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Spatial equidistribution of combinatorial number schemes

Florian Greinecker1

Abstract. In this paper we use a generalized Lucas type congruence for certain combinato-

rial number schemes to de�ne IFS. We show some distribution properties of these fractals.

As an application we prove that the binomial coe�cients, the Stirling numbers of the �rst

and second kind as well as the multinomial coe�cients are spatially equidistributed in the

nonzero residue classes modulo a prime p.
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1. Introduction

Let us start with an investigation of the binomial coe�cients, as well as the Stirling
numbers of the �rst and second kind. If we color them according to their residue
classes modulo a prime p, they have a self-similar, fractal structure, which we
can observe in Figure 1. The most prominent member of this class of fractals
is the Sierpinski triangle, which we obtain if we color the binomial coe�cients
according to their residue class modulo 2.

The binomial coe�cients and Stirling numbers of the �rst and second kind
share some properties; they have a combinatorial interpretation, they have a
recursive structure and they can be easily expressed by generating functions.

We will focus on two further common properties.

1 The author is supported by the Austrian Science Fund FWF projects W1230, Doctoral
Program “Discrete Mathematics,” and F5503 (part of the special research program (SFB) “Quasi-
Monte Carlo Methods: Theory and Applications”). The author wants to express his gratitude
to his advisor Peter Grabner and an anonymous referee whose comments and feedback greatly
improved this article.
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Figure 1. Binomial coe�cients, Stirling numbers of the �rst and second kind modulo 5

The p-divisibility property. For a �xed prime p, almost all binomial coe�-
cients, Stirling numbers of the �rst and the second kind are divisible by p.

The equidistribution property. The binomial coe�cients, Stirling numbers of
the �rst and second kind in the nonzero residue classes modulo a prime p approach
an equidistribution in the �rst n lines, if n goes to in�nity.

The �rst property is very well studied. Regarding the binomial coe�cients,
Fine [16] gave a formula for the number of zeros in a row modulo p. Carlitz
proved the corresponding results for columns [10]. Singmaster showed in [26] that
“any integer divides almost all binomial coe�cients” with respect to four di�erent
de�nitions of “almost all.” He also gives a nice survey of known results in [27].
An approach via cellular automata is described in [31]. This approach may be
extended since in [2] and [3] it is shown that the binomial coe�cients, unsigned
Stirling numbers of the �rst kind modulo a prime p and the Gaussian q-binomials
modulo m (if gcd.m; q/ D 1) are automatic sequences. The ideas of this paper
can be expressed in terms of automatic sequences (see [1]).

The p-divisibility of the Stirling numbers of the �rst kind has been studied
by Carlitz [8] and by Peele, Radcli�e and Wilf [25]. For the Stirling numbers of
the second kind there are results by Carlitz [9] and Lundell [23]. A result for the
q-binomial coe�cients is given in Howard [19].

In this paper we will use a uni�ed approach and show that a prime p divides
almost all numbers in any number scheme which satis�es the generalized Lucas
congruence. All previous examples turn out to share this property given below.
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The equidistribution property is not so well studied. There are results on the
equidistribution of the binomial coe�cients from Gar�eld and Wilf [17] and by
Barbolosi and Grabner [7] (with a generalization in [6]). The fractal structure
of the binomial coe�cients is analyzed in [30]. In our treatment of the fractal
structures we will use matrices, an approach also followed in [29].

The original motivation of this paper was to extend these results to Stirling
numbers of the �rst and second kind. We show that in all number schemes which
satisfy the generalized Lucas congruence the nonzero residue classes modulo p

are spatially equidistributed. This proves the equidistribution property for Stirling
numbers and also generalizes the result for binomial coe�cients.

The classic Lucas congruence for binomial coe�cients is stated in the follow-
ing theorem by Lucas (see [13], p.271).

Theorem 1.1 (Édouard Lucas 1878). The binomial coe�cients satisfy

�

n

k

�

�
Ỳ

iD0

�

ni

ki

�

.mod p/

with n D
P`

iD0 nip
i and k D

P`
iD0 kip

i where 0 � ni ; ki � p � 1.

Lucas’ theorem allows us to calculate the binomial coe�cients modulo p digit-
wise if we write n and k in base p. We generalize this idea in the following way.

Instead of p-adic representatives, we use matrix digital systems. They allow
us to de�ne an iterated function system and a sequence UN of sets which converge
to a limit fractal. Then we assign “colors,” their residue classes modulo p, to the
points in UN .

