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Hausdor� dimension of the graph

of an operator semistable Lévy process

Lina Wedrich1

Abstract. Let X D ¹X.t/W t � 0º be an operator semistable Lévy process in R
d with

exponent E, where E is an invertible linear operator on R
d . For an arbitrary Borel set

B � RC we interpret the graph GrX .B/ D ¹.t; X.t//W t 2 Bº as a semi-selfsimilar process

on R
dC1, whose distribution is not full, and calculate the Hausdor� dimension of GrX .B/

in terms of the real parts of the eigenvalues of the exponent E and the Hausdor� dimension

of B . We use similar methods as applied in [16] and [8].
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1. Introduction

Let X D .X.t//t�0 be a Lévy process in R
d . Namely, X is a stochastically con-

tinuous process with càdlàg paths that has stationary and independent increments

and starts in X.0/ D 0 almost surely. The distribution of X is uniquely determined

by the distribution of X.1/ which can be an arbitrary in�nitely divisible distribu-

tion. The process X is called .cE ; c/-operator semistable, if the distribution of

X.1/ is full, i.e. not supported on any lower dimensional hyperplane, and there

exists a linear operator E on R
d such that

¹X.ct/ºt�0
fdD ¹cE X.t/ºt�0 for some c > 1: (1.1)

1 This work has been supported by Deutsche Forschungsgemeinschaft (DFG) under grant

KE1741/6-1
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Here
fdD denotes equality of all �nite dimensional distributions and

cE WD
1

X

nD0

.log c/n

nŠ
En:

If for some ˛ 2 .0; 2� the exponent E is a multiple of the identity, i.e. E D ˛ � I ,

we call the process .c1=˛; c/-semistable. The Lévy process is called operator stable

if (1.1) holds for all c > 0.

The aim of this paper is to calculate the Hausdor� dimension dimH GrX .B/

of the graph GrX.B/ D ¹.t; X.t//W t 2 Bº of an operator semistable Lévy process

X D .X.t//t�0 for an arbitrary Borel set B � RC.

For an arbitrary subset F of Rd the s-dimensional Hausdor� measure H
s.F /

is de�ned as

H
s.F / D lim

ı!0
inf

°

1
X

iD1

jF jsi W jFi j � ı and F �
1
[

iD1

Fi

±

;

where jF j D sup¹kx � ykW x; y 2 F º denotes the diameter of a set F � R
d and

k � k is the Euclidean norm. It can be shown that the value

dimH F D inf¹sWHs.F / D 0º D sup¹sWHs.F / D 1º

exists and is unique for all subsets F � R
d . The critical value dimH F is called

the Hausdor� dimension of F . Further details on the Hausdor� dimension can be

found in [2] and [14].

In the past e�orts have been made to generate dimension results for Lévy

processes, which ful�ll certain scaling properties. An overview can for example

be found in [11] or [19]. For an operator semistable Lévy process X and an arbitrary

Borel set B � RC Kern and Wedrich [8] calculated the Hausdor� dimension of

the range dimH X.B/ in terms of the real parts of the eigenvalues of the exponent

E and the Hausdor� dimension of B . The result is a generalization of the one

stated in Meerschaert and Xiao [16], who calculated the Hausdor� dimension

dimH X.B/ for an operator stable Lévy process.

For an arbitrary operator semistable Lévy process X our aim is to adapt the

methods used to prove the results above by interpreting the graph GrX.B/ D
¹.t; X.t//W t 2 Bº as a process onR

dC1, which ful�lls the scaling property (1.1) for

a certain exponent but whose distribution is not full. The method of generating

dimension results for a class of Lévy processes by interpreting the graph as a

.d C1/-dimensional Lévy process has also been employed by Manstavičius in [13].
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The most prominent example of a semistable, non-stable distribution is perhaps

the limit distribution of the cumulative gains in a series of St. Petersburg games.

In this particular case, Kern and Wedrich [9] already calculated the Hausdor�

dimension dimH GrX .Œ0; 1�/ of the corresponding graph over the interval Œ0; 1�

employing the method described above. Dimension results for the graph of a

stable Lévy process can be found in [1] and [6]. Furthermore, in the case that

X is a dilation stable Lévy process on R
d , i.e. an operator stable Lévy process

with a diagonal exponent, Xiao and Lin [12] calculated the Hausdor� dimension

dimH GrX .B/ for an arbitrary Borel set B � RC and Hou [4] determined an exact

Hausdor� measure function for GrX.Œ0; 1�/.

This paper is structured as follows: In Section 2.1 we recall spectral decompo-

sition results from [15], which enable us to decompose the exponent E and thereby

the operator semistable Lévy process X according to the distinct real parts of the

eigenvalues of E. Section 2.2 contains certain uniformity and positivity results

from [8] for the density functions of the process X , which will be helpful in the

proofs of our main results. The main results on the Hausdor� dimension of the

graph of an operator semistable Lévy process are stated and proven in Section 3.

Throughout this paper K denotes an unspeci�ed positive and �nite constant

that can vary in each occurrence. Fixed constants will be denoted by K1; K2, etc.

