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Abstract. We study the topological properties of attractors of iterated function systems

(IFS) on the real line, consisting of a�ne maps of homogeneous contraction ratio. These

maps de�ne what we call a second generation IFS: they are uncountably many and the set

of their �xed points is a Cantor set. We prove that when this latter either is the attractor

of a �nite, non–singular, hyperbolic, IFS (of �rst generation), or it possesses a particular

dissection property, the attractor of the second generation IFS is the union of a �nite number

of closed intervals. We also prove a theorem that generalizes this result to certain in�nite

sums of compact sets, in the sense of Minkowski and under the Hausdor� metric.
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1. Introduction and discussion of the main results

This paper addresses a problem that belongs to the important study of the topology

of fractals: to characterize the attractor of iterated function systems (IFS) that

consist of an uncountable in�nity of similarities in one dimension.

The recent surveys [7, 8] o�er a good perspective of attractors of �nite IFS.

On the other hand, attractors of IFS with a countable in�nity of maps have also

been considered, e.g. in [9, 14, 16, 25, 28]. Much less studied is the case, discussed

herein, when such in�nity is uncountable, so that [16, 18, 20, 22, 23, 24, 26, 32]

is an almost complete list of references.

Our result, somehow surprising in its simplicity – that, in a large family of

cases, the attractor is a �nite union of closed intervals, also describes certain

in�nite sums of Cantor sets. As such, it has relevance to the problem of Minkowski

sums and more generally to the study of algebraic/Boolean operations with Cantor

sets, a very partial list of related literature being [1, 2, 11, 15, 30, 31]. Further

motivation to solve this problem is to control the support of IFS invariant measures

that model multiple pursuit games [22] and fractal inverse problems [23].

1.1. Problem formulation. We consider K, the set of non–empty compact sub-

sets of a compact interval I in R, endowed with the Hausdor� metric, de�ned in

the standard way as follows. Let d.x; y/ be the Euclidean distance of two points x

and y in R, and let d.x; A/ D min¹d.x; a/; a 2 Aº be the distance of the point x

from the non–empty compact subset A of I . The Hausdor� distance dH between

two compact sets A and B in K is then de�ned as

dH .A; B/ D max¹max¹d.a; B/; a 2 Aº;max¹d.b; A/; b 2 Bºº: (1.1)

Under this distance K is a compact space [33].

Let ‰ be a non-empty set of contractive transformations of a non-empty

compact interval I in R, such that there exists r < 1 for which every  2 ‰

is r-Lipschitz. Also, let the operator U‰ be de�ned by [17, 5, 4]

U‰.A/ D
[

 2‰

 .A/ (1.2)

for every A 2 K, where the bar denotes topological closure.

In this setting, U‰ is a contractive operator on K and K D K‰ is the unique

element of K that solves the equation

K D U‰.K/: (1.3)
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Following Hutchinson and Barnsley–Demko K‰ is called the invariant set,

or the attractor of the iterated functions system ‰ [17, 5], a construction that

generalizes the �rst insights of Moran and Mandelbrot [29, 21]. For an IFS

composed of �nitely many a�ne maps, the attractor may take di�erent topological

forms, as diverse as an interval, a countable union of intervals, a Cantor set, a �nite

number of points (in the singular case of maps with zero contraction ratios).

As mentioned, IFS with a countable in�nity of maps have been considered e.g.

in [9, 14, 16, 25, 28]. Their study requires the introduction of the closure of the right

hand side of eq. (1.2), at di�erence with the case of �nitely many transformations.

In this paper we will study the topological properties of the attractor in a

more general class of IFS, composed of an uncountable set of maps, but we

will restrict ourselves in two ways. First, following Elton and Yan [13] we will

consider homogeneous a�ne maps. Secondly, as in [22, 23, 24] these maps will

be structured as a second generation IFS.

Precisely, we start from a �rst generation IFS ‰, that we require to be �nite,

hyperbolic and non–singular. This is de�ned by the following conditions:

i) ‰ consists of a �nite number M of real maps (i.e. maps from R to itself),

‰ D ¹ i W i D 1; : : : ;M ºI (1.4)

ii) there exists a closed interval I such that  i .I / � I for any i D 1; : : : ;M ;

iii) every map  i is C 2 on I ;

iv) there exist constants ı and � such that for any i D 1; : : : ;M

0 < � � j 0
i .x/j � ı < 1; (1.5)

for all x in I , and at least two maps in ‰ have di�erent �xed points.

A paradigmatic example of this situation is o�ered by non–linear IFS generating

real Julia sets (see e.g. [6, 10]).

Next, consider a new set of a�ne maps, of equal contraction ratio 0 < ˛ < 1,

�.ˇI x/ D ˛.x � ˇ/C ˇ D ˛x C .1� ˛/ˇ; (1.6)

where ˇ 2 R is the �xed point of �.ˇI �/. A second generation IFS ˆ consists of

all maps of the form (1.6), whose �xed points ˇ belong to the attractor K‰ of the

�rst generation IFS ‰:

ˆ D ¹�.ˇI �/; ˇ 2 K‰º: (1.7)

Note that x 7! �.ˇ; x/maps I into I for every ˇ 2 K‰ . We use again eq. (1.2) to

de�ne the operator Uˆ, replacing the set of maps ‰ by ˆ. Since K‰ is a compact

set, the closure at right hand side of eq. (1.2) is here redundant.
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Let therefore Kˆ denote the �xed point of Uˆ: Kˆ D Uˆ.Kˆ/: This set is the

attractor of the second generation IFS ˆ derived from ‰ and ˛, the properties of

which are the object of this paper.

1.2. Main results and their discussion. Our main result shows that Kˆ has

a very simple structure, under very general conditions on the �rst–generation

attractor K‰ upon which it is constructed.

Theorem 1.1. For any �nite, non–singular, hyperbolic IFS‰ and for any 0<˛<1

the attractorKˆ of the second generation IFSˆ derived from‰ and ˛ consists of

a �nite union of closed intervals. The same is true when K‰ in de�nition (1.7) is

replaced by a Cantor set K admitting a construction of uniformly lower bounded

dissection.

As stated, the theorem holds also for a class of Cantor sets, de�ned via con-

structions of uniformly lower bounded dissection: these latter will be described in

the course of the paper.

The �rst part of this theorem has been conjectured in [24], Conjecture 1, for

disconnected, a�ne IFS. In the same work, a weaker result was found in a speci�c

case: namely, it was proven (Theorem 1 in [24]) that when ‰ is a two–maps,

disconnected, a�ne IFS (but the proof can be extended to any �nite number of

maps) the attractor Kˆ contains an interval. Theorem 1.1 solves the problem

completely and in wider generality, under the hypotheses above. The following

consequences of this theorem are to be noted.

Firstly, it can be used in conjunction with a localization analysis of the setKˆ.

Formulae somehow simplify when the convex hull of K‰ is the interval Œ�1; 1�:

by a suitable rescaling we can always put ourselves in this situation. Then, the

following proposition was proven in [22, 23] (see also Lemma 1 in [24]).

Proposition 1.2. Let Conv.K‰/ D Œ�1; 1�. Then

K‰ � Kˆ � Œ�˛; ˛�C .1� ˛/K‰ � B2˛.K‰/;

where B2˛.K‰/ is the closed 2˛–neighborhood of K‰. The last two sets in the

chain of inclusions consist of a �nite number of closed intervals.

We shall give a di�erent proof of Proposition 1.2 later on, in Section 2. A �rst

consequence of it is that in the limit case of ˛ D 0Kˆ is equal toK‰. Also observe

that this proposition yields in a rather simple way a cover of Kˆ by intervals.

The di�cult step achieved by Theorem 1.1 is to prove that intervals are contained

in Kˆ and indeed that it exactly consists of a �nite number of them.
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Finally, Theorem 1.1 implies that algorithm A2 in [24] terminates in a �nite

number of steps, hence it provides an e�cient means of computation of the

intervals composing the set Kˆ.

Remark 1.3. Observe that when B is a countable dense subset of the compact

set K‰ and when ẑ D ¹�.bI �/; b 2 Bº, the induced operator is the same as that

of the complete IFS: U ẑ D Uˆ. Hence, one can construct a countable IFS with

the same attractor as the uncountable one – however, closure in eq. (1.2) becomes

essential. This is a particular case of the general Proposition 9 in [20].

While the previous remark might seem to downplay the importance of un-

countable IFS, it must be observed that their distinctive role is fully appreciated

when considering balanced measures on their supports, as done in [13, 26]. In the

case of the second generation IFS considered in this paper these measures have

been studied in [22, 23]: they are always of pure type and can be either absolutely

continuous or singular continuous with respect to the Lebesgue measure. Dis-

criminating between the two cases appears to be an interesting and challenging

problem [22]. Theorem 1.1 helps in this endeavor by settling the problem on the

nature of the support of these measures.

From a more general perspective, the results of this paper also belong to the

study of the topological properties of sums of Cantor sets. A key ingredient of

our proof is a result (Theorem 7.1 below) by Cabrelli et al. [11] on �nite sums of

Cantor sets. Recall the notion of Minkowski sum of two non–empty sets A and B

in R (see [33]): this sum is the set

AC B D ¹aC b; a 2 A; b 2 Bº: (1.8)

In this context, we �rst prove a result on sums of Cantor sets of the kind Kn D


1KC � � �C
nK, Proposition 8.1, whereK is a Cantor (see below for hypotheses)

and 
j are arbitrary positive numbers.

Next, we show that the attractor Kˆ de�ned above and characterized via

Theorem 1.1 can be written as a geometric series of Cantor sets (see eq. (25) in [24]

and Section 9 below):

Kˆ D .1 � ˛/

1X

jD0

˛jK‰: (1.9)

In the above, convergence of the series is to be understood in the sense of Hausdor�

metric. We can study more general series than (1.9): this results in the following

theorem.
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Theorem 1.4. Let K D K‰ be the attractor of a �nite, non–singular hyperbolic

IFS ‰, or a Cantor set K admitting a construction of uniformly lower bounded

dissection. Let
P
j j̨ < 1 be a convergent series of positive real entries. Then,

the in�nite series
1X

jD0

j̨K (1.10)

is convergent in the Hausdor� metric to a non–empty compact set, which is a �nite

union of closed, disjoint intervals.

Clearly, because of eq. (1.9), Theorem 1.4 is a generalization of Theorem 1.1.

1.3. Organization of the paper. In the next section we review some basic

properties of IFS and their attractors. These properties are well known (see e.g.

