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Abstract. In the analysis on self-similar fractal sets, the Kusuoka measure plays an
important role (cf. [13], [7], and [2]). Here we investigate the Kusuoka measure from
an ergodic theoretic viewpoint, seen as an invariant measure on a symbolic space. Our
investigation shows that the Kusuoka measure generalizes Bernoulli measures and their
properties to higher dimensions of an underlying �nite dimensional vector space. Our
main result is that the transfer operator on functions has a spectral gap when restricted
to a certain Banach space that contains the Hölder continuous functions, as well as the
highly discontinuous g-function associated to the Kusuoka measure. As a consequence,
we obtain exponential decay of correlations. In addition, we provide some explicit rates of
convergence for a family of generalized Sierpiński gaskets.

Mathematics Subject Classi�cation (2010). Primary: 37A25; Secondary: 28A80.

Keywords. Kusuoka measure, energy Laplacian, transfer operator, quasi-compactness,
g-measure.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
2 The Kusuoka measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4 The transfer operator on the space V . . . . . . . . . . . . . . . . . . . . 198
5 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . 208
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



186 A. Johansson, A. Öberg, and M. Pollicott

1. Introduction

1.1. Background and problems. The Kusuoka measure has recently attracted
some attention, since it gives rise to a well-working Laplacian on fractal sets (see,
e.g., [15]). The Laplacian is usually de�ned weakly with respect to a measure on
the fractal set. A standard way of accomplishing this is to �rst de�ne a Dirichlet
energy form E.f; f / on the fractal K, in analogy with

R

jrf j2 d�.x/, and then
to de�ne the Laplacian by equating the corresponding bilinear form E.u; v/ with
�
R

.��u/vd�, for functions v vanishing on the boundary. It is well-known that
with respect to the normalized Hausdor� measure, the domain of the Laplacian is
not even closed under multiplication. By contrast, the Kusuoka measure is well-
behaved in this sense and in some other more subtler ways, e.g., for the Laplacian
it provides Gaussian heat kernel estimates with respect to the e�ective resistance
metric and can be regarded as a second order di�erential operator [10].

Recently, Strichartz and his collaborators ([2] and [16]) have proved some ba-
sic properties of the Kusuoka measure. Here we provide an investigation of the
Kusuoka measure from the point of view of ergodic theory on symbolic shift
spaces. For instance, we provide exponential mixing results as a consequence
of the quasi-compactness of a transfer operator as it acts on a Banach space which
contains functions that may have a dense set of discontinuity points, but which
can be regarded as “smooth” when they are integrated with respect to the Kusuoka
measure. In fact, the associated transfer operator is given by a simple multiplica-
tion when acting on a certain space of matrix-valued processes. However, when
restricting the transfer operator to ordinary functions, the corresponding transi-
tion probability function has a dense set of discontinuity points, which presents
di�culties.

Our abstract way of treating the Kusuoka measure is rather similar to the
one in the original work by Kusuoka ([13]) and covers in fact a general class
of measures that can be de�ned by products of matrices. We point out that the
Kusuoka measure is really a family of measures that generalizes the Bernoulli
measures to higher dimensions. We also note that the theory of matrix product
state representations of quantum Potts models (see e.g. [14]) seems to be quite
related, although we have not used any particular result from this theory.

We believe that our analysis opens the door to interesting further research.
For example, it should now be possible to compute the entropy of the measure
explicitly. In view of our exponential mixing results, it should then be possible
to provide a multifractal formalism for the Kusuoka measure. A major challenge
would be to generalise the type of results we provide here for matrices (as our
restriction maps) to in�nite dimensional operators. Using in�nite dimensional
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operators, one could hope to be able treat the Kusuoka measure on fractal sets
with in�nite boundaries, such as that of the Sierpiński carpet. However, it is not
immediately clear how one should de�ne the Kusuoka measure even in the case
of the Vicsek set, which has a countably in�nite boundary.

Other challenges in the fractal realm would include, e.g., the problem of
relating our results to the Cartesian product of a Sierpiński gasket with itself,
or if one glues together the boundary points of two such copies, producing a
“fractafold.”

