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Uniform dimension results for fractional Brownian motion

Richard Balka! and Yuval Peres

Abstract. Kaufman’s dimension doubling theorem states that for a planar Brownian motion
{B(t):t € [0, 1]} we have

P(dimB(A4) =2dim A forall A C [0,1]) =1,

where dim may denote both Hausdorff dimension dimz and packing dimension dimp. The
main goal of the paper is to prove similar uniform dimension results in the one-dimensional
case. Let 0 < o < 1 and let {B(¢):¢ € [0, 1]} be a fractional Brownian motion of Hurst
index «. For a deterministic set D C [0, 1] consider the following statements:

(A) P(dimg B(A) = (1/a)dimg Aforall A C D) =1,
(B) P(dimp B(A) = (1/a)dimp A forall A C D) =1,
(C) P(dimp B(A) > (1/a)dimgy Aforall A C D) = 1.

We introduce a new concept of dimension, the modified Assouad dimension, denoted by
dimpys 4. We prove that dimps4 D < o implies (A), which enables us to reprove a restriction
theorem of Angel, Balka, Mathé, and Peres. We show that if D is self-similar then (A) is
equivalenttodimas4 D < «. Furthermore, if D is a set defined by digit restrictions then (A)
holds if and only if dimaps4 D < « or dimg D = 0. The characterization of (A) remains
open in general. We prove thatdimas 4 D < o implies (B) and they are equivalent provided
that D is analytic. Let D be compact, we show that (C) is equivalent to dimg D < «. This
implies that if dimyy D <o and T'p = {E C B(D):dimy E = dimp E}, then

P(dimg (B~ (E) N D) = adimy E forall E € Tp) = 1.
In particular, all level sets of B|p have Hausdorff dimension zero almost surely.
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1. Introduction

Let dimg, dimp, and dimy4 respectively denote the Hausdorff, packing, and
Assouad dimension, see Section 2 for the definitions. The first uniform dimension
result was proved by Kaufman [18].

Theorem (Kaufman’s dimension doubling theorem). Let {B(¢):t € [0, 1]} be a
planar Brownian motion. Then, almost surely, for all A C [0, 1] we have

dimg B(A) =2dimg A and dimp B(A) = 2dimp A.

Note that the packing dimension result is not stated in [18], but it follows
easily from the proof, see also [26, Section 9.4]. Here ‘uniform’ means that
the exceptional null probability event on which the theorem does not hold is
independent of A. Stronger uniform results for Hausdorff and packing measures
were obtained in [28], for processes with stationary, independent increments
see [14]. The theorem was generalized for higher dimensional fractional Brownian
motion of appropriate parameters: in case of Hausdorff dimension see Monrad and
Pitt [25], while in case of packing dimension see Xiao [33].

Now we consider one-dimensional (fractional) Brownian motion. In [24],
McKean proved the following theorem for Brownian motion (case ¢ = 1/2), and
the general result for fractional Brownian motion was established by Kahane [15,
Chapter 18].

Theorem (Kahane). Let0 < @ < 1 and let {B(t):t > 0} be a fractional Brownian
motion of Hurst index «. For a Borel set A C [0, 1], almost surely, we have

dimg B(A) = min{l, (1/«a) dimg A}.
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The zero set Z of B shows that this is not a uniform dimension result, since
dimpg Z = 1 — « almost surely, see e.g. [15, Chapter 18].

Kahane’s theorem uniformly holds for almost all translates of all Borel sets.
Kaufman [16] proved the following for Brownian motion, and Wu and Xiao [31]
extended it to fractional Brownian motion.

Theorem (Wu and Xiao). Let 0 < o < 1 and let {B(t):t > 0} be a fractional
Brownian motion of Hurst index «. Then, almost surely, for all Borel sets A C
[0, 1] we have

dimg B(A 4 t) = min{l, (1/a) dimyg A} for almostallt > 0.

Now we turn to the case of packing dimension. Somewhat surprisingly, the
formula dimp B(A4) = min{l, (1/«a)dimp A} does not hold. In order to obtain a
general formula for dimp B(A) we need another notion of dimension. Let Dimy
denote the «-dimensional packing dimension profile introduced by Falconer and
Howroyd in [7]. The following theorem is due to Xiao [32].

Theorem (Xiao). Let 0 < a < 1 and let {B(t):t > 0} be a fractional Brownian
motion of Hurst index «. For a Borel set A C [0, 1], almost surely, we have

dimp B(A) = (1/a) Dimy A.

The zero set of a linear Brownian motion B witnesses that the analogue of
Kaufman’s dimension doubling theorem does not hold in dimension one. Let dim
denote Hausdorff dimension or packing dimension. If instead of [0, 1] we take a
small enough set D C [0, 1], then dim B(A) = 2dim A may hold for all A C D.
For example let W be a linear Brownian which is independent of B andlet D = Z
be the zero set of W. Then Kaufman’s dimension doubling theorem implies that,
almost surely, for all A C D we have

dim B(A) = dim(B, W)(A) = 2dim A.

Which property of D ensures the above formula? The main goal of the paper is
to fully answer this question in case of packing dimension, and partially answer it
in case of Hausdorff dimension.

More generally, let0 < o < l1andlet{B(¢):¢ € [0, 1]} be a fractional Brownian
motion of Hurst index «. Let D C [0, 1] be a given deterministic set and consider
the following statements:
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(A) P(dimyg B(A) = (1/a)dimyg A forall A C D) =1,
(B) P(dimp B(A) = (1/a)dimp A forall A C D) =1,
(C) P(dimp B(A) > (1/a)dimgy A forall A C D) = 1.

Our main problems can be stated as follows.
Problem 1.1. Characterize the sets D for which (A) holds.
Problem 1.2. Characterize the sets D for which (B) holds.
Problem 1.3. Characterize the sets D for which (C) holds.

Note that B is almost surely y-Holder continuous for all y < «, so almost
surely, for all A C [0, 1] we have

dimgyg B(A) < (1/a)dimyg A and dimp B(A4) < (1/a)dimp A.

Therefore Problems 1.1 and 1.2 are about to determine the sets D for which the
images B(A) are of maximal dimension for all A C D.

Clearly dimpy D < « is necessary for (A), and dimp D < o« is necessary
for (B). Somewhat surprisingly, the converse implications do not hold. In order
to fully solve Problem 1.2 for analytic sets D and partially solve Problem 1.1 we
introduce a new notion of dimension, the modified Assouad dimension.

Definition 1.4. Let X be a totally bounded metric space. For x € X and r > 0
let B(x,r) denote the closed ball of radius r around x. For A C X let N,(A)
denote the smallest number of closed balls of diameter r required to cover A. For
all 0 < ¢ < 1 define the e-Assouad dimension as

dim% X = inf{y: there exists C < oo such that, forall 0 < r < rl=¢ <R,
Sup{N;(B(x,R)):x € X} < C(R/r)"}.

Then the e-modified Assouad dimension is defined by

oo
dimj, 4 X = inf{supdimfl Xi: X = UX,-}.
i

i=1

Finally, we define the modified Assouad dimension as

di X = dimy, 4 X = lim dimj,, X.
1Mps 4 Sup lmMA 8_1)1’(1)14_ lmMA

0<e<l1
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Remark 1.5. Independently, F. Lii and L. Xi [20] introduced a similar concept,
the quasi-Assouad dimension defined as

dimgy X = lim dim§ X.
e—>0+

Their motivation came from studying quasi-Lipschitz mappings. Clearly we have
dimpr4 X < dimg4 X, and for sufficiently homogeneous spaces (e.g. self-similar
sets and sets defined by digit restrictions) the two notions coincide.

Fact 1.6. For every totally bounded metric space X we have

dimg X <dimp X <dimpsg X < dimy X.
We prove a sufficient condition for (A) and (B).

Theorem 1.7. Let 0 < o < 1 and let {B(¢t):t € [0, 1]} be a fractional Brownian
motion of Hurst index «. Let D C [0, 1] be such that dimprg D < «. Then

P(dimg B(A) = (1/a)dimyg A forall A C D) =1,
P(dimp B(A) = (1/a)dimp A forall A C D) = 1.
Moreover, we answer Problem 1.2 for analytic sets D as follows.

Theorem 1.8. Let 0 < o < 1 and let {B(t):t € [0, 1]} be a fractional Brownian
motion of Hurst index «. For an analytic set D C [0, 1] the following are
equivalent:

(i) P(dimp B(A) = (1/a)dimp A forall A C D) = 1,
(i) dimpyq D < .