Section 3 in [17]) and we reproduce them here solely for convenience and as a way

to introduce notations. Partially new is the proof of Proposition 1.2, presented

at the end of this section. The successive Section 3 explains a standard way to

describe Cantor sets in the real line. We mainly follow Section 2 in [11] and

we extend it by proving a few results needed in the remainder of the paper. The

fundamental property of uniformly lower bounded dissection (ulbd) of Cantor sets

is also de�ned in this section. In Section 4 we prove that this property holds for

Cantor sets generated as attractors of two–maps, non–singular, hyperbolic IFS.

We then derive some useful lemmas on the relation of ulbd property with certain

operations on sets: Section 5 contains an explicit construction by which it is proven

that the union of two separated, ulbd Cantor sets is also ulbd, while Section 6

proves that a ulbd Cantor set with prescribed properties can be found in the sum

of a �nite collection of ulbd Cantor sets.

We then move to the core of the problem: in Section 7 we recall Cabrelli et al.

result on �nite sums of ulbd Cantor sets [11], to which we add two useful Lemmas.

This leads us to Section 8 where we prove a proposition about the �nite truncations

of the series in eqs. (1.9) and (1.10) and we prove Theorem 1.1. The theory of

in�nite series of compact sets of the kind (1.10), in the sense of Minkowski and

under the Hausdor� metric, is brie�y developed in the �nal Section 9, where we

prove Theorem 1.4.

2. Basic properties of IFS maps and attractors

In this section we let ‰ be a set of contractive transformations, more precisely of

r-Lipschitz transformations on a compact interval I , where r is a suitable number
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with 0 < r < 1. Such a set ‰, according to standard terminology, is called

a hyperbolic IFS. When the cardinality of ‰ is �nite we will use the notation

‰ WD ¹ i W i D 1; : : : ;M º and assume there exist at least two maps with di�erent

�xed points. Then, m‰ D minK‰ is strictly smaller than M‰ D maxK‰. For all

n � 1 let ‰n be the IFS consisting of the n-fold composition of the maps in ‰:

‰n WD ¹ i1;:::;in W i1; : : : ; in D 1; : : : ;M º;  i1;:::;in WD  i1 ı � � � ı  in : (2.1)

Clearly, Un‰ D U‰n on K. Acting with U‰ n times in eq. (1.3) yields

K‰ D Un‰.K‰/ D U‰n.K‰/ and this implies that, for all n � 1,

K‰n D K‰: (2.2)

Lemma 2.1. If ‰ and ‰0 are hyperbolic I.F.S on a compact interval I , the

following hold:

i) if A 2 K and U‰.A/ � A, then K‰ � A;

ii) if B 2 K and U‰.B/ � B , then K‰ � B;

iii) if ‰ � ‰0 then K‰ � K‰0 .

Proof. i) The set X WD ¹D 2 KW U‰.D/ � Aº is a closed nonempty subset of K

(X is nonempty sinceA 2 X by the hypothesis), thus it is a complete metric space

with respect to the Hausdor� metric. The map U‰ is a contraction from X into

itself (since D 2 X implies U2‰.D/ � U‰.A/ � A), thus it has a �xed point C :

U‰.C / D C . Because of uniqueness, this latter is the same as the IFS attractor:

C D K‰. Moreover, since K‰ D C 2 X , then K‰ D U‰.K‰/ � A.

ii) Same as i), with X WD ¹D 2 KW U‰.D/ � Bº.

iii) We have U‰0.K‰/ � U‰.K‰/ D K‰ . Now, iii) follows from i) with

A D K‰. �

Remark 2.2. The above lemma is folklore: we included its proof for complete-

ness. Indeed, it is a consequence of order/monotonicity properties of ‰. A thor-

ough analysis of its implications can be found in [19].

Remark 2.3. The previous lemma can be used to construct monotonic sequences

of compact sets converging to the attractor K‰. Take A as in i) and de�ne

An D Un‰.A/, B as in ii) and Bn D Un‰.B/. Then,

A � � � � � An � AnC1 � � � � K‰ � � � � � BnC1 � Bn � � � � � B:
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The ascending sequence has been called the construction from the inside; the

descending, construction from the outside; A the nucleus and B the absorbing set

[3, 7]. Typical choices for A and B are a �nite set of �xed points, and Œm‰;M‰�,

the convex hull of K‰, respectively. (Notice that an alternative proof of i) and ii)

can be obtained via the previous equation.)

A corollary of this result is the following

Lemma 2.4. Let ‰ WD ¹ i W i D 1; : : : ;M º be a hyperbolic IFS on a compact

interval I . Let ˇ be the �xed point of  i1;:::;in , with i1; : : : ; in D 1; : : : ;M . Then

ˇ 2 K‰ . Also  i 0
1
;:::;i 0

k0
.ˇ/ 2 K‰ for all i 01; : : : ; i

0
k0 D 1; : : : ;M .

Proof. By de�nition, U‰n.¹ˇº/ D Un‰.¹ˇº/ �  i1;:::;in.¹ˇº/ D ¹ˇº. Thus, by

Lemma 2.1 i) K‰ D K‰n � ¹ˇº. Next,

 i 0
1
;:::;i 0

k0
.ˇ/ 2  i 0

1
;:::;i 0

k0
.K‰/ � U‰k0 .K‰/ D K‰: �

Observe that the above also holds for in�nite cardinality IFS.

Lemma 2.5. Suppose that the hyperbolic IFS ‰ is composed of �nitely many

maps. Then, there exists ‰0 � ‰ such that ‰0 has precisely two elements and

m‰0 D m‰ , M‰0 D M‰ .

Proof. Firstly, m‰ 2 K‰ D U‰.K‰/. There exists  1 2 ‰ such that

m‰ 2  1.K‰/:

Thus, there exists x 2 K‰ such that m‰ D  1.x/. We have either x D m‰

or x D M‰ . In fact, in the opposite case there exist x1; x2 2 K‰ such that

x1 < x < x2. Thus  1.x1/;  1.x2/ 2  1.K‰/ � U‰.K‰/ D K‰ and one

of the numbers  1.x1/,  1.x2/ is less than m‰ , a contradiction. Similarly, we

can prove that there exist  2 2 ‰ and y 2 ¹m‰;M‰º such that  2.y/ D M‰.

Let ‰0 WD ¹ 1;  2º. We claim that ‰0 satis�es the Lemma. Note that, since

K‰0 � K‰ � Œm‰;M‰�, it su�ces to prove that

m‰;M‰ 2 K‰0 (2.3)

We distinguish four di�erent cases.

Case 1. x D m‰ , y D M‰ . Here, m‰ is the �xed point of  1 and M‰ is the

�xed point of  2. Now, eq. (2.3) follows from Lemma 2.4.

Case 2. x D y D m‰ . Then m‰ is the �xed point of  1, and M‰ D  2.m‰/,

and eq. (2.3) follows again from Lemma 2.4.
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Case 3. x D y D M‰ . We proceed as in Case 2.

Case 4. x D M‰, y D m‰ . We have  1 ı 2.m‰/ D m‰ ,  2 ı 1.M‰/ D M‰,

and eq. (2.3) follows again from Lemma 2.4. �

To complete this section we prove the localization result described in the

Introduction.

Proof of Proposition 1.2. Since Uˆ.K‰/ � K‰ by the de�nition ofˆ, the �rst in-

clusion follows from by Lemma 2.1, i). Next, observe that ConvKˆ D ConvK‰:

the maps �.ˇI x/ in eq. (1.6) are contractive, the set of their �xed points isK‰ and

since ˛ is positive Uˆ.ConvK‰/ � ConvK‰ which implies thatKˆ � ConvK‰

so that ConvKˆ � ConvK‰. On the other hand, since K‰ � Kˆ the reverse in-

clusion also holds. By hypothesis we so have that ConvKˆ D ConvK‰ D Œ�1; 1�.

Write explicitly Kˆ D UˆKˆ using the Minkowski sum of sets in the form

Kˆ D
[

ˇ2K‰

Œ˛Kˆ C .1 � ˛/ˇ�

D ˛Kˆ C .1� ˛/K‰ � Œ�˛; ˛�C .1 � ˛/K‰

WD yKˆ;

(2.4)

where the set yKˆ de�ned in the above is a cover of Kˆ. Observe that it can also

be written as a union of intervals of �xed length 2˛

yKˆ D
[

ˇ2K‰

Œ.1 � ˛/ˇ � ˛; .1� ˛/ˇ C ˛�:

It follows that yKˆ is closed and included in Œ�1; 1�, hence compact. In addition,

since the intervals in the union have �xed length 2˛ it can be written as a �nite

union of (di�erent) intervals, each of length larger than, or equal to, 2˛.

Furthermore, let ˇ 2 K‰, so that also jˇj � 1, which shows that

Œ�˛ C .1� ˛/ˇ; ˛ C .1� ˛/ˇ� � Œˇ � 2˛; ˇ C 2˛�:

Taking the union over all ˇ 2 K‰ proves the third inclusion of the thesis. The same

argument used above shows that also this last set, the closed 2˛ neighborhood of

K‰ , consists of a �nite number of closed intervals. �
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Remark 2.6. Suppose that

d.x; .1 � ˛/K‰/ > ˛ C �: (2.5)

It follows from the above proof that B�.x/
T
Kˆ D ¿; so that the closed ball of

radius � at x is contained in the complement ofKˆ. The setN� introduced in [24]

(that we here write for the case when Conv.K‰/ D Œ�1; 1�):

N� D ¹x 2 Œ�1; 1�W Œx � ˛ � �; x C ˛ C �� \ .1 � ˛/K‰ D ¿º (2.6)

is the collection of the centers of these balls, or equivalently of the points x 2

Œ�1; 1� which satisfy the inequality (2.5). For any � � 0, N� is a �nite collection

of open intervals contained in the complement of Kˆ. When � D 0 N� is the

complement of yKˆ in Œ�1; 1�.

3. Construction of Cantor sets via dissections

Recall that a Cantor set is a compact, totally disconnected, nonempty subset of R,

with no isolated points. Iterated function systems yield a convenient construction

of families of Cantor sets on the real line. We now use a di�erent description, of

general scope, that has been employed also in [11]. The Hausdor� dimension of

sets constructed in this fashion has been studied in [12]. The main idea behind this

construction is that the complement of a real Cantor set is a countable union of

open intervals. How to organize this countable set is the core of the description,

which requires symbolic coding, as follows.