The primary idea of this paper is to de�ne a generalized Lucas congruence (see
De�nition 2.2) for a number scheme. A number scheme is a matrix digital system
together with coloring functions that assign residue classes to numbers and digits.
A number scheme satis�es the generalized Lucas congruence if the residue class
of a number n modulo p is the product of the residue classes of the digits of n.

The binomial coe�cients and Stirling numbers of the �rst and second kind all
have number schemes which satisfy the generalized Lucas congruence. We will
show that for all number schemes which satisfy the generalized Lucas congruence
the sequence UN is p-divisible and has a generalized equidistribution property.
We can even replace the equidistribution property with a stronger property and
show that we have an equidistribution modulo p for all �-continuity sets of a
normalized Hausdor� measure �. The paper is organized in the following way:



108 F. Greinecker

In Section 2 we de�ne matrix digital systems and the generalized Lucas con-

gruence. Then we state our two main results, which are stronger, formalized ver-
sions of the two properties stated in this section.

We use Section 3 to point out the fractal structure of number schemes which
satisfy the generalized Lucas congruence.

Then we recall properties of Dirichlet characters in Section 4 and use them to
prove the two main results.

Finally we show in Section 5 that our results are applicable to a range of
well known number schemes before we �nish with some concluding remarks in
Section 6.

2. Results

First, we de�ne matrix digital systems (based on matrix number systems in [22]).
To avoid confusion between 2-dimensional vectors and binomial coe�cients we
write vectors with an arrow above them. So

#   »�

5
3

�

denotes a vector while
�

5
3

�

denotes
a binomial coe�cient.

For every dimension d � 1 we have the d -dimensional Euclidean space R
d

and the embedded ring of integer vectors Z
d . Let A 2 Z

d�d be a d � d matrix
whose eigenvalues all have modulus greater then 1. Then L D AZ

d is a subgroup
of Zd and the factor group Z

d =AZ
d has order ord.Zd =AZ

d / D j det Aj > 1.

De�nition 2.1. Let the digit set D � Z
d be a complete residue system mod L

with
#»

0 2 D. We call the pair .A;D/ a matrix digital system.
We de�ne the set T of all vectors #»n 2 Z

d with a representation of the form

#»n D #»"0 C A #»"1 C A2 #»"2 C � � � C A` #»"` (1)

as

T WD
°

X̀

kD0

Ak #»"k

ˇ

ˇ

ˇ ` 2 N; #»"k 2 D

±

� Z
d :

Since D is a complete residue system, the representation of the form (1) is unique,
except for the number of leading zeros. The set of vectors having a representation
of the form (1) with ` C 1 digits is denoted by T`. We write #»n also as

#»n D . #»"0
#»"1 : : : #»"`/:

If T D Z
d , we have a matrix number system in the sense of [22]. We are not

interested in whether all #»n 2 Z
d have such a representation.
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De�nition 2.2. A function f W T ! Z=pZ satis�es the generalized Lucas con-

gruence modulo a prime p if there is a function f with f WD ! Z=pZ and a
matrix digital system (with #»n D . #»"0

#»"1 : : : #»"`/) so that

f . #»n / �
Ỳ

iD0

f . #»"i / .mod p/: (2)

This implies that f .
#»

0 / D 1. We say that f is a coloring and the elements of
Z=pZ are colors. The generalized Lucas congruence extends the domain of f

from digits to numbers.

De�nition 2.3. Let f be a function that satis�es the generalized Lucas congru-
ence. We say that f is p multiplicatively complete if there is a k 2 N with

.Z=pZ/� � ¹f . #»n / j #»n 2 Tkº: (3)

Here .Z=pZ/� denotes the unit group of .Z=pZ/. If (3) holds for k, then it
also holds for every ` � k.

The following two theorems apply to all functions which satisfy the general-
ized Lucas congruence. Binomial coe�cients and Stirling numbers of the �rst
and second kind are the best known examples of functions which satisfy the gen-
eralized Lucas congruence. Numerous other examples can be found in Section 5
and in the comprehensive paper [24].

Theorem 2.4. Let f be a function which satis�es the generalized Lucas congru-

ence. If there is an #»" 2 D so that f . #»" / � 0 .mod p/, then

lim
`!1

#¹ #»n 2 T` j f . #»n / 6� 0 .mod p/º

#¹ #»n 2 T`º
�! 0:

If there is a matrix digital system with a coloring function which satis�es the
generalized Lucas congruence, we speak of a number scheme. Let us recall that a
continuity set of a measure � is any Borel set B with a boundary set @B of measure
zero �.@B/ D 0.