The partial answer for Problem 1.3 only uses the notion of Hausdorff dimen-
sion.

Theorem 1.9. Let 0 < o < 1 and let {B(t):t € [0, 1]} be a fractional Brownian
motion of Hurst index a. For a compactset D C |0, 1] the following are equivalent:

(i) P(dimp B(A) > (1/a)dimg A forall A C D) =1,
(i) dimyg D < a.
Corollary 1.10. Let 0 < o < 1 and let {B(t):t € [0, 1]} be a fractional Brownian

motion of Hurst index o. Let D C [0, 1] be compact with dimgy D < « and define
a random family of sets I'p = {E C B(D):dimyg E = dimp E}. Then

P(dimg (B~ (E) N D) = adimy E forall E € Tp) = 1.

In particular, all level sets of B|p have Hausdor{f dimension zero almost surely.
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Remark 1.11. The condition dimgy D < « is necessary even in the above corol-
lary. Indeed, if D C [0, 1] is compact with dimg D > 1/2, then the zero set Z of
a linear Brownian motion satisfies dimg (D N Z) > 0 with positive probability,
see [17].

We partially answer Problem 1.1 by considering sets defined by digit restric-
tions and self-similar sets. The problem remains open in general.

Definition 1.12. We define sets by restricting which digits can occur at a certain
position of their dyadic expansion. For S € IN* let Dg C [0, 1] be the compact
set

Ds = {anZ_”:xn €{0,1}ifn € S and x, = 0if n ¢ S}.
n=1

Theorem 1.13. Let 0 < @ < 1 and let {B(¢t):t € [0, 1]} be a fractional Brownian
motion of Hurst index a. For every S C INT the following are equivalent:

(i) P(dimg B(A) = (1/a)dimy A forall A C Ds) = 1,

(i) dimpy g Ds < a ordimyg Ds = 0.

Definition 1.14. A compact set D C R is called self-similar if there is a finite
set { F; }; <x of contracting similarities of R4 such that D = Uf;l Fi(D).

Let D C [0, 1] be a self-similar set. Recently Fraser et al. [10, Theorem 1.3]
proved that if D satisfies the so-called weak separation property (a weakening
of the open set condition), then dimyg D = dimyg D; otherwise dimy D = 1.
Hence Theorem 1.7 and Fact 1.6 yield that if D is a self-similar set with the weak
separation property then (A) holds if and only if dimpsg4 D < . We prove that
this remains true regardless of separation conditions.

Theorem 1.15. Let 0 < o < 1 and let {B(¢t):t € [0, 1]} be a fractional Brownian
motion of Hurst index «. For a self-similar set D C [0, 1] the following are
equivalent:

(i) P(dimg B(A) = (1/a)dimy A forall AC D) = 1,

(i) dimpyq D < .

Falconer [5, Theorem 4] proved that dimg D = dimp D for every self-similar
set D. First Fraser [9, Section 3.1] constructed a self-similar set D C [0, 1] for
which dimg D < dimyg4 D, answering a question of Olsen [27, Question 1.3].
A positive answer to the following problem together with Theorem 1.7 would
immediately imply Theorem 1.15.
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Problem 1.16. Does dimy D =dimps4 D hold for all self-similar sets D C [0, 1]?

The following restriction theorem for fractional Brownian motion is due to
Angel, Balka, Méthé, and Peres [2]. As an application of our theory, we give a
new proof for this result based on Theorem 1.7.

Theorem 1.17 (Angel et al.). Let 0 < o < 1 and let {B(t):t € [0,1]} be
a fractional Brownian motion of Hurst index «. Then, almost surely, for all
A C [0,1]if B|a is B-Holder continuous for some > o thendimyg A <1 —qa.

In fact, in [2] a stronger form of the above theorem was proved, where Haus-
dorff dimension was replaced by upper Minkowski dimension. Theorem 1.17 also
implies the following, see [2, Section 8] for the deduction.

Theorem (Angel et al.). Let 0 < o < | and let {B(t):t € [0, 1]} be a fractional
Brownian motion of Hurst index a. Then, almost surely, for all A C [0,1] if Bla
is of bounded variation then dimg A < max{l — «, a}. In particular,

P(there exists A:dimg A > max{l — a, o} and B|4 is non-decreasing) = 0.

Let Z be the zero set of B and let R = {r € [0, 1]: B(t) = maxse[o,;] B(s)}
denote the set of record times of B. Then, almost surely, dimg Z = 1 — o and
dimpg R = «, see e.g. [15, Chapter 18] and [2], respectively. Therefore Z and R
witness that the above theorems are best possible.

Remark 1.18. Theorem 1.17 can be generalized by replacing Hausdorft dimension
by quasi-Assouad dimension, the proof in [2] works verbatim. This yields that
dimg Z = dimys2Z = dimyggZ = 1 — o almost surely. The proof of [2,
Proposition 1.5] readily implies that dimg R = dimp 4 R = dimgg R = o with
probability one.

In Section 2 we outline the definitions of our main notions and some of their
basic properties. Section 3 is devoted to the proof of the technical Theorem 3.3,
which will be the basis of the proofs of Theorems 1.7 and 1.9. In Section 4 we prove
our main results, Theorems 1.7, 1.8, and 1.9. In Section 5 we prove Theorems 1.13
and 1.15, which answer Problem 1.1 in case of sets defined by digit restrictions and
self-similar sets, respectively. In Section 6 we reprove Theorem 1.17 by applying
Theorem 1.7. In order to do so, we show that a percolation limit set has equal
Hausdorff and modified Assouad dimension almost surely.
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2. Preliminaries

Let X be a totally bounded metric space. Assume that x € X, r > 0,and A C X.
Recall that B(x, r) denotes the closed ball of radius r around x, and N, (A) is the
smallest number of closed balls of diameter r required to cover A. The diameter
and interior of A is denoted by diam A and int A, respectively. For all s > 0 the
s-Hausdor{f content of X is defined as

3 (X) = inf{i(diamX,-)s: X = G X,-}.
i=1 i=1

We define the Hausdorff dimension of X by
dimyg X = inf{s > 0: H3 (X) = 0}.

The lower and upper Minkowski dimensions of X are respectively defined as

log N, (X
dim;, X = liminf log N (X)
r—0+ —logr
— log N, (X
dimps X = limsup og—r()'
r—o4+ —logr

Equivalently, the upper Minkowski dimension of X can be written as
dimys X = inf{y: there exists C < oo such that N,(X) < Cr~7” for all r > 0}.

We define the packing dimension of X as the modified upper Minkowski dimen-
sion:

o0
dimp X = inf{supdi—mMXi:X = UX,-}.
i i=1

The Assouad dimension of X is given by

dimyg X = inf{y:there exists C < oo such that, forall0 <r < R,
we have sup{N,(B(x, R)):x € X} < C(R/r)"}.

For more on these concepts see [6] or [22].
Fact 2.1. For every totally bounded metric space X we have
dimy X <dim,, X < dimpy X < dimy X,

dimg X <dimp X <dimpsq X < dimy X.



Uniform dimension results for fractional Brownian motion 155

Proof. The inequalities in the first row and dimg X < dimp X are well known,
see e.g. [6]. Clearly for all ¢ € (0, 1) we have dimy X < dim§ X < dimy4 X, thus
dimp X <dimprq X < dimy X. |

A separable, complete metric space is called a Polish space. A separable metric
space X is analytic if there exists a Polish space Y and a continuous onto map
f:Y — X. For more on this concept see [19]. The proof of the following theorem
is a modification of the proof of [12, Theorem 2].

Theorem 2.2. Let X be a totally bounded analytic metric space. Then
dimpsq4 X = sup{dimp4 K: K C X is compact}.

The following lemma is classical. For part (i) see the proof of [30, Proposi-
tion 3] or [6, Corollary 3.9], for part (ii) see [23, Lemma 3.2] or [8, Lemma 4].

Lemma 2.3. Let X be a totally bounded metric space.

() If X is compact and if dimy U > s for every non-empty open set U C X,
then dimp X > s.

(ii) Ifdimp X > s, then there is a closed set C C X such that dimp(C NU) > s
for every open set U which intersects C.

The proof of the following lemma is similar to that of Lemma 2.3. For the sake
of completeness we outline the proof.

