. Since

�1 … �i .K/ and �1 … �i .K/ when i > 1, there is ı > 0 such that

B.�1; ı/ \ �i .K/ D B.�1; ı/\  j .K/ D ;; for all i; j > 1:

Hence B.�1; ı/\ LK D B.�1; ı/\ �1.LK/ D B.�1; ı/\  1.LK/: This implies

�1.B.�1; ı/\ LK/ � B.�1; ı/\ LK ;  1.B.�1; ı/\ LK/ � B.�1; ı/\ LK :

By considering B.�1; ı/\LK in R, Lemma 5.3 shows that % and � are logarithm

commensurable.

By using Proposition 5.2, it is direct to show that the `K in Proposition 4.1 is

�nite; a similar proof as in Theorem 4.3 veri�es that HK is �nitely generated. �

Proposition 5.5. Suppose the self-similar setK � R
d is such that dimH .K/ < d ,

and Co.K/ is a d -dimensional polytope, then HK is �nitely generated.

Proof. We need only show that there is a line L satis�es the condition in

Theorem 5.4. In view of Proposition 5.2, we can assume R D Id, i.e., �j .x/ D
�.x C j̨ /. Also, from the proof of the su�ciency of the proposition, we

can assume ¹�1; �2; : : : ; �mº is the set of vertices of Co.K/ and �j D �j .�j /

for all 1 � j � m. Furthermore we can assume Co.¹�1; �2; : : : ; �j º/ is a

.j � 1/-dimensional face of Co.K/ for 1 � j � d , and Co.¹�1; �2; : : : ; �dC1º/
is a d -dimensional polytope (otherwise we can make a rearrangement of the ver-

tices, and group the consecutive vertices together to form an increasing sequence

of faces).
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For a vertex �j of Co.K/, we can write �j .x/ D �.x��j /C�j . Hence for the

L passes �j and intersects K at x. 6D �j /, then �j C �n
j .x � �j / D �n

j .x/ 2 L\K
for all integer n > 0. It follows that L intersects K either at a single point or

in�nitely many points.

Nowwe assume on the contrary thatL\K is not a totally disconnected in�nite

set for any such lines L. Then the above assertion implies that the edge (i.e., one

dimensional face) Œ�1; �2� of Co.K/ intersectsK in a segmentwith positive length,

and Proposition 5.1 implies that Œ�1; �2�\K is a 1-dimensional self-similar set with

non-empty interior.

Consider the segments linking �3 and points of Œ�1; �2� \ K, then as the

above, the intersection of K and such segment has positive length. Therefore

Co.¹�1; �2; �3º/ \ K has positive 2-dimensional Lebesgue measure. Therefore

dimH .K/ � 2 and d > 2, again by Proposition 5.1, Co.¹�1; �2; �3º/ \ K is a

2-dimensional self-similar set with non-empty interior.

We carry out the same argument for �4 and points of Co.¹�1; �2; �3º/ \ K,

and continue. Eventually we conclude that K is a d -dimensional self-similar set

with non-empty interior, a contradiction to dimH .K/ < d , and completes the

proof. �

The following result is a variant of Theorem 5.4, it does not assume the totally

disconnectedness on L\K (and allows dimH .K/ D d ), but needs the line L\K
to be an edge (one dimensional face) of Co.K/.

Proposition 5.6. Suppose the self-similar set K � R
d is such that Co.K/

is a d -dimensional polytope, and there exists an edge Œ�i ; �j � of Co.K/ such

that Œ�i ; �j � \ K has in�nitely many connected components, then HK is �nitely

generated.

Proof. We �rst prove the logarithmic commensurability of contraction ratios. Let

ˆ D ¹�j .x/ D %R.x C j̨ /ºN
j D1 and ‰ D ¹ j .x/ D �S.x C ǰ /ºM

j D1 be in HK .

