
J. Fractal Geom. 4 (2017), 73–103
DOI 10.4171/JFG/45

Journal of Fractal Geometry

© European Mathematical Society

Graph-directed sprays and their tube volumes

via functional equations

Derya Çelik, Şahin Koçak, Yunus Özdemir, and Adem Ersin Üreyen

Abstract. The notion of sprays introduced by Lapidus and his co-workers has proved
useful in the context of fractal tube formulas. In the present note, we de�ne a notion of a
graph-directed spray, associated with a weighted directed graph. Using a simple functional
equation satis�ed by the volume of the inner "-neighborhood of such a graph-directed
spray, we establish a tube formula for them, where we allow the generators of the spray
to be pluriphase. We give also an example to illustrate the application of this notion to the
computation of the tube volume of graph-directed fractals.
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1. Introduction

Tube volumes for fractals has been an interesting topic of research in the last

decade. M. Lapidus and his coworkers established several tube formulas as se-

ries in terms of residues of some associated zeta functions [7]. Recently, we have
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proposed a simple alternative approach to tube formulas for self-similar sprays

via functional equations ([4]). The so-called sprays introduced by Lapidus and

Pomerance in [10] (to be de�ned below) are a convenient notion in dealing with

fractal tube volumes.

Beyond the self-similar fractals, the next family of interest is the class of graph-

directed fractals. For tube volumes of graph-directed fractals there are formulas

(see [2]), which are analogous to the tube formulas of Lapidus and Pearse ([8]).

So far as we know, the notion of spray has not been extended to the graph-directed

setting. In the present note, we want to propose the notion of graph-directed sprays

and establish a tube formula for them via functional equations.

We now �rst recall the notion of a spray in Euclidean space. Let G � R
n be a

non-empty bounded open set. A spray generated byG is a collection S D .Gi /i2N

of pairwise disjoint open setsGi � R
n such thatGi is a scaled copy ofG by some

�i > 0; in other words, Gi is congruent (i.e. isometric) to �iG. The sequence

.�i /i2N is called the associated scaling sequence of the spray. In applications one

has typically �i < 1 and often �0 D 1 so that G0 is equal (or isometric) to G.

Furthermore, it is meaningful to assume
P

i2N �
n
i < 1 to make the volume ofS

i2NGi �nite, as one deals with the inner tube of
S

i2NGi (the inner "-tube of

an open set A � R
n is the set of points of A within a distance less than " to the

boundary of A).

The most important class of sprays is that of self-similar sprays, for which the

scaling sequence is of a very special type.

Let ¹r1; r2; : : : ; rJ º be a so-called ratio list (i.e. 0 < rj < 1 for j D 1; 2; : : : ; J )

and consider the formal expression

1

1� .r1 C r2 C � � � C rJ /
D 1C

1X

kD1

X

i1;i2;:::;ik2¹1;:::;J º

ri1 ri2 : : : rik : (1)

If the scaling sequence .�i/i2N of a spray is given by the terms of the series on

the right-hand side of (1) for an appropriate ratio list, then the spray is called a
self-similar spray.

To give a �avour of tube formulas, we note the following theorem ([8], [9],
and [3]).

Theorem 1.1. Let .Gi /i2N be a self-similar spray generated by G � R
n with a

scaling sequence associated with a ratio list ¹r1; r2; : : : ; rJ º. Assume G � R
n to

be monophase, i.e. let its inner "-tube volume function VG."/ be given by
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VG."/ D

8
ˆ̂<
ˆ̂:

n�1X

iD0

�i"
n�i if 0 � " � g;

Vol.G/ if " � g;

where g is the inradius of G (i.e. the supremum of the radii of the balls contained

in G). Then the volume V[Gi
."/ of the inner "-tube of [Gi is given by the formula

V[Gi
."/ D

X

!2D[¹0;1;2;:::;n�1º

res.�.s/ "n�sI!/ for " < g;

where

�.s/ D 1

1� .rs
1 C � � � C rs

J /

nX

iD0

gs�i

s � i �i (with �n D � Vol.G/)

and D is the set of complex roots of the equation rs
1 C � � � C rs

J D 1.

For a far-reaching generalization of this theorem to general fractal sprays and
arbitrary generators see [9].

The motivation behind the notion of the self-similar spray is that they naturally
emerge as the “hollow spaces” in self-similar fractals. For example, if you start
with an interval, and construct a Cantor set by deleting successively the open
middle thirds of the intervals, the collection of deleted open intervals constitute a
1-dimensional self-similar spray with a scaling sequence associated with the ratio
list ¹1

3
; 1

3
º, the generator being the �rst deleted middle third. Likewise, if you start

with a triangle and successively delete the open middle fourths of the triangles
to obtain in the end a Sierpinski Gasket, then the collection of the deleted open
triangles constitute a 2-dimensional self-similar spray with a scaling sequence
associated with the ratio list ¹1

2
; 1

2
; 1

2
º, the generator being again the �rst deleted

middle fourth.
One can in principle allow any scaling sequence for a spray, but to obtain man-

ageable tube formulas some sort of restrictions seem (as of yet) to be necessary.
To be associated with a ratio list is, for example, such a condition. A weaker condi-
tion (called “subshift of �nite-type”) was formulated to handle the hollow spaces
of graph-directed fractals in [3], but a more natural approach demands a considera-
tion of “graph-directed” sprays, since the hollow spaces of graph-directed fractals
are composed of copies of several generators, each associated with a node of the
graph and each scaled with a di�erent scaling sequence (see Figures 3-5). This is
in contrast with self-similar sprays with several generators, where all generators
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are scaled with the same scaling sequence, as for example in the pentagasket tiling
(see [8]). Another point is that, in the de�nition of classical sprays connectivity
of generators are not explicitly required, so that, for example, the six generators
of the pentagasket could also be viewed as a single disconnected generator. In
the graph-directed setting however, irrespective of the connectivity of generators,
the presence of di�erent scaling sequences distinguish them from the classical
self-similar sprays.