Lemma 2.4. Let X be a totally bounded metric space and let 0 < & < 1.
(i) If X is compact and if dim§ U > s for every non-empty open set U C X,
then dimj; 4, X > s.

(i) Ifdimy, 4 X >s, then there is a closed set C C X such that dimj,,(C NU)>s
for every open set U which intersects C.

Proof. (i) Assumethat X = U;’il X;, where X; are closed subsets of X. Clearly a
setand its closure have the same ¢-Assouad dimension, so it is enough to prove that
dimj X; > s for some i. By Baire’s category theorem there is a non-empty open
set U in X such that U C X; for some index i. Therefore dim} X; > dimj U > s,
which completes the proof of (i).

(ii) Let 'V be a countable open basis for X. Define

C =X\ J{V eV:dimj, V < s}.
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Clearly C is closed in X and the e-modified Assouad dimension is countably
stable. Therefore dimj, ,(X \ C) < s. Let U C X be an open set intersecting
C and assume to the contrary that dimj, ,(C N U) < s. Then there existsa V € V
such that V' C U and V N C # @. Using the stability again, we obtain that

dimj, 4 V' < max{dimj, (X \ C),dimj,,(C N V)}
< max{s, dimj, ,(C N U)}
=s.
This contradicts the construction of C, so the proof of (ii) is complete. |

For D C [0,1] and y € (0,1] a function f: D — R is called y-Hélder
continuous if there is a finite constant C such that | f(x) — f(y)| < C|x — y|¥
for all x, y € D. The minimum of such numbers C is the Holder constant of f.

Fact 2.5. Let D C [0,1] and let f: D — R be a y-Holder continuous function
fJor some y > 0. Then for all A C D we have

dimy f(A) < (1/y)dimg A and dimp f(A) < (1/y)dimg A.

For 0 < a < 1 the process { B(¢):t > 0} is called a fractional Brownian motion
of Hurst index « if

e B is a Gaussian process with stationary increments;

e B(0) = 0 and t~*B(t) has standard normal distribution for every ¢ > 0;

e almost surely, the function ¢ + B(¢) is continuous.
The covariance function of B is E(B(t)B(s)) = (1/2)(|t|?* + |s|?® — |t — 5]?%).
It is well known that almost surely B is y-Holder continuous for all y < «, see

Lemma 3.8 below. For more information on fractional Brownian motion see [1].
Let |A| denote the cardinality of a set A.

3. A key theorem

The main goal of this section is to prove Theorem 3.3. First we need some
definitions. Assume that 0 < o < 1 is fixed and {B(¢):¢ € [0, 1]} is a fractional
Brownian motion of Hurst index «.

Definition 3.1. Forn € Nand p € {0, ..., 2" — 1} a dyadic time interval of order
n is of the form
Inp = [p27". (p + D27"].
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For all n € IN let

o0
In ={Inp:0<p<2"t and IJ"= U T
=n

be the set of dyadic time intervals of order exactly n and at least n, respectively.

Let
o0
J= U Tn
n=0

denote the set of all dyadic time intervals in [0, 1]. For g € Z a value interval of
order n is of the form

Ing = 1q27%", (g + 1)27"].
For all n € IN let
In ={Jnq:q €7}
be the set of value intervals of order n.
Definition 3.2. Let U C J be a set of dyadic time intervals. For all / € J and

n € IN define
N,(W,I)=|{U e UNT,:U C I}].

For m,n € IN with m < n let
N (W) = max{N, (U, I): I € Ip}.

Let 8 > 0 and ¢ > 0, then U is called (B, €)-balanced if for all m < (1 — &)n we
have
N (U) < 2P07m),

We say that U is B-balanced if it is (B, 0)-balanced. For alln € N and ¢ € Z
define
Gng(W) = {U eUNTp: BU) N Jyq # B}

For ¢ > 0 define the event
F(U, &) ={Gpqe(U) <2*" foralln € Nand g € Z}.

Theorem 3.3. Let 0 < o < 1 and let {B(t):t € [0, 1]} be a fractional Brownian
motion of Hurst index a. Let ¢ > 0 and assume that Uy C I* are (o + ¢, ¢)-
balanced for all large enough k. Then, almost surely, I'(Ug, 3¢) holds for all k
large enough.
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Before proving the theorem we need some preparation.

Definition 3.4. Let U C J. For all n € IN and g € Z define
PuqW)=[{U e UNT,: BminU) € Jy 4}
For ¢ > 0 define the event
IT(U, &) = {Pyq(U) <2°" foralln € N and |g| < n2*"}.

Assume that our fractional Brownian motion B is defined on the probability space
(2,F,P),and let F; = o(B(s):0 < s < t) be the natural filtration. For a stopping
time 7: Q2 — [0, oo] define the o-algebra

Fo={AeF-AN{t <t} e F, forallt > 0}.
For alln € IN, ¢ € Z, and for all stopping times t let
Py (W) ={U e UNJy:minU > 7 and B(minU) € Jy 4}|.

Lemma 3.5. Let U C J be (« + ¢, &)-balanced for some ¢ > 0. Then there is a
finite constant ¢ = c(«, €) such that for all bounded stopping times t and integers
n € N and q € Z, almost surely, we have

E(PF,(U) | F7) < c2°".

Proof. We may assume that 7 takes values from 27"IN. Pitt [29, Lemma 7.1]
proved that the property of strong local nondeterminism holds for fractional
Brownian motion, that is, there is a constant ¢c; = c;(«) > 0 such that for all
t > 0, almost surely, we have

Var(B(t +t) | F7) > c1t?. (3.1)

Letus fixt € [27,27"%!] for some m € NT. As B is Gaussian, almost surely the
conditional distribution B(t + ¢) | F; is normal, and (3.1) implies that its density
function is bounded by 1/(,/c1t*). Therefore, almost surely, we have

(g+1)2—%n

P(B(t+1t) € Jug | Fr) < / dx = ¢ (12")7% < 240" (3.2)

ga—an  JJcit?
where ¢, = 1/./ci. Fix n € NT and for all 1 < m < n define

X ={minU:U e UNJ,and U C [t + 27", ¢ + 27",
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and let Xy, be the contribution of B|x,, to P, ,(U). Clearly for all m we have
E(Xp | F7) < [Xm| <2077 (3.3)

Since [t + 27, 7 + 271 N[0, 1] can be always covered by two intervals of J,,,
and U is (@ + ¢, ¢)-balanced, for all m < (1 — &)n we obtain that

|xm| < 2((x+s)(n—m)+1‘ (34)
Applying (3.2) and (3.4) yields that for all m < (1 — &)n we have

E(Xm | Fo) =Y P(B(s) € Jug | Fr) < 2@TOmmHppalmn) — pypeln=m),

SE€EXm

where c3 = 2c¢,. Thus the above inequality and (3.3) imply that
n
E(PL,W) | F) = > B(Xnm | Fo)
m=1

< Z C328(n—m) + Z on—m

1<m<(1—¢)n (1—g)n<m=<n
3

< nen 2an+1

=51 +

< Czsn
for some finite constant ¢ = c¢(«, €). The proof is complete. O

Lemma 3.6. Let U C J be (« + ¢, &)-balanced for some ¢ > 0. Then there is a
finite constant C = C(«, ¢) such that for all n, £ € N and q € 7. we have

P(P,, (W) > CL25") <274,

Proof. Letc = c(a, €) be the finite constant in Lemma 3.5, clearly we may assume
that ¢ > 1. We will show that C = 3c satisfies the lemma. We define stopping
times tp, ..., 7s. Let tp = 0. If 7 is defined for some 0 < k < £ then let 7544
be the first time such that P, (U) — P,%™ (W) > 2¢2°" if such a time exists,
otherwise let 71 = 1. Then ¢ > 1 and the definition of stopping times yield that

P(Pnq(W) = 3Lc2°") < P(Pog(U) = £(2c2" + 1))
<P(m < 1)

L
= 1_[ IP(‘Ek <1 | Th—1 < 1).
k=1
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We may suppose that P(z; < 1) > 0 and thus the above conditional probabilities
are defined, otherwise we are done. Hence it is enough to show that for all
1 < k < { we have

Pl < 1|ty < 1) < 1/2. (3.5)

Using Lemma 3.5 and the conditional Markov’s inequality, we obtain that, almost
surely,

Pt <1|Fg_,) = P(PE(W) = 2¢2°" | Ty _,) < 1/2.