The set F of all numbers #»x 2 R
d which can be written as

#»x D

1
X

iD1

A�i #»"i

with #»"i 2 D and f . #»"i / 6� 0 .mod p/ is called the fundamental region with respect
to .A;D/. Since

F D
[

#»" 2D

f ."/6�0 .mod p/

.A�1 #»" C A�1
F/;

the set is self-similar.
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Theorem 2.5. Let .A;D/ be a matrix digital system in Z
d with a matrix A of

the form A D gQ where Q is an orthonormal matrix and g 2 N. Let f

be a function which is p multiplicatively complete and let � WD Hs jF be the

normalized Hausdor� measure of dimension

s D
log #¹ #»" 2 D j f . #»" / 6D 0º

log g

restricted to the fundamental domain F . If B is a �-continuity set and a 6� 0

.mod p/, then

lim
`!1

#¹ #»n 2 T` j f . #»n / � a .mod p/; #»n 2 A`C1Bº

#¹ #»n 2 T` j f . #»n / 6� 0 .mod p/º
!

�.B/

p � 1
:

Theorem 2.5 is a spatial distribution result. One way to visualize Theorem 2.5
is to take a �-continuity set B in R

d , that is �.@B/ D 0. We assign colors to
numbers in T` and represent each number by a colored dot. If the assumptions of
Theorem 2.5 are satis�ed, the nonzero colors inside B converge to an equidistri-
bution. The set A�`�1T` \ B is either empty or the colors occur with the same
asymptotic frequency if ` ! 1. Figure 2 is a graphic representation of this idea.

Figure 2. A �-continuity set on the binomial coe�cients.

3. Fractals

Matrix number systems are connected to fractals. We will use the term fractal

for sets generated by an iterated function system (short IFS). An iterated function

system is a �nite collection .w1; w2; : : : ; wt / of contractions on a complete metric
space .X; d /. We will denote the IFS by

W D ¹XI w1; w2; : : : ; wtº:
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The main theorem about IFS is from Hutchinson [21].

Theorem 3.1 (Hutchinson 1981). Let W D ¹XI w1; w2; : : : ; wtº be an IFS on the

complete metric space .X; d / and let H.X/ denote all nonempty compact subsets

of X. The transformation W WH.X/ ! H.X/ de�ned by

W.U / WD
St

iD1 wi.U / (Hutchinson operator)

has a unique �xed point F 2 H.X/. It can be constructed as the limit of the

iteratively de�ned sequence UN D W.UN �1/ with U0 2 H.X/ chosen arbitrarily.

This �xed point is called the attractor of the IFS.

We will follow the books of Egdar [14] and Falconer [15] to de�ne measures
on the IFS. If .X; d / is a compact metric space, let P.X/ denote the space of
normalized Borel measures on X. To every contraction wi in ¹XI w1; w2; : : : ; wtº

we assign a weight pi > 0 so that
Pt

iD1 pi D 1.
In our case, for a self-similar IFS which satis�es the open set condition there

is a privileged choice of weights. The maps are similarities since the matrix A is
a multiple of an orthonormal matrix. The open set condition is ful�lled since the
matrix A is an integer matrix and D is a complete residue system (see [5]).

Let the maps wi be similarities with ratios ri . The similarity dimension s is
the solution of the equation

t
X

iD1

rs
i D 1:

The weights pi D rs
i are called the uniform weights.

There is a unique probability measure � 2 P.X/, so that for all Borel sets B
we have

�.B/ WD

t
X

iD1

rs
i �.w�1

i .B//: (4)

Since

�.F/ D

t
X

iD1

rs
i �.w�1

i .F//;

the measure � is an invariant measure on the IFS with weights. It is known as the
uniform measure. In our examples � is always a Hausdor� measure. The support
of � is the fractal set F .

Later we will use an IFS we use for the proof of Theorem 2.5. We take the IFS
W D ¹X I w1;2 ; : : : ; wtº where wi is an a�ne map of the form

wi W
#»x 7�! A�1. #»x C #»"i /;
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with #»"i 2 D n ¹ #»"i j f . #»"i / � 0 .mod p/º. The invariant measure � in this case is
the normalized Hausdor� measure of dimension

s D
log #¹ #»" 2 D j f . #»" / 6D 0º

log g

restricted to F . Recall that A is a matrix A of the form A D gQ where Q is an
orthonormal matrix and g 2 N.

Please note that the colorings are de�ned on the sequence Un. It is not possible
to de�ne a coloring for the limit fractal.

7!

7!

7!

7!

7!

H) H)

Figure 3. On the left we see the substitutions for p D 5, while on the right we see the �rst
two steps of their action

4. Character sums and measures

The de�nition of p-colorings leads us to the question as to how many numbers
have a certain color, i.e. belong to a certain residue class modulo p. To count the
numbers in one residue class, we use Dirichlet characters.