By Proposition 5.2, we can assume R D S D Id. Let F D Œ�i ; �j � be the given

edge, then F \ K is the attractor of ˆF ; ‰F (Proposition 5.1). Since F \ K is a

one dimensional self-similar set and has in�nitely many connected components,

it follows from [14, Theorem 1.1(ii)] that % and � are logarithm commensurable.

By using Proposition 5.2, we can show that the `K in Proposition 4.1 is �nite;

a similar proof as that of Theorem 4.3 veri�es that HK is �nitely generated. �
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6. Consequences and examples

We have the following conclusion on the logarithmic commensurability of the

isotopic IFSs in HK .

Theorem 6.1. Let K be a self-similar set as in Theorem 1.1, Theorem 1.2, or

Proposition 5.6. If

ˆ D ¹�j .x/ D �R.x C j̨ /ºN
j D1 and ‰ D ¹ j .x/ D %S.x C ǰ /ºM

j D1

are two IFSs in HK , then

ˆk D ‰`

for some k; ` > 0.

Proof. If K is totally disconnected, Proposition 4.2 shows that �n D %m for some

positive integers n;m. Consider the IFSs ˆin‰.k�i/m; 1 � i < k. Then they

all belong to HK.�
kn/. For k large, Proposition 4.1 implies that there exist i; j

with 1 � i < j < k such that ˆin‰.k�i/m D ˆjn‰.k�j /m. Comparing the

orthonormal matrices yields

R.j �i/n D S .j �i/m:

This implies ˆ.j �i/n and ‰.j �i/m have the same contraction ratio and orthogonal

matrix. Proposition 2.3 then implies that ˆ.j �i/n D ‰.j �i/m.

For the other two cases, that Co.K/ is a convex polytope implies that Rk D
Sk D Id for some k. That �n D %m for some positive integers n;m is contained

in the proof of Theorem 1.2 (i.e., Theorem 5.4) and Proposition 5.6. Therefore by

applying Proposition 2.3 again, we have ˆkn D ‰km. �

The following two corollaries are straight forward.

Corollary 6.2. Under the same assumption as in Theorem 6.1, HK is a �nitely

generated semi-group.

Corollary 6.3. Under the same assumption as in Theorem 6.1, if one of the IFSs

in HK satis�es the SSC, then all the IFS in HK satisfy the SSC.

For the more speci�c description of the generators of HK , there is a rather

precise statement for the one-dimensional case, which is an improvement of [14,

Theorem 3.1]. A set E � R
d is said to be symmetric if there exists c such that

.E � c/ D �E.
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Proposition 6.4. Let K be the self-similar set in R generated by

ˆ D ¹�.x C j̨ /ºN
j D1

with 0 < j�j < 1. Assume that ˆ satis�es the OSC with an open interval U , and

K is not a �nite union of intervals. Then

(i) HK is generated by a unique generator if and only if the digit set ¹ j̨ ºN
j D1 is

not symmetric.

(ii) If ¹ j̨ ºN
j D1 is symmetric, then there are two generators ˆ1 D ¹%.x C aj /ºM

j D1

and ˆ2 D ¹�%.x C bj /ºM
j D1 such that HK D ¹ˆn�1

1 ˆ2; ˆ
n
1W n 2 Nº.

Wewill omit the proof as the main part is as in [14, Theorem 3.1]; the additional

part is that ¹ j̨ ºN
j D1 is symmetric if and only if K is symmetric, which is an easy

consequence that x 2 K can be expressed as
P1

j D1 �
i˛ij ; 1 � ij � N . Instead,

we use the simple example of ¹1; 4; 5º-self-similar set in Section 2 to illustrate the
basic idea.

Example 6.5. Let K be the self-similar set generated by the IFS

ˆ D
°1

5
.x C a/W a D 0; 3; 4

±

as in Section 2. Then ˆ is the unique generator of HK .