As {tx—1 < 1} € I, _,, the tower property of conditional expectation yields (3.5).
This completes the proof. |

Lemma 3.7. Let ¢ > 0 and assume that Uy C % are (a + ¢, €)-balanced for all
large enough k. Then, almost surely, T1(Ug, 2¢) holds for all k large enough.

Proof. We may assume that Uy, are (« + ¢, ¢)-balanced for all k. Let C = C(«, ¢)
be the constant in Lemma 3.6. We give an upper bound for the probability of the
complement of IT(Ug,2¢). We apply Lemma 3.6 for all n > k and |¢| < n2*"
with £ = n?. Clearly U;  J¥ implies that P,4,(Ux) =0foralln <k and g € Z.
As the number of integers ¢ with |¢| < n2%" is at most 2n2%" + 1 < 3n2%*", for
all large enough k we obtain

P(T1¢ (Ug, 26)) = P(Py4(Ug) > 22" for some n > k and |g| < n2%")

=< Z Z IP(Pn,q(uk) > 228’1)

n=k |q|<n2%"

o
<> D P(Pug(We) > Cn?2%")
n=k |g|<n29n

(3n2%my2~"’

M

A
l\)ﬁ
|
> =

Thus Y g2, P(IT¢(Ug, 2¢6)) < oo, so the Borel-Cantelli lemma implies that,
almost surely, I1¢(Ug,2¢) holds only for finitely many k. This completes the
proof. O
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For the following well-known lemma see the more general [21, Corollary 7.2.3].

Lemma 3.8. Almost surely, we have

B(t +h)— B(t
limsup sup B+ h) ()|<1

h—0+ o<t<1—h +/2h?*log(1/h)

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Fix § € (0,¢). By Lemmas 3.7 and 3.8 there exists a
random N € IN* such that, almost surely, for all k > N we have

(i) max;ep,17|B()| < N;

(i) TI(Ug,?2¢) holds;
(iii) diam B(Ix ,) < k27 forall 0 < p < 2K,
(iv) 2k +1 < 2%k,

Fix a sample path B and N € Nt for which the above properties hold. Let us fix
an arbitrary k > N, it is enough to prove that I"(Ug, 3¢) holds. Let ¢ € Z and
n € N7 be given, we need to show that

Gn.g(Uy) < 237, (3.6)

If n < k then Uy C J* implies that Gn,g(Ug) = 0, and we are done. Now assume
that n > k. Property (i) yields that if ¢’ € Z and |¢’| > n2*" then P, o (Ux) = 0.
Therefore (ii) implies that for all ¢’ € Z we have

Pag (Ug) <277, (3.7)

Let I,,, be a time interval of order n such that B(I,,,) N J,4 # @. By (iii) we
have

Bhp)C |  Jng (3.8)

q’:lq’—q|<n
Finally, (3.8), (3.7) and (iv) imply that
Gnq(Up) = Z Pug(Up) < (2n + 1)2%8" < 23¢n,
q’:lq’—ql=n

Hence (3.6) holds, and the proof is complete. O
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4. The main theorems

The goal of this section is to prove Theorems 1.7, 1.8, and 1.9.

Proof of Theorem 1.7. As B is y-Holder continuous for all y < «, Fact 2.5 yields
that, almost surely, for all A C [0, 1] we have

dimg B(A) < (1/a)dimg A and dimp B(A4) < (1/«a)dimp A.

Therefore it is enough to show the opposite inequalities. Fix an arbitrary ¢ € (0, 1),
it is enough to prove that, almost surely, for all £ C R we have

(1) dimg(B~Y(E) N D) < adimy E + 4e¢;
2) dimp(B~Y(E) N D) < adimp E + 4e.

As dimprg D < @, we have dimj;4 D < «. Therefore D = U;’il D;, where
dim D; < o +¢foralli € IN*t. Thus, by the countable stability of Hausdorff
and packing dimensions, we may assume that dim§ D < o + ¢. Foralln € N7t
let

U, ={U €7J,:U N D # @}.

Since dim}§ D < o + ¢, the set U, C J" is (¢ + &, ¢)-balanced for all n large
enough. Therefore Theorem 3.3 yields that, almost surely, I'(U,, 3¢) holds for all
large enough n. Fix a sample path B and N € IN* such that I'(U,, 3¢) holds for
all n > N. Fix an arbitrary £ C R.

First we prove (1). Let § > 0 be arbitrary. Let J = |J,—y J» and let
s = dimgy E, then there is a cover E C U;‘;l Ji such that J, € J for all &
and Y32, (diam J;)**¢ < §. Foralln > N let M, be the number of indices k for
which Ji € J,, which implies that

o0
Z M, 26t 5 4.1)
n=N

The definition of I'(U,,, 3¢) yields that foralln > N and J € J, theset B~1(J)ND
can be covered by 23¢” time intervals of length 27", Therefore there is a covering
of B7Y(E) N D containing for each n > N at most M, 23" intervals of J,,.
Thus (4.1) yields that

o0 oo
g_cgg"r“-&‘(B—l(E) N D) S Z Mn23sn2—(ots+4s)n 5 Z an—a(s-i-s)n < 8
n=N n=N

As § > 0 was arbitrary, we obtain that H%4¢(B~1(E) N D) = 0. Therefore
dimg (B~Y(E) N D) < as + 4¢, and (1) follows.
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Now we prove (2). Assume that dimys E = ¢, first we show that
dimy(B"Y(E) N D) < adimy E + 4e. 4.2)

Fixn > N, by increasing N if necessary we may assume that £ can be covered by
20+an jntervals of J,. Since I'(U,, 3¢) holds, for all J € J, the set B~1(J)N D
can be covered by 23" intervals of J,,. Therefore B~'(E) N D can be covered
by 23¢72¢(+e)n intervals of J, having length 27", Thus dimy,(B~'(E) N D) <
at + 4e, so (4.2) holds. Applying this for E; in place of E we obtain that

dimp (B~ (E) N D) < inf{sqpﬁM(B—l(Ei) nD):E=|]J Ei}

i=1

4

o0
< inf{supaﬁMEi +4e E = U Ei}
' i=1
= o dimp E + 4e.

Hence (2) holds, and the proof is complete. |

Definition 4.1. Assume that D C [0,1], E C R,and I € J. Foralln € N* define

Un(D, 1) =1{U €79,:U C I andU N D # @},

Vu(D, 1) ={U € Uy(D, I): (intU) N D # B}.

Proof of Theorem 1.8. Implication (ii)) = (i) follows from Theorem 1.7.

We prove (i) = (ii). Assume to the contrary that (i) holds and dimps4 D > «.
By Theorem 2.2 we may assume that D is compact. By the definition of the
modified Assouad dimension there exists an ¢ € (0, 1) such thatdimj, , D > a+e.
By Lemma 2.4 (ii) we may assume that dim(D N U) > « + ¢ for every open
set U which intersects D. Therefore D is perfect. By Lemma 3.8 there is random
M € N7 such that, almost surely, for all # > M and p € {0,...,2" — 1} we have

diam B(I,,,) < n27%". (4.3)
Fix a sample path B and M € INT with property (4.3). In order to obtain a

contradiction it is enough to construct a compact set C C D such that dimp C >
g2 and dimp B(C) < 2/(a + £2).
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First we construct C. Define ip = 0 and I, = [0,1]. Let £ € IN and
assume that positive integers m;,. i, ,, Nig...ip_y» Nig...ip_, € Nt and intervals
Liy...; with D Nint/l;, ;, # @ are already defined for every (i1,...,iy) €
]_[i_:lo{l, ...+ Nigy...i; }. Note that for £ = 0 the only assumptionis D Nint /o # @
which clearly holds. Since dimj, (D Nint/;, ;) > « + &, there exist positive
integers m = mj,. ;, and n = n;,._;, such that there is an 7, € J,, with

(Up (D, Iy)| = 2@F&)0=m) (4.4)

and we have
m<(l—e)n. 4.5)

We define the lexicographical order < on ¥ = [ J72 | N" as follows. Let <, be
the lexicographical order on IN”?, and for ¢ € X let |o| denote the length of o.
Foro € Y andn < |o| let o(n) € IN” denote the restriction of ¢ to its first n
coordinates. Let g, 0 € X such that min{|o|, |0|} = n. We write ¢ < @ if and only
if either o (n) <, 0(n) or o(n) = H(n) and |o| < |6]|. By proceeding according to
~< we may assume that if (jo, ..., jz) < (io, ..., i) then

m=mj,. i, > 2M0-Ja . (46)
For every E C R let
Wym(E) ={U € Vy(D, Im): B(U) N E # 0}.