Let W be the set of �nite binary words, with ¿ being the empty word:

W WD ¿ [ ¹w1; : : : ; wr W r D 1; 2; 3; : : : :; wi 2 ¹0; 1ºº:

De�ne the wordlength function j � j via j¿j D 0, jw1; : : : ; wr j D r . If w;w0 2 W ,

let ww0 be the concatenation of w and w0, w¿ D ¿w D w. Let us now associate

a closed interval on the real line to each word inW : that is to say, we de�ne a map

IWW ! ¹closed intervals � Rº, such that

IWw �! Iw WD Œaw ; bw �; (3.1)

with aw and bw denoting the end points of Iw (clearly, we always require aw <

bw ). This map is de�ned iteratively. The initial seed is an arbitrary interval

I D Œa; b� that is associated to the empty word. That is, I¿ D I , a¿ D a, b¿ D b.

The iteration rule is then the following: given Iw D Œaw ; bw � with aw < bw ,

choose two points cw and dw , so that aw < cw < dw < bw holds with strict
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inequalities and de�ne the new intervals Iw0 D Œaw0; bw0� and Iw1 D Œaw1; bw1�

via

aw0 D aw ; bw0 D cw ; aw1 D dw ; bw1 D bw :

In simpler terms, the interval corresponding to a word w, of length jwj generates

two intervals, corresponding to the words w0 and w1 of length jwj C 1. It is

convenient to de�ne the ratios of dissection r.I/w0 and r.I/w1 associated to these

intervals, as

r.I/wj D
bwj � awj

bw � aw
D
d.Iwj /

d.Iw/
; j D 0; 1 (3.2)

where here and in the following we use the notation d.A/ D diam .A/ for the

diameter of the set A. Clearly, d.A/ D maxA � minA, for every non–empty

compact subset A of R. Note that, since d.Iw0/C d.Iw1/ < d.Iw/, we have

r.I/w0 C r.I/w1 < 1: (3.3)

The ratio of dissection r.I/v is so de�ned for any word v 2 W n¹¿º and it measures

the ratio of the diameters of Iv and of its immediate ancestor Iv0 (associated with

the word v0, obtained from v by deleting the last binary digit).

To complete the construction, take the union of the intervals Iw of �xed length

jwj, and then intersect these latter sets:

Cn.I/ WD
[

jwjDn

Iw ; C.I/ WD

1\

nD0

Cn.I/: (3.4)

Note that Iwj � Iw , thus in particular CrC1.I/ � Cr.I/ and C.I/ is not empty. We

say that C.I/ is the quasi-Cantor set constructed on I, or that I constructs C.I/.

Consider the following speci�c case: for j D 0; 1, let j n denote the word

composed of the letter j repeated n times, with n 2 N, where j 0 D ¿. These

words are labels of the extreme intervals in Cn.I/, so that

min I0n D min I; max I1n D max I;

and

minC.I/ D min I; maxC.I/ D max I:

The correspondence I ! C.I/ is not one-to-one: the same Cantor set may be

constructed on di�erent I’s. This is clearly seen by considering the complement

of a quasi-Cantor set C.I/: de�ne the gaps of C.I/ as the bounded connected

components of the complement of C.I/. Their countable union is precisely

I¿ n C.I/.
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Lemma 3.1. The gaps of C.I/ are the sets

Iw n .Iw0 [ Iw1/Ww 2 W: (3.5)

Proof. The sets in (6) are clearly bounded components of the complement ofC.I/.

Conversely, suppose A is a bounded component of the complement of C.I/ and

take x 2 A. Then x 2 I¿. In fact, in the opposite case, either x < a or x > b.

In the former case x 2 � � 1; aŒ, in the latter x 2 �b;C1Œ, so that A being the

connected component of x contains either ��1; aŒ or �b;C1Œ, thus is unbounded,

a contradiction. Now recall that I¿ D C0.I/, so that x 2 C0.I/ n .
TC1
rD0Cr .I//

and there exists r 2 N such that x 2 Cr .I/ n CrC1.I/, and also w 2 W such that

jwj D r and x 2 Iw n .Iw0 [ Iw1/. Therefore, A D Iw n .Iw0 [ Iw1/. �

Note that Iw n .Iw0 [ Iw1/ D�cw ; dw Œ. Therefore, the above construction of

C.I/, de�ned by I, can also be seen as a construction of its complementary in Œa; b�,

described by a function G from W to the set of open intervals. Keeping �xed the

image of this map, i.e. the gaps, any map G, that respects a simple prescription

(gaps appear in interlacing sequence) yields the same Cantor set. We will use this

freedom later in the paper. We will also use a speci�c symbol for the diameter of

the gaps:


.I/w WD dw � cw D min Iw1 � max Iw0; 
.C / D sup
w2W


.I/w : (3.6)

We now give a condition for C.I/ being a Cantor set. Let us start with a

symbolic coding of all points in C.I/. Denote by �W the set of in�nite strings

of 0 and 1, i.e. �W D ¹0; 1ºNn¹0º, and for zw 2 �W , write zw D i1i2i3 : : : . Also,

let zwn be the �nite string of length n obtained by truncation of zw: zwn D i1 : : : in.

With this vocabulary, a point x 2 R belongs to C.I/ if and only if there exists

zw 2 �W such that x 2
T1
nD1 I zwn

. Indeed, when the set is Cantor, this intersection

is the singleton ¹xº, as the following standard lemma shows:

Lemma 3.2. The set C.I/ is a Cantor set if and only if for every zw 2 �W

d.I Qwn
/ �����!
n!C1

0:

Proof. In fact, being the sets I zwn
serially enclosed, the sequence of their diameters

is monotonic, and if for a certain zw 2 �W it does not converge to zero, then it has

a strictly positive limit: d.I zwn
/ �����!
n!C1

c > 0. In this case, C.I/ �
T1
nD1 I zwn

�

Œ˛; ˇ� with ˛ < ˇ. Thus C.I/ is not totally disconnected.
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Conversely, suppose that for every zw 2 �W we have d.I zwn
/ �����!
n!C1

0. Let

x 2 C.I/ and take zw 2 �W such that x 2
T1
nD1 I zwn

. Put I Qwn
D Œan; bn�. Since

an � x � bn and bn � an �����!
n!C1

0, for every U neighborhood of x there

exists n such that Œan; bn� � U . If zw0 2 �W and zw0
n D zwn but zw0 ¤ Qw and

x0 2
T1
nD1 I zw 0

n
, then x0 2 C.I/ \ Œan; bn�, thus x0 2 U , but x0 ¤ x, so that C.I/

has no isolated points. Also, since Cn.I/ is the disjoint union of closed intervals

including Œan; bn�, then the component of x in C.I/ is contained in Œan; bn�, for

every n, thus in
T1
nD1 I zwn

, which, since bn � an �����!
n!C1

0 amounts to ¹xº, hence

C.I/ is totally disconnected. �

We can use the previous lemma in conjunction with the following:

Lemma 3.3. A su�cient condition for C.I/ being a Cantor set is that there exists

a positive constant a, such that all dissection ratios are larger than, or equal to a.

Proof. Equation (3.3) implies that r.I/wj < 1 � r.I/w.1�j / � 1 � a < 1. Hence,

since d.Iwj / D r.I/wjd.Iw/ � .1 � a/d.Iw/, it follows that for every zw 2 �W
d.I zwn

/ � .1� a/nd.I /, thus d.I zwn
/ �����!
n!C1

0. �

Clearly, this condition is not so much intended to exclude that dissection ratios

get too small – which could still be compatible with having a Cantor set, and hence

the condition is not necessary – rather, because of the inequality (3.3) it implies

that dissection ratios cannot tend to one.

Given the role that this condition will play in the following, we �nd it conve-

nient to embody it into a formal de�nition:

De�nition 3.4. A construction I that satis�es the condition in Lemma 3.3 will

be de�ned to be of uniformly lower bounded dissection (ulbd), and a Cantor set

admitting one such construction will also be said to possess the ulbd property.

Remark 3.5. Note that the proof of Lemma 3.3 shows that if I is ulbd, then

d.Iw / � .1�a/nd.I /wheneverw 2 W , jwj D n, and a is as given in Lemma 3.3.

We end this section by de�ning a further element in the algebra of quasi-Cantor

sets. Observe that each interval in the above construction can be thought of as the

starting interval in the construction of a Cantor set, subset of the former. In fact,

let the mapping I be �xed, and let us focus on a �nite word w 2 W and on its

associated interval Iw D I.w/. De�ne a new mapping Iw by the formula (compare

with eq. (3.1)):

Iw Ww0 ! Iw.w
0/ WD I.ww0/ D Iww 0 : (3.7)
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Denote by C.Iw/ the quasi Cantor set constructed in the set Iw by this mapping.

Clearly

C.Iw/ D Iw \ C.I/: (3.8)

Moreover, the set of gaps of Iw is contained in the set of gaps of I, and the set of

ratios of Iw is contained in the set of ratios of I. Namely, 
.Iw/w 0 D 
.I/ww 0 and

r.Iw/w 0 D r.I/ww 0 . Of course, it also holds true that

maxC.Iw/ D max Iw ; minC.Iw/ D min Iw :

4. Ulbd property of IFS attractors

In this section we prove that Cantor sets constructed via IFS with two maps

satisfying (1.5) possess the uniformly lower bounded dissection property. Prior

to that, we need a technical lemma, that will also be useful elsewhere.

Let V be the set of �nite words in the M letters ¹1; 2; : : : ;M º (i.e., the labels

of the IFS maps), that obviously also include the empty word. This is a trivial

generalization of the two letters case. For each v 2 V , let  v D  v1
ı � � � ı vn

; as

in eq. (2.1).