2. Preliminaries

2.1. Spectral decomposition. Let X be a .cE ; c/-operator semistable Lévy pro-

cess. Factor the minimal polynomial of E into q1.x/ � � � � � qp.x/ where all roots

of qi have real parts equal to ai and ai < aj for i < j . Let j̨ D a�1
j so that

˛1 > � � � > p̨ , and note that 0 < j̨ � 2 by Theorem 7.1.10 in [15]. De�ne

Vj D Ker.qj .E//. According to Theorem 2.1.14 in [15] V1 ˚ � � � ˚ Vp is then a di-

rect sum decomposition of Rd into E invariant subspaces. In an appropriate basis,

E is then block-diagonal and we may write E D E1 ˚� � �˚Ep where Ej W Vj ! Vj

and every eigenvalue of Ej has real part equal to aj . Especially, every Vj is an

Ej -invariant subspace of dimension dj D dim Vj and d D d1 C � � � C dp. Write

X.t/ D X .1/.t / C � � � C X .p/.t / with respect to this direct sum decomposition,

where by Lemma 7.1.17 in [15], ¹X .j /.t /; t � 0º is a .cEj ; c/-operator semistable

Lévy process on Vj . We can now choose an inner product h�; �i on R
d such that

the Vj ; j 2 ¹1; : : : ; pº, are mutually orthogonal and throughout this paper we will
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let kxk D
p

hx; xi be the associated Euclidean norm. In particular we have for

t D crm > 0 that

kX.t/k2 dD kcrE X.m/k2 D kcrE1X .1/.m/k2 C � � � C kcrEp X .p/.m/k2; (2.1)

with r 2 Z and m 2 Œ1; c/.

The following lemma states a result on the growth behavior of the exponential

operators tEj near the origin t D 0. It is a variation of Lemma 2.1 in [16] and a

direct consequence of Corollary 2.2.5 in [15].

Lemma 2.1. For every j 2 ¹1; : : : ; pº and every � > 0 there exists a �nite constant

K � 1 such that for all 0 < t � 1 we have

K�1taj C� � ktEj k � Ktaj �� (2.2)

and

K�1t�.aj ��/ � kt�Ej k � Kt�.aj C�/: (2.3)

2.2. Properties of the density function. The following three lemmas state uni-

formity results of operator semistable Lévy processes. They will be very help-

ful in the proofs of our main theorems. The lemmas are taken from Kern and

Wedrich [8]. Let X D ¹X.t/ºt�0 be a full dimensional operator semistable Lévy

process on R
d and gt ; t > 0, the corresponding continuous density functions.

Lemma 2.2 in [8] states the following:

Lemma 2.2. The mapping .t; x/ 7! gt .x/ is continuous on .0; 1/ � R
d and we

have

sup
t2Œ1;c/

sup
x2Rd

jgt .x/j < 1: (2.4)

As a consequence we get a result on the existence of negative moments of an

operator semistable Lévy process X D ¹X.t/ºt�0 on R
d given in Lemma 2.3

of [8].

Lemma 2.3. For any ı 2 .0; d/ we have

sup
t2Œ1;c/

EŒkX.t/k�ı � < 1: (2.5)

Furthermore, we will need a uniform positivity result for the density functions

taken from Lemma 2.4 of [8].
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Lemma 2.4. Let ¹X.t/ºt�0 be an operator semistable Lévy process with maximal

index ˛1 > 1, d1 D 1 and with density gt as above. Then there exist constants

K > 0, r > 0 and uniformly bounded Borel sets Jt � R
d�1 Š V2 ˚ � � � ˚ Vp for

t 2 Œ1; c/ such that

gt .x1; : : : ; xp/ � K > 0 for all .x1; : : : ; xp/ 2 Œ�r; r� � Jt : (2.6)

Further, we can choose ¹Jtºt2Œ1;c/ such that �d�1.Jt / � R for every t 2 Œ1; c/.

Note that the constants K, r and R do not depend on t 2 Œ1; c/.

Remark 2.5. Note that ˛1 > 1 is a necessary condition in Lemma 2.4. To see that,

take for example the ˛1-stable subordinator with 0 < ˛1 < 1. Here the support of

the density function is a subset of RC, so that (2.6) does not hold for any r > 0.

3. Main results

The following two Theorems are the main results of this paper. The constants

˛1; ˛2 and d1 are de�ned as in Section 2.1 by means of the spectral decomposition.

Theorem 3.1. Let X D ¹X.t/; t 2 RCº be an operator semistable Lévy process

on R
d with d � 2. Then for any Borel set B � RC we have almost surely

dimH GrX .B/ D

8

ˆ

<

ˆ

:

dimH B � max.˛1; 1/ if ˛1 dimH B � d1;

1 C max.˛2; 1/ �
�

dimH B � 1

˛1

�

if ˛1 dimH B > d1:

The dimension result for the one-dimensional case reads as follows:

Theorem 3.2. Let X D ¹X.t/; t 2 RCº be a .c1=˛; c/-semistable Lévy process on

R. Then for any Borel set B � RC we have almost surely

dimH GrX .B/ D

8

ˆ

<

ˆ

:

dimH B � max.˛; 1/ if ˛ dimH B � 1;

1 C dimH B � 1

˛
if ˛ dimH B > 1:

Let X D .X.t//t�0 be a .cE ; c/-operator semistable Lévy process on R
d and

let ˛1 > � � � > p̨ denote the reciprocals of the real parts of the eigenvalues of

E as de�ned in Section 2.1. We want to calculate the Hausdor� dimension of



26 L. Wedrich

the graph GrX.B/ of X for an arbitrary Borel set B � RC. Therefore, we de�ne

the process Z D .Z.t//t�0 as Z.t/ D .t; X.t// for all t � 0. This gives us

dimH Z.B/ D dimH GrX .B/. One can easily see that Z is also a Lévy process

and ful�lls the scaling property of a .cF ; c/-operator semistable process where

F D
�

1 0

0 E

�

:

Nevertheless, the process Z itself is not operator semistable in the sense of the

de�nition given in the Introduction as the distribution of Z.1/ is obviously not

full.

As mentioned in the Introduction, the Hausdor� dimension dimH X.B/ of the

range of an operator semistable Lévy process X has already been calculated in [8]

as

dimH X.B/ D

8

ˆ

<

ˆ

:

˛1 dimH B if ˛1 dimH B � d1;

1 C ˛2

�

dimH B � 1

˛1

�

if ˛1 dimH B > d1;
(3.1)

almost surely for d � 2. Hence, for the reasons mentioned above, we are now able

to use the parts of the result (3.1) and the corresponding proofs where fullness of

the process was not required. All other parts, however, have to be calculated anew.

The proof of Theorem 3.1 is split into two parts. First we will obtain the upper

bounds for dimH GrX .B/ by choosing a suitable sequence of coverings. This

method goes back to Pruitt and Taylor [17] and Hendricks [3]. Afterwards we

will use standard capacity arguments in order to prove the lower bounds.

3.1. Upper bounds. For a Lévy process ¹X.t/ºt�0 let

TX.a; s/ D
Z s

0

1B.0;a/.X.t//dt (3.2)

be the sojourn time in the closed ball B.0; a/ with radius a centered at the origin

up to time s > 0.

The following covering lemma is due to Pruitt and Taylor (see Lemma 6.1

in [17])

Lemma 3.3. Let Z D ¹Z.t/ºt�0 be a Lévy process in R
dC1 and let ƒ.a/ be a

�xed K1-nested family of cubes in R
dC1 of side a with 0 < a � 1. For any u � 0

let Mu.a; s/ be the number of cubes in ƒ.a/ hit by Z.t/ at some time t 2 Œu; uCs�.

Then

E ŒMu.a; s/� � 2 K1s �
�

E

h

TZ

�a

3
; s

�i��1

:
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In order to prove the upper bounds of Theorem 3.1 we now need to calculate

sharp lower bounds of the expected sojourn times EŒTZ.a; s/� of the graph Z D
¹.t; X.t//; t � 0º of an operator semistable Lévy process on R

d .

In their paper Kern and Wedrich calculated in Theorem 2.6 in [8] upper and

lower bounds for the expected sojourn times EŒTX.a; s/� of an operator semistable

Lévy process:

Theorem 3.4. Let X D ¹X.t/ºt�0 be as in Theorem 3.1. For any 0 < ˛00
2 < ˛2 <

˛0
2 < ˛00

1 < ˛1 < ˛0
1 there exist positive and �nite constants K6; : : : ; K9 such that

(i) if ˛1 � d1, then for all 0 < a � 1 and a˛1 � s � 1 we have

K6a˛0
1 � EŒTX.a; s/� � K7a˛00

1 ;

(ii) if ˛1 > d1 D 1, for all 0 < a � a0 with a0 > 0 su�ciently small, and all

a˛2 � s � 1 we have

K8a�0 � EŒTX .a; s/� � K9a�00
;

where

�00 D 1 C ˛00
2

�

1 � 1

˛1

�

and �0 D 1 C ˛0
2

�

1 � 1

˛1

�

:

Looking at the proof of the lower bounds of Theorem 3.4 (i) (i.e. Theo-

rem 2.6 (i) in [8]), we �nd that the condition ˛1 � d1 is not needed here. Hence,

the same proof additionally gives us the following corollary:

Corollary 3.5. Let X D ¹X.t/ºt�0 be as in Theorem 3.1. For any 0 < ˛1 < ˛0
1

there exists a positive and �nite constant zK6 such that for all 0 < a � 1 and

a˛1 � s � 1 we have

zK6a˛0
1 � EŒTX.a; s/�:

Similarly to the results above we will now calculate lower bounds for the

expected sojourn times EŒTZ.a; s/� of the graph Z D ¹.t; X.t//; t � 0º of

an operator semistable Lévy process on R
d . The upper bounds can also be

calculated but are not stated here as they are not needed to determine the Hausdor�

dimension.
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Theorem 3.6. Let Z D ¹.t; X.t//; t � 0º, where X D ¹X.t/; t � 0º is as in

Theorem 3.1.