Proof. Obviously, ˆ satis�es the OSC with open interval .0; 1/. If ‰ D
¹%.x C bj /ºM

j D1 (0 < j%j < 1) belongs to HK , then the logarithmic commen-

surability of IFSs shows that ˆn D ‰m for some integers n; m > 0. Hence

.1
5
/n D %m, and the dimension formulas for ˆ and ‰ imply 3n D Mm. Since 3

is a prime, M D 3k , and so j%j D .1
5
/k for some integer k > 0. Proposition 2.3

implies ‰2 D ˆ2k . As ˆ satis�es the OSC with the open interval .0; 1/, so is ‰.

If % < 0, then there is a map  j .x/ WD %.x C bj / such that  j .1/ D 0, so

 j .x/ D %.x � 1/. Also, there is a g D .1
5
/k.� C c/ 2 ˆk such that g.0/ D 0. As

j%j D .1
5
/k , hence g.x/ D j%jx. This implies K D �.K � 1/, and K is symmetry,

a contradiction. Therefore, % > 0, and Proposition 2.3 implies ‰ D ˆk , the

assertion follows. �

A non-trivial example for Proposition 5.6 is the IFS ¹�iº3
iD1 where �i .x/ D

1
3
.x C ai /, and ¹a1; a2; a3º � ¹0; 1; 2º.mod 3/ (but 6D ¹0; 1; 2º). Then the self-

similar set K is a tile in R that have in�nitely many connected components.

It follows from Proposition 6.4 that HK has a unique generator. For higher

dimensional tile, a simpleminded example of this sort can be the productK�Œ0; 1�;



Structure of the class of iterated function systems 65

the more interesting examples are Examples 6.7-6.9. Note that the condition of

in�nitely many connected components cannot be omitted; it is seen that for Œ0; 1�,

HŒ0;1� has in�nitely many generators, as it contains all the IFSˆn D ¹ 1
n
.�Ci/ºn�1

iD0;

another example of similar nature is in [14].

Example 6.6. Let ˆn D ¹ 1
4n
.xC ˛/W ˛ 2 ¹0; 1º ˚ ¹0; 8nº ˚ 4¹0; : : : ; n� 1ºº, n D

1; 2; : : : . Then allˆn satisfy the OSC with the same attractorK WD Œ0; 1�[ Œ2; 3�,
and HK has in�nitely many generators.

Next we consider some two dimensional examples in regard to the generators

of HK . We �rst make some remarks on Proposition 5.2 with Co.K/ a convex

polytope. Let ˆ D ¹�R.x C ˛i /ºN
iD1, we showed that this condition is equivalent

to Rk0 D Id for some k0 � 0, which is determined by R.Ci / D Cj for some i; j

(see (5.4)). Hence if R D Id is the only one satis�es the identity, than HK has a

unique generator ˆ D ¹�.x C ˛i /ºN
iD1 where N 6D M k for any k > 1.

To determine the generators, we make somemore observation on the geometry

of Co.K/. Let ¹�1; : : : ; �mº be the vertices of Co.K/, they are �xed points of some
�i 2 ˆ, namely, �i .�i / D �i (Proposition 5.1). Let ¹i1; : : : imº be a permutation of
¹1; : : : ; mº such that �kj

.�ij / D �j for each 1 � j � m. Then it is not di�cult to

show that

R.Cij / D Ci and R..K � �ij / \ B.0; "// D .K � �i / \ B.0; "/ (6.1)

for some " > 0. (We can take " > 0 such that �`.K/\B.�j ; "/ D ; for all ` 6D kj .)

This symmetric property can be used to �nd the admissible �R of ˆ 2 HK .

We illustrate this idea by the following example of Sierpiński gasket.

Example 6.7. Let K be the self-similar set generated by the IFS ˆ D ¹�j º3
j D1

on R
2, where �i .x/ D �.x � vi/ C vi , 0 < � � 1

2
. Let � denote the triangle

determined by v1; v2; v3. Then K satis�es the conditions in Theorem 1.2, and

(i) if � is not isosceles, then ˆ is the unique generator of HK;

(ii) if � is isosceles but not equilateral, then HK has two generators;

(iii) if � is an equilateral triangle, then HK has six generators.