In Section 2 we de�ne this more general concept of graph-directed sprays.
In Section 3 we consider a natural functional equation for inner tube volumes of
graph-directed sprays where we allow pluriphase generators, formulate a multi-
dimensional renewal lemma to handle it and establish an inner tube formula for
graph-directed sprays as our main result (Theorem 3.7). In Section 4 we give the
proof, taking into account the additional di�culties arising from the presence of
the Mauldin–Williams matrix. We give also an explicit su�cient region for " on
which the main theorem holds.

In the appendix we give a more detailed discussion of the relationship between
sprays and graph-directed sprays.

2. Graph-directed sprays

Let G D .V; E; r/ be a �nite weighted directed graph with weights r WE ! .0; 1/.
For an edge e 2 E, we denote the initial vertex of e by i.e/ and the terminal vertex
by t .e/. For vertices u; v 2 V , we denote the set of edges from u to v by Euv and
the set of edges starting from u by Eu. If Eu ¤ ; for all u 2 V , such a graph is
called a Mauldin–Williams graph. If any two vertices u and v can be joined by a
(directed) path, then the graph is said to be strongly connected. We will generally
assume that the Mauldin–Williams graphs be strongly connected.

We de�ne the weight of a path ˛ D e1e2 : : : ek by r.˛/ D r.e1/�r.e2/�: : :�r.ek/.
˛ is called a path from the vertex u to v if i.e1/ D u and t .ek/ D v. We also write
i.˛/ D u and t .˛/ D v. We assign an empty path �u to every vertex uwith weight
r.�u/ D 1.

Now we de�ne graph-directed sprays.

De�nition 2.1. Let G D .V; E; r/ be a Mauldin–Williams graph and Gu .u 2 V /
be bounded open sets in R

n. A graph-directed spray S associated with G and
generated by the open sets Gu .u 2 V / is a collection of pairwise disjoint open
sets G˛ in R

n (where ˛ is a path in the graph), such that G˛ is a scaled isometric
copy of Gt.˛/ with scaling ratio r.˛/.
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Remark 2.2. Note that Gu, with u 2 V , is a generator and G˛ , where ˛ denotes
a path, is a copy of a generator. If ˛ D �u then G�u

is a scaled isometric copy of
Gt.�u/ D Gu with scaling ratio r.�u/ D 1, i.e. G�u

is an isometric copy of Gu.

Remark 2.3. Note that if G has only one node this notion reduces to the ordinary
notion of a self-similar spray generated by a single (possibly non-connected) open
set with a scaling sequence associated with the ratio list consisting of the weights
of the loops around the single vertex.

The spray S can naturally be decomposed into subcollections

Su D ¹G˛ j i.˛/ D uº:

Notice that the subcollection Su is also composed of pairwise disjoint scaled
copies of all generators Gv with scaling ratios r.˛/ for paths ˛ starting at u. This
decomposition of S into the subcollections Su will prove useful in establishing
tube formulas.

The motivation for the de�nition of graph-directed sprays comes, in analogy
to the motivation of self-similar sprays, from hollow spaces of graph-directed
fractals. Let us very brie�y recall the notion of graph-directed fractals.

Let G D .V; E; r/ be a Mauldin–Williams graph, .Au/u2V be a list of complete
subsets of R

n and let feWAt.e/ ! Ai.e/ be similarities with similarity ratios
r.e/. Such an assignment is called a realization of the graph G in R

n. Given
such a realization, there is a unique list .Ku/u2V of nonempty compact sets with
Ku � Au .u 2 V / satisfying

Ku D
[

v2V

[

e2Euv

fe.Kv/

for all u 2 V (see [5]).

In favorable cases the maps fe can be restricted to the convex hull of the graph-
directed “attractors” Kt.e/ and these attractors can be imagined to be formed by
deleting successively pieces of the convex hull analogous to the construction of the
Cantor set or the Sierpinski Gasket by deleting successively pieces of an interval
or a triangle. The collection of deleted open pieces will constitute a graph-directed
spray in the above de�ned sense, with so many generators as there are nodes of
the graph. Before making this idea precise, it will be best to study an example.



78 D. Çelik, Ş. Koçak, Y. Özdemir, and A. E. Üreyen

Example 2.4. Consider the Mauldin–Williams graph with V D ¹1; 2º, with 9
edges and the corresponding weights as shown in Figure 1.

Figure 1. A Mauldin–Williams graph with 2 nodes and 9 edges (the weights are shown in
parenthesis).

Let A1 and A2 be the square and the triangle in R
2 as shown in Figure 2 (a).

The similarities associated with the edges are indicated in Figure 2 (b). The graph-
directed fractals K1 and K2 of the system are shown in Figure 3. .A1 n K1/ [
.A2 nK2/ is a collection of connected open sets which constitute a graph-directed
spray with generators G1 and G2 satisfying De�nition 2.1 (see Figures 4-5). The
generators G1 and G2 thereby are de�ned by Gu D Aı

u n
S

e2Eu
fe.At.e// for

u D 1; 2.
Note that the subcollections S1 D ¹G˛ j i.˛/ D 1º and S2 D ¹G˛ j i.˛/ D 2º

contain copies of both of G1 and G2 so that we can not view either of them as a
spray in the classical sense.

To illustrate the formation of G˛ for a path ˛, we give several examples in
Figure 6.

From the point of view of our present concern to establish inner tube formulas
for graph-directed sprays, the special positions of the scaled copies of the gener-
ators are not important as long as they are pairwise disjoint. But if one wishes to
compute tube volumes of fractals, one should be careful in relating the tube of the
fractal to the inner tube of an associated spray. In the above example the "-tube
volume of K1 can be expressed as the sum of the inner "-tube volume of the col-
lection S1 and the outer "-tube of the square A1 (likewise for K2) (see Figure 7).
But this convenient relationship does not hold always as the following example
shows.
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Figure 2. A realization of the Mauldin–Williams graph of Example 2.4 (shown in Figure 1).
(a) The complete spaces associated with the 2 nodes. (b) The similarities associated with
the edges.
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Figure 3. The attractors of the realization shown in Figure 2 of the Mauldin–Williams graph
of Example 2.4.