Lemma 4.1. Let ‰ be a set of real maps, as in eq. (1.4), that satisfy conditions

i–iv in Section 1 on an interval I � R. Then, there exists c > 0 such that, for any

interval J � I , any v 2 V , any i D 1; : : : ;M , we have

rvi WD
d. vi .J //

d. v.J //
� c: (4.1)

Proof. We need to estimate the ratios rvi . Let us �rst consider the numerator in

eq. (4.1): this is the length of an interval, that can be evaluated as

d. vi .J // D j 0
vi .�/jd.J /;

where � is a point in J . Similarly, d. v.J // D j 0
v.�/jd.J /; � 2 J . Let n be the

length of v. The chain rule for the derivative of these composed functions leads

us to de�ne two sequences of points �k , �k , for k D 1; : : : ; n, as follows:

�k D . vkC1
ı � � � ı  vn

ı  i /.�/; k D 1; : : : ; n� 1;

�k D . vkC1
ı � � � ı  vn

/.�/; k D 1; : : : ; n� 1;
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and �n D  i .�/, �n D �. With these notations, the derivative of the composed

function can be factored as

 0
vi .�/ D  0

v1
.�1/ � � � � �  0

vn
.�n/ �  0

i .�/;

 0
v.�/ D  0

v1
.�1/ � � � � �  0

vn
.�n/:

Because of contractivity of the maps, the points �k, �k approach each other

geometrically, when n grows. In fact, �n; �n 2 I and

�k ; �k 2 . vkC1
ı � � � ı  vn

/.I /; k D 1; : : : ; n� 1:

Using eq. (1.5) we obtain

d.. vkC1
ı � � � ı  vn

/.I // � ın�kd.I /; k D 1; : : : ; n� 1:

The above information permits to compute the logarithm of the inverse of the ratio

rvi : we call it lvi and we show that it is bounded from above. In fact,

lvi WD � log.rvi/ D � log.j 0
i .�/j/C

nX

kD1

log.j 0
vk
.�k/j/ � log.j 0

vk
.�k/j/: (4.2)

Therefore,

lvi � log.1=�/C

nX

kD1

j log.j 0
vk
.�k/j/ � log.j 0

vk
.�k/j/j: (4.3)

Consider now the functions gi .x/ D log.j 0
i .x/j/, where i D 1; : : : ;M . Because

of eq. (1.5) gi .x/ is di�erentiable and

jg0
i .x/j D

j 00
i .x/j

j 0
i .x/j

;

so that each term in the summation at right hand side of eq. (4.3) can be estimated

as

j log.j 0
vk
.�k/j/ � log.j 0

vk
.�k/j/j D

j 00
vk
.�k/j

j 0
vk
.�k/j

j�k � �kj �
B

�
ın�kd.I /; (4.4)

with �k an intermediate point between �k and �k and where B is the maximum of

the absolute value of the second derivative of all  i ’s over I . In conclusion, we

have

lvi � log.1=�/C
B

�
d.I /

nX

kD1

ın�k � log.1=�/C
B

�.1� ı/
d.I /: (4.5)

The term at right hand side is a �nite quantity C , independent of w and i , and this

proves the lemma: rvi � e�C for all v 2 V , i D 1; : : : ;M . �
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The second lemma of this section is now the following.

Lemma 4.2. Let ‰ D ¹ 0;  1º be a set of two real maps, that satisfy conditions

i–iv in Section 1 on an interval I � R. Then, the attractorK‰ is either an interval,

or a Cantor set that admits a construction I that is of ulbd.

Proof. Remark that the attractor of a two–maps IFS with di�erent �xed points

is either a full interval or a Cantor set, as it is easy to see. In fact, let I¿ D

Conv.K‰/ D Œa; b�, the convex hull of K‰. Let now Ji D  i .Œa; b�/, i D 0; 1.

The extreme point a must belong to one of these two intervals, and b to the other:

in fact, they belong to K‰ and therefore also to U‰.K‰/. If these two intervals

are not disjoint, we have that U‰.Œa; b�/ D Œa; b� and therefore the attractor is the

full convex hull, K‰ D Œa; b�. In the opposite case, J0 is either strictly to the left

of J1, or to its right. In the �rst case we assign a permutation g of ¹0; 1º, such

that g.0/ D 0 and g.1/ D 1 (the identity). In the second case we invert indices:

g.0/ D 1, g.1/ D 0, so that in both cases we de�ne Ii D Œai ; bi � D  g.i/.I¿/

and we have a0 D a, b1 D b. Disconnectedness of the two intervals imply that

b0 < a1, thereby completing the �rst step in the construction of the Cantor set.

We then proceed by induction: consider the words w 2 W of length n� 1, the

maps  w (as in eq. (2.1)) and the permutation g of the set of n � 1 letter words

that de�nes the lexicographically ordered intervals Iw D Œaw ; bw � D  g.w/.I¿/.

De�ne the intervals Jwi D . g.w/ ı  i /.I¿/, for i D 0; 1. Clearly, Jwi � Iw ,

and these two intervals are disjoint. Extend the permutation g to the set of n-

letter words as follows: g.w0/ D g.w/0, g.w1/ D g.w/1 if Jw0 is to the left

of Jw1, or g.w0/ D g.w/1, g.w1/ D g.w/0 if otherwise. This implies that

Iwi D Œawi ; bwi � D  g.wi/.I¿/, and aw D aw0 < bw0 < aw1 < bw1 D bw .

This proves that the map I so de�ned yields a Cantor set.

Let us now prove that this construction is of ulbd. In fact, contraction ratios

are de�ned by eq. (3.2): in this case, they are given by

r.I/wj D
d.Iwj /

d.Iw /
D
d. g.wj/.I¿//

d. g.w/.I¿//
; (4.6)

with j D 0; 1. Since g.wj / D g.w/hw.j /, where hw is a permutation of a last

letter (that depends on w, but this is not an issue), we can apply Lemma 4.1 to

prove that these ratios are uniformly bounded from below. �
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5. Union of ulbd Cantor sets

This section explains how to organize the union of two ulbd Cantor sets, into a

single construction, I0, that is also ulbd, perhaps with a smaller lower bound. To

do this, we shall exploit the non uniqueness of the construction.

Lemma 5.1. Let C .1/ and C .2/ be two Cantor sets of ulbd, separated so that

maxC .1/ < minC .2/. Then, C WD C .1/ [ C .2/ is a Cantor set, that admits a

construction I that is also of ulbd with dissection ratios larger than, or equal

to a0. This value can be estimated as follows. Let a.1/ and a.2/ be the (strictly

positive) lower bounds to the dissection ratios of C .1/ and C .2/. Let also

a D min
°maxC .1/ � minC .1/

minC .2/ � minC .1/
;

maxC .2/ � minC .2/

maxC .2/ � maxC .1/
; a.1/; a.2/

±
: (5.1)

Then, a0 D a2

aC1
.

Finally,


.C / D max¹
.C .1//; 
.C .2//;minC .2/ � maxC .1/º: (5.2)

Proof. First, it is clear that C WD C .1/ [ C .2/ is a Cantor set, because of the

separation condition maxC .1/ < minC .2/. Therefore, it can be constructed on a

map I, although not in a unique way. Since the set of gaps do not depend on the

construction I, the gaps of C are the union of those of C .1/ and C .2/ and the open

interval �maxC .1/;minC .2/Œ, eq. (5.2) follows. We now need to prove that such a

construction exists, that is of uniformly lower bounded dissection. We denote by

I this construction.

SupposeC .1/ andC .2/ are constructed on I.1/ and I.2/, with ratios of dissection

r.I.1//w , r.I.2//w , which by hypothesis are all larger than, or equal to a. Without

loss of generality, assume that I .1/ is wider than I .2/:

d.I .1// � d.I .2//: (5.3)

The hypothesis and eq. (3.3) imply that r.I.j //w < 1 � a for every w 2 W n ¹¿º

and j D 1; 2. Then, d.I
.j /
wi / D r

.j /
wi d.I

.j /
w / � .1�a/d.I

.j /
w / and we conclude that

d.I .j /w / � .1 � a/jwjd.I .j //

for each w 2 W and i; j D 1; 2.
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Then, because of (5.3), there exists Nn 2 N such that

d.I
.1/
1n / � d.I .2// for n � Nn; (5.4a)

d.I
.1/
1n / < d.I

.2// for n > Nn: (5.4b)

In view of this result, let us de�ne a construction I as follows: for any w 2 W

de�ne Iw by

Iw D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

Œmin I
.1/
w ;max I .2/� if w D 1n; 0 � n � Nn (�rst case),

I
.1/

1 Nnw 0 if w D 1 Nn0w0 (second case),

I
.2/
w 0 if w D 1 Nn1w0 (third case),

I
.1/
w otherwise (fourth case).

(5.5)

We �rst prove that C .1/[C .2/ is constructed on I. That is, I constructs a quasi

Cantor set and, putting Cn WD
S

jwjDn Iw , we have

C .1/ [ C .2/ D

1\

nD0

Cn: (5.6)

We will use systematically the following evident remark: Since max I .1/ D

maxC .1/ < minC .2/ D min I .2/ and the intervals I
.j /
w are all contained in I .j /

(j D 1; 2), then any element of I
.1/
w is strictly less than any element of I

.2/
w 0 for

every w;w0 2 W .

Note that by hypothesis min I .1/ < max I .1/ < min I .2/ < max I .2/ and in our

construction I, eq. (5.5), I D I¿ D Œmin I .1/;max I .2/�. Let again Iw D Œaw ; bw �.

Note that by construction, in any case aw < bw . If w D 1n; n � Nn, this follows

from the above remark, since min I
.1/
w � max I .1/. In the other cases the intervals

considered are of the form I
.j /
v with j D 1; 2, which by hypothesis satisfy the

inequality av < bv .

Next, we have to prove that aw D aw0 < bw0 < aw1 < bw D bw1, i.e.

min Iw0 D min Iw ; (5.7)

max Iw0 < min Iw1; (5.8)

max Iw1 D max Iw : (5.9)

In �rst case of eq. (5.5) we have Iw D Œmin I
.1/
w ;max I .2/� and either one of

the two possibilities holds:

n < Nn; Iw0 D I
.1/
w0 ; Iw1 D Œmin I

.1/
w1 ;max I .2/�; (5.10)

n D Nn; Iw0 D I
.1/

1 Nn D I .1/w ; Iw1 D I .2/: (5.11)
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We see that (5.7) holds in both cases. Moreover, (5.8) holds trivially if n < Nn,

while if n D Nn we have max Iw0 D max I
.1/
w � max I .1/ < min I .2/ D min Iw1:

Finally (5.9) is trivial in both subcases. In second case, w0 D 1 Nn0w00 and

w1 D 1 Nn0w01. Thus,

Iw D I
.1/

1 Nnw 0 ; Iw0 D I
.1/

1 Nnw 00
; Iw1 D I

.1/

1 Nnw 01
; (5.12)

so that (5.7), (5.8) and (5.9) follow from the corresponding properties of I
.1/
w . In

the third case, then w0 D 1 Nn1w00 and w1 D 1 Nn1w01. Thus,

Iw D I
.2/
w 0 ; Iw0 D I

.2/
w 00; Iw1 D I

.2/
w 01; (5.13)

and we proceed as above. In the fourth case we have

Iw D I .1/w ; Iw0 D I
.1/
w0 ; Iw1 D I

.1/
w1 ; (5.14)

and we proceed similarly. Thus, we have proven that in fact I constructs a quasi

Cantor set. We now prove that C .1/ [ C .2/ is constructed on I, that is eq. (5.6).