1.2. Summary of the main results. We prove quasicompactness of a transfer
operator de�ned on a Banach space, with a norm that is an integrated Hölder norm
in terms the variations of functions on cylinder sets of a symbolic space. In some
sense, we are studying the transfer operator of a space of “Besov type,” since the
moral is that we look at a “smooth” space that may have many discontinuities
(since we integrate), and this is necessary in order to handle the dense set of
discontinuity points of the g-function that de�nes the transfer operator.

To be more precise: Let S be a �nite set and let X denote the symbolic space
X D SZC (ZC D ¹0; 1; 2; : : :º) of functions xWZC ! S . The (point) shift map
TWX ! X is de�ned as .T x/.n/ D x.nC 1/. In our abstract setting, the Kusuoka
measure � ([13]) is a shift-invariant measure on the space X. The transfer operator
L is the dual of the shift operator Tf D f ı T on the Hilbert-space of functions
L2.X; �/. It has the form

Lf .x/ D
X

s2S

g.sx/f .sx/

where the g-function can be de�ned as

g.x/ D lim
n!1

�.Œx�n/

� .ŒT x�n�1/
;

where Œx�n denote the cylinder of length n containing x.
Given a real number  , 0 <  < 1, we de�ne for f 2 L2.X; �/ a Banach space

L2
 � L2 with norm kf kL2


by

kf kL2


D
1
X

nD0

�nkf .n/kL2 :

Here .f .n//1nD0 is the martingale di�erence sequence for f given by f .0/ D f0

and f .n/.x/ D fn.x/�fn�1.x/ for n � 1, and where x 7! fn.x/ WD f .Œx�n/ is the
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orthogonal projection of f onto the �nite dimensional subspace L2
n of L2.X; �/

of Fn-measurable functions, where Fn is the �-algebra generated by cylinder sets
with length n.

Quasicompactness of L on our “Besov space” L2
 , means that there exists

0 < � < 1 such that for any f 2 L2
 , where  is su�ciently close to one, we

have








Lmf �
Z

fd�









L2


� C�m kf kL2


(1)

for a uniform constant C .
We prove (1) by representingL as a dilation of a transfer operator L de�ned on

a larger graded Hilbert-space V D limVn consisting of matrix-valued processes.
The graded Hilbert space L2 D limL2

n is isometrically embedded into V. It is
fairly straightforward to show that quasi-compactness holds for L onV and, since
L D Q ıLwhere QWV ! L2 is the orthogonal projection. This result carries over
to L on L2

 for those  such that Q is continuous as an operator from V to L2
 .

From the quasicompactness result (1), exponential decay of correlations (mix-
ing at an exponential rate) follows automatically: if f 2 L2.X; �/ and g 2 L2



then for some 0 < � < 1 and some uniform constant C , we have

ˇ

ˇ

ˇ

ˇ

Z

f .g ı T n/ d� �
Z

f d�

Z

g d�

ˇ

ˇ

ˇ

ˇ

� C�n:

We note that our quasicompactness results depend on the general symbolic
formulation, where we use the ultrametric on the symbolic space X and not
some underlying geometric distance. Hence, the quasicompactness on our “Besov
space” will not immediately translate into quasicompactness on a Besov space
de�ned on the metric space of an underlying fractal, such as those of Jonsson [6]
and Grigor’yan [4].

1.3. More results and the structure of the paper. In Section 2, we present the
Kusuoka measure from an abstract point of view, namely on cylinder sets, which
corresponds to the products of matrices that act on a �nite-dimensional vector
space that corresponds to a space of harmonic functions. We give two special
examples. The �rst shows that the Kusuoka measure in one dimension reduces to
the class of Bernoulli measures. We can thus view abstract the Kusuoka measure
as a natural generalisation of the Bernoulli measure, the di�erence being that we
“multiply matrices instead of numbers.” The second example is a brief discussion
of a well-studied case, that of the Sierpiński gasket, extensively studied in [1], [2],
[15], [16], and in many other works.
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In Section 2, we state the main results: quasicompactness of the transfer
operator on the space L2

 , as well as exponential decay of correlations. We also
consider special results for the Sierpiński gasket and the family SGn, de�ned in
Subsection 3.2. In Theorem 4, we obtain precise mixing rates of convergence in
a simpli�ed case, when we shift cylinders of a �xed length. We have only stated
this result for the Sierpiński gasket, but we have made some calculations for the
mixing rates for SGn, n D 3; 4; 5; see Example 3.