Figure 4. The generators of the realization shown in Figure 2 of the Mauldin–Williams
graph of Example 2.4.
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Figure 5. The hollow spaces of the realization shown in Figure 2 of the Mauldin–Williams
graph of Example 2.4 (S1 left, S2 right).
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Figure 6. A few examples of actions of paths on generators for the realization shown in
Figure 2 of the Mauldin–Williams graph of Example 2.4.
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Figure 7. The "-tubes of the attractors of Example 2.4 as the union of the inner "-tube of
the hollow spaces and the outer "-tube of the convex hull of the attractor.

Example 2.5. As the Mauldin–Williams graph we choose the same graph in
Figure 1 with the only di�erence that we delete the edge e4

22. We choose the
same realization of this graph in R

2 discarding the map corresponding to e4
22.

The emerging graph-directed fractals L1 and L2 and the corresponding graph-
directed spray with generators H1 and H2 satisfying De�nition 2.1 are shown in
Figures 8 and 9.

In this example the "-tube volume of the graph-directed fractals can not be
meaningfully related to the inner "-tube volume of the graph-directed spray. Two
types of problematic boundaries of generator copies are indicated in Figure 9 by
dotted lines.

The simple relationship between the fractal tube volume and the inner spray
volume observed in Example 2.4 still remains true for a more general class of
graph-directed systems, if the following assumptions hold.

i) dim.Cu/ D n, where Cu is the convex hull ŒKu� of Ku.

ii) T ileset condition. The open set condition should be satis�ed with
Ou D C ı

u . We recall that (see [5]) the graph-directed system satis�es the
open set condition if there exists a list .Ou/u2V of open sets Ou � R

n such
that,

(a) for any e 2 Euv , fe.Ov/ � Ou,

(b) for any two distinct e1; e2 2 Eu, fe1
.Ot.e1// \ fe2

.Ot.e2// D ;.

iii) Nontriviality condition. C ı
u ª

[

e2Eu

fe.Ct.e//.

iv) Pearse–Winter condition, [12]. @Cu � Ku.
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Figure 8. Attractors of Example 2.5.

Figure 9. Generators and the hollow spaces of Example 2.5 showing that the "-tube of the
attractors needn’t be the union of the inner "-tube of the hollow space and the outer "-tube
of the convex hull of the attractor.

Now, if we de�ne

Gu D C ı
u n

[

e2Eu

fe.Ct.e//

then we get a graph-directed spray S generated by the open sets .Gu/u2V with
G˛ D Ge1e2:::ek

D fe1
fe2

: : : fek
.Gt.ek// for a path ˛ in the graph G.

Under the above conditions one can compute the "-tube volume of the graph-
directed fractals with the help of the inner tube volume of the graph-directed spray
as in Example 2.4. So we now consider the inner tube volumes for graph-directed
sprays in the next section.
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3. Inner tube volumes of graphdirected sprays via functional equations

Let G D .V; E; r/ be a Mauldin–Williams graph, .Gu/u2V bounded open sets in
R

n and S be a graph-directed spray associated with G and generated by the open
sets .Gu/u2V . Let Su be the subcollection of the spray S corresponding to the
paths with initial vertex u 2 V .

The volume of the inner "-tube of the collection Su satis�es the following
functional equation (for all u 2 V ) as one can easily verify:

VSu
."/ D

X

v2V

X

e2Euv

rn
e VSv

� "
re

�
C VGu

."/: (2)

Our strategy will be, as in the self-similar case ([4]), to apply the Mellin
transform to this functional equation and then try to recover the volume function
by applying the inverse Mellin transform. To apply the Mellin transform we need
an estimate of VSu

."/ as " ! 0. We now formulate a multi-dimensional renewal
lemma which will enable us to �nd such an estimate (For the one-dimensional
renewal lemma see [11]).

We recall that for a strongly connected Mauldin–Williams graph the spectral
radius of the matrix

A.s/ D Œauv.s/�u;v2V with auv.s/ D
X

e2Euv

rs
e

(and auv.s/ D 0 if Euv D ;) takes the value 1 for a unique s0 � 0, which is called
the sim-value of the graph and which we denote by D below (see [5]). We will
always assume D < n.

Remark 3.1. The assumptionD < n is in fact equivalent to the condition that the
total volume of the graph-directed spray is �nite. To see this, one can easily verify
that the volumes of the subcollections Su can be expressed as follows:

ŒVol.Su/�u2V D .I C A.n/C A2.n/C : : : / ŒVol.Gu/�u2V ;

where ŒVol.Su/�u2V is a column vector. Note that, the matrix power Ak.n/ codes
the contribution of paths of length k to the total spray volume.

We �rst note that the spectral radius ofA.s/ is a strictly decreasing function for
s � 0 and the spectral radius of A.D/ D 1 ([5]). Now, if D < n, the spectral ra-
dius of A.n/ is strictly less than 1 and hence the matrix power series

P1
kD0A

k.n/

converges ([6, Theorem 5.6.15]), so that the volume of the spray is �nite. On the
other hand ifD � n, then the spectral radius of A.n/ is greater than or equal to 1,
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and hence at least one entry of the matrix sequence Ak.n/ does not tend to zero
[6, Theorem 5.6.12], so that the series

P1
kD0A

k.n/ diverges and the total volume
of the spray is in�nite.

Lemma 3.2. Let G D .V; E; r/ be a strongly connected Mauldin–Williams graph

and

hu.x/ D
X

v2V

X

e2Euv

rD
e hv

�
x � log

� 1
re

��
C  u.x/ .u 2 V /; (3)

be a system of renewal equations on R, where D is the sim-value of the graph.