Now we define N;,..;, € INTt and intervals Lig..igy, forall 1 < igyy < Nig.ip-
By (4.3) the diameter of B([,,) is at most m2™*", so it can be covered by
m2en—m) 4 > < poen—m) jntervals of J,. Since D Nint I;, ..i, is perfect, there do
not exist three consecutive intervals in U, (D, I,;) such that none of their interior
intersects D. Therefore (4.4) and (4.5) imply that there is an interval J € J, such
that

(Woam ()] 2 290 /(3 = 26 +o(n,

Define Nj,..;, and intervals I;,. i, , such that

2
Ni()...ig = 2(8 Fo(D)n and {Ii()...igig_H }ISiSNi C Wn,m (J)

0l

Define ¥y C X as

Zo = (J{Go. .- i0): 1 < ik < Nig_iy_, forall 1 <k <.
(=0
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Define the compact set C by

oo 10 NZO dp—1
=N (U U o).
=1 i1=1 ip=1

Now we prove that dimp C > ¢2. By Lemma 2.3 (i) it is enough to prove that
for each open set U intersecting C we have dimys (C N U) > ¢2. Fix such an open
set U, then for every large enough £ € N7 there is an interval I;,..i, C U for some
(il, .. lg) S Hk 0{1 Nio---ik}' The definition of m = Mig..ips N = Nig..ip>
and N,O_._, , yield that

Na=n(C N U) = Nig.., = 200,

Clearly n = nj,..;, — oo as { — oo, which implies that dimyy (CNU) > &%
Finally, we prove that

dimp B(C) < dimy B(C) < €2/(a + &2).

Fork € N and E C R let My (E) denote the number of intervals of Jj that are
needed to cover E. We need to prove that

Mk(B(C)) < 2(0(82/(a+82)+0(1))k. (47)

Suppose that 0g < 01 < 07 are consecutive elements of Xy and let m; = m,, and
ni = ng, fori € {0,1,2}. We may assume that m; < k < m,. By construction,
C \ Iy, can be covered by at most |J,,| = 2"° intervals of J,,,,. By (4.6) we have
2"0 < m; and k < my, so C \ I, can be covered by at most m; intervals of Ji.
Thus (4.3) implies that

Mi(B(C \ Is,)) <my(k + 1) < 2k>. (4.8)

Now we prove an upper bound for My (B(C N I,)). First assume that we have
m1 < k < ni(a + &2)/a. Then by the construction there is a J € J,, such that
for all / € J,, which intersects C Nint I, we have B(/) N J # @. Thus (4.3)
yields that B(C N int /4, ) can be covered by 3n; consecutive intervals of g,,,. As
the contribution of the endpoints of /5, to My (B(C N I,,)) is not more than 2, we
have

Mi(B(C N Iy,)) < 4+ 3n, 20k < p@e?/(@+e?)+o(k (4.9)

Finally, assume that n;(a + ¢2)/a < k < mj. Then I, contains 2(e%+o(1)m
intervals of J; which intersects C, so (4.3) yields

My (B(C N 1y,))) < (k + 1)2(32+o(1))n1 =< 2(ag2/(a+32)+0(1))k‘ (4.10)
Inequalities (4.8), (4.9), and (4.10) imply (4.7). The proof is complete. O
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Now we prove Theorem 1.9. First we need some preparation.

Definition 4.2. Let U C J be a set of dyadic time intervals. For § > 0 define

HP (W) = ) (diamU)”.
Uelu

Lemma 4.3. Let U C J be a finite set of dyadic intervals and let > 0. Then
there is a finite set V C J such that

(1) Vis B-balanced,

2 Yucym
(3) HA(V) < HE(W).

Proof. Assume to the contrary that U is a counterexample such that |U| is minimal.
In order to obtain a contradiction it is enough to construct a finite set W C J such
that |[W| < |UJ, and we have | JU c |JW and HB(W) < HA(W). Clearly U is
not B-balanced, so there exist m < n such that Ny, ,(U) > 2B(—m) - 1. Choose
I € J,, for which N, (U, I') = Ny, »(U). Define

W =UUI\{U eUNT,:UC I}

The definition clearly implies | U C [ JW. As Ny, »(U) > 1, we have |[W| < |U|.
Finally, diam / = 27 and N, (U, I) > 28¢=™) imply that

HEW) = 27" + HB (W) — N, (U, 1)27P" < HE ().
The proof is complete. O

Proof of Theorem 1.9. Implication (i) = (ii) is straightforward, if (i) holds then
(1/a)dimyg D < dimp(B(D)) < 1, which implies dimy D < a.

Now we prove (ii) = (i). Fix 0 < ¢ < 1 — « arbitrarily, it is enough to show
that, almost surely, for all £ C R we have

dimg (B~Y(E) N D) < adimp E + 5e. 4.11)

As D is compact, there are finite covers Uy C J of D such that H*+2(Uy) < 27%
for all k € NT. By Lemma 4.3 for each k there is a finite cover V;, C J of D
which is (« + &)-balanced and H**¢(Vy) < 27%. As o 4+ ¢ < 1, the inequality
H*e(V;) < 2% implies that V; C J¥. By Theorem 3.3, almost surely, T'(Vy, 3¢)
holds for all large enough k. Fix a sample path B and N € N such that I'(Vy, 3¢)
holds for all k > N. Let E C R be arbitrarily fixed, first we prove that

dimg (B~ (E) N D) < adimy E + 5¢. (4.12)
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Assume that dimys E = ¢, by increasing N if necessary we may assume that for
all k > N the set E can be covered by 2*¢+& intervals of Ji. Fix k > N and for
all n > k define

W, ={I e Vi NTp: BU)N E # 0}.
Fix n > k. Since I'(Vg, 3¢) holds, for every J € J, we have
I € W,: B(I) N J # @Y < 23",
As E can be covered by 2#¢+)" intervals of J,, the above inequality yields
|Wn| < 23£n2a(t+8)n‘

Therefore
HH58(W),)) < 23enpattteamy—(at+sen  y—en, (4.13)

Since | ;2 ; Wy, is a covering of B~1(E) N D, inequality (4.13) implies that

o0 o0
j_cglct)-f-SS(B—l(E) N D) < Z H(xt+58(Wn) < Zz—sn — C32_8k,
n=k n=k

where ¢, = 1/(1 —27¢). This is true for all k, thus H%5¢(B~1(E) N D) = 0.
Therefore dimy (B~ (E) N D) < at + 5S¢, so (4.12) holds.
Finally, applying the countable stability of Hausdorff dimension and (4.12) for
E; in place of E we obtain that
o
dimg (B~Y(E) N D) = inf { supdimg (B~ (E;) N D):E = | J E,-}
! i=1

< inf{sqpaﬁMEi + 58 E = G Ei}
i=1

4

= adimp E + 5e.

Hence (4.11) holds, and the proof is complete. O

5. Sets defined by digit restrictions and self-similar sets

The goal of this section is to prove Theorems 1.13 and 1.15. These answer Prob-
lem 1.1 in case of sufficiently homogeneous sets. Problem 1.1 remains open in
general.
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5.1. Sets defined by digit restrictions. Before proving Theorem 1.13 we need
some preparation.

Definition 5.1. Let S ¢ IN*t. For all m,n € IN with m < n define

SN 1.
d,,,,,,(S):' tm + " and dy(S) =

n—m

1SN, 0
; .

Fact 5.2. Forall S ¢ Nt we have
dimg Ds = dimy, Dg = liminf d,(S),
n—oo

dil’np DS = di—mMDS = lim sup dn(S),

n—o0

dimprg Ds = lim limsup max dm »(S),
e>0+ p 500 m=<(l—e)n

dimy Ds = lim sup max dp, »(S).
n—oo m=n

Proof. The statements for Hausdorff and Minkowski dimensions are well known.
the proof of the lower bound for the Hausdorff dimension is based on Frostman’s
lemma, while the others follow from an easy computation, similarly to the case
of Assouad dimension. Lemma 2.3 yields that the packing dimension agrees with
the upper Minkowski dimension. Lemma 2.4 (i) and straightforward calculation
show that for all 0 < ¢ < 1 we have

dimj,; 4 Ds = dimj Dg = limsup max dp »(S).
n—oo m=<(l—e)n

Then the definition of modified Assouad dimension completes the proof. |

Definition 5.3. Let D C [0, 1]. For a dyadic interval I € Jand n € N* define

Ny(D,I)=|{U €9,:U C I and U N D # B}]|.