De�nition 4.1. A Dirichlet character modulo a prime p is a function �WZ ! C,
so that

(i) �.n/ D �.n C p/,

(ii) �.n/ D 0 if and only if gcd.p; n/ D 1, and

(iii) �.nm/ D �.n/�.m/.

Characters take roots of unity and 0 as values. The principal character �0.n/

is given by �0.n/ D 1 if gcd.n; k/ D 1.

Nonprincipal characters satisfy an orthogonality relation

X

a mod p

�.a/ D 0: (5)
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Later we will use a well known identity for characters (see [4])

1

p � 1

X

�

�.a/�.b/ D

´

1 if a � b .mod p/;

0 else,
(6)

where the sum runs over all characters. In the proof of Theorem 2.4 we will use
the principal character as the indicator function for the non-zero residue classes.

Proof of Theorem 2.4. Each vector #»n 2 T` has a unique representation of the
form #»n D . #»"0

#»"1 : : : #»"`/. There are #D ways to choose each digit. Therefore,
#T` D .#D/`C1.

Equation (2) allows us to write f . #»n / as f . #»n / � f . #»"0/f . #»"1/ : : : f . #»"`/

.mod p/. Since f . #»" / is in the �nite �eld Z=pZ, we have f . #»n / 6� 0 .mod p/

if and only if f . #»"i / 6� 0 .mod p/ for 0 � i � `. So we count

D WD
X

#»" 2D

�0.f . #»" //:

There is an #»" 2 D so that f . #»" / � 0 .mod p/ and therefore D < #D and we get

lim
`!1

#¹ #»n 2 T` j f . #»n / 6� 0 .mod p/º

#¹ #»n 2 T`º
D lim

`!1

D`C1

.#D/`C1
D 0: �

Remark 4.2. Of course we could state Theorem 2.4 in the same form as Theo-
rem 2.5,

lim
`!1

#¹ #»n 2 T` j f . #»n / 6� 0 .mod p/; #»n 2 A`C1Bº

#¹ #»n 2 T`º
�! 0:

Since the set of all colored points is a measure-zero set on the whole fractal (with
respect to the Lebesgue measure), it is a measure-zero set for every �-continuity
set B.

Lemma 4.3. The function f is p multiplicatively complete if and only if for all

� 6D �0 we have
ˇ

ˇ

ˇ

ˇ

ˇ

X

#»" 2D

�.f . #»" //

ˇ

ˇ

ˇ

ˇ

ˇ

<
X

#»" 2D

f . #»" /6�0

1:

Proof. Since .Z=pZ/� � ¹f . #»n / j #»n 2 Tkº we can use the orthogonality
relation (5) and get for every � 6D �0

ˇ

ˇ

ˇ

ˇ

ˇ

X

#»n 2Tk

�.f . #»n //

ˇ

ˇ

ˇ

ˇ

ˇ

� # ¹ #»n 2 Tk j f . #»n / 6D 0º � .p � 1/ <
X

#»n 2Tk

f . #»n /6�0

1: (7)
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Now we use the generalized Lucas property and the multiplicativity of characters
to write inequality (7) as

ˇ

ˇ

ˇ

ˇ

ˇ

k
Y

iD0

�

X

#»" 2D

�.f . #»" //
�

ˇ

ˇ

ˇ

ˇ

ˇ

<

k
Y

iD0

�

X

#»n 2D

f . #»" /6�0

1
�

;

which proves one direction of Lemma 4.3.
For the other direction we choose k so large that

ˇ

ˇ

ˇ

ˇ

ˇ

X

#»" 2D

�.f . #»" //

ˇ

ˇ

ˇ

ˇ

ˇ

k

�
1

2p

�

X

#»" 2D

�0.f . #»" //
�k

:

Now we use identity(6) and the reverse triangle inequality to get

# ¹ #»n 2 Tk j f . #»n / � a .mod p/º

D
1

p � 1

X

�

�.a/
�

X

#»" 2D

�.f . #»n //
�k

�
1

p � 1

��

X

#»" 2D

�0.f . #»" //
�k

�
p � 2

2p

�

X

#»" 2D

�0.f . #»" //k
��

> 0:

Therefore a 2 ¹f . #»n / j #»n 2 Tkº. �

Proof of Theorem 2.5. If we de�ne a function

F�. #»x / WD

X

#»" 2D

�.f . #»" //e.h #»" ; #»x i/

X

#»" 2D

�0.f . #»" //
;

Lemma 4.3 tells us that
jF�.