In Section 4, we introduce a Hilbert space V on which a transfer operator that
acts on matrix-valued operators is easily analysed in terms of the matrix opera-
tor M, de�ned in (6). Here we obtain a simple expression for the transfer operator
as the dual of the shift map T, so here the “higher-dimension” generalisation of
Bernoulli measures is exploited. The proof of Theorem 6 that states the quasi-
compactness on a space V , equipped with a certain “smooth” norm k � k , relies
essentially on the contraction of the matrix-operator M and the contraction ratio
�1 < 1 remains the same. In Subsection 4.5, we obtain a strict contraction of
M acting on symmetric matrices and this is used to obtain more precise rates of
convergence (Theorem 4) in the case of the Sierpiński gasket.

In Section 5, we prove that the quasicompactness result in Section 4, for the
matrix-valued space V , may be retrieved for functions in L2

 , by means of a pro-
jection; see Lemma 9 and its proof in Subsection 5.2, the most technical and dif-
�cult part of the paper. In Lemma 9 a new contraction factor �2 < 1 is introduced
and the �nal contraction ratio � expressed in terms of the quasicompactness of
Theorem 1 must be strictly larger than both �1 and �2. It remains an open prob-
lem, even in the case of the Sierpiński gasket, whether �2 D �1. In Subsection 5.3,
we restrict our attention to the Sierpiński gasket and prove Theorem 4.
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versity. The second author is grateful for visits to Cornell in May 2012 (when the
problem was proposed) and again in September 2014 and December 2015. This
research was supported by the Royal Society (UK), grant IE121546: Ergodic the-

ory of energy measures on fractals. The grant provided several opportunities for
all authors to visit University of Warwick, Uppsala University and University of
Gävle. We are grateful to the anonymous referee for many clarifying comments.
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2. The Kusuoka measure

2.1. Cylinders and cylinder sets. An elementary cylinder is a function

˛W Œa; b/ �! S

de�ned on some integer interval Œa; b/ D ¹a; aC 1; : : : ; b � 1º. The length of the
cylinder is `.˛/ D b�a. The corresponding cylinder set ˛ � X is the set of x 2 X

that coincides with ˛ on Œa; b/. (Notice that we make no notational distinction
between a cylinder and the equivalent cylinder set.)

A cylinder is an initial cylinder if the domain is Œa; b/ D Œ0; n/ for some n
and we write Sn instead S Œ0;n/, and also S� for the set [nS

n of initial cylinders.
The set S0 consists of the empty cylinder ;. Let Œx�n denote the initial cylinder
obtained by restricting x to the interval Œ0; n/. Let Fn be the algebra generated by
the cylinder sets Œx�n, x 2 X and let F be the limit �-algebra as n ! 1.

For a cylinder ˛ 2 S Œa;b/ and a symbol s 2 S , an expression of the form ˛s

it is understood as the concatenation of the cylinder with the symbol to the right,
so that ˛s is a cylinder in S Œa;bC1/ with .˛s/.b/ D s. If a > 0 then s˛ is the
corresponding concatenation to the left, but, if ˛ 2 Sn is an initial cylinder then
s˛ 2 SnC1 with .s˛/.0/ D s and .s˛/.k/ D ˛.k � 1/, k D 1; : : : ; n C 1. The
expression sx refers in the same way to the concatenated and shifted sequence
sx 2 X, where .sx/.0/ D s and sx.n/ D x.n � 1/, n � 1.