(i) If ˛1 � 1, there exists a positive and �nite constant K2 such that for all

0 < a � 1 and a˛1 � s � 1 and any ˛1 < ˛0
1

EŒTZ.a; s/� � K2a˛0
1 :

(ii) If ˛1 < 1, there exists a positive and �nite constant K3 such that for all

0 < a � 1 and a � s � 1 and any � > 0

EŒTZ.a; s/� � K3a1C�:

(iii) If ˛1 > d1 D 1 and ˛2 � 1, there exists a positive and �nite constant K4 such

that for any 0 < ˛2 < ˛0
2 < ˛1 and all a > 0 small enough, say 0 < a � a0,

and all a˛2 � s � 1

EŒTZ.a; s/� � K4a
1C˛0

2
.1� 1

˛1
/
:

(iv) If ˛1 > d1 D 1 and ˛2 < 1, there exists a positive and �nite constant K5

such that for all a > 0 small enough, say 0 < a � a0, and all ap
pC1

� s � 1

EŒTZ.a; s/� � K5a
2� 1

˛1 :

Proof. (i) & (ii) Let ˛0
1 > ˛1. Looking at the proof of Corollary 3.5 (i.e. Theo-

rem 2.6 part (i) in [8]) one realizes that the fullness is not needed there. Hence we

can use this result to prove part (i) and (ii) of the present theorem. In order to do

so we need to further examine the exponent

F D
�

1 0

0 E

�

of the process Z. Analogously to Section 2.1 denote by Q̨1 > � � � > Q̨q the

reciprocals of the real parts of the eigenvalues of F and by Qd1 the dimension of the

F1 invariant subspace of RdC1, where F1 is (analogously to E1) the blockmatrix,

whose eigenvalues have real part equal to Q̨ �1
1 . Furthermore, let Q̨ 0

1 be such that

Q̨ 0
1 D Q̨1 C ˛0

1 � ˛1.
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In part (i) we have that ˛1 � 1. Then Q̨1 D ˛1 and Qd1 � d1. By Corollary 3.5

there now exists a positive constant K2 such that

EŒTZ.a; s/� � K2a Q̨ 0
1 D K2a˛0

1

for all 0 < a � 1 and a˛1 � s � 1.

On the other hand in part (ii) we have ˛1 < 1. Then Q̨1 D 1 and Qd1 D 1.

For any � > 0, by Corollary 3.5 there now exists a positive constant K3 such that

EŒTZ.a; s/� � K3a Q̨1C� D K3a1C�

for all 0 < a � 1 and a � s � 1.

(iii) Let 0 < j̨ < ˛0
j < j̨ �1 for all j D 2; : : : ; p. Choose i0; i1 2 N0 such

that c�i0 < a � c�i0C1 and c�i1 < c�i0˛0
2 � c�i1C1. For t 2 .0; 1� we can write

t D mc�i with m 2 Œ1; c/ and i 2 N0. By Lemma 2.1 we then have

kX .j /.t /k dD kc�iEj X .j /.m/k � kc�iEj k kX .j /.m/k � K c
�i=˛0

j kX .j /.ci t /k
(3.3)

for all j D 1; : : : ; p. Note that, since d1 D 1, for j D 1 in (3.3) we can choose

K D 1 and ˛0
1 D ˛1. Furthermore, since ˛0

2 > 1 there exists a constant a0 > 0

such that for all 0 < a � a0 we have a˛0
2 � ap

pC1
. Altogether, for 0 < a � a0 this

gives us

EŒTZ.a; s/� D
Z s

0

P .kZ.t/k < a/ dt

D
Z s

0

P .k.t; X.t//k < a/ dt

�
Z s

0

P

�

jX .1/.t /j <
ap

p C 1
; kX .j /.t /k <

ap
p C 1

;

2 � j � p; jt j <
ap

p C 1

�

dt

�
Z a

˛0
2

0

P

�

jX .1/.t /j <
ap

p C 1
; kX .j /.t /k <

ap
p C 1

;

2 � j � p
�

dt

�
Z c�i1

0

P

�

jX .1/.t /j <
ap

p C 1
; kX .j /.t /k <

ap
p C 1

;

2 � j � p
�

dt
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D
1

X

iDi1C1

Z c�iC1

c�i

P

�

jX .1/.t /j <
ap

p C 1
;

kX .j /.t /k <
ap

p C 1
; 2 � j � p

�

dt

�
1

X

iDi1C1

Z c�iC1

c�i

P

�

jX .1/.ci t /j <
c

i
˛1

�i0

p
p C 1

;

kX .j /.ci t /k < K�1 c
i

˛0
j

�i0

p
p C 1

; 2 � j � p
�

dt

�
1

X

iDi1C1

c�i

Z c

1

P

�

jX .1/.m/j <
c

i
˛1

�i0

p
p C 1

;

kX .j /.m/k < K�1 c
i

˛0
j

�i0

p
p C 1

; 2 � j � p
�

dm;

where the penultimate inequality follows from (3.3). By Lemma 2.4 choose

K10 > 0, r > 0 and uniformly bounded Borel sets Jm � R
d�1 with Lebesgue

measure 0 < K9 � �d�1.Jm/ < 1 for every m 2 Œ1; c/ such that the bounded

continuous density gm.x1; : : : ; xp/ of X.m/ D X .1/.m/ C � � � C X .p/.m/ ful�lls

gm.x1; : : : ; xp/ � K10 > 0 for all .x1; : : : ; xp/ 2 Œ�r; r� � Jm

and for every m 2 Œ1; c/. Since ¹Jmºm2Œ1;c/ is uniformly bounded by Lemma 2.4

we are able to choose 0 < ı � c�3 < 1 such that

[

m2Œ1;c/

Jm �
°

kxj k � K�1c
�˛1
˛p

ı
p

p C 1
; 2 � j � p

±

:

Let � D c
2

˛p =.r
p

p C 1/.