#»

0 /j < 1 (8)

for � 6D �0. As usual, we have e.x/ WD e2�ix.
Now we de�ne a sequence of measures on T` which, as we will show, converges

weakly to a measure �,
P

#»n 2T`

f . #»n /6�0

ıA�`�1 #»n

P

#»n 2T`

f . #»n /6�0

1
�* �: (9)
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The measure � satis�es equation (4). Then we de�ne another sequence of mea-
sures on T` which converges weakly to a measure �a, as we will show later,

P

#»n 2T`

f . #»n /�a

ıA�`�1 #»n

P

#»n 2T`

f . #»n /6�0

1
�* �a D

1

p � 1
� (10)

The measure �a also satis�es equation (4).
Then we look at the characteristic function O�a. #»x / of �a

O�a. #»x / D lim
`!1

P

#»n 2T`

f . #»n /�a

e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

f . #»n /6�0

1
:

We use Dirichlet characters to rewrite O�a. #»x /. In the denominator we use the
principal character as indicator function and get

#¹ #»n 2 T` j f . #»" / 6� 0 .mod p/º D
X

#»n 2T`

�0.f . #»n //:

In the numerator we can use equation (6) to get

#¹ #»n 2 T` j f . #»" / � a .mod p/º D
1

p � 1

X

�

�.a/
X

#»n 2T`

�.f . #»n //:

Hence, we have

O�a. #»x / D lim
`!1

1

p � 1

X

�

�.a/

P

#»n 2T`

�.f . #»n //e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

�0.f . #»n //

D lim
`!1

1

p � 1

P

#»n 2T`

�0.f . #»n //e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

�0.f . #»n //
(11)

C lim
`!1

1

p � 1

P

� 6D�0

�.a/
P

#»n 2T`

�.f . #»n //e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

�0.f . #»n //
: (12)
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The �rst part of the sum (11) comes from the principal character, while the second
part (12) contains all other characters. The summand in equation (11) is just the
characteristic function O�. #»x / of �,

lim
`!1

1

p � 1

P

#»n 2T`

�0.f . #»n //e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

�0.f . #»n //
D

1

p � 1
O�. #»x /:

We use the conjugate transpose and write it as

P

#»n 2T`

�0.f . #»n //e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

�0.f . #»n //
D

`C1
Y

kD1

 

P

#»" 2D

�0.f . #»" //e.h #»" ; .AT /�k #»x i/

P

#»" 2D

�0.f . #»" //

!

D

`C1
Y

kD1

F�0
. #»" ; .AT /�k #»x /:

F�0
.

#»

0 / D 1 and F�0
is continuously di�erentiable since it is a composition of

continuously di�erentiable functions. Therefore, it is also Lipschitz continuous
and since A D gQ where Q is a orthonormal matrix, we get

jF�0
..AT /�k #»x / � 1j � Lk.AT /�k #»x k � Lg�kk #»x k:

Hence,
`C1
Y

kD1

F�0
. #»" ; .AT /�k #»x /

converges uniformly on every compact subset of Rd since k #»x k is bounded on
a compact subset. Therefore, we can use the uniform convergence theorem and
know that O�. #»x / is continuous on every compact subset and especially continuous
in 0. We use Lèvy’s continuity theorem for characteristic functions (see [11,
Theorem 2.6.9]) and prove (9).

Now we focus on the nonprincipal characters (12). We use the same idea as
before and write

P

#»n 2T`

�.f . #»n //e.hA�`�1 #»n ; #»x i/

P

#»n 2T`

�0.f . #»n //
D

`C1
Y

kD1

F�. #»" ; .AT /�k #»x /:
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Because of inequality (8) we know that there exist �; ı > 0 so that

jF�. #»x /j � 1 � � for k #»x k � ı: (13)

For R > 0 there is a k0 2 N0, so that for all k � k0

k.AT /�k #»x k � ı for k #»x k � R: (14)

Thus,
ˇ

ˇ

ˇ

ˇ

ˇ

`C1
Y

kD1

F�..AT /�k #»x /

ˇ

ˇ

ˇ

ˇ

ˇ

�

`C1
Y

kDk0

.1 � �/ D .1 � �/`�k0C2

and
lim

`!1
.1 � �/`�k0C2 �! 0:

Therefore, the limit in (12) is zero and the weak converge in (10) is proved. �

5. Applications

In this section we give several examples of combinatorially de�ned number
schemes which satisfy the generalized Lucas congruence. Many more such ex-
amples (including some in�nite classes) can be found in [24].