Note that for every n > Nn we have

C .1/n [ C .2/n � Cn � C
.1/
n� Nn�1 [ C

.2/
n� Nn�1: (5.15)

To prove (5.15), suppose �rst x 2 C
.1/
n [ C

.2/
n . Then, either x 2 C

.1/
n or

x 2 C
.2/
n . In the former case, there exists w 2 W with jwj D n such that x 2 I

.1/
w ,

and eitherw can be written asw D 1 Nnw0, in which case x 2 I1 Nn0w 0 � CnC1 � Cn,

orw is not of the formw D 1 Nnw0, in which case x 2 Iw � Cn. If instead x 2 C
.2/
n ,

then x 2 I
.2/
w for some w 2 W with jwj D n. Then, x 2 I1 Nn1w � CnC NnC1 � Cn.

The �rst inclusion in (5.15) is so proven. Let us prove the second. Suppose that

x 2 Cn, thus x 2 Iw for some w 2 W with jwj D n. Then by de�nition, since

n > Nnwe are not in the �rst case in de�nition of Iw . If the second case holds, then

x 2 I
.1/
v with jvj D n� 1; in the third case one has x 2 I

.2/
v with jvj D n� 1� Nn,

and in the fourth case x 2 I
.1/
v with jvj D n. In any case, since the sequences of

sets C
.j /
n are decreasing we have that x 2 C

.1/
n� Nn�1 [ C

.2/
n� Nn�1 and (5.15) is proven.

At this point, from (5.15), since C
.j /
n � C

.j /
0 D I .j / and I .1/ \ I .2/ D ¿, andT1

nD0 C
.j /
n D C .j /, eq. (5.6) easily follows. Thus, we have proven thatC .1/[C .2/

is constructed on I.

Finally, we have to prove the fundamental part of the lemma, that is, there

exists a positive constant a0 such that r.I/wj � a0 for all w 2 W , j D 0; 1. Note

that by the hypothesis (5.1) we have

max I2 � min I2 � a.max I2 � min I2 C min I2 � max I1/
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hence, using also (5.4),

max I
.1/
1n � min I

.1/
1n � max I2 � min I2 �

a

1 � a
.min I2 � max I1/ (5.16)

for every n � Nn. Similarly, since eq. (5.1) implies that

max I .1/ � min I .1/ � a.min I .2/ � max I .1/ C max I .1/ � min I .1//

we have

max I .1/ � min I .1/ �
a

1 � a
.min I .2/ � max I .1//: (5.17)

Moreover, by (5.4),

d.I .2// > d.I
.1/

1 NnC1/ D r.I.1//1 NnC1 d.I
.1/

1 Nn / � ad.I
.1/

1 Nn /:

Hence,

d.I .2// � d.I
.1/

1 Nn / �
1

a
d.I .2//: (5.18)

Following these inequalities, we can evaluate r.I/wj , with w 2 W .

When (5.10) holds, we �rst estimate r.I/w0:

r.I/w0 D
max Iw0 � min Iw0

max Iw � min Iw
D

max I
.1/
w0 � min I

.1/
w0

max I .2/ � min I
.1/
w

: (5.19)

Now, since w D 1n, n � Nn, by (5.16) we have

max I .2/ � min I .1/w

D max I .2/ � min I .2/ C min I .2/ � max I
.1/
1n C max I

.1/
1n � min I

.1/
1n

D max I .2/ � min I .2/ C min I .2/ � max I .1/ C max I
.1/
1n � min I

.1/
1n

� 2.max I
.1/
1n � min I

.1/
1n /C min I .2/ � max I .1/

�
�
2C

1� a

a

�
.max I

.1/
1n � min I

.1/
1n /

D
�
1C

1

a

�
.max I .1/w � min I .1/w /

D
1

r.I.1//w0

aC 1

a
.max I

.1/
w0 � min I

.1/
w0 /

�
aC 1

a2
.max I

.1/
w0 � min I

.1/
w0 /:

(5.20)
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Thus, also in view of (5.19), we have

r.I/w0 �
a2

a C 1
: (5.21)

Let us now consider r.I/w1, still when (5.10) holds. We have

r.I/w1 D
max Iw1 � min Iw1

max Iw � min Iw
D

max I .2/ � min I
.1/
w1

max I .2/ � min I
.1/
w

:

Now,

max I .1/w � min I
.1/
w1 D max I

.1/
w1 � min I

.1/
w1

D r.I.1//w1.max I .1/w � min I .1/w /

� a.max I .1/w � min I .1/w /:

Since max I .2/ > max I
.1/
w and a < 1,

max I .2/ � min I
.1/
w1 D max I .2/ � max I .1/w C max I .1/w � min I

.1/
w1

� max I .2/ � max I .1/w C a.max I .1/w � min I .1/w /

� a.max I .2/ � max I .1/w /C a.max I .1/w � min I .1/w /

D a.max I .2/ � min I .1/w /;

hence

r.I/w1 � a: (5.22)

We next evaluate r.I/w0 and r.I/w1 when (5.11) holds. We have w D 1 Nn and

max I
.1/

1 Nn D max I .1/. Then,

max I .2/ � min I .1/w

D max I .2/ � min I .2/ C min I .2/ � max I .1/ C max I
.1/

1 Nn � min I
.1/

1 Nn

� max I
.1/

1 Nn � min I
.1/

1 Nn C
1� a

a
.max I

.1/

1 Nn � min I
.1/

1 Nn /C .max I
.1/

1 Nn � min I
.1/

1 Nn /

D
aC 1

a
.max I

.1/

1 Nn � min I
.1/

1 Nn /

where the inequalities follow from (5.16) and (5.18). Hence

r.I/w0 D
max Iw0 � min Iw0

max Iw � min Iw
D

max I
.1/

1 Nn � min I
.1/

1 Nn

max I .2/ � min I
.1/
w

�
a

a C 1
: (5.23)
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Similarly,

max I .2/ � min I .1/w

D max I .2/ � min I .2/ C min I .2/ � max I .1/ C max I
.1/

1 Nn � min I
.1/

1 Nn

� max I .2/ � min I .2/ C
1 � a

a
.max I .2/ � min I .2//

C
1

a
.max I .2/ � min I .2//

D
2

a
.max I .2/ � min I .2//:

Hence

r.I/w1 D
max Iw1 � min Iw1

max Iw � min Iw
D

max I .2/ � min I .2/

max I .2/ � min I
.1/
w

�
a

2
�

a2

a C 1
: (5.24)

Finally, we easily see that if (5.12), (5.13), or (5.14) holds, then we have

respectively r.I/wj D r.I.1//1 Nnw 0j , r.I/wj D r.I.2//w 0j , r.I/wj D r.I.1//wj ,

and by hypothesis such numbers are all larger than, or equal to a � a2

aC1
.

To sum up, in view of (5.21), (5.22), (5.23), and (5.24), we have r.I/wj � a0

where a0 is given by a2

aC1
and the Lemma is completely proven. �

6. Finite sums of ulbd Cantor Sets

This section contains a single Lemma, in which we prove that any �nite sum of

ulbd Cantor sets contains a Cantor set of uniformly lower bounded dissections,

with the same convex hull as the full sum, and maximum gap size not larger than

those of the individual Cantor sets.

Lemma 6.1. LetC .1/; : : : ; C .m/ be Cantor sets constructed on I .1/; : : : ; I .m/ with

ratios of dissection larger than, or equal to, a. Then there exists a Cantor set

C � C .1/ C � � � C C .m/ constructed with all ratios of dissection larger than am,

where am > 0 depends only on a and m, such that


.C / � max
sD1;:::;m


.C .s//; (6.1)

minC D

mX

sD1

minC .s/; maxC D

mX

sD1

maxC .s/: (6.2)
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Proof. The proof of this Lemma is rather long and technical. For better clarity, it

is organized in successive steps.

Step 1 . The lemma holds trivially for m D 1. We �rst show by induction that if

it holds for m D 2, then it holds for any m. It will then be su�cient to prove the

Lemma for m D 2. In fact, suppose that the Lemma holds for m D 2, and that it

also holds for a generic value m � 1. This implies that it holds for mC 1, as the

following argument shows. LetC .1/; : : : ; C .m/; C .mC1/ be Cantor sets constructed

with all ratios of dissection at least a. Then by hypothesis there exists a Cantor

set C 0 � C .1/ C � � � C C .m/ which can be constructed with all ratios of dissection

at least am, such that 
.C 0/ � maxsD1;:::;m 
.C
.s// and minC 0 D

Pm
sD1 minC .s/,

maxC 0 D
Pm
sD1 maxC .s/. Put now a0 D min¹a; amº and let amC1 D a0. Then,

by the Lemma for m D 2 applied to the pair C 0, C .mC1/ there exists a Cantor set

C � C 0 C C .mC1/ � C .1/ C � � � C C .m/ C C .mC1/

with all dissection ratios at least amC1 such that


.C / � max¹
.C 0/; 
.C .mC1//º � max
sD1;:::;m;mC1


.C .s//;

minC D minC 0 C minC .mC1/ D

mC1X

sD1

minC .s/;

maxC D maxC 0 C maxC .mC1/ D

mC1X

sD1

maxC .s/;

and the Lemma for m C 1 holds. In the next steps we will prove the Lemma for

m D 2.

Step 2. Let C .1/; C .2/ be Cantor sets constructed on I.1/; I.2/ with all ratios of

dissection at least a. Based on these latter, we will de�ne a construction I of a

new Cantor set C . Prior to do that, we need to study auxiliary sets An. For any

n 2 N (including obviously n D 0), put

An D A.1/n [ A.2/n ;

where the terms in the union are de�ned as follows. Suppose that the following

condition holds:


.I.1//0n � 
.I.2//0n ; (6.3)


 being the gap size de�ned in eq. (3.6). In this case, let

A.1/n WD C
.2/
0n1 C maxC

.1/

0nC1; A.2/n WD C
.1/
0n1 C maxC

.2/
0n1: (6.4)
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In the opposite case the indices .1/ and .2/ at right hand side of eq. (6.4) are

exchanged:

A.1/n WD C
.1/
0n1 C maxC

.2/

0nC1;

A.2/n WD C
.2/
0n1 C maxC

.1/
0n1:

Therefore, let us consider the case in eqs. (6.3,6.4), the other giving results that

can be obtained by exchanging superscripts. Clearly, A
.1/
n andA

.2/
n are two Cantor

sets with gaps not larger than max¹
.C .1//; 
.C .2//º, constructed with ratios of

dissections at least a. We have

minA.2/n � maxA.1/n D minC
.1/
0n1 C maxC

.2/
0n1 � .maxC

.2/
0n1 C maxC

.1/

0nC1/

D min I
.1/
0n1 C max I

.2/
0n1 � max I

.2/
0n1 � max I

.1/

0nC1

D min I
.1/
0n1 � max I

.1/

0nC1

D 
.I.1//0n :

Since the last quantity is positive, this also proves that maxA
.1/
n < minA

.2/
n .