Proof. Assume‰ D ¹ j D %R.�C ǰ /ºM
j D1 belongs toHK . It is clear the assump-

tions in Theorem 1.2 are satis�ed. Similar to Example 6.5, the commensurability

of ˆ;‰ and the dimension formula implyM D 3n and % D �n for some positive

integer n > 0.
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(i) Since� is not isosceles, so (6.1) hold only ifR D Id. Hence‰ D ¹ j .x/ D
�n.x C ǰ /º3n

j D1 for some ǰ , and Proposition 2.3 shows ‰ D ˆn, the assertion

follows.

(ii) Since � is isosceles but not equilateral. Then there is a re�ection R

satis�es (6.1), and there are two generators : ˆ as given, and ẑ D ¹�R.�Cˇi/º3
iD1

for some ˇi .

(iii) It is easy to check that there are six orthonormal matrices that satis-

�es (6.1), and similar to (ii), there are six generators of HK . �

Example 6.8. Consider the twin dragon tile K D T .A;D1/ generated by ˆ D
¹A�1.� C di /º2

iD1; di 2 D1, where

A D
�

1 �1
1 1

�

; D1 D
²�

0

0

�

;

�

1

0

�³

:

Then ˆ is a homogenous IFS with contraction ratio � D 1p
2
, S D

p
2A�1.

Moreover K satis�es the assumptions of Theorem 1.2 (or Proposition 5.6), and

HK has two generators: the given one ˆ, and

ẑ D ¹�A�1.� C di /º2
iD1; di 2 D2 D

²�

0

1

�

;

�

�1
1

�³

:

Proof. It is direct to check that T .�A;D2/ D T .A;D1/ D K, hence ẑ 2 HK .

Consider the IFS ẑˆ3, since�A4 D 4Id, Proposition 5.1 shows that Co.T .A;D1//

is the polygon, and the vertices are (see Figure 2):

1

3

²�

0

�4

�

;

�

1

�4

�

;

�

2

�3

�

;

�

2

�1

�

;

�

0

1

�

;

�

�1
1

�

;

�

�2
0

�

;

�

�2
�2

�³

:

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1.0

-0.5

0.0

Figure 2. The convex hull of twin dragon.
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Denote these vertices by �j ; j D 1; 2; : : : ; 8 in the same order as the above,

and let �0 D �8 and �9 D �1. It is easy to check that the set Œ�i ; �iC1�\K is the

Cantor set generated by the IFS ¹1
4
.� C 3�i/;

1
4
.� C 3�iC1/º (apply Proposition 5.1

to ¹f 2 ẑˆ3W f .K/ \ Œ�i ; �iC1� ¤ ;º, which has exactly two maps with �xed

points �i and �iC1 respectively). Hence the line L determined by �i and �iC1

satis�es the assumption in Theorem 1.2 (also Proposition 5.6).

On Co.K/, it is easy to see that each angle is 3�
4
. Let Ci be the cone generated

by Co.K/ with vertex at �i as in (5.1), and let Li;i˙1 D ¹t .�i˙1 � �i /W t � 0º, be
the two sides of the cone. It is clear that all the cones are isometric.

For any IFS ‰ D ¹%R.x C ǰ /ºN
j D1 2 HK , let RC1 D C` (by (6.1)), then

RL1;2 D L`;`C1 and RL1;0 D L`;`�1 (or the other way round). It follows that

R D S1S2 : : : Sk for some k > 0, with Si D ˙
p
2A�1. We show that we can

choose the k such that %R D ˙A�k, this will imply ‰ is a composition of IFSs

from ¹ˆ; ẑ º by applying Proposition 2.3.
To this end, we only consider the case R D �2A�2, all other cases are similar.