Assume  u.x/ D O.e�� jxj/ for some � > 0. Let .hu/u2V be a solution of this

system of renewal equations. If hu.x/ tends to 0 for x ! �1 for all u 2 V , then

hu is bounded ( for all u 2 V ).

Proof. Let 
 D mine2E ¹log 1=reº.
Since the Mauldin–Williams graph G is strongly-connected, the correspond-

ing Mauldin–Williams matrix A.s/ is irreducible and by the Perron-Frobenius
theorem, for s D D the spectral radius 1 is also an eigenvalue with a positive
eigenvector p D .pu/u2V (with pu > 0) so that we have

pu D
X

v2V

auv.D/ pv D
X

v2V

X

e2Euv

rD
e pv: (4)

Since the functions hu .u 2 V / tend to zero for x ! �1, one can choose
x0 2 R such that jhu.x/j � pu for x 2 .�1; x0�.

Let x 2 Œx0; x0 C 
�. From (3) and (4),

jhu.x/j �
X

v2V

X

e2Euv

rD
e pv C sup

x2Œx0;x0C
�

j u.x/j

� pu C sup
x2Œx0;x0C
�

j u.x/j:

By the assumption on  u, we can �nd an M such that j u.x/j � puM e�� jxj

(for all u 2 V ). Hence for x 2 Œx0; x0 C 
�

jhu.x/j � pu.1CM sup
x2Œx0;x0C
�

e�� jxj/: (5)

Since jhu.x/j � pu for x 2 .�1; x0�, the inequality (5) holds for all x 2 .�1,
x0 C 
�.
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Now, let x 2 Œx0 C 
; x0 C 2
�. As above,

jhu.x/j �
X

v2V

X

e2Euv

rD
e pv.1CM sup

x2Œx0;x0C
�

e�� jxj/C sup
x2Œx0C
;x0C2
�

j u.x/j

� pu.1CM sup
x2Œx0;x0C
�

e�� jxj/C puM sup
x2Œx0C
;x0C2
�

e�� jxj

D pu.1CM sup
x2Œx0;x0C
�

e�� jxj CM sup
x2Œx0C
;x0C2
�

e�� jxj/:

The above inequality clearly holds for all x 2 .�1; x0 C2
�. Repeating the above
argument, we see that for all x 2 R,

jhu.x/j � pu

�
1CM

1X

kD0

sup
x2Œx0Ck
;x0C.kC1/
�

e�� jxj
�
:

This shows that hu is bounded on R. �

Now we can derive an estimate for VSu
."/ as " ! 0.

Lemma 3.3. Assume, there exists an ˛ > 0 such that VGu
."/ D O."˛/ for " ! 0.

We further assume that n � ˛ < D < n, where D is the sim-value of the graph.

Then, it holds VSu
."/ D O."n�D/ as " ! 0.

Remark 3.4. If the generator Gu is monophase or pluriphase (i.e. the volume of
the inner "-tube of Gu is piecewise polynomial), then ˛ � 1 and the assumption
n�˛ < D reduces to n�1 < D. But if Gu is a complicated set of a fractal nature,
then ˛ could be less than 1.

Proof of Lemma 3.3. Let us de�ne

WSu
."/ D VSu

."/

"n�D

to obtain

WSu
."/ D

X

v2V

X

e2Euv

rD
e WSv

� "
re

�
C VGu

."/

"n�D
(6)

from the equation (2). Let us now apply the change of variable " D e�x in the
equation (6). We obtain the following system of renewal equations on R

hu.x/ D
X

v2V

X

e2Euv

rD
e hv

�
x � log

1

re

�
C  u.x/;



Graph-directed sprays and their tube volumes via functional equations 87

where

hu.x/ D WSu
.e�x/ and  u.x/ D VGu

.e�x/

e�x.n�D/
:

Now we have to verify the assumptions of Lemma 3.2.
We notice that

hu.x/ D hu.� log "/ D VSu
."/

"n�D
�! 0

as x ! �1, i.e. " ! 1, since D < n and the volume of the spray is �nite.
To check the assumption on  u, choose � D min¹n�D;D � nC ˛º.
By Lemma 3.2, hu.x/ D VSu

."/="n�D is bounded, so that VSu
."/ D O."n�D/.

�

We will now apply the Mellin transform to the equation (2) and to this end, it
will be convenient to de�ne the auxiliary functions

fu."/ D VSu
."/

"n
; for u 2 V

(these functions can be viewed as a kind of “normed” tube volumes). The sys-
tem (2) of functional equations transforms into the following system:

fu."/ D
X

v2V

X

e2Euv

fv

� "
re

�
C VGu

."/

"n
: (7)

Recall that the Mellin transform of a function f W .0;1/ ! R is given by

M.f /.s/ � Qf .s/ D
Z 1

0

f .x/ xs�1dx:

If this integral exists for some c 2 R and if the function f is continuous at
x 2 .0;1/ and of bounded variation in a neighborhood of x, then f .x/ can be
recovered by the inverse Mellin transform ([13])

1

2�i
lim

T !1

Z cCiT

c�iT

Qf .s/ x�sds:

The function fu is continuous and fu."/ D O."�n/ as " ! 1. If for some
˛ > 0, VGu

."/ D O."˛/ as " ! 0 and n � ˛ < D < n, then by Lemma 3.3,
fu."/ D O."�D/ as " ! 0. So the integral

Z 1

0

fu."/ "
s�1 d"
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exists for any s with D < Re.s/ < n. Likewise, the integral

Z 1

0

VGu
."/

"n
"s�1 d"

exists for n � ˛ < Re.s/ < n. We can then take the Mellin transform of (7) to
obtain

efu.s/ D
X

v2V

� X

e2Euv

rs
e

�
efv.s/C M

�VGu
."/

"n

�
.s/

for D < Re.s/ < n. This system can also be written as a matrix equation

F.s/ D A.s/F.s/Cˆ.s/ .D < Re.s/ < n/ ;

where F.s/ is the column vector Œefu.s/�u2V ,

ˆ.s/ D
h
M

�VGu
."/

"n

�
.s/
i

u2V
;

and A.s/ is the Mauldin–Williams matrix.