For each of these examples an analogon to Lucas theorem can be found in
the literature. Each time we will give an extended matrix digital system and a
coloring function so that the generalized Lucas congruence is satis�ed. Therefore,
Theorem 2.4 and Theorem 2.5 apply to the binomial coe�cients, the Stirling
numbers of the �rst and second kind, the Gaussian q-nomial coe�cients as well
as to the multinomial coe�cients.

In Figure 1 we see the binomial coe�cients and Stirling numbers of the �rst
and second kind modulo p D 5. All triangles have the same size but only the
binomial coe�cients have a bilateral symmetry. For the Stirling numbers of the
�rst kind the leftmost numbers are all zero. The Stirling numbers of the second
kind have a slanted structure.

With exception of the Apéry numbers it is very easy to check the conditions of
Theorem 2.4 and Theorem 2.5 because all examples involve binomial coe�cients.

5.1. Apéry numbers. The Apéry numbers A1.n/ and A2.n/ were introduced by
Apéry in his 1979 proof that �.3/ is irrational. They are de�ned as

A1.n/ WD

n
X

kD0

�

n

k

�2�
n C k

k

�2

; A2.n/ WD

n
X

kD0

�

n

k

�2�
n C k

k

�

:
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Both of them satisfy the Lucas congruence and for j 2 ¹1; 2º we have

Aj .n/ �
Ỳ

iD0

Aj .ni / .mod p/:

The proof that the Apéry numbers A1.n/ satisfy the Lucas congruence has been
published in [18], while the proof for the numbers A2.n/ can be found in [12]. Here
we have the usual p-adic representation which can be treated as a matrix digital
system with the degenerate matrix A D .p/ and digit setD D ¹v j 0 � v � p�1º.

The Apéry numbers di�er from the other examples as there is no obvious way
to check the conditions of Theorem 2.4 and Theorem 2.5.

In order to apply Theorem 2.4, there has to be an " 2 D with f ."/ D 0. Often
this condition is not satis�ed. For instance, there is no " 2 D with f ."/ D 0 for
both Apéry numbers and p D 13. If there is no " 2 D with f ."/ D 0, the measure
in Theorem 2.5 is the Lebesgue measure.

Based on calculations for the primes p < 500, I conjecture that the conditions
of Theorem 2.5 are always satis�ed for p > 3.

5.2. Binomial coe�cients. As stated in the introduction, the binomial coe�-
cients satisfy Lucas’ original Theorem 1.1. We can treat the linear equation

#                   »
�

np C r

kp C s

�

D

�

p 0

0 p

�

#      »
�

n

k

�

C

#     »
�

r

s

�

(15)

as a matrix digital system .A;D/ with

A D

�

p 0

0 p

�

and D D

²

#       »
�

v

w

�
ˇ

ˇ

ˇ

ˇ

0 � v; w � p � 1

³

:

If we interpret the vectors as binomial coe�cients and use induction, Lucas’
theorem tells us that they satisfy the generalized Lucas congruence with the
coloring function

f

�

#      »
�

n

k

��

D

�

n

k

�

Mod p:

The next lemma shows that Theorems 2.4 and 2.5 are satis�ed. As usual, we de�ne
a Mod p WD a � b a

p
cp.
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Lemma 5.1. The binomial coe�cients satisfy the conditions of Theorem 2.4 and

Theorem 2.5.

Proof. The binomial coe�cients ful�ll Theorem 1.1. There is a corresponding
matrix digital system .A;D/ with

A D

�

p 0

0 p

�

; D D

²

#       »
�

v

w

� ˇ

ˇ

ˇ

ˇ

0 � v; w � p � 1

³

;

and coloring function f
� #  »�

v
w

��

WD
�

v
w

�

Mod p where p is a prime.

We have f
� #  »�

v
w

��

D 0 for the p.p�1/
2

digits with v < w. Since there are digits
#»" 2 D so that f . #»" / � 0 .mod p/, according to Theorem 2.4 almost all numbers
are 0 modulo p.

For every 0 � v � p � 1 we have f
� #  »�

v
1

��

D f
� #       »�

v
v�1

��

D v. Thus,
the binomial coe�cients modulo p generate the whole group .Z=pZ/� and we
have equidistribution in the non-zero residue classes modulo p according to
Theorem 2.5. �

The binomial coe�cients are an archetype for all other examples. We always
look for a generalized Lucas congruence, the corresponding matrix digital system
and coloring functions that satisfy the congruence. Then we show that the digital
function ful�lls the hypothesis of Theorem 2.4 and Theorem 2.5.