2.2. Construction of an abstract Kusuoka measure. In order to de�ne the
Kusuoka measure, we consider a �xed �nite dimensional Hilbert spaceH having
scalar product h�; �i. Let B D B.H/ denote the space of bounded operators onH .
For any cylinder ˛ 2 S Œa;b/, we associate the compound “restriction map”

A.˛/ D A˛.a/ : : : A˛.b�1/;

where As 2 B, s 2 S are operators with certain properties speci�ed later. We
de�ne the Kusuoka measure � on the cylinder set ˛ D ¹xW xjŒa;b/ D ˛º � X as the
trace

�.˛/ D Tr.A.˛/� E A.˛//; (2)

where E is a positive de�nite symmetric operator H ! H such that Tr.E/ D 1.
The de�nition (2) de�nes a consistent probability measure on the measurable

space .X;F/ if and only if the system ¹AsW s 2 Sº of maps satis�es the following
two conditions

X

s

A�
sEAs D E (3)
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and
X

s

AsA
�
s D I: (4)

Consistency of de�nition of � follows: e.g. (4) gives that
X

s

�.s˛/ D
X

s

Tr.A�
s A.˛/

�
E A.˛/As/ D Tr.A.˛/�E A.˛/I / D �.˛/;

so � is consistent with extensions to the left. Similarly, (3) shows that
P

s �.˛s/ D
�.˛/. It is also clear that � will be a shift invariant measure on .X;F/, since �.˛/
is determined by the word corresponding to the cylinder ˛ 2 S Œa;b/.

As is shown in [13], the Kusuoka measure is moreover ergodic if one assumes
that the system is irreducible in the sense that

the linear maps As, s 2 S , have no common nontrivial invariant subspaceW.

(5)
That is, there exists no subspaceW , .0/ ¨ W ¨ H , such that As.W / � W for all
s 2 S .

We will consider the space B D B.H/ of operators on H . Note that, if we
de�ne the operators MWB ! B and M�WB ! B by

M.B/ D
X

s

AsBA
�
s ; and M�.B/ D

X

s

A�
sBAs (6)

then (3) and (4) can be expressed as a statement of �xed points, i.e. that M.I / D I

and M�.E/ D E. The operator M�.B/ is the adjoint of M on B with respect to the
Hilbert–Schmidt scalar product hA;BiHS D Tr.B�A/.

We will often use the the scalar product h�; �iE with associated norm kAkE D
hA;Ai1=2

E
given by

hA;Bi
E

D Tr.EAB�/ D Tr.B�
EA/; A; B 2 B: (7)

Notice that �.˛/ D kA.˛/k2
E

and that (3) and (4) are equivalent to the statement
that the scalar product h�; �iE is “bi-invariant” in the sense that

hX; Y i
E

D
X

˛2Sk

hA.˛/X; A.˛/Y i
E

D
X

˛2Sk

hX A.˛/; Y A.˛/iE ; for all X; Y 2 B;

(8)

for all k � 0.
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For our main results, we use an irreducibility condition, implying (5), stating
that for some k > 1

ck D inf
F

X

˛2Sk

hA.˛/F ; A.˛/i2
E
> 0 (9)

where the in�mum (minimum) is over the compact set of all symmetric operators
F 2 B such that kF k

E
D 1 and hF; I i

E
D 0. Notice that ck < 1, since, by

Cauchy–Schwarz, we have
X

˛2Sk

hA.˛/F ; A.˛/i2
E

�
X

˛

kA.˛/F k2
E

� kA.˛/k2
E

D
X

˛

kA.˛/F k2
E

� �.˛/;

where we conclude from the irreducibility condition (5) that �.˛/ < 1. Moreover,
(8) implies that

P

˛2Sk kA.˛/F k2
E

equals kF k2
E

D 1.
It is not clear to us in what circumstances the condition (9) is a consequence of

the irreducibility condition (5). Note that the stronger irreducibility condition (9)
follows if the maps B 7! AsBA

�
s have no non-trivial common invariant subspace

of B.

2.3. Examples. The Kusuoka measure can usefully be viewed as a general
construction for a large class of shift invariant measures.

Example 1 (Bernoulli measure). The product form of Kusuoka measure shows
that it is a natural generalisation of the Bernoulli measure. Indeed, in the special
case when H D R and As is v 7! qsv, where (4) states that q2

1 C � � � C q2
k

D 1.
In this case, � is the Bernoulli measure associated to the distribution p.s/ D q2

s

on S . The energy operator is here the identity operator, which clearly has trace 1.
Notice that the irreducibility condition (9) is trivially satis�ed in this case.

Example 2 (classical Kusuoka measure on SG). The terminology we use comes
from applications in the context of harmonic analysis on certain fractals: the space
H is the �nite dimensional space of harmonic functions modulo constants on a
self-similar fractal K with a prescribed �nite “boundary.”