Following the same kind of computation, we also have that

maxA.2/n � maxA.1/n D maxC
.1/
0n1 � maxC

.1/
0n0

D max I
.1/
0n1 � max I

.1/
0n0

� max I
.1/
0n1 � min I

.1/
0n0

D max I
.1/
0n � min I

.1/
0n

D
1

r.I.1//0n1

.max I
.1/
0n1 � min I

.1/
0n1/

D
1

r.I.1//0n1

.maxA.2/n � minA.2/n /

�
1

a
.maxA.2/n � minA.2/n /:

Therefore,

maxA
.2/
n � minA

.2/
n

maxA
.2/
n � maxA

.1/
n

� a: (6.5)
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Moreover

minA.2/n � minA.1/n D minA.2/n � maxA.1/n C maxA.1/n � minA.1/n

D 
.I.1//0n C maxC
.2/
0n1 � minC

.2/
0n1

� 
.I.2//0n C max I
.2/
0n1 � min I

.2/
0n1

D min I
.2/
0n1 � max I

.2/

0nC1 C max I
.2/
0n1 � min I

.2/
0n1

� max I
.2/
0n1 � min I

.2/

0nC1

D max I
.2/
0n � min I

.2/
0n

D
1

r.I.2//0n1

.max I
.2/
0n1 � min I

.2/
0n1/

D
1

r.I.2//0n1

.maxA.1/n � minA.1/n /

�
1

a
.maxA.1/n � minA.1/n /:

As a consequence,

maxA
.1/
n � minA

.1/
n

minA
.2/
n � minA

.1/
n

� a: (6.6)

Thus, by (6.5) and (6.6) A
.1/
n and A

.2/
n satisfy (5.1). We can so use Lemma 5.1,

that implies that An is a Cantor set and can be constructed on a map with all ratios

of dissection larger than, or equal to, a0. Let us denote this map with NI.n/ and its

image intervals by NI.n/w : recall that a di�erent map is de�ned for any value of n,

including zero. Moreover, by construction


.An/ � max¹
.A.1/n /; 
.A.2/n /;minA.2/n � maxA.1/n º

� max¹
.C1/; 
.C2/; 
.I
.1/
0n /º

� max¹
.C1/; 
.C2/º:

Step 3. We can now introduce the new map I that constructs the Cantor set C

in the thesis of this Lemma. Recall the notation that associates an interval to any

�nite word, eq (3.1): I.w/ D Iw . Let us de�ne all such intervals, parting the set

of �nite binary words W according to the number of leading zeros. In fact, let
8
<
:
I0n D I

.1/
0n C I

.2/
0n ;

I0n1w 0 D NI.n/w 0:
(6.7)
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In the above, w0 is any word, n 2 N can take the value 0, and the intervals NI.n/w 0 ,

I
.1/
0n and I

.2/
0n have been de�ned in the previous step. As before, 00 is to be intended

as the empty set.

It is instructive to write down explicitly the �rst few formulae: let n D 0, to

obtain I¿ D I
.1/
¿

C I
.2/
¿

. This is the convex hull of C and it is clearly made by

an interval composed of the arithmetic sums of any pair of numbers, one in I .1/

and one in I .2/. Therefore, it is also the convex hull of C .1/CC .2/. Consider next

I1. It can be obtained from the second formula in (6.7): I1 D NI.0/¿, that is, the

convex hull of A0. All intervals corresponding to words starting with 1 are then

constructed by the map NI.0/: in fact, eq. (6.7) yields I1w D NI.0/w ; as remarked

above these intervals construct the Cantor set A.0/. Observe that the maximum

of this Cantor set is equal to the maximum of I .1/ C I .2/ and therefore to the

maximum of C .1/ C C .2/. Let us also describe the case n D 1. This permits to

write the interval I0 as I
.1/
0 C I

.2/
0 . Constructing A1 via the map NI.1/ then enables

us to de�ne all intervals I01w D NI.1/w , et cetera.

Step 4. We now prove formally that eq. (6.7) is a consistent construction of a

quasi Cantor set. Clearly, Iw is an interval for every w 2 W , so that we just need

to prove that for every w 2 W we have

min Iw D min Iw0; (6.8)

max Iw0 < min Iw1; (6.9)

max Iw1 D max Iw : (6.10)

If w D 0n, we have

min Iw D min.I
.1/
0n C I

.2/
0n /

D min I
.1/
0n C min I

.2/
0n

D min I
.1/

0nC1 C min I
.2/

0nC1

D min.I
.1/

0nC1 C I
.2/

0nC1/

D min I0nC1

D min I0n0;

and (6.8) holds. Next, if (6.3) holds, then

min Iw1 � max Iw0 D min.C
.2/
0n1 C maxC

.1/

0nC1/ � max.I
.1/

0nC1 C I
.2/

0nC1/

D min I
.2/
0n1 C max I

.1/

0nC1 � max I
.1/

0nC1 � max I
.2/

0nC1
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D min I
.2/
0n1 � max I

.2/

0nC1

D 
.I.2//0n

and the last quantity is larger than zero. On the contrary, if (6.3) does not hold,

we have min Iw1 � max Iw0 D 
.I.1//0n > 0, so that in both cases (6.9) holds. To

sum up, for any word 0n there is j 2 ¹1; 2º so that

min I0n1 � max I0n0 D 
.I.j //0n : (6.11)

We now prove (6.10). We have

max Iw D max.I
.1/
0n C I

.2/
0n /

D max I
.1/
0n C max I

.2/
0n

D max I
.1/
0n1 C max I

.2/
0n1

D maxC
.1/
0n1 C maxC

.2/
0n1

D maxA.2/n

D maxAn

D max NI.n/

D max I0n1

D max Iw1

and (6.10) is proven.

Suppose now w D 0n1w0. In this case (6.8), (6.9) and (6.10) follow immedi-

ately from the corresponding properties of NI.n/. In conclusion, the above proves

that I in fact constructs a quasi Cantor set, which we denote by C .

Step 5. Equation (6.11) and a straightforward argument when w D 0n1w0, imply

that eq. (6.1) holds:


.C / � max¹
.C1/; 
.C2/º: (6.12)

Let us now prove eq. (6.2). We have that

minC D min I

D min I00

D min.I
.1/

00 C I
.2/

00 /

D min I .1/ C min I .2/

D minC .1/ C minC .2/
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and similarly

maxC D maxC .1/ C maxC .2/:

Step 6. We now prove that C � C .1/ C C .2/. Take x 2 C . Then, there exists

an in�nite string zw D i1i2i3 : : : such that x 2 Ii1:::in for all n. We distinguish two

cases. If is D 0 for all s, then for all n,

x 2 I0n D I
.1/
0n C I

.2/
0n

D Œmin I
.1/
0n ;max I

.1/
0n �C Œmin I

.2/
0n ;max I

.2/
0n �

D Œmin I .1/;min I .1/ C max I
.1/
0n � min I

.1/
0n �

C Œmin I .2/;min I .2/ C max I
.2/
0n � min I

.2/
0n �

D Œmin I .1/ C min I .2/;min I .1/ C min I .2/ C dn�

where

dn WD max I
.1/
0n � min I

.1/
0n C max I

.2/
0n � min I

.2/
0n �����!

n!C1
0;

since I.1/ and I.2/ construct two Cantor sets. Hence, x D min I .1/ C min I .2/ D

minC .1/ C minC .2/ 2 C .1/ C C .2/. Suppose instead, there exists Ns such that

iNs D 1, and we can and do assume is D 0 for every s < Ns (in other words, Ns

is the �rst occurrence of 1 in the symbolic sequence zw). Putting n D Ns � 1 and

zw0 D iNsC1iNsC2 : : : , we have zwNsCm D 0n1 zw0
m for all m > 0. Thus for every m > 0,

x 2 I0n1 zw 0
m

D NI.n/ zw 0
m

H) x 2 An D A.1/n [ A.2/n � C .1/ C C .2/:

Thus, C � C .1/ C C .2/ is proven.

Step 7. It �nally remains to prove that r.I/w � a0 for allw 2 W (as usual this also

proves that C is not only quasi Cantor but also Cantor). Let us start by considering

the word w D 0n. Recalling that r.I.j //v � a, for j D 1; 2 and v 2 W n ¹¿º,

we have the following estimates. The diameter of the interval Iw is

d.Iw/ D d.I0n/

D max.I
.1/
0n C I

.2/
0n / � min.I

.1/
0n C I

.2/
0n /

D max I
.1/
0n � min I

.1/
0n C max I

.2/
0n � min I

.2/
0n

D d.I .1/w /C d.I .2/w /:
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The diameter of the interval Iw0 is

d.Iw0/ D d.I0nC1/

D d.I
.1/
w0 /C d.I

.2/
w0 /

D r.I.1//w0d.I
.1/
w /C r.I.2//w0d.I

.2/
w /

� ad.I .1/w /C ad.I .2/w /

D ad.Iw /:

The diameter of the interval Iw1 is

d.Iw1/ D d.I0n1/

D d. NI.n//

D max NI.n/ � min NI.n/

D maxAn � minAn

D maxA.2/n � minA.1/n

D maxC
.1/
0n1 C maxC

.2/
0n1 � minC

.2/
0n1 � maxC

.1/

0nC1 :

If (6.3) holds, we can continue as follows:

d.Iw1/ D max I
.2/
0n1 � min I

.2/
0n1 C max I

.1/
0n1 � max I

.1/

0nC1

� max I
.2/
0n1 � min I

.2/
0n1 C max I

.1/
0n1 � min I

.1/
0n1

D d.I
.2/
0n1/C d.I

.1/
0n1/

D d.I
.2/
w1 /C d.I

.1/
w1 /

D r.I.2//w1d.I
.2/
w /C r.I.1//w1d.I

.1/
w /

� ad.I .2/w /C ad.I .1/w /

D ad.Iw /:

Hence,

r.I/wj D
d.Iwj /

d.Iw/
� a � a0; j D 0; 1:

Note that for j D 1 we have used eq. (6.3); when it does not hold we exchange the

indices 1 and 2.
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Let now consider the words w D 0n1w0, with w0 any �nite word. Recalling

that r. NI.n//v � a0, for n 2 N and v 2 W n ¹¿º, we have

r.I/wj D
d. NIwj /

d. NIw /
D
d. NI.n/w 0j /

d. NI.n/w 0/
D r. NI.n//w 0j � a0

and the Lemma is completely proven. �

7. More on sums of ulbd Cantor sets

In this section, we �rst recall a result from the literature on the Minkowski sum of

ulbd Cantor sets, and we then derive a couple of further Lemmas.