5.3. Stirling numbers of the �rst kind. Theorem 5.2 is an analogon to Lucas’
theorem for Stirling numbers of the �rst kind (see [25]). This is one of the more
interesting examples and the �rst one with an extended matrix digital system, so
we will look at it in more detail.

Theorem 5.2. The Stirling numbers of the �rst kind satisfy the following congru-

ence
�

n

k

�

�

�

r

t

��

m

s

�

.�1/m�s .mod p/ (16)

with n D mp C r and 0 � r � p � 1. The numbers s and t are de�ned as

k � m D s.p � 1/ C t with 0 � t < p � 1 if r D 0 and 0 < t � p � 1 if r > 0.

Again we use a linear equation

#      »
�

n

k

�

D

�

p 0

1 p � 1

�

#       »
�

m

s

�

C

#     »
�

r

t

�
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to de�ne a matrix digital system .B;D1/ with the matrix B D
�

p 0
1 p�1

�

and the

digit set

D1 D

²

#       »
�

v

w

�
ˇ

ˇ

ˇ

ˇ

1 � v; w � p � 1

³

[

²

#       »
�

0

w

�
ˇ

ˇ

ˇ

ˇ

0 � w � p � 2

³

:

After we split o� the least signi�cant digit, let us call it #   »"�1, we are left
with an expression of the form

�

m
s

�

.�1/m�s. We already know that the binomial
coe�cients satisfy the generalized Lucas congruence if we write m and s as p-adic
numbers. Since .�1/p D �1 for odd p and �1 � 1 .mod 2/, we have

.�1/.m`p`C���Cm1pCm0/�.s`p`C���Cs1pCs0/ D
Ỳ

iD0

.�1/mi �si

so .�1/m�s also satis�es the generalized Lucas congruence if we write m and s

as p-adic numbers. Therefore, we use the matrix digital system A D
�

p 0
0 p

�

and

D D ¹
#  »�
v
w

�

j 0 � v; w � p � 1º from the binomial coe�cients again to write
#   »�
m
s

�

as

f

�

#       »
�

m

s

��

�
Ỳ

iD0

f . #»"i / .mod p/

with coloring function

f

�

#       »
�

m

s

��

D

�

m

s

�

.�1/m�s Mod p:

What we �nally get is an expression of the form

#   »"�1 C B. #»"0 C A #»"1 C A2 #»"2 C � � � C A` #»"`/: (17)

Let us now look at the set V of all numbers of the form (17). We call
this construction nested matrix digital system. Inside the brackets we have a
matrix digital system with a similarity A. This matrix digital system satis�es a
generalized Lucas congruence and its fundamental domain F is the unit square.
Outside the brackets we have #D1 D .p � 1/p a�ne maps. It is easy to see that
the interior of the unit square is mapped to nonoverlapping images.
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If we de�ne coloring functions

f1

�

#      »
�

n

k

��

D

�

n

k

�

Mod p; f

�

#       »
�

m

s

��

D

�

m

s

�

.�1/m�s Mod p

equation (16) allows us to calculate f1

� #  »�
n
k

��

as

f1

�

#      »
�

n

k

��

� f1. #   »"�1/
Ỳ

iD0

f . #»"i / .mod p/: (18)

Equation (18) and the fact that the images of the a�ne maps are nonoverlapping
allows us to extend the generalized Lucas congruence and the measures � and �a

to all numbers in V . The a�ne maps will deform the measures, but they do not
change their equidistribution properties. Therefore, Theorem 2.4 and Theorem 2.5
apply to the Stirling numbers of the �rst kind.

5.4. Stirling numbers of the second kind. The analogon to Lucas’ theorem for
Stirling numbers of the second kind can be found in Howard [20].

Theorem 5.3. If p is prime and n � .r C 1/.p � 1/ D h, then

²

n

hp

³

�

�

r

h � 1

�

mod p: (19)

If n � .p � 1/r � i D h and 1 � m � i � p � 1, then

²

n

hp C m

³

�

�

r

h

�²

i

m

³

mod p: (20)

If we take a look at the actual proof by Howard, we see that in all cases not
covered by these equations we have

®

n
k

¯

� 0 mod p.
To �nd a more convenient form for equation (19), we use the recursion formula

for Stirling numbers of the second kind

²

n

hp

³

D

²

n � 1

hp � 1

³

C

²

n � 1

hp

³

� hp �

²

n � 1

.h � 1/p C .p � 1/

³

mod p

and apply equation (20). We can use the linear equation

#      »
�

n

k

�

D

�

p � 1 1

0 p

�

#      »
�

r

h

�

C

#       »
�

i

m

�



122 F. Greinecker

with matrix B D
�

p�1 1
0 p

�

and digit set

D1 D

²

#       »
�

v

w

�
ˇ

ˇ

ˇ

ˇ

1 � v; w � p � 1

³

[

²

#      »
�

v

p

�
ˇ

ˇ

ˇ

ˇ

2 � w � p

³

to de�ne a nested matrix digital system. The matrix A and the digit set D are the
same as in the previous example and we use the same argumentation to show that
Theorem 2.4 and Theorem 2.5 apply to the Stirling numbers of the second kind.