Consider‰ˆ2, the relation�A4 D 4Id implies that eachmap in‰ˆ2 has the form
1
2
%.x C ˇ/. It follows that Œ�1; �2� \ K is a self-similar set generated by the sub

family ¹f 2 ‰ˆ2W f .K/\ Œ�1; �2� ¤ ;º (Proposition 5.1). Denote this subfamily
by ¹1

2
%.x C dj /ºM

j D1. Similar to Example 6.5, the commensurability of ˆ;‰ and

the dimension formula implyM D 2k, and % D .1
2
/2k�1 for some k > 0. If k D 2`

then %R D �A�8`�2, so the linear parts of maps in ‰ and ˆ8`C1 ẑ are the same.

Hence ‰ D ˆ8`C1 ẑ by Proposition 2.3. If k D 2`C 1, then %R D �A�8`�6, so

the linear parts of the maps in ‰ and ˆ8`C5 ẑ are the same, and ‰ D ˆ8`C5 ẑ .
Therefore, ˆ and ẑ generate the isotopic class. �

We consider one more example from [22] that not all the �xed points of ˆ are

vertices of Co.K/.

Example 6.9. Let K be the self-similar set generated by the IFS

ˆ D
°1

3
.x C ˛/W ˛ 2 D

±

with

D D
²�

i C ajj j
j

�

W i; j D �1; 0; 1
³

:

There are �ve �xed points of the �i 2 ˆ that are vertices of Co.K/. ˆ satis�es

the condition in Theorem 1.2 or Proposition 5.6, and HK has two generators: ˆ

and ẑ D ¹1
3
R.� C ˛/W ˛ 2 Dº when a ¤ 0, where R D diag.1;�1/, the re�ection

along the x-axis.
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Proof. The K is a Z2-tile as showed in the following Figure 3.

Co.K/ D Co

 ´ 

aC1
2

1
2

!

;

 

a�1
2

1
2

!

;

 

� 1
2

0

!

;

 

aC1
2

� 1
2

!

;

 

a�1
2

� 1
2

!µ!

if a > 0:

(for a < 0, we replace the middle one by .1
2
; 0/). The vertical line x D aC1

2
passes

two vertices of Co.K/ and intersects K a Cantor set when a > 0 (x D a�1
2

for

a < 0). Actually, in the �ve edges of Co.K/, except the two horizontal edges,

the other three edges all intersect K a Cantor set. Hence the assumptions of

Theorem 1.2 or Proposition 5.6 are satis�ed.

It is easy to see that R D diag.1;�1/ is the only orthogonal matrix (6D Id/

satis�es (6.1). For ‰ D ¹%R.� C ǰ /ºN
j D1, we can use the same argument as

Example 6.8 to conclude that ‰ D ˆk or ‰ D ˆk�1 ẑ . We omit the detail. �

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

Figure 3. The tile K with a D 0:5.

We see from the examples that the two dimensional connected tiles can be very

di�erent from the one-dimensional tiles as far as the isotopic property is concern

(HŒ0;1� has in�nitely many generators). In fact a well-known open problem related

to this is whether there is a 2-reptile that is also a 3-reptile, see [6], it is a di�cult

question in the plane, but is trivial on R.

If K is totally disconnected, but Co.K/ is not a polytope, then we do not have

a suitable condition to ensure the uniqueness of generator, nor an e�cient way to

�nd the generators. We conjecture that if ˆ D ¹�R.� C j̨ /ºN
j D1 2 HK , N is not a

power of any integer and 1 is not an eigenvalue of any power Rn (n > 0), then ˆ

is the unique generator of HK .
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In Corollary 6.2, we conclude that HK is a semigroup for those cases in this

paper. We do not know if this is true without the additional assumptions.

In our consideration, we only deal with the homogenous IFS. We have no

knowledge on the non-homogenous case. Note that if the contraction ratios are

logarithmic commensurable, then the neighborhood decomposition is still valid

with more work, see [28]. This may o�er a way to consider this more general

case.
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