Theorem 7.1 (Theorem 3.2 in [11]). LetC .1/; : : : ; C .m/ be Cantor sets constructed

on I .1/; : : : ; I .m/ with constructions I.1/; : : : ; I.m/ of uniformly lower bounded

dissections, larger than a > 0. In addition, suppose that a � 1
3

and that m is

such that

.m � 1/
a2

.1� a/3
C

a

1 � a
� 1:

Finally suppose that no translate of any of these Cantor sets is contained in a gap

of another. Then, the sum of these Cantor sets is a closed interval:

C .1/ C � � � C C .m/ D
h mX

iD1

minC .i/;

mX

iD1

maxC .i/
i
:

The result of this theorem can be easily extended to any sets containing the

Cantor sets C .i/ and enclosed in the intervals I .i/.

Lemma 7.2. Let C .i/ be Cantor sets constructed on I .i/ D Conv.C .i//, for

i D 1; : : : ; m and suppose that C .1/ C � � � C C .m/ is an interval. Then, for any

sets D.i/ such that

C .i/ � D.i/ � I .i/; i D 1; : : : ; m; (7.1)

and

minC .i/ D minD.i/;maxC .i/ D maxD.i/; i D 1; : : : ; m; (7.2)

we have that

D.1/ C : : : :CD.m/ D
h mX

iD1

minC .i/;

mX

iD1

maxC .i/
i
: (7.3)
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Proof. Observe that, by eq. (7.1),

C .1/ C : : : :C C .m/ � D.1/ C � � � CD.m/ � I .1/ C � � � C I .m/:

Moreover, we trivially have

I1 C � � � C Im D
h mX

iD1

min I .i/;

mX

iD1

max I .i/
i

D
h mX

iD1

minC .i/;

mX

iD1

maxC .i/
i

and, since C .1/ C � � � C C .m/ is an interval, it is clearly

C .1/ C � � � C C .m/ D
h mX

iD1

minC .i/;

mX

iD1

maxC .i/
i
: �

We now use Theorem 7.1 to prove the following important lemma:

Lemma 7.3. Suppose that C .l/, l D 1; 2; : : : are Cantor sets of ulbd larger than

a > 0, such that d.C .l// 2 ŒA1; A2� for any l , with 0 < A1 < A2 < 1. Then,

there exist n 2 N n ¹0º, that depends only on A1; A2 and a, such that

C .1/ C C .2/ C � � � C C .n/ D
h nX

lD1

minC .l/;

nX

lD1

maxC .l/
i
:

Proof. Take the smallestm 2 N such thatmA1 > A2. Let h 2 N and consider the

�nite sums S .h/ D C .hmC1/ C � � � C C .hmCm/. Because of Lemma 6.1, for every

h 2 N there exist a Cantor set D.h/, constructed with ratios of dissection larger

than, or equal to am (where am do not depend on h and where, of course, we can

take am 2 �0; 1
3
�) such that the following relations hold:

D.h/ � C .hmC1/ C � � � C C .hmCm/; (7.4)

minD.h/ D

hmCmX

lDhmC1

minC .l/; (7.5)

maxD.h/ D

hmCmX

lDhmC1

maxC .l/; (7.6)


.D.h// � max
lDhmC1;:::;hmCm


.C .l// � A2: (7.7)
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By (7.5) and (7.6) we have

d.D.h// D maxD.h/ � minD.h/ D

hmCmX

lDhmC1

d.C .l// � mA1 > A2;

so that, in view of (7.7) d.D.h// > 
.D.h0// for any h; h0 2 N, i.e. no translate

of D.h/ is contained in a gap of D.h0/. Now, by Theorem 7.1, if H 2 N is large

enough, then

D.0/ C � � � CD.H/ D
h HX

hD0

minD.h/;

HX

hD0

maxD.h/
i
;

so that on one hand

C .1/ C � � � C C .HmCm/ �
hHmCmX

iD1

minC .i/;

HmCmX

iD1

maxC .i/
i
:

On the other hand, by (7.4) and (7.5)

C .1/ C � � � C C .HmCm/ � D.0/ C � � � CD.H/

D
h HX

hD0

minD.h/;

HX

hD0

maxD.h/
i

D
hHmCmX

iD1

minC .i/;

HmCmX

iD1

maxC .i/
i

and the Lemma is proven for n D HmCm. �

8. Proof of Theorem 1.1 and related results

In this section we prove Theorem 1.1, via an additional proposition, interesting

in its own right, that describes a situation in which the sum of Cantor sets is an

interval. We shall present it in a form that will also be useful in Section 9. Such

proposition is the following.
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Proposition 8.1. Let ¹
j º1
jD1 be a sequence of real positive numbers with 
j > 1

for all j , and let K be either a ulbd Cantor set of dissection ratios larger than

a > 0, or the attractor of a �nite, hyperbolic, non–singular IFS ‰. Then, there

exists n 2 N n ¹0º that depends only on the setK and not on the speci�c choice of

the numbers 
j , such that Kn D 
1K C � � � C 
nK is the disjoint union of �nitely

many closed intervals.

Proof. Let �rst K be a ulbd Cantor set, K D C.I/, and let A D d.I¿/ D d.K/.

Consider the following condition: for a given l 2 N n ¹0º require that w 2 W is

such that

d.Iw / � A=
l ; d.Iwj / < A=
l (8.1)

for at least one value of j 2 ¹0; 1º. Clearly, this condition may or may not be

veri�ed by a �nite word w. Let Bl be the set of words that pass the test, for a

given value l 2 N n ¹0º:

Bl D ¹w 2 W W (8.1) holdsº: (8.2)

Recall that Iw is the induced construction on Iw de�ned in eq. (3.7) yielding the

Cantor set C.Iw/ in eq. (3.8). For all l 2 N n ¹0º, K may be written as the union

of a �nite number of Cantor sets:

K D
[

w2Bl

C.Iw/: (8.3)

In fact, because of eq. (3.4), for any x 2 K, there exists zw 2 �W such that

x 2 I zwn
for every natural n 2 N and x 2 C.I zwn

/. When n D 0, zw0 D ¿

and d.I¿/ D A � A=
l , since 
l > 1 for any l . If either d.I0/ or d.I1/ is smaller

than A=
l , then condition (8.1) holds for w D ¿. Otherwise d.I zw1
/ � A=
l and

the same argument can be repeated for zw10 and zw11. Clearly, since d.I zwn
/ tends

to zero when n tends to in�nity, there exists a value n such that (8.1) holds for zwn.

This proves that K is enclosed in the right hand side (8.3). The other inclusion is

trivial, since C.Iw/ � K for any w 2 W . By remark 3.5, only a �nite number of

words can verify the �rst inequality in (8.1), hence the cardinality of Bl is �nite,

for any l 2 N n ¹0º.

Now, takew 2 Bl . Combining the �rst part of (8.1), that is d.Iw / � A=
l , with

the second: there exists j 2 ¹0; 1º such that A=
l > d.Iwj / D r.I/wjd.Iw/ �

ad.Iw /; where we have used the ulbd property, we obtain

A


l
� d.C.Iw// D d.Iw / <

A

a
l
: (8.4)
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Next, multiply all terms in eq. (8.3) by 
l , to prove that for any value l 2 N n ¹0º

the set 
lK can be written as a �nite union of Cantor sets 
lC.Iw/, w 2 Bl , each

of which has the following properties: it has uniformly lower bounded dissection

larger than a > 0, and its diameter lies in the interval ŒA; A=a�.

Consider now the setKn D 
1KC� � �C
nK in the thesis of the Lemma. Using

eq. (8.3), it can be written as follows:

Kn D
[

w12B1;:::;wn2Bn


1C.Iw1
/C � � � C 
nC.Iwn

/: (8.5)

We can now apply Lemma 7.3 to prove that there exists an integer n that depends

only on a and A (and hence, not on the numbers 
j ) such that each term in the

above union, 
1C.Iw1
/C � � � C 
nC.Iwn

/, is an interval. Since the cardinality of

each Bl is �nite, it follows at once that for such value n,Kn is the union of a �nite

number of disjoint, closed intervals.

More complicated is the case when K D K‰ is the attractor of a �nite, non–

singular, hyperbolic IFS. Denote again by I¿ the convex hull of K, A D d.K/ D

d.I¿/. Let ı and � be as in eq. (1.5). As in section 4 we need to consider �nite

words in M letters, denoted by v 2 V . Also recall that  v denotes the composite

map de�ned in eq. (2.1), with v D i1; : : : ; in. Consider the diameters of the sets

 v.K/. Clearly, d. v.K// D d. v.I¿//: to these latter we can apply Lemma 4.1,

which proves that letting c D exp.�C/, C > 0, computed as in eq. (4.5), we have

d. vi .K// � cd. v.K// (8.6)

for any v 2 V , i D 1; : : : ;M , denoting again by vi the composed word. We now

replace condition (8.1) by the following: for l 2 Nn¹0º require that v 2 V satis�es

cA=
l < d. v.K// � A=
l ; (8.7)

and de�ne accordingly

Bl D ¹v 2 V W eq. (8.7) holdsº: (8.8)

The analogue of eq. (8.3) is now

K D
[

v2Bl

 v.K/: (8.9)

To prove eq. (8.9) observe that for any x 2 K there exists i1 2 ¹1; : : : ;M º such

that x 2  i1.K/, then there exists i2 2 ¹1; : : : ;M º such that x 2  i1;i2.K/ and

so proceeding: there exist i1; i2; i3; i4; � � � 2 ¹1; : : : ;M º such that for every s we

have x 2  i1;:::;is .K/. For s D 0 condition (8.7) is not veri�ed:  ¿.K/ D K and
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d. ¿.K// D A > A=
l . Choose the �rst index s > 0 such that d. i1;:::;is .K// �

d.K/=
l , which surely exists, since d. i1;:::;is.K// � ısd.K/. At the same time,

since d. i1;:::;is�1
.K// > d.K/=
l , eq. (8.6) implies that

d. i1;:::;is .K// � cd. i1;:::;is�1
.K// > cd.K/=
l

so that (8.7) holds for v D i1; : : : ; is and therefore K is a subset of the union

at right hand side of (8.9). The other inclusion is obvious from K D U n‰.K/.

We can again prove that Bl has only �nitely many elements: this follows easily

from the inequality d. i1;:::;is .K// � ısd.K/ and from the �rst inequality in

condition (8.7).

Equation (8.9) yields the analogue of eq. (8.5):

Kn D
[

v12B1;:::;vn2Bn


1 v1
.K/C � � � C 
n vn

.K/: (8.10)

We need to analyze this union. At di�erence with the �rst part of the proof, we

cannot apply Lemma 7.3 directly, because we have control of the diameter of the

sets 
l vl
.K/ (that are contained in the interval ŒcA; A�) but not of their nature:

we do not know whether they are ulbd Cantor sets. Therefore, we continue as

follows.