Since ˛1 > ˛0
2 > 1 there exists a constant a0 2 .0; 1� such that .�a/˛1 < .ıa/˛0

2

for all 0 < a � a0. Now, choose i2; i3 2 N0 such that

c�i2 < .ıc�i0C1/˛0
2 � c�i2C1 and c�i3 < .�c�i0/˛1 � c�i3C1:

Note that

c�i3 < .�c�i0/˛1 < .ıa/˛0
2 � .ıc�i0C1/˛0

2 � c�i2C1

and

c�.i1C1/ � c�2 � c�i0˛0
2 � .c�2 � c�i0/˛0

2 D .c�3 � c�i0C1/˛0
2

� .ıc�i0C1/˛0
2 > c�i2 ;
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hence i3 � i2 � 1 and i1 C 1 � i2. We further have for all i D i2; : : : ; i3 C 1 and

every j D 2; : : : ; p

ci=˛1�i0

p
p C 1

� c.i3C1/=˛1�i0

p
p C 1

� c2=˛1.�c�i0/�1c�i0

p
p C 1

D c2=˛1

�
p

p C 1
< r (3.4)

and, since ˛0
2 � ˛0

j for j D 2; : : : ; p,

c
i=˛0

j
�i0

p
p C 1

� c
i2=˛0

j
�i0

p
p C 1

� .ıc�i0C1/
�˛0

2
=˛0

j c�i0

p
p C 1

D .ı�1ci0�1/
˛0

2
=˛0

j c�i0

p
p C 1

� c
�˛0

2
=˛0

j

ı
p

p C 1
� c�˛1=˛p

ı
p

p C 1
:

(3.5)

Let

Im D
�

� ci=˛1�i0

p
p C 1

;
ci=˛1�i0

p
p C 1

�

� Jm:

Then together with the calculations above, we get using (3.4) and (3.5)

EŒT .a; s/� �
i3C1
X

iDi2

c�i

Z c

1

P
�

jX .1/.m/j <
ci=˛1�i0

p
p C 1

kX .j /.m/k � K�1 c
i=˛0

j
�i0

p
p C 1

; 2 � j � p
�

dm

�
i3C1
X

iDi2

c�i

Z c

1

Z

Im

gm.x/ dx dm

�
i3C1
X

iDi2

c�i .c � 1/ 2
ci=˛1�i0

p
p C 1

� K10 � K9

D Kc�i0

i3C1
X

iDi2

.c�i /
1� 1

˛1

D Kc�i0
�1 � .c�.i3C2//

1� 1
˛1

1 � c
1

˛1
�1

� 1 � .c�i2/
1� 1

˛1

1 � c
1

˛1
�1

�

D Kc�i0..c�i2/
1� 1

˛1 � .c�.i3C2//
1� 1

˛1 /

� K41.c�i0/
1C˛0

2

�

1� 1
˛1

�

� K42.c�i0/˛1 :

(3.6)
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Since 1C˛0
2

�

1� 1
˛1

�

< 1C˛1

�

1� 1
˛1

�

D ˛1 we have .c�i0/
˛1�

�

1C˛0
2

�

1� 1
˛1

��

! 0

if a ! 0, i.e. i0 ! 1. Hence we can further choose a0 su�ciently small, such

that

EŒTZ.a; s/� � K4a
1C˛0

2
.1� 1

˛1
/

for all 0 < a � a0.

(iv) Let 0 < j̨ < ˛0
j < j̨ �1 for all j D 2; : : : ; p, and additionally, let

˛2 < ˛0
2 < 1. Now choose i0; i1 2 N0 such that c�i0 < a � c�i0C1 and

c�i1 < ap
pC1

� c�i1C1. For t 2 .0; 1� we can write t D mc�i with m 2 Œ1; c/ and

i 2 N0. By (3.3) we then have

kX .j /.t /k dD kc�iEj X .j /.m/k � K c
�i=˛0

j kX .j /.ci t /k (3.7)

for all j D 1; : : : ; p. Note that, since d1 D 1, for j D 1 in (3.7) we can choose

K D 1 and ˛0
1 D ˛1. Similarly to the proof of part (iii), this gives us

EŒTZ.a; s/� �
Z ap

pC1

0

P

�

jX .1/.t /j <
ap

p C 1
; kX .j /.t /k <

ap
p C 1

;

2 � j � p
�

dt

�
Z c�i1

0

P

�

jX .1/.t /j <
ap

p C 1
; kX .j /.t /k <

ap
p C 1

;