Lemma 3.5. For Re.s/ > D, the matrix I � A.s/ is invertible, so that it holds

F.s/ D ŒI � A.s/��1ˆ.s/ (8)

for D < Re.s/ < n.

Proof. This is a consequence of some well-known results from matrix algebra.
For s 2 R, s > D, the spectral radius �.A.s// is less than 1 ([5]). Then
by [6, Theorem 5.6.12] lim

k!1
Ak.s/ D 0 entry-wise. For arbitrary s 2 C with

Re.s/ > D, we have

jauv.s/j D
ˇ̌
ˇ̌ X

e2Euv

rs
e

ˇ̌
ˇ̌ �

X

e2Euv

rRe.s/
e D auv.Re.s//:

This holds for the entries of Ak.s/ and Ak.Re.s// also, giving lim
k!1

Ak.s/ D 0

entry-wise. We then have by [6, Theorem 5.6.12], �.A.s// < 1, and thus I �A.s/
is invertible. �
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We can write the matrix equation (8) also as follows:

Œefu.s/�u2V D 1

det.I � A.s// Œadj.I � A.s//�uv

h
M

�VGu
."/

"n

�
.s/
i

v2V
;

or

efu.s/ D 1

det.I � A.s//
X

v2V

adj.I � A.s//uv M

�VGv
."/

"n

�
.s/ for all u 2 V ;

(9)
where “adj” means the adjugate matrix.

We now apply the inverse Mellin transform to the equation (9). ForD < c < n,

fu."/ D 1

2�i

Z cCi1

c�i1

efu.s/ "
�sds

D 1

2�i

X

v2V

�Z cCi1

c�i1

adj.I � A.s//uv

det.I � A.s// M

�VGv
."/

"n

�
.s/ "�s ds

�
:

De�nition 3.6. Let G D .V; E; r/ be a Mauldin–Williams graph, Gu .u 2 V /

bounded open sets in R
n and S a graph-directed spray associated with G and gen-

erated by the open setsGu. LetA.s/ D Œauv.s/�u;v2V with auv.s/ D
P

e2Euv
rs

e be
the Mauldin–Williams matrix of the graph. We de�ne the geometric zeta function
of the graph-directed spray with respect to the node u 2 V as follows:

�u.s/ D
X

v2V

adj.I � A.s//uv

det.I � A.s// M

�VGv
."/

"n

�
.s/;

for D < Re.s/ < n where D is the sim-value of the Mauldin–Williams graph.

fu."/ can now be expressed as

fu."/ D 1

2�i

Z cCi1

c�i1

�u.s/ "
�sds:

At this point, we need some assumptions about the inner tube volumes of the
generators to manipulate this expression further. We assume that the generators
are monophase or pluriphase. Note that in this case the geometric zeta function
which is analytic for D < Re.s/ < n can be extended meromorphically to
the whole plane C, as can be seen from the explicit expressions for the Mellin
transforms given in the Remarks 3.8-3.9 below.

We can now express our main result as follows.
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Theorem 3.7. Let G D .V; E; r/ be a Mauldin–Williams graph, Gu .u 2 V /

bounded open sets in R
n and S a graph-directed spray associated with G and

generated by the open sets Gu. Let A.s/ be the matrix of the Mauldin–Williams

graph.

We assume the generatorsGu to be monophase or pluriphase. We furthermore

assume that the sim-valueD of the Mauldin–Williams graph satis�esn�1<D<n.

Then for small ", the volume of the inner "-tube of the graph-directed spray S

can be expressed pointwise as the following residue formula:

VS."/ D
X

u2V

X

!2D[¹0;1;2;:::;n�1º

res.�u.s/ "
n�sI!/;

where D is the set of zeros of det.I �A.s//, which we call the complex dimensions

of the graph-directed spray (For an exact bound for ", see the last paragraph of

the proof ).

Remark 3.8. If the generator Gu is monophase with tube formula

VGu
."/ D

8
ˆ̂<
ˆ̂:

n�1X

iD0

�u
i "

n�i for 0 � " � gu;

Vol.Gu/ for " � gu;

then

M

�VGu
."/

"n

�
.s/ D

nX

iD0

�u
i

gs�i
u

s � i ;

where �u
n D � Vol.Gu/.

Remark 3.9. If the generator Gu is pluriphase, let us assume that it has the tube
formula

VGu
."/ D

8
<̂

:̂

nX

iD0

�
m;u
i "n�i for gm�1;u � " � gm;u ; m D 1; 2; : : : ;Mu;

Vol.Gu/ for " � gu;

where g0;u D 0, gMu;u D gu (gu the inradius ofGu) and �1;u
n D 0. It will be more

convenient to write the above formula as

VGu
."/ D

nX

iD0

�
m;u
i "n�i for gm�1;u � " � gm;u; m D 1; 2; : : : ;Mu C 1;
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where we set �MuC1;u
i D 0 for i D 0; 1; : : : ; n � 1, �MuC1;u

n D Vol.Gu/ and
gMuC1;u D 1. Then

M

�VGu
."/

"n

�
.s/ D

MuX

mD1

nX

iD0

.�
m;u
i � �mC1;u

i /
gs�i

m;u

s � i :

Example 3.10 (Example 2.4 continued). The volumes of the inner "-neighbor-
hood of G1 and G2 are given by the following functions:

VG1
."/ D

8
ˆ̂̂
<
ˆ̂̂
:

4
p
2" � 4"2 if " �

p
2

2
;

2 if " �
p
2

2
;

VG2
."/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

 
2C

p
2

2

!
" � .3C 2

p
2/"2 if " � 2 �

p
2

4
;

1

8
if " � 2 �

p
2

4
:

The corresponding Mauldin–Williams matrix of the graph is

A.s/ D

0
B@
0 4

1

2s

1

2s

1

2s
C 3

1

4s

1
CA

and the sim-value of the graph is

D D log2

�p
29C 1

2

�
:

The complex dimensions of the graph-directed spray are given by

°
log2

�p
29C 1

2

�
C ikp

ˇ̌
ˇ k 2 Z

±
[
°

log2

�p
29 � 1
2

�
C i
�
k C 1

2

�
p
ˇ̌
ˇ k 2 Z

±
;

where p D 2�= ln 2. Using Theorem 3.7, we obtain the volume of the "-neighbor-
hood of S as

VS."/ D 4

7
"2 � 28

5

p
2"C†1 C†2 C 2

7
.3C 2

p
2 /"2 � 3

5
.2C

p
2 /"C†3 C†4;
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where

†1 D "2�.DCikp/

p
29 ln 2

h2
p
29 � 2
7

�
� 4

�p
2

2

�DCikp

D C ikp

C 4
p
2

�p
2

2

�D�1Cikp

D � 1C ikp
� 2

�p
2

2

�D�2Cikp

D � 2C ikp

�

C 4
�

� .3C 2
p
2/

�2 �
p
2

4

�DCikp

D C ikp

C 2C
p
2

2

�2 �
p
2

4

�D�1Cikp

D � 1C ikp

� 1

8

�2 �
p
2

4

�D�2Cikp

D � 2C ikp

�i
;

†2 D "2�.D0Ci.kC 1
2

/p/

p
29 ln 2

h2
p
29C 2

7

�
� 4

�p
2

2

�D0Ci.kC 1
2

/p

D0 C i
�
k C 1

2

�
p

C 4
p
2

�p
2

2

�D0�1Ci.kC 1
2

/p

D0 � 1C i
�
k C 1

2

�
p

� 2

�p
2

2

�D0�2Ci.kC 1
2

/p

D0 � 2C i
�
k C 1

2

�
p

�

� 4
�

� .3C 2
p
2/

�2�
p
2

4

�D0Ci.kC 1
2

/p

D0 C i
�
k C 1

2

�
p

C 2C
p
2

2

�2�
p
2

4

�D0�1Ci.kC 1
2

/p

D0 � 1C i
�
k C 1

2

�
p

� 1

8

�2�
p
2

4

�D0�2Ci.kC 1
2

/p

D0 � 2C i
�
k C 1

2

�
p

�i
;
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†3 D "2�.DCikp/

p
29 ln 2

h�
� 4

�p
2

2

�DCikp

D C ikp
C 4

p
2

�p
2

2

�D�1Cikp

D � 1C ikp
� 2

�p
2

2

�D�2Cikp

D � 2C ikp

�

C
p
29C 1

2

�
� .3C 2

p
2/

�2 �
p
2

4

�DCikp

D C ikp

C 2C
p
2

2

�2 �
p
2

4

�D�1Cikp

D � 1C ikp

� 1

8

�2 �
p
2

4

�D�2Cikp

D � 2C ikp

�i
;

†4 D �"
2�.D0Ci.kC 1

2
/p/

p
29 ln 2

h�
� 4

�p
2

2

�D0Ci.kC 1
2

/p

D0 C i
�
k C 1

2

�
p

C 4
p
2

�p
2

2

�D0�1Ci.kC 1
2 /p

D0 � 1C i
�
k C 1

2

�
p

� 2

�p
2

2

�D0�2Ci.kC 1
2

/p

D0 � 2C i
�
k C 1

2

�
p

�

�
p
29C 1

2

�
� .3C 2

p
2/

�2�
p
2

4

�D0Ci.kC 1
2

/p

D0 C i
�
k C 1

2

�
p

C 2C
p
2

2

�2�
p
2

4

�D0�1Ci.kC 1
2

/p

D0 � 1C i
�
k C 1

2

�
p

� 1

8

�2�
p
2

4

�D0�2Ci.kC 1
2

/p

D0 � 2C i
�
k C 1

2

�
p

�i
:
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4. Proof of the main theorem (Theorem 3.7)

Since

VS."/ D "n
X

u2V

fu."/

and

fu."/ D 1

2�i

X

v2V

�Z cCi1

c�i1

adj.I � A.s//uv

det.I � A.s// M

�VGv
."/

"n

�
.s/ "�s ds

�

D 1

2�i

Z cCi1

c�i1

�u.s/ "
�sds;

we have to evaluate the integral on the right hand side. As is well-known there
is a general procedure to evaluate this integral by applying the residue theorem.
In the present case of graph-directed sprays however, the det.I � A.s// in the
denominator calls for a more cautious treatment in order to be able to give an
explicit validity range of the tube formula for small ".

The above sum consists of integrals of the type

1

2�i

Z cCi1

c�i1

adj.I � A.s//uv

det.I � A.s//

gs�i

s � i "
�s ds .i D 0; 1; : : : ; n/;

for n � 1 < D < c < n. Recall that det.I � A.s// is non-zero for Re.s/ > D.
We �rst note that there exists a vertical strip containing all the zeros of

det.I � A.s//. To see this, notice that det.I � A.s// can be expressed as a sum

1C
X

˛

ps
˛ �

X

ˇ

qs
ˇ

with 0 < p˛; qˇ < 1 since the entries of the matrix A.s/ are of the form
P
rs

e

for 0 < re < 1. As Re.s/ ! �1, the smallest of p˛; qˇ will dominate and avoid
det.I � A.s// to vanish. We choose a cl < 0 such that j det.I � A.s//j > ı for
some ı > 0 and for all Re.s/ � cl .

We will choose a sequence .�j /j 2N ! 1 such that j det.I � A.s//j will be
uniformly away from zero on the line segments cl � Re.s/ � c, Im.s/ D ˙�j .

Lemma 4.1. There exists an increasing sequence .�j /j 2N, �j ! 1 and a K > 0

such that j det.I � A.s//j > K for cl � Re.s/ � c and Im.s/ D ˙�j .