Lemma 5.4. Let D C [0, 1] with dimpr4 D > «. Then there exist positive integers
my,ng and ¢ € (0, 1) such that for all k € N™

(i) thereis an Iy € Jp, such that Ny, (D, Iy) > 2@FT&)0c=mi),

(i) ng/mg+1 = o(1),

(iii) mr = (1 — e+ o(1))ng.



Uniform dimension results for fractional Brownian motion 169

Proof. As dimys4 D > «, we have dimi D > a + § for some § € (0,1). Thus
there exist positive integers my, ny such that (i) and (ii) hold with § in place of &,
and my < (1 — &)ng. Fix m = my and n = ny and assume that m < i < n. Let
I; € J; such that N, (D, I;) = max{N,(D, I):1 € J;}. Then clearly

Ni(D, Im)Nn(D, I;) = Nu(D, Im),

so either N; (D, I,,) > 2@+9G=—m) or N (D, I;) > 2@+)=1) Therefore we can
divide the interval [m, ] into two intervals of (almost) equal length and keep one
such that (i) still holds with §. We iterate this process and stop when our new
interval [m, n] satisfies m/n > 1 — §. This works for all large enough m,n and
we obtain a constant ¢(§) < 1 such that m/n < ¢(8). By redefining my, ny and
choosing a convergent subsequence of my / n; we may assume that my /ny — 1—¢,
where 0 < 1 —c¢(§) < ¢ < 8. Then my,n; and ¢ € (0, 1) satisfy the above
properties. O

Definition 5.5. Let & = {0, ™" and let =, = |J°2, S(n), where £(n) =
{0, 1}". For ¢ € X U X, denote by o; the ith coordinate of ¢ and let |o| be the
length of 0. Define F: ¥ U X, — [0, 1] as

F(o) = %oﬂ_i,
i=1
and foralln € N* and o € X(n) let
1(0) = [F(0), F(0) + 27" € Tn.
Foreach S C Nt andn € N7 let
Ys={0eTi0; {0, 1}ifi € Sando; = 0ifi ¢ S},

Sn)y=SnN{l,...,n}.

Foro € ¥ U X, and integers 0 < m < n < |o| define
o(m,n) = (Om+1,...,0,) €{0,1}"7" and o(n) =o(0,n).

ForA Cc U X, let

A(m,n) ={o(m,n):0 € A} C{0,1}*™ and A(n) = A(0,n).
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Proof of Theorem 1.13. Implication (ii) = (i) follows from Theorem 1.7.

Now we prove (i) = (ii). Suppose that (i) holds. By Lemma 3.8 almost
surely there is a random M € INT such that forall n > M and p € {0,...,2" — 1}
we have

diam B(I,,,) < n27%". 5.1

Fix a sample path B and M € IN' with this property. Assume to the contrary
that dimps4 Ds > « and dimyg Ds = liminf, . d,(S) = s > 0, in order to
obtain a contradiction it is enough to construct a compact set C C Dg such that
dimg B(C) < (1/a)dimy C.

First we construct C. By Lemma 5.4 there exist positive integers my, ny and
¢ € (0, 1) such that

(1) dmy ni (S) > +eforallk e NT,

Q) M <my <np <myy, forallk € NT,

(3) ni/mi41 = o(1),

4 mr =1 —e+o(l)ng.

As liminf, o d,(S) = s, we can define positive integers £; and
)
T=5\|JW.mlcs

k=1

such that

() €x <my <ng <lyyforallk € NT,

(ii) limg— o0 dm, (T) = 5.
Let k € Nt and 0 € X7 (my). Inequality (5.1) and my > M implies that

diam B(I(0)) < my2 "k,

so B(I(c)) can be covered by m 22"« —mk) 4 1 < ng 2%k =m) intervals of Iny -
As T N (my,ng] = S N (my, ng], property (1) yields that

| X7 (my, ng)| > o@te)(ng—mg)
Therefore there exists a J = J(0) € J,, such that

A € Sr(n): AMmy) = 0, B(F(A) € J}| > (1/ny)250mic)
— p(e—o(D)(ng—my)

— 9 Fo(M)n
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where we used (4) in the last line. For all k € Nt and o € 7 (my) define Ag (o)
and p; € INT such that

Ar(0) C{A € Zr(ni): A(mg) = 0. B(F()) € J(0)}.
[Ak(@)] = pp = 27,
Define A C X such that
A ={0 € X7r:0(nk) € Ax(o(my)) forall k € NT}.

Define the compact set C C Dt as

C ={F(0):0 € A} = ﬁ ( U 1(0)).

n=1 oeA(n)
Let
o0
V=T\{JmenlcCT,
k=1

first we prove an upper bound for dimg B(C). Let 0 € A(my). The definition of
Ak (o) and (5.1) imply that UleAk (o) B(I(1)) can be covered by 2n + 1 intervals
of Jn, . By (3) we have

|A(my)| = 2(1+0(1))|V(mk)|’

so for any ny < n < my4; the image B(C) can be covered by
|A(mp)|2ny + 1)2|Vﬂ(nk,n]| = 2dn(V)+o())n

intervals of J, having diameter 27", Let W = Nt \ g, (mg, nx), clearly for
all mg < n < ng we have d,, (V) < d,(V). Therefore, as the lower Minkowski
dimension is an upper bound for the Hausdorff dimension, we obtain that

log 2(dn(N+o(D)n
dimy B(C) < lim inf —2
new log 2n

= (1/a) linéli)[glfdn(V) (5.2)

= (1/e) limiinf d, (V).
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By (5.2) it is enough to show that

dimy € > liminf dy (V). (5.3)

Define a Borel probability measure p as follows. For all k € N* and o € A(ny)

let
1

A 2Veol [T, pi
This uniquely defines a p with supp() = C. By Frostman’s Lemma we have

pl(0)) =

dimg C > sup{c: u(I1(0)) <2~ for all 6 € A(n)}, (5.4)

hence in order to find a lower bound for dimg C we will estimate u(/(0)) from
above. Let n € N and let 0 € A(n) such that my <n < myq.
First assume that my < n < mg(1 4+ ¢€). Then (3) and (ii) yield that

p (o)) = p((o(mg)))
< 2=V (mi)l
= 9~ (+o(NIT (m)| (5.5)
= p—(s+o(1)my
< 2—(s/(1+8)+0(1))n'
Now suppose that mg (1 + €) < n < ny. Clearly we have
A € A(ng):A(n) = o} < 2",
Properties (3) and (ii), the definition of p, and (4) imply that
|A(ng)| > 2|V(mk)|pk — 2(s+o(1))mk X 2(32+o(1))nk — 2(s(1—8)+32+o(1))nk_
Our assumption and (4) yield that
ne < (1/(1 = &%) + o(1)n.

Thus the above three inequalities imply that

nx—n

< znk(l—sz—s(l—£)+o(1))—n < 2—(s/(1+s)+o(1))n' (5.6)
[A(ng)| — a

Finally, assume that n; < n < mg41, then the definition of p; implies that

p(l(0)) =

L @@ romin (57

1
u(l (o)) = <
21V ()l ]-[f:l i V@ py



Uniform dimension results for fractional Brownian motion 173

Inequalities (5.5), (5.6), (5.7), and Frostman’s lemma yield that

. . N .. . 2Nk
dimg C > min {1 e hkn—l>lol<l>fn€[nrkrgrlllk+1] (a’n(V) + e 7)} (5.8)
Properties (ii), (3), and (4) imply that
1
timinf dp(V) < liminf d, (V) = liminf GAoMIme _ o). (5.9
n—o0o —00 —00 ni

Inequalities (5.8), (5.9), and s/(1 + €) > s(1 — ¢) yield that it is enough to prove
for (5.3) that

liminf  min (dn(V)+82'j1—k)>linlinfdn(V). (5.10)

k—o0 ne€[ng,my41]

Let ny <n <my4. First assume that €51 <n <mypi1. AsV N (Lgx1, mps+1]1=9,
properties (3) and (ii) imply that

de(V) > dymy (V) = (1 + 0(1))dmy o, (T) = s + 0(1). (5.11)

Now suppose that 2ny /(es) < n < £x41. Then V N (ng,n] = S N (ng,n] and
liminf, 0 d,(S) = s imply that

dyn(V) = dy(S)—ng/n>s(1—¢/2) +o(1). (5.12)
Finally, assume that ny < n < 2ny/(es). Then clearly
dy(V) + 225 > a,(v) + 35)2. (5.13)
n

Inequalities (5.11), (5.12), (5.13), and (5.9) imply that

liminf  min (d,,(V) + szn—k> > liminf d, (V) + &3s/2.
n n—o0o

k—o0 ne[ng,myg41]

Hence (5.10) holds, and the proof is complete. |

5.2. Self-similar sets. The goal of this subsection is to prove Theorem 1.15.

Proof of Theorem 1.15. Implication (ii) = (i) follows from Theorem 1.7.