2 � j � p
�

dt

�
1

X

iDi1C1

Z c�iC1

c�i

P

�

jX .1/.ci t /j <
c

i
˛1

�i0

p
p C 1

;

kX .j /.ci t /k < K�1 c
i

˛0
j

�i0

p
p C 1

; 2 � j � p
�

dt

�
1

X

iDi1C1

c�i

Z c

1

P

�

jX .1/.m/j <
c

i
˛1

�i0

p
p C 1

;

kX .j /.m/k < K�1 c
i

˛0
j

�i0

p
p C 1

; 2 � j � p
�

dm;

where the penultimate inequality follows from (3.7). As in the proof of part (iii),

by Lemma 2.4 choose K10 > 0, r > 0 and uniformly bounded Borel sets

Jm � R
d�1 with Lebesgue measure 0 < K9 � �d�1.Jm/ < 1 for every
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m 2 Œ1; c/ such that the bounded continuous density gm.x1; : : : ; xp/ of X.m/ D
X .1/.m/ C � � � C X .p/.m/ ful�lls

gm.x1; : : : ; xp/ � K10 > 0 for all .x1; : : : ; xp/ 2 Œ�r; r� � Jm

and for every m 2 Œ1; c/. Since ¹Jmºm2Œ1;c/ is uniformly bounded by Lemma 2.4

we are now able to choose 0 < ı � .
p

p C 1 � c3/�1 < 1 such that

[

m2Œ1;c/

Jm �
°

kxj k � K�1c
�˛1
˛p

ı
p

p C 1
; 2 � j � p

±

:

Let � D c
2

˛p =.r
p

p C 1/.

Since ˛1 > 1 there exists a constant 0 < a0 � 1 such that we have .�a/˛1 < ıa

for all 0 < a � a0. Now, choose i2; i3 2 N0 such that c�i2 < ıc�i0C1 � c�i2C1

and c�i3 < .�c�i0/˛1 � c�i3C1. Note that

c�i3 < .�c�i0/˛1 < .�a/˛1 < ıa � ıc�i0C1 � c�i2C1

and, since ı � 1p
pC1

� c�3,

c�.i1C1/ � c�2 � ap
p C 1

>
c�3

p
p C 1

� c�i0C1 � ıc�i0C1 > c�i2 :

Hence, we also get i2 � 1 � i3 and i1 C 1 � i2. As in (3.4), we further have for all

i D i2; : : : ; i3 C 1 that

ci=˛1�i0

p
p C 1

� r (3.8)

and, since ˛0
j < 1 for all j D 2; : : : ; p,

c
i=˛0

j
�i0

p
p C 1

� c
i2=˛0

j
�i0

p
p C 1

� .ıc�i0C1/
�1=˛0

j c�i0

p
p C 1

D .ı�1ci0�1/
1=˛0

j c�i0

p
p C 1

� c
�1=˛0

j

ı
p

p C 1
� c�1=˛p

ı
p

p C 1
� c�˛1=˛p

ı
p

p C 1
:

(3.9)

De�ne the subsets ¹ImW m 2 Œ1; c/º � R
d as above. Similarly to the calculations

in (3.6), using (3.8) and (3.9) we arrive at

EŒTZ.a; s/� � Kc�i0..c�i2/
1� 1

˛1 � .c�.i3C2//
1� 1

˛1 / (3.10)
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Altogether, we get

EŒTZ.a; s/� � K51c�i0.c�i0/
1� 1

˛1 � K52c�i0.c�i0/˛1�1

D K51.c�i0/
2� 1

˛1 � K52.c�i0/˛1 :

Since ˛1 > 1 and therefore 2 � 1=˛1 D 1 C .1 � 1=˛1/ < 1 C ˛1.1 � 1=˛1/ D ˛1,

we can choose a0 su�ciently small, such that

EŒTZ.a; s/� � K5a
2� 1

˛1 :

for all 0 < a � a0. �

Similarly to the proof of Lemma 3.4 in [8], we can now �nd a suitable covering

of Z.B/ and prove the desired upper bounds.

Lemma 3.7. Let X D ¹X.t/; t 2 RCº be an operator semistable Lévy process on

R
d with d � 2. Then for any Borel set B � RC we have almost surely

dimH GrX.B/

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

˛1 dimH B if ˛1 dimH B � d1; ˛1 � 1; (i)

dimH B if ˛1 dimH B � d1; ˛1 < 1; (ii)

1 C ˛2

�

dimH B � 1

˛1

�

if ˛1 dimH B > d1; ˛1 > ˛2 � 1; (iii)

1 C dimH B � 1

˛1

if ˛1 dimH B > d1; ˛1 > 1 > ˛2: (iv)

Proof. (i) Assume ˛1 dimH B � d1 and ˛1 � 1. Analogously to the proof of

Lemma 3.4 in [8] for the case ˛1 dimH B � 1, it follows by Lemma 3.3 and

Theorem 3.6 (i) that dimH Z.B/ � ˛1 dimH B almost surely.

(ii) Assume ˛1 dimH B � d1 and ˛1 < 1 � d1. For 
 > dimH B , choose

ˇ > 1 such that 
 0 D 1 � ˇ C 
 > dimH B . For " 2 .0; 1�, by de�nition of the

Hausdor� dimension, there exists a sequence ¹Iiºi2N of intervals in RC of length

jIi j < " such that

B �
1
[

iD1

Ii and

1
X

iD1

jIi j

0

< 1:
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Let si D bi WD jIi j; then bi=3 < si . It follows by Lemma 3.3 and Theorem 3.6 (ii)

that Z.Ii / can be covered by Mi cubes Cij 2 ƒ.bi / of side bi such that for every

i 2 N we have

EŒMi � � 2K1si

�

E

h

TZ

�bi

3
; si

�i��1

� 2K1siK
�1
3

�bi

3

��ˇ

D K sib
�ˇ
i D K jIi j1�ˇ :

Note that Z.B/ �
S1

iD1

SMi

j D1 Cij , where bi

p
d C 1 is the diameter of Cij .