The restriction map As for a symbol s 2 S represents the restriction of har-
monic functions to one of the jS j sub-fractals Ks, s 2 S . The quadratic form
E on H is an energy form which the harmonic functions in H are minimising.
By self-similarity we have an isomorphism Ks Š K and, by using this isomor-
phism and a suitable scaling, we can represent the restriction of harmonic func-
tions to Ks as a map AsWH ! H . The invariance relation (3) follows since the
energy on the whole fractal is the sum of the energies on the sub-fractals. There is
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also a unique dual invariant form R on H�, but we identify R with a given inner
product on the Hilbert spaceH . Hence we obtain the relation (4).

A well-studied example is the Sierpiński gasket, SG, which is the unique
nonempty compact set satisfying

SG D
2
[

iD0

Fi SG;

whereFi D 1
2
.xCqi /, and where ¹qiº2

iD0 are the vertices of an equilateral triangle.
These three points are also the boundary points of SG. We obtain the Kusuoka
measure on SG (see, e.g., [1], [2], [15], and [16]) in the special case S D ¹0; 1; 2º
and corresponding matrices As D R�sDRs, where R is the rotation by 2�=3, and
where

D D
 

3p
15

0

0 1p
15

!

:

For a non-zero harmonic function h, the energy measure �h is de�ned on an
elementary cylinder Œw� D ¹xW Œx�k D wº by

�h.Œw�/ D E.Awh; Awh/;

where we have lifted the restriction of a harmonic function on

Fw SG D Fw1
: : : Fwn

SG

to an element Awh, which is also a harmonic function on SG. We have

E.h; h/ D
X

w2Sk

E.Awh; Awh/;

where one should observe that the usual normalisation constants are built into the
restriction maps As, and also that

Aw D Awk
Awk�1

: : : Aw1
;

if w D w1w2w3 : : :wk . We can for instance choose the basis of two harmonic
functions (see [16]), h1 D

p
2

3
.1;�1

2
;�1

2
/ and h2 D 1p

6
.0; 1;�1/. We can obtain

the Kusuoka measure on SG as the sum � D �h1
C �h2

of energy measures for the
orthonormal basis ofH . In this case the restriction maps are symmetric matrices,
whence M D M� and E D .1=2/I . We obtain by direct computation that the
action of M on the subspace of symmetric matrices in B is given by

M

��

a b

b �a

�

C cI

�

D 4

5
�
�

a b

b �a

�

C cI: (10)
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Similarly, it contracts with a factor 4=5 on the space of anti-symmetric matrices.
It follows that M acts as a contraction on the space of trace-less matrices with
the contraction constant �1 D 4=5, which is one of the constants that will be
important to us in the sequel in order to describe mixing rates. From this it follows
(Corollary 5 below) that if A 2 Fk (measurable with respect to cylinders sets of
length k) and B 2 F (any Borel set), we have

j�.T�.nCk/A \ B/ � �.A/�.B/j � 2
�4

5

�n

:

3. Results

3.1. A spectral gap for the transfer operator on the associated Banach space.

A standard approach to studying ergodic properties of T-invariant measures on
X is to use transfer operators de�ned on spaces of functions. In particular, if
we consider the real Hilbert space L2.X; �/ with the scalar product hf; gi D
R

fg d� and norm kf k D hf; f i1=2 then we can de�ne the transfer operator

LWL2.X; �/ ! L2.X; �/ as the dual of the shift map, i.e.,

hLf; gi D hf; g ı Ti (11)

for f; g 2 L2.X; �/. It is easy to see that that the operator norm of L is one and
that it has a maximum modulus eigenvalue with the constant function 1 as the
normalised eigenvector.

The operator L takes the explicit form

Lf .x/ D
X

s

g.sx/f .sx/

where the g-function, gWX ! Œ0; 1�, can be de�ned as

g.x/ D lim
n!1

�.Œx�n/

� .ŒT x�n�1/
:

The g-function exists, on account of the martingale convergence theorem, �-
almost everywhere. Bell, Ho and Strichartz [2] showed that the g-function as-
sociated to the Kusuoka measure for the Sierpiński gasket has a dense countable
family of discontinuities. In particular, the Kusuoka measure is not a Gibbs mea-
sure and therefore not amenable to the classical thermodynamic ideas.