Let ‰0 be the two-maps IFS related to ‰ as in Lemma 2.5. Recall that ‰0 is

obtained by selecting two maps out of the full set ‰, in such a way to conserve

the convex hull of the attractor. Let K 0 WD K‰0 be the attractor of ‰0. We have

K 0 � K (Lemma 2.1, iii). By Lemma 4.2K 0 is either a closed interval, or a Cantor

set, with the same convex hull as K, I¿.

In the former caseK D K 0 D I¿, and therefore 
1KC� � �C
nK is an interval,

and the thesis of this Lemma follows easily.

The second case is more interesting: ‰0 is a two–maps, non–singular IFS,

whose attractor K 0 is a Cantor set. Lemma 4.2 establishes that K 0 has a ulbd

construction. Consider now the imagesK 0
v WD  v.K

0/, with v 2 V . Each of these

is a Cantor set. We can easily prove that they too are of ulbd. In fact, a construction

Iv for each of them can be obtained from I in Lemma 4.2, in analogy with eq. (3.7)

as

I vh.w/ D . v ı  w/.I¿/ D  vw.I¿/;

where w is a �nite word in the labels of the two maps that compose ‰0 and h is a

permutation of the �nite word w, constructed along the same lines of lemma 4.2.

Lemma 4.1, which we have also used above, proves that the dissection ratios ofK 0
v

are uniformly lower bounded by the value c D exp.�C/ > 0, eq. (4.5), computed

over the full set of maps composing ‰.
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Let us now replace K by K 0 at right hand side in eq. (8.10). Since K and K 0

have the same convex hull, conditions (8.7) and (8.8) imply that the diameters

of 
l vl
.K 0/ are all contained in ŒcA; A�. Lemma 7.3 can now be applied, to

prove that for su�ciently large n (that depends only on c, ı and A) the �nite sum


1 v1
.K 0/ C � � � C 
n vn

.K 0/ is an interval, for any choice of v1; : : : ; vn in the

respective sets B1; : : : ;Bn. We must now resort to Lemma 7.2: setting C .i/ D


i vi
.K 0/, D.i/ D 
i vi

.K/, I¿ the convex hull of K and I .i/ D 
i vi
.I¿/, we

are in the conditions of the Lemma, and thus every term in the union in the right

hand side of (8.10) is also a closed interval. Then the Lemma follows again by the

�nite cardinality of each Bl . �

Remark 8.2. Notice that in the previous proposition, one can multiply the real,

positive numbers 
1; : : : ; 
n by any strictly positive real constant, without chang-

ing the nature of the set Kn, so that the requirement 
j > 1 in the hypothesis can

be relaxed to 
j > 0.

We can now prove the �rst main result of this paper, Theorem 1.1.

Let again Kˆ be the attractor of the IFS composed of the mapsˆ in eqs. (1.7),

which is the unique solution in K of the equation Uˆ.Kˆ/ D Kˆ. Note that of

course Unˆ.Kˆ/ D Kˆ, where the map Unˆ is de�ned by

Unˆ.A/ D
[

ˇn;:::;ˇ12K

�ˇn
ı � � � ı �ˇ1

.A/ for all A 2 K: (8.11)

Equation (8.11) easily follows by induction on n. We now need an algebraic

formula.

Lemma 8.3. The n-fold map composition in eq. (8.11) takes the following form:

for every x 2 R

�ˇn
ı � � � ı �ˇ1

.x/ D ˛nx C ˛n.1� ˛/

nX

iD1

ˇi

˛i
: (8.12)

Proof. We proceed by induction. For n D 0 and n D 1 the result is trivial.

Suppose it holds for n. For nC 1 we have

�ˇnC1
ı �ˇn

ı � � � ı �ˇ1
.x/ D �ˇnC1

.�ˇn
ı � � � ı �ˇ1

.x//

D �ˇnC1

�
˛nx C ˛n.1 � ˛/

nX

iD1

ˇi

˛i

�
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D ˛
�
˛nx C ˛n.1� ˛/

nX

iD1

ˇi

˛i

�
C .1 � ˛/ˇnC1

D ˛nC1x C ˛nC1.1 � ˛/

nC1X

iD1

ˇi

˛i
: �

Proof of Theorem 1.1. Because of eq. (8.11), for any n 2 N

Kˆ D
[

ˇn;:::;ˇ12K

�ˇn
ı � � � ı �ˇ1

.Kˆ/ D
[

x2Kˆ

[

ˇn;:::;ˇ12K

¹�ˇn
ı � � � ı �ˇ1

.x/º:

(8.13)

Use now eq. (8.12) to get

[

ˇn;:::;ˇ12K

¹�ˇn
ı � � � ı �ˇ1

.x/º D ˛nx C ˛n.1 � ˛/

nX

iD1

K

˛i
: (8.14)

Because of Proposition 8.1 we can choose n in such a way that ˛n.1�˛/
Pn
iD1

K

˛i

is a �nite union of closed intervals, call it J. The term ˛nx in eq. (8.14) merely

shifts these intervals, so that eq. (8.13) becomes

Kˆ D
[

x2Kˆ

˛nx C J: (8.15)

Since Kˆ is bounded and closed and since eq. (8.15) shows that Kˆ is the union

of shifted intervals in J, Kˆ is itself a �nite union of closed intervals. �

9. Series of Cantor sets

In this section we generalize the results of the previous section to series of compact

sets of the form (1.10),
P1
jD0 j̨K; where K is either the attractor of an IFS or

a Cantor set of ulbd. Recall that we use the Minkowski sum of sets, eq. (1.8),

in combination with the Hausdor� metric in K, eq. (1.1).

A simple lemma is useful:

Lemma 9.1. Let K and T be two non–empty compact subsets of R. Then,

dH .K;K C T / � max¹jt j; t 2 T º: (9.1)
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Proof. We estimate the two quantities at right hand side of (1.1) separately. The

�rst is

max¹d.k;K C T /; k 2 Kº D max
k2K

min
k02K;t2T

d.k; k0 C t /

� max
k2K

min
t2T

d.k; k C t /

D min
t2T

jt j:

The second is

max
k02K;t2T

min
k2K

d.k0 C t; k/ � max
k02K;t2T

d.k0; k0 C t / D max
k02K;t2T

jt j D max
t2T

jt j: �

The following lemma characterizes a sort of absolute convergence of in�nite

series of the kind (1.10).

Lemma 9.2. Let
P1
jD0 j̨ be a convergent series of real positive entries and letK

be a non–empty compact set in R. Then, the series
P1
jD0 j̨K is also convergent.

Any permutation of its terms yields the same value for the sum of the series.

Proof. Let Sn D
Pn
jD0 j̨K be the n-th partial sum of the above series. Clearly,

if s is the sum of the series of real numbers, Sn is a subset of the compact set

Œ�s Nk; s Nk�, where Nk D max¹jkj; k 2 Kº. Let us prove that Sn compose a Cauchy

sequence in K, the set of compact non–empty subsets of Œ�s Nk; s Nk�. In fact, let

m > n 2 N:

dH .Sn; Sm/ �

m�1X

jDn

dH .Sj ; SjC1/ � Nk

m�1X

jDn

j̨C1; (9.2)

where we have used Lemma 9.1, since SjC1 D Sj C j̨C1K. At right hand side

of the above equation we �nd the di�erence of two partial summations of the real

sequence, which is itself Cauchy and therefore can be made arbitrarily small if n is

su�ciently large: this proves that Sn is a Cauchy sequence. Since K is complete,

the sequence of sets Sn is convergent and we call S its sum.

Let now „ be any permutation of the set of natural numbers, „n the set of

its �rst n C 1 elements, i.e „n D „.¹0; 1; : : : ; nº/ and Sn.„/ D
P
j2„n j̨K.

With these notations the previous partial sum Sn coincides with Sn.Id/, being

Id the identity permutation. What proven above implies that the limit S.„/ D

lim
n!1

Sn.„/ exists for any permutation „. We want to prove that it coincides with

S D S.Id/, the sum of the original series. In fact, for any � > 0 there exists

m 2 N such that Nk
P1
jDmC1 j̨ < �, since the series of positive real numbers j̨
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is convergent. Moreover, there exists n0 � m such that Idm D ¹0; 1; : : : ; mº � „n

for all n � n0 and clearly also Idm � Idn. This yields

Sn.„/ D

mX

jD0

j̨K C
X

j2„n; j>m

j̨K D Sm C
X

j2„n; j>m

j̨K:

Using Lemma 9.1 this means that

dH .Sm; Sn.„// � max
°
jt j; t 2

X

j2„n; j>m

j̨K
±

� Nk

1X

jDmC1

j̨ < �:

The same calculation proves that dH .Sm; Sn/ � Nk
P1
jDmC1 j̨ < �; so that

dH .Sn.„/; Sn/ � 2�

for any n � n0. Since � is arbitrary this proves that S.„/ D S . �

We can now prove the second theorem of this paper.

Proof of Theorem 1.4. Because of lemma 9.2 we can rearrange terms in the se-

ries (1.10) – without changing its sum – so that j̨ becomes a monotonic sequence.

Next, write the �nite summation

nX

jD0

j̨K D
˛n

�

�
�K C

�˛n�1

˛n
K C

�˛n�2

˛n
K C � � � CK

�˛0

˛n

�
; (9.3)

where � > 1. Letting 
j D �
˛n�j C1

˛n
yields a monotonic, non decreasing sequence

of positive numbers, with 
1 D � > 1. The set in brackets at right hand side of

eq. (9.3) can then be written as Kn D 
1K C � � � C 
nC1K. To this set we can

apply the previous Proposition 8.1, to show that there exists n 2 N n ¹0º such that

Kn is a �nite union of disjoint intervals, and so is obviously also ˛n

�
Kn, that can

therefore be written as
SS
sD1 Fs , Fs being closed intervals. As a consequence, we

obtain
1X

jD0

j̨K D

nX

jD0

j̨K C

1X

jDnC1

j̨K D
� S[

sD1

Fs

�
C G;

where G 2 K is the compact set, sum of the convergent series
P1
jDnC1 j̨K (that

exists because of Lemma 9.2). Indicating by g the elements of the setG, we �nally

write
1X

jD0

j̨K D
[

g2G

S[

sD1

.Fs C g/:
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The left hand side of the above is a compact set, again because of Lemma 9.2.

The right hand side is the union of shifted intervals of positive minimal length

l D mins d.Fs/. Hence, the left hand side is also a �nite union of closed, disjoint

intervals. �
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