Proof. Being an entire function, det.I � A.s// has isolated zeros and we can
choose �1 > 0 such that there are no zeros on the segment Œcl ; c� � ¹�1º. Let
2K be the minimum of j det.I � A.s//j on this segment.

To construct �2, we need the following lemma.
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Lemma 4.2 (Dirichlet lemma, [1]). LetM;N 2 N and T > 0. Let a1; a2; : : : ; aN

be real numbers. There exists a real number h 2 ŒT; T MN � such that

kai hk � 1

M
.1 � i � N/:

Here k � k denotes “the distance to the nearest integer” function on R.

The idea for choosing �2 D �1 C h will be the following. We want to arrange
h such that

j det.I � A.s C ih// � det.I � A.s//j < K
for cl � Re.s/ � c. Then the minimum of j det.I � A.s C ih//j will be greater
than K. Since

det.I � A.s// D 1C
X

˛

ps
˛ �

X

ˇ

qs
ˇ ;

we have

j det.I � A.s C ih// � det.I � A.s//j D
ˇ̌
ˇ̌X

˛

.psCih
˛ � ps

˛/ �
X

ˇ

.qsCih
ˇ

� qs
ˇ /

ˇ̌
ˇ̌

�
X

˛

jpsCih
˛ � ps

˛j C
X

ˇ

jqsCih
ˇ

� qs
ˇ j

D
X

˛

pRe.s/
˛ jpih

˛ � 1j C
X

ˇ

q
Re.s/

ˇ
jqih

ˇ � 1j:

Since the number of terms and pRe.s/
˛ ; q

Re.s/

ˇ
are bounded, it will be enough to

make the factors jpih
˛ � 1j, jqih

ˇ
� 1j small enough. To realize this, we can apply

the Dirichlet Lemma (Lemma 4.2) to make pih
˛ D eih ln p˛ and qih

ˇ
D eih ln qˇ

close enough to 1, by choosing kh lnp˛=.2�/k and kh ln qˇ=.2�/k small enough.
As we have control on choosing h on any range, we can repeat this procedure to

get a sequence of segments Œcl ; c��¹�j º on all of which j det.I �A.s//j is bounded
below by K. �

Let us now consider the rectangles Rj D Œcl ; c� � Œ��j ; �j � and denote its
oriented edges by L1;j ; L2;j ; L3;j ; L4;j as shown in Figure 10. We will show
that for small enough " the integrals on L2;j ; L3;j and L4;j will tend to zero as
j ! 1 so that by residue theorem we will get the integral on the vertical line at
c as a series of residues on the strip cl < Re.s/ < c:

1

2�i

Z cCi1

c�i1

adj.I � A.s//uv

det.I � A.s//

gs�i

s � i "
�s ds

D
X

!2D[¹iº

res
�adj.I � A.s//uv

det.I � A.s//

gs�i

s � i I!
�
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for i D 0; 1; : : : ; n� 1. For i D n the same formula holds with the only di�erence
that the residues are taken on D.

nn � 1 Dcl c

Rj

c � i�j

c C i�j

cl � i�j

cl C i�j
L2;j

L4;j

L3;j L1;j

Figure 10. The strip containing the poles of the geometric zeta function �u.s/ and the
rectangle Rj with the oriented boundary segments L1;j ; L2;j ; L3;j ; L4;j used in the
proof.

First consider the integral on L2;j D t C i�j ; cl � t � c.

ˇ̌
ˇ̌
Z

L2;j

adj.I � A.s//uv

det.I � A.s//
gs�i

s � i "
�s ds

ˇ̌
ˇ̌

�
Z c

cl

ˇ̌
ˇ̌adj.I � A.t C i�j //uv

det.I � A.t C i�j //

ˇ̌
ˇ̌ gt�i

jt C i�j � i j "
�t dt

adj.I � A.s//uv is of the form

Q1C
X

˛

ps
˛ �

X

ˇ

qs
ˇ

(Q1 indicates that 1 might be present or absent) and therefore is bounded for
cl � Re.s/ � c, so that we can write

ˇ̌
ˇ̌
Z

L2;j

adj.I � A.s//uv

det.I � A.s//
gs�i

s � i "
�s ds

ˇ̌
ˇ̌ � C

Z c

cl

dt

�j

(C being a constant not depending on j ), which tends to zero for �j ! 1.

Similarly the integral on L4;j ! 0 for �j ! 1.
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Finally we consider the integral on L3;j :
Z

L3;j

adj.I � A.s//uv

det.I � A.s//
gs�i

s � i "
�s ds D

Z

Cj

adj.I � A.s//uv

det.I � A.s//
gs�i

s � i "
�s ds;

where Cj D cl C �j e
it , �=2 � t � 3�=2 (see Figure 11). adj.I �A.s//uv is of the

form Q1C
P

˛ p
s
˛ �

P
ˇ q

s
ˇ
. In any term, p˛; qˇ there can appear at most .N �1/-th

power of the smallest weight rmin of the graph whereN is the number of the nodes
of the graph. We can thus dominate j adj.I � A.s//uvj by C 0 r

.N �1/Re.s/
min . When

s 2 Cj , we have Re.s/ � cl < 0, therefore j det.I �A.s//j > ı by the choice of cl .

L3;j

cl

cl � i�j

cl C i�j

Cj

Figure 11. The semi-circle Cj used to evaluate the integral on the segment L3;j .

We can now write
ˇ̌
ˇ̌
Z

Cj

adj.I � A.s//uv

det.I � A.s//
gs�i

s � i "
�s ds

ˇ̌
ˇ̌

�
Z

Cj

C 0 r
.N �1/Re.s/
min

ı

gRe.s/�i

js � i j "
�Re.s/ jdsj

� C 00

Z 3�
2

�
2

�rN �1
min g

"

��j cos t �j

jcl C �j eit � i j
dt

� C 00

Z 3�
2

�
2

�rN �1
min g

"

��j cos t

dt

since �j � jcl C �j e
it � i j. By the Jordan Lemma (which states that

lim
n!1

Z 3�
2

�
2

an cos tdt D 0;

for any �xed a > 1) this integral tends to zero if

rN �1
min g

"
> 1:
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So we come to the conclusion that our tube formula is valid pointwise for
" < rN �1

min min
u2V

¹guº for monophase generators. In the pluriphase case, one should

take " < rN �1
min min

u2V
¹g1;uº. Needless to say, these are only su�cient bounds.