We say that an operator L on a Banach space has a spectral gap if it has
a unique eigenvalue � of maximum modulus and if all other elements of the
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spectrum of L has modulus less than some � < j�j. In order to prove that there
is a spectral gap for the operator L, one usually needs to restrict it to a more
regular class of functions which is considerably smaller than L2. For the Kusuoka
measure, because of the discontinuities in the g-function, it is not appropriate to
consider, say, Hölder continuous functions. Instead we consider functions where
the martingale sequence converges in L2-norm quickly enough.

Any element f 2 L2.X; �/ can be uniquely represented by the corresponding
martingale process

f .˛/ D E Œf j ˛� D �.˛/�1

Z

˛

f d�; ˛ 2 S�:

We will usually refer to the martingale process f .˛/ by the same name as the
element f .x/ in L2.X; �/. The function x 7! fn.x/ WD f .Œx�n/ is the or-
thogonal projection onto the �nite dimensional subspace mFn of L2.X; �/ of
Fn-measurable functions and by the martingale convergence theorem, we have
limn fn.x/ D f .x/, �-almost everywhere. The martingale di�erence sequence

.f .n//1nD0 of f is given by f .0/ D f0 and f .n/.x/ D fn.x/ � fn�1.x/ for n � 1.
Given a real number  , 0 <  < 1, we de�ne for f 2 L2.X; �/ a norm kf k

by

kf k D
1
X

nD0

�nkf .n/k: (12)

The space of functions f WX ! R such that the -norm kf k is �nite is denoted
L2

 . We observe that L2
 is a Banach space which is dense in L2.X; �/. One can

perhaps think of it as a type of Besov space.
Note also that if f WX ! R is ˛-Hölder continuous in the sense that

varn f D sup
Œx�nDŒy�n

jf .x/ � f .y/j D O.2�˛n/

then it belongs to L2
 for  > 2�˛ .

Our main result involves proving a spectral gap for the transfer operator L if
we restrict L to the spaces L2

 . Let ck , 0 � ck < 1 be as in the irreducibility
condition (9).

Theorem 1. Assume that the irreducibility condition (9) holds and that  is as

above. De�ne

�2 WD inf
k
.1� ck/

1=k < 1:

Then, for  > �2, the transfer operator L restricts to a continuous operator

LWL2
 ! L2

 having a spectral gap.
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Remark 1. The bound �2 D .1 � ck/
1=k is not meant to be optimal; it is based

on an argument where we use a pointwise estimate of a convergence rate QnG of
projections.

As a simple consequence of our results we have the following result, which
expresses how quickly the Kusuoka measure can be approximated.

Corollary 2. There exists 0 < � < 1 such that for any f 2 L2










Lmf �
Z

fd�









L2


� C�mkf kL2


where C is a uniform constant.

The rate of convergence, �, depends on both �2 and a contraction constant �1

in (29), or, equivalently, (27). From Theorem 6 it follows that we may choose
� > max¹�1; º, where  > �2, as above.

As a consequence, we have exponential decay of correlations.

Corollary 3. If f 2 L2.X; �/ and g 2 L2
 (e.g., an ˛-Hölder continuous function,

if  D 2�˛), then for some 0 < � < 1 and some uniform constant C , we have

ˇ

ˇ

ˇ

ˇ

Z

f .g ı T n/ d� �
Z

f d�

Z

g d�

ˇ

ˇ

ˇ

ˇ

� C�n:

3.2. Specialisation to Sierpiński gaskets. We now specialize to some explicit
estimates of rates of convergence for the cases that correspond to the Sierpiński
gasket SG and the family SGn, n D 2; 3; : : : (SG D SG2), which are realized
in R

2 and constructed by n.n C 1/=2 contraction mappings Fj .x/ D x=n C bj;n

for suitable choices of bj;n, so that SGn is the unique nonempty compact set that
satis�es

SGn D
1
2

n.nC1/
[

j D1

Fj .SGn/:

By a direct computation of �1, we obtain the following result for SG. In
Example 3 have included the corresponding rates for SGn, n D 3; 4; 5. These
explicit approximation results depend on the fact that for SGn we have symmetric
restriction maps As.
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Theorem 4. For any function f which is Fk-measurable (i.e., measurable with

respect to the �nite algebra generated by cylinders of length k), we have









LnCkf .x/ �
Z

f d�









1
� 2

�4

5

�n

kf k1 ; (13)

where k � k1 denotes the essential supremum norm.