In other words, ¹Cij º is a ."
p

d C 1/-covering of X.B/. By monotone conver-

gence we have

E

h

1
X

iD1

Mib


i

i

D
1

X

iD1

EŒMib


i � �

1
X

iD1

K jIi j1�ˇ jIi j
 D K

1
X

iD1

jIi j

0 � K:

Letting " ! 0, i.e bi ! 0 and applying Fatou’s lemma, we get

EŒH
 .X.B//� � E

h

lim inf
"!0

1
X

iD1

Mi
X

j D1

.bi

p

d C 1/

i

� lim inf
"!0

p

d C 1


E

h

1
X

iD1

Mib


i

i

�
p

d C 1


K < 1;

which shows that dimH Z.B/ � 
 almost surely. And since 
 > dimH B is

arbitrary, we get dimH Z.B/ � dimH B almost surely.

(iii) Assume ˛1 dimH B > d1 and ˛2 � 1. Since dimH B � 1, we have

˛1 > d1 D 1. For 
 > dimH B choose ˛0
2 > ˛2 such that 
 0 D 1 � ˛0

2

˛2
C ˛0

2

˛2

 >

dimH B . For " 2 .0; 1� de�ne ¹Iiºi2N as in part (ii) and let si WD jIi j and

bi WD jIi j
1

˛2 . Then .bi=3/˛2 < si . Again, by Lemma 3.3 and Theorem 3.6 (iii) it

follows that Z.Ii / can be covered by Mi cubes Cij 2 ƒ.bi / of side bi such that

for every i 2 N we have

EŒMi � � 2K1si

�

E

h

TZ

�bi

3
; si

�i��1

� 2K1si K
�1
4

�bi

3

��1�˛0
2

�

1� 1
˛1

�

D K si b
�1�˛0

2

�

1� 1
˛1

�

i D K jIi j1� 1
˛2

� ˛0
2

˛2
�
�

1� 1
˛1

�

:
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By monotone convergence we have

E

h

1
X

iD1

Mib
1C˛0

2

�


� 1
˛1

�

i

i

�
1

X

iD1

K jIi j1� 1
˛2

� ˛0
2

˛2
�
�

1� 1
˛1

�

jIi j
1

˛2
C ˛0

2
˛2

�


� 1
˛1

�

D K

1
X

iD1

jIi j

0 � K:

Since 
 > dimH B and ˛0
2 > ˛2 are arbitrary, with the same arguments as in

part (ii) we get dimH Z.B/ � 1 C ˛2.dimH B � 1
˛1

/ almost surely.

(iv) Assume ˛1 dimH B > d1 and ˛2 < 1. Since dimH B � 1, we have

˛1 > d1 D 1. Let 
 D 
 0 > dimH B . For " 2 .0; 1� de�ne ¹Iiºi2N as in part (ii)

and let si WD jIi j and bi WD jIi j. Then bi=.3
p

p C 1/ < si . Again, by Lemma 3.3

and Theorem 3.6 (iv) it follows that Z.Ii / can be covered by Mi cubes Cij 2 ƒ.bi /

of side bi such that for every i 2 N we have

EŒMi � � 2K1si

�

E

h

TZ

�bi

3
; si

�i��1

� 2K1siK
�1
5

�bi

3

��2C 1
˛1

D K si b
�2C 1

˛1

i

D K jIi j�1C 1
˛1 :

By monotone convergence we have

E

h

1
X

iD1

Mib
1C
� 1

˛1

i

i

�
1

X

iD1

K jIi j�1C 1
˛1 jIi j1C
� 1

˛1

D K

1
X

iD1

jIi j


D K

1
X

iD1

jIi j

0

� K:

Since 
 > dimH B is arbitrary, we get dimH Z.B/ � 1 C dimH B � 1
˛1

almost

surely. �
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3.2. Lower bounds. In order to obtain the lower bounds of dimH GrX .B/ we

apply Frostman’s Lemma and Theorem and use the relationship between the

Hausdor� dimension and the capacitary dimension (see [2, 14] for details).

Lemma 3.8. Let X D ¹X.t/; t 2 RCº be an operator semistable Lévy process on

R
d with d � 2. Then for any Borel set B � RC we have almost surely

dimH GrX.B/

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

˛1 dimH B if ˛1 dimH B � d1; ˛1 � 1; (i)

dimH B if ˛1 dimH B � d1; ˛1 < 1; (ii)

1 C ˛2

�

dimH B � 1

˛1

�

if ˛1 dimH B > d1; ˛1 > ˛2 � 1; (iii)

1 C dimH B � 1

˛1

if ˛1 dimH B > d1; ˛1 > 1 > ˛2: (iv)

Proof. (i)C(iii) Since projections are Lipschitz continuous, we have

dimH GrX .B/ � dimH X.B/:

Hence, the desired lower bounds in these two parts can be deduced from the

dimension result (3.1) for the range of an operator semistable process.