Remark 4.3. There is an unfortunate misprint in [4, p. 159, line 12], where " < g
should be " < g1.

5. Appendix

In this appendix we want to discuss the relationship between the sprays as de�ned
in the work of Lapidus, Pearse and Winter in [9] and graph-directed sprays as
de�ned in the present paper, in Section 2.

According to [9], a spray (or fractal spray) is essentially a collection of disjoint
bounded open sets ¹Uiº1

iD1 in R
n, where eachUi is a copy of a �xed bounded open

set U � R
n under a similarity transformation  i on R

n with scaling ratio �i > 0,
i.e. Ui D  i .U /.

The sequence ¹�iº1
iD1 is called a fractal string in [9] and it is assumed to be

a non-increasing sequence (of positive real numbers) satisfying limi!1 �i D 0.
(We call this sequence also a “scaling sequence” and assume that

P1
iD1 �

n
i < 1,

which are secondary to the matter.)
The set U is not assumed to be connected and its components, which are

assumed to be �nitely many, are called the generators of the spray. From the point
of view of tube formulas, it can be assumed that there is a single generatorG D U ,
i.e. U is connected. This is also secondary to the matter and the main point about
sprays is that, there is a single basic open set U � R

n and there is a single fractal
string (scaling sequence) encoding the similarity scalings of the set U .

In graph-directed sprays however, there is a �nite collection Gu.u 2 V / of
open bounded basic sets in R

n and a derived collection ¹G˛º˛ of pairwise disjoint
open sets in R

n, each of which is a scaled copy of one of these basic sets. There is
not a single fractal string (scaling sequence) governing these scalings of the basic
open sets Gu. Instead, the scalings are obtained from a weighted directed graph
as follows.

Let G D .V; E; r/ be a weighted directed graph which we assume to be
strongly connected in the sense that given any two vertices u; v 2 V , there exists a
(directed) path ˛ starting at u and terminating at v. If we denote the initial vertex
of an edge e 2 E by i.e/ and the terminal vertex by t .e/, then such a path ˛ is
a sequence ˛ D e1e2 : : : ek with i.e1/ D u; t.ek/ D v and t .ej / D i.ej C1/ for
j D 1; : : : ; k � 1:
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For such a path ˛ we de�ne the scaling ratio r.˛/ by r.˛/ D r.e1/ : : : r.ek/.
The “scaling system” of the graph-directed spray is given by the collection ¹r.˛/º˛

of all scaling ratios of paths ˛ on the weighted directed graph G. We can now
de�ne a graph-directed spray S with basic sets Gu.u 2 V / and associated with
the graph G as a collection ¹G˛º˛ of pairwise disjoint open sets G˛ in R

n (where
˛ is a path in the graph G), such thatG˛ is an isometric copy ofGt.˛/ with scaling
ratio r.˛/.

The main di�erences between (fractal) sprays and graph-directed sprays are
the following ones.

1) In sprays there is a single (connected or disconnected) basic set, but in graph-
directed sprays there are �nitely many basic sets;

2) In sprays, there is a single sequence ¹�iº1
iD1 of scalings (called the fractal

string or scaling sequence), which governs the scalings of the basic set.
In graph directed sprays however, there is a system ¹r.˛/º˛ of scalings
derived from a weighted directed graph, with a rule specifying how they are
related to the basic sets.

We illustrate these schemes in Figures 12 and 13.

Figure 12. A spray generated by a basic set (or generator) G with a scaling sequence
¹�i º1

iD1
.
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Figure 13. A graph directed spray with (three) basic sets (or generators) G1; G2; G3 with
a scaling system ¹r.˛uv/º derived from a weighted directed graph G (with V D ¹1; 2; 3º).
(˛uv , or ˛0

uv ,˛00

uv ,. . . are paths on G from vertex u to vertex v.) r.˛uv/ is the scaling ratio
associated to the path ˛uv . The collection of sets Su in each column constitutes a spray (in
the sense of [9]) by itself, but their volumes of inner "-tubes are unrelated.

A graph-directed spray is obviously not a (fractal) spray, since the collection
¹G˛º˛ is not given by scaled copies of a single basic set with the help of a single
scaling sequence.

This collection can however be decomposed into the subcollections Su D
¹G˛ j t .˛/ D uº and these subcollections are indeed (fractal) sprays with basic set
Gu and scaling ratios ¹r.˛/ j t .˛/ D uº, which can be ordered as a sequence.
From the point of view of tube formulas, it is technically di�cult to manage
these sequences. There is however another decomposition of the graph-directed
spray ¹G˛º˛ into subcollections Su, given by Su D ¹G˛ j i.˛/ D uº as shown
in Figure 14. These subcollections are de�nitely no longer sprays in the sense
of [9], but they are extremely convenient subcollections for computations of tube
volumes, since there is a very natural functional equation relating the tube volumes
of Su as explained and used e�ciently in the present paper.
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Figure 14. The same graph directed spray as in Figure 13, but with another display. The
collection of sets Su in each column does not constitute a spray (in the sense of [9]), but
the inner "-tube volumes of Su satisfy a natural functional equation (2).

To summarize, a graph-directed spray ¹G˛º is not a spray in the sense of [9];
but there are two decompositions of ¹G˛º, one of which gives a collection of sprays
in the sense of [9]. The other decomposition does not give sprays in this sense,
but it is very convenient for the volume computations.

On the other hand, a spray in the sense of [9] which has a self-similar fractal
string, is naturally a special case of graph directed sprays, with a graph consisting
of a single node. If a spray in the sense of [9] is not self-similar, then it is not a
special instance of a graph directed spray.
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