Now we prove (i) = (ii). Assume to the contrary that dimas4 D > « and (i)
hold. By Lemma 3.8 almost surely there is a random M € IN* such that for all
n>M and p €{0,...,2" — 1} we have

diam B(I, ) < 2~ @FoW)in, (5.14)

Fix a sample path B and M € INT with this property. Let us recall Definition 5.3.
We show that there are positive integers my, ny, £y, dr and ¢ € (0, 1) such that for
allk e Nt
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(1) there is an Iy € Jpy, such that Ny, (D, Iy) > 2@Feto)@c=mi),

(2) mg = (1 —¢+o(1)ng,

3) Zf:ll n; = o(ng) and m; > M,

4) ny = Lrdy, wheredy = ny,dy = np,and dy = ng_p = o(ng_y) fork > 2.
Indeed, dimps4 D > « and Lemma 5.4 imply (1) and (2). Property (3) may be
assumed by passing to a subsequence. Adding at most n_, to ny does not change
the earlier asymptotes, so we may suppose that ny, is divisible by ny_, for k > 2,
soly =4, = 1and £y = ng/ni_, for k > 2 satisfies (4).

Properties (1) and (2) imply that dimy D > (o + 8)e>g2. Let dimpy D =1>0.
It is enough to construct a compact set C C D such that dimgyg B(C) < t/(2x)
and dimyg C > t/(2— &%) > t/2.

First we construct C. Assume that D = Ufgl fi(D), where f; are contractive
similarities of R. Let r = min{sim(f;):i < ko}, where sim(f) denotes the
similarity ratio of f. It is easy to show that for each x € D and R € (0,1)
there exists a similarity f: D — B(x, R) N D such that rR < sim(f) < R.

First we prove that for all k € INT we can define p; € INT and similarities
¢k:D — D NI for 1 <i < py such that

G) pr = 2((¥+8+0(1))(nk_mk)’

(i) 27" < sim(¢¥) <27 forall i,

(i) dist(¢f (D). ¢¥(D)) = 27" foralli # ;.
Indeed, by (1) for each k there exists p; with (i) such that there are points {xl(c }f’ il 1

in D N [ with |x{C — x]’.‘| > 27" T2 foralli # j and dist({le.‘}, a(ly)) = 27"k,
Hence for each k € N* and 1 <i < py there is a similarity

¢k: D — D N B(xk,27)

satisfying property (ii). Clearly (iii) holds, too.

By [5, Theorem 4] we have dim,, D = dimys D. Therefore, similarly as above,
we can define positive integers g, and similarities 1//1.": D — Dforl <i <gqy
such that

(A) Jk = 2(t+o(1))dk’
(B) r27% < sim(y¥) < 279 for all i,
(C) dist(yf (D). y¥(D)) = 279 forall i # j.

For all k € Nt and 0 = (j1,....Jjg) C {1,...,qx)* define similarities
vk:D — D as

k— k “oe k
Ve = 1'”./'1 © owjzk'
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Assume that k € N*, 0 = (01,i1,02,...,ix—1,0k), and i € {1,..., px} are
given, where

k k—1
©1.....00 € [J{.....q}% and  (r.... i) € JJ{L. ... py)-
j=1 j=1

Define the similarities ®g, ®g;: D — D such that

q)e — \Ijé‘l °¢i11 o...o¢k_1 O\p{:k and q>9i = q>9 o¢tk

ik—1

Statement 5.6. For 0 = (01,i1,02,...,ik—1,0k) we candefine X9 C {1,..., px}

such that
|Z0] = sk = 2 (eto())(ngx—mr) 2(82+0(1))nk’ (5.15)

and the similarities ®g; satisfy

diam( U B(<I>9,~(D))) < p~Cato(Mnk (5.16)

i€y
Proof of Statement 5.6. As ¢{‘ (D) C I, forall 1 <i < p we have
Dy; (D) C Pg(Ik). (5.17)
Properties (ii), (B), (4), and (3) imply that
diam ®g () < 272 +tne—D)=nk—mi — 7=(+o(D)(ri+mi) (5.18)

Then (5.17), (5.18), and (5.14) yield that

Pk
diam ( | B(®s: (D))) < diam B(®y(Iy)) < 2-@+o)G+m)

i=1

Thus Uf’ﬁl B(®p; (D)) can intersect at most 2@tk —mk) yalye intervals of
Jon, . Hence (i) and (2) imply that there is an interval J € J,,, such that

{1 <i < pi: B(®g; (D)) N J # B} > py /20N tk=mic)
> 2(8+0(1))(nk—mk)
— oo

Choose X9 C {1 <i < pi: B(®y; (D)) N J # @} according to (5.15), we need to
prove (5.16). Similarly as above for all 1 <i < p, we have

diam @g; (D) < 2720m+41k) — p=QFoMnk



176 R. Balka and Y. Peres
Therefore by (5.14) for all for all 1 <i < p; we obtain
diam B(®g; (D)) < 2~ @atoWink (5.19)

As the images {B(®y;(D))}iex, intersect the same J which has length 272¢7k,
inequality (5.19) implies (5.16). The proof of the statement is complete. A

Now we return to the proof of Theorem 1.15. Define
[e.¢]
Oc [T(1ad xil,...pe}) as
k=1

O = {(01,i1,02,...) ik € Zeyiy...ix_,0 Torall k € NT

For all k € N7 let
Ok) = {6 = (01,11, ..., 0%, ir): there exists 6 € ® which extends 6y }.

Define the compact set

ﬁ( U %(D))-

k=1 6eOk)

C
Now we prove that dimg B(C) < t/(2«). By (i) and (3) we have

k—1
logy(p1++- pr—1) < (@ + &+ 0(1)) Y ni = o(ng). (5.20)
i=1

By (A), (4), and (3) we have

k
logy (g - q") = (t +0(1) Y ni = (t + o)y (5.21)
i=1

By (5.16) we obtain that B(C) can be covered by (]_[f:ll qf" pi)qﬁk intervals of

length 2~@e+oM)nk  Since the lower Minkowski dimension is an upper bound for
the Hausdorff dimension, asymptotes (5.20) and (5.21) imply that

. .. .log, (Hf{;ll Di 1_[5';1 qizi)
dimg B(C) < hkn_l)gcl)f 10g2 2Qa+o())ng

=1/Qa).

Finally, we show thatdimy C > 1/(2—¢&?) > t/2. Assume thatk € N*, 0 € Q(k),
0 <€ <{gyrand (ji,....j¢) €{1,....qk41}". Then define ®g;, ;,: D — D as

— k+1 k+1
q)ejljg _qDGOwjl ©:--0 Je .
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Each N € IN can be uniquely written as N = (Zf;l(éi + 1)) + £, where k € IN
and 0 < ¢ < £z, depend on N. Consider the cover

dk+1 dk+1

cc U U U @D

be0k) 1=1  je=1

we call C N Py;,  ;, (D) the elementary pieces of C of level N. Every elementary
piece of C of level N — 1 has cy children, where

Sk if £ = 0,
cN =
dk+1 if £ > 0.