(ii) Choose 0 < 
 < dimH B � 1. Then by Frostman’s lemma there exists a

probability measure � on B such that

Z

B

Z

B

�.ds/�.dt/

js � t j
 < 1: (3.13)

In order to prove dimH GrX .B/ D dimH Z.B/ � 
 almost surely, by Frostman’s

theorem [7, 14] it su�ces to show that

Z

B

Z

B

E ŒkZ.s/ � Z.t/k�
 � �.ds/ �.dt/ < 1: (3.14)

Let s; t 2 B � RC. Then

E

�











�

t

X.t/

�

�
�

s

X.s/

�











�
�

� EŒjs � t j�
 � D js � t j�
 :

Hence, (3.14) follows directly from (3.13).
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(iv) Assume ˛1 dimH B > d1 then ˛1 > d1 D 1. Choose

1 < 
 < 1 C dimH B � 1

˛1

;

then

� D 
 � 1 C 1

˛1

< dimH B:

By Frostman’s lemma, there exists again a probability measure � on B such that

Z

B

Z

B

�.ds/�.dt/

js � t j� < 1:

Again, in order to verify (3.14) we split the domain of integration into two parts.

First assume that js � t j D mc�i � 1 with m 2 Œ1; c/ and i 2 N0. Since d1 D 1

we get

E

�












�

t

X.t/

�

�
�

s

X.s/

�












�
 �

� EŒ.c
�i 2

˛1 � jX .1/.m/j2 C js � t j2/� 

2 �

� K

Z

R

1

c
�i 


˛1 � jx1j
 C js � t j

� gm.x1/dx1

D K

Z

R

1

m
� 


˛1

�

mc�i
�



˛1 � jx1j
 C js � t j


� gm.x1/dx1

� K

Z

R

1

c
� 


˛1 � js � t j



˛1 jx1j
 C js � t j

� gm.x1/dx1

� K

Z

R

1

js � t j



˛1 jx1j
 C js � t j

� gm.x1/dx1

D K � js � t j�



˛1

Z

R

1

jx1j
 C js � t j

�

1� 1
˛1

� � gm.x1/dx1 DW K � js � t j�



˛1 � Im;

where gm.x1/ is the density function of X .1/.m/. Let

Fm.r1/ D P.jX .1/.m/j � r1/ D
Z

jx1j�r1

gm.x1/dx1

and note that by Lemma 2.2

sup
m2Œ1;c/

sup
x12R

jgm.x1/j � K8 < 1:
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This leads to

Fm.r1/ � 1 ^ 2K8 � r1 for all r1 � 0 and m 2 Œ1; c/:

We denote z D js � t j1� 1
˛1 . By using integration by parts, we deduce

Im D
Z 1

0

1

r


1 C z


Fm.dr1/

D
h 1

r


1 C z


Fm.r1/
i1

0
C

Z 1

0


r

�1
1

.r


1 C z
 /2

Fm.r1/dr1

� K

Z 1

0


r

�1
1

.r


1 C z
 /2

r1dr1

D K

Z 1

0


r


1

.r


1 C z
 /2

dr1

D K

Z 1

0

z
 � .zs1/


..zs1/
 C z
 /2
ds1

D Kz�.
�1/ �
Z 1

0


s


1

.s


1 C 1/2

ds1

� Kz�.
�1/ D K js � t j�.
�1/
�

1� 1
˛1

�

;

where the last integral is �nite since 
 > 1. Together we get for js � t j � 1

E

�












�

t

X.t/

�

�
�

s

X.s/

�












�
 �

� K js � t j�
C1� 1
˛1 D K js � t j��:

For js � t j � 1 we have

sup
js�t j�1

E

�












�

t

X.t/

�

�
�

s

X.s/

�












�
�

� sup
js�t j�1

EŒjs � t j�
 �

D sup
js�t j�1

js � t j�
 � 1:

Therefore it follows from the calculations above that
Z

B

Z

B

E

�











�

t

X.t/

�

�
�

s

X.s/

�











�
�

�.ds/�.dt/ < 1:

Using Frostman’s theorem we get

dimH GrX .E/ � 
:

Since 
 < 1 C dimH B � 1
˛1

was arbitrary this concludes the proof. �
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3.3. Proof of main results. Theorem 3.1 now follows directly from Lemma 3.7

and Lemma 3.8. It remains to prove the corresponding dimension result for the

one-dimensional case as stated in Theorem 3.2. For ˛ dimH B � 1 Lemma 3.7

and 3.8 are still valid for d D 1 with ˛1 WD ˛. In case ˛ dimH B > 1 D d the

proof runs analogously to Lemma 3.7 part (iv) and Lemma 3.8 part (iv).

Remark 3.9. For B D Œ0; 1�, an alternative way to calculate dimH GrX.B/ can be

to examine the index introduced by Khoshnevisan et al. in [10], which depends on

the asymptotic behavior of the Lévy exponent of the process X . As this is subject

of current research, it is not addressed in the present paper.
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