5.5. Gaussian q-nomial coe�cients. Here the analogon to Lucas‘ theorem is
given by M. Sved in [28]. The Gaussian q-nomial coe�cients are de�ned as

�

a

b

�

q

D

8

ˆ

<

ˆ

:

.1 � qa/.1 � qa�1/ � � � .1 � qa�bC1/

.1 � q/.1 � q2/ � � � .1 � qb/
if b � a;

0 if b > a;

for nonnegative integers a and b.

The Gaussian q-nomial coe�cients have a regular, bilateral symmetric struc-
ture, which resembles that of the binomial coe�cients. This is to be expected
since the matrix digital systems are also very similar.

Theorem 5.4. Let p be a prime, q > 1 a positive integer not divisible by p and

let a 6D 1 be the minimal exponent for which qa � 1 .mod p/; then by Fermat’s

little theorem it follows that aj.p � 1/. Furthermore, if 0 � r; s < a, then

�

na C r

ka C s

�

q

�

�

n

k

��

r

s

�

q

.mod p/:

The linear equation

#                   »
�

na C r

ka C s

�

D

�

a 0

0 a

�

#      »
�

n

k

�

C

#     »
�

r

s

�

(21)

gives us the nested matrix digital system with matrix B D
�

a 0
0 a

�

and digit set

D1 D
® #  »�

v
w

� ˇ

ˇ 0 � v; w � a � 1
¯

. Now we are left with the binomial coe�cients
for the in�nite part and can use same arguments as for the Stirling numbers.

5.6. Multinomial coe�cients. There is a d -dimensional analogon of Lucas’
theorem for the multinomial coe�cients (see [13], p.273):



Spatial equidistribution of combinatorial number schemes 123

Theorem 5.5. The multinomial coe�cients satisfy

�

n

k.1/; : : : ; k.d/

�

�

L
Y

dD0

�

n`

k
.1/

`
; : : : ; k

.d/

`

�

.mod p/

with n D
PL

`D0 n`p` and k.i/ D
PL

`D0 k
.i/

`
p` where 0 � n`; k

.i/

`
� p � 1.

#                                  »0

B

B

B

B

@

np C r

k.1/p C s.1/

:::

k.d/p C s.d/

1

C

C

C

C

A

D

0

B

B

B

B

@

p 0 � � � 0

0 p � � � 0
:::

:::
: : :

:::

0 0 � � � p

1

C

C

C

C

A

#             »0

B

B

B

B

@

n

k.1/

:::

k.d/

1

C

C

C

C

A

C

#             »0

B

B

B

B

@

r

s.1/

:::

s.d/

1

C

C

C

C

A

: (22)

Again, we have a matrix digital system .A;D/ with A D pIdC1 where Id is the
d -dimensional identity matrix and D D ¹.v1; : : : ; vdC1/T j 0 � vi � p � 1º.
We can use Lemma 5.1 since the multinomial coe�cients contain the binomial
coe�cients.

6. Concluding Remarks

In this section we studied several examples of combinatorial de�ned number
schemes. For these examples we showed that almost all entries in the number
scheme are divisible by a given prime p and the nonzero residue classes are
equidistributed modulo p. It turned out that all multidimensional examples of
combinatoric functions with the Lucas property are based on the binomial coe�-
cients, for which the matrix A is just the p-fold identity matrix.

Theorems 2.4 and 2.5 allow us to treat more complicated examples. For
Theorem 2.4 we only need an extended matrix digital system with a coloring
function which satis�es the generalized Lucas congruence. The proof will work
with any two integer matrices A and B which are a�ne expansions.

For the proof of Theorem 2.5 we required the matrix B to be a similarity. If B

is a similarity, the measure � is a uniform measure with identical weights pi D 1
t

and we can determine the dimension s and describe the measure �, which is the
Hausdor� measure.

If B is not a similarity map but any a�ne map given by an expanding integer
matrix, the whole proof of Theorem 2.5 and the arguments with Dirichlet char-
acters and Fourier transforms of measures work in exactly the same way. We still
get an equidistribution result with respect to a probability measure �, though �

will not be the Hausdor� measure but a less explicit measure.
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