Inequalities (ii), (iii), (B), (C), and (4) imply that the distance between any two
elementary pieces of C of level N is at least
N = rN2—2(n1 +---+nk)—€dk+1 )

We have ey \( 0as N — oo, so [6, Example 4.6] implies that

(5.22)

1 ceeCN_
dimg C > liminf oga(c1--cn 1).
N—-oco —log,(cnen)

Hence we need to bound the above limes inferior from below. We use the notation
an ~ by ifay /b, — 1 asn — oo. By (5.15) and (A) we obtain that

&2ny if¢ =0,
log, ey ~
tdpy, if € > 0.

Hence asymptotes (3) and (4) yield that

tny if £ =0,
logz(cl "'CN—I) ~
(t + eDnp + (0 — Didps, it L > 0.

By (3) and (4) we have Zf;l ni ~ngand N = o(ng + €dg41), SO
10g2 EN = N10g2 r—2my 4+ -+ ng) —Ldrgsr1 ~ —QCng + Ldr+1).

Therefore (5.22) yields that

dimg C > liminf min

k—o0

{ t . (t + e*)ng + (L — Didy41
— &2 1<t<liyr  2ng + Ly —tdi4y

}. (5.23)
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It is easy to check that for all positive numbers a, b, ¢, d we have
a+b
c+d

and applying this fora = (¢ + &*)ny —tdiy1, b = Ltdg 11, c = 2ny —tdyy 1, and

d = Ldj together with di1 = o(ny) implies that for all £ > 0 we have

> min{a/c,b/d},

t+ &2 {—1td t+e¥)ng —td t+ &2
(t+ &) + (L —1) k+lzmin{( + e)ng k+1’t}~ +e (5.24)
2ng + Ldg 1 — tdysq 2np — tdi+q 2
where we used that ¢ > ¢2. Then (5.23) and (5.24) yield that
) . t t+é? t
dlchzmm{z—ez’ 2 }:2—52’
and the proof is complete. |

6. A restriction theorem for fractional Brownian motion

The main goal of this section is to give a new proof for Theorem 1.17 based on
Theorem 1.7. First we need some preparation.

Definition 6.1. Let y € (0, 1), we construct a random compactset I'(y) C [0, 1] as
follows. We keep each interval / € J; with probability p = 277. Let A; C J; be
the the collection of kept intervals and let S; = [ J A; be their union. If A, C I,
and S, are already defined, then we keep every interval I € J,,q for which I C S,
independently with probability p. We denote by A,+; C J,4; the collection of
kept intervals and by S,+1 = | An+1 their union. We define a percolation limit
set as

n=1

The following theorem is due to Hawkes [13, Theorem 6].

Theorem 6.2 (Hawkes). Let y € (0, 1) and let C C [0, 1] be a compact set with
dimg C > y. Then dimyg (C N T'(y)) > 0 with positive probability.

The following theorem follows from a result of Athreya [3, Theorem 4].

Theorem 6.3 (Athreya). Let {Z,},>1 be a Galton—-Watson branching process
such that EZ; = m > 1 and Ee%%' < oo for some 0 > 0. Then there exist
c1.¢2 € RT such that for alln € NT and k > 0 we have

P(Z, > km") < cre 2k,
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Remark 6.4. Note that the above theorem is proved in [3] under the assumption
P(Z; = 0) = 0, but we may assume this by applying the Harris-transformation.
For more on this theory see [4].

Fraser, Miao, and Troscheit [11, Theorem 5.1] proved that dimy I'(y) = 1
almost surely, provided I'(y) # @. The following theorem claims that the modified
Assouad dimension behaves differently, we have dimpsg I'(y) = dimg ['(y)
almost surely.

Theorem 6.5. Let y € (0, 1). Then

dimpyg I'(y) =dimg I'(y) =1—y
almost surely, provided T (y) # 0.
Proof. Itis well known thatdimg I'(y) = 1—y almost surely, provided I'(y) # @,
see e.g. [13, Theorem 2]. By Fact 1.6 it is enough to prove that, almost surely, we
have dimps4 I'(y) < 1—y. Let0 < ¢ < 1 be arbitrarily fixed, it is enough to show
that dim§ I'(y) < 1 — y with probability one. Let m € N* and I € J,,. For all

n>mlet
Nuy(I)={J €3,:J C I and J € Ay}

and define the event
Ap = {N, (1) < n?20 0= forallm < (1 —e)n and I € J,,)}.

It is enough to prove that, almost surely, A, holds for all large enough n. Let
Zy = |Ay| forall n € N*, then {Z,},>1 is a Galton—Watson branching process
with EZ; = 277 > 1. Clearly Ee4l < o0, so by Theorem 6.3 there are
c1,¢2 € RT such that for all n € Nt and k € RT we have

P(Z, = k207") < ek, 6.1)

For a given I € J,,, provided I € A, the random variable N, (/) has the same
distribution as Z,_,,. Hence (6.1) with k = n? implies that

P(Ny (1) > n220-n0=m)y < o ,=ean®,

The number of pairs (m, I') for whichm < (1 —e)n and I € J,, is at most n2", so
the probability of the complement of A, satisfies

P(AS) < c1n2”e_C2”2.

Therefore > »2 | P(AS) < oo, and the Borel-Cantelli lemma yields that A¢ holds
only for finitely many n. This completes the proof. O
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Definition 6.6. Let (X, dy) be the set of compact subsets of [0, 1] endowed with
the Hausdor{f metric, that is, for each K1, K, € X \ {#} we have

dg (K1, K3) = min{r: Ky C B(K,,r)and K, C B(Ky,r)},

where B(A,r) = {x € R:thereexists y € Asuchthat|x — y| < r}. Let
dg(@,0) =0and dy (K, @) = 1 for all K € X\ {#}. Then (X, dy) is a compact
metric space, see [19, Theorem 4.26]. Let C|0, 1] denote the set of continuous
functions f:[0,1] — R endowed with the maximum norm. For y € (0, 1) and
n € Nt let C¥[0, 1] and C) [0, 1] denote the set of functions f € C[0, 1] such that
f is y-Holder continuous and y-Hélder continuous with Holder constant at most
n, respectively. Forevery E C X xY andx e X let E, ={y € Y:(x,y) € E},
andforally e Y let E? ={x € X:(x,y) € E}.

Lemma 6.7. Assume that 0 < y < o < 1 and let
A ={(f,K) e C7[0,1] x K: there exist C € X and 8 > a such that
dimg C > 1 —a and dimg (KN C) >0, and f|c is B-Holder}.
Then A is a Borel set in C|0, 1] x XK.

Proof. For alln € N* define
Ap ={(f. K) € C)[0,1] x X: there is a C € X such that
Hlzet/n(C) > 1/n and K/"(K N C) > 1/n, and
flc is (e 4+ 1/n)-Holder with Holder constant at most 7}.

Since C,/ [0, 1] and X are compact, it is easy to verify that A, is compact for each
n € N*. Clearly A = (2, Ap, thus A is o-compact, so it is a Borel set. O

Now we are ready to give a new proof for Theorem 1.17.

Proof of Theorem 1.17. Assume that0 < y < « < 1 are fixed and let A = A(y, )
be the Borel set of Lemma 6.7. First assume that (f, K) € A. Then there exist
C € X and B > « such that f|¢ is f-Holder continuous and dimg (K N C) > 0.
By Fact 2.5the set E = K N C C K satisfies

dimy f(E) < (1/B)dimy E < (1/a) dimy E. (6.2)

Let 1 and v be the distributions of B on C [0, 1] and of I'(1 —«) on X, respectively.
By Theorem 6.5 we have dimps4 K < « for v almost every K. Fix such a K, then
Theorem 1.7 implies that for u almost every f for all E C K we have

dimy f(E) = (1/a) dimy E. (6.3)
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Thus (6.2) and (6.3) imply that u(AX) = 0. As A is Borel, Fubini’s theorem
yields that (1 x v)(A) = 0.

As (uxv)(A) = 0, Fubini’s theorem and the fact that B is y-Holder continuous
almost surely imply that v(Ay) = 0 for u almost every f. Fix such an f and
assume to the contrary that there is a set C C [0, 1] such that f|c is f-Holder
continuous for some 8 > « and dimyg C > 1 — «. As f is still §-Holder
continuous on the closure of C, we may assume that C is compact. Then clearly
{K € X:dimyg (K N C) > 0} C Ay, thus Theorem 6.2 yields that

V(Ar) > v({K € X:dimg (K N C) > 0}) > 0.
This is a contradiction, and the proof is complete. |

Acknowledgments. We are indebted to Jinjun Li for pointing out a mistake in an
earlier version of the paper.
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