Corollary 5. If � is the Kusuoka measure on three symbols related to the SG, we

have for A 2 Fk and B 2 F that

j�.T�.nCk/A \ B/ � �.A/�.B/j � 2
�4

5

�n

:

Remark 2. In this simpli�ed case, the rate of convergence can be expressed in
terms of �1 D 4

5
only. In Theorem 1 we also need to consider the constant �2 from

Lemma 9 below in order to obtain the uniform rate of convergence expressed, e.g.,
in Corollary 2. Notice that in Theorem 4 we use members of Fk as test functions
and we need to start the convergence at this level k, whereas in Corollary 2 we
may use any f 2 L2

 and we do not relate the number of iterates to the (lack
of) regularity of f . Nevertheless, Theorem 4 may give some insight about the
rate of convergence from a practical point of view. We have given an argument
for this special case only for SG, just in order to simplify matters, but a similar
argument for this type of result for convergence in the k �k1-norm may be devised
in the general Kusuoka measure case. The constant 2 in front of the .4

5
/n can be

interpreted as the dimension of the space of harmonic functions modulo constants,
i.e., the number of boundary points minus one. That we do not have a “general”
uniform, but unknown, constantC in front of the .4

5
/n is due to a strict contraction

result, Lemma 8, which we have obtained for symmetric restriction maps, and
which is thus valid for all SGn.

Remark 3. If we have the probability weights pj .x/ D 1
15

C 12
15

d�j

d�
, j D 0; 1; 2,

for the iterated function system ¹Fj º2
j D0 that de�nes the Sierpiński gasket (as in

Bell, Ho and Strichartz [2]), where �j are the energy measures so that the Kusuoka
measure � D

P2
j D0 �j , then a standard conjugation between symbolic space and

the fractal SG gives the same rate of convergence (namely .4=5/n for SG) with
respect to the essential supremum norm for an associated transfer operator de�ned
on Hölder continuous functions f on SG as Lf .x/ D

P2
j D0 pj .x/f .Fj .x//.

Notice that we can view the natural extension of the full left shift on the symbol
space as an iterated function system, where the probability pj .x/ of choosing the
symbol j to go from the state x D .x0; x1; : : :/ to .j; x0; x1; : : :/ is given by g.jx/.
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Example 3. We have explicitly computed the rate of convergence in the case of
SGn. For SG3, the level 3 Sierpiński gasket, is generated by the iterated function
system Fj .x/ D 1

3
x C 2

3
vj , j D 1; 2; 3; 4; 5; 6, where v1; v2; v3 are the vertices

of an equilateral triangle and where v4 D v2Cv3

2
, v5 D v1Cv3

2
, v6 D v1Cv2

2
.

We approximate SG3 with a graph sequence, and we use the same two initial
orthonormal harmonic functions as in the case of SG (the three boundary points
are the same). We obtain two families of matrices (the restriction maps) As with
three in each family being rotations by 120ı of each other. That is, we have one
family of three matrices that restricts values to the three triangles with one vertex
at the original vertex points v1; v2; v3 and another family of three matrices that
restricts values to the three other triangles. There are similar and obvious ways to
describe the other fractals in the family SGn.

In these cases we get �1 D 5
7

for SG3, �1 D 2822
4223

for SG4 and �1 D 209527
327611

for
SG5.

4. The transfer operator on the space V

Instead of working with the L2-space of regular functions on X, the idea is to
work with a Hilbert space V consisting of “operator valued process limits,” where
the shift operator T is de�ned. The action of the corresponding transfer operator
has a simple explicit description. The Hilbert space L2.X; �/ has a representation
as a subspace L of V. The space L itself is not invariant under the action of
L, but the transfer operator L on L2.X; �/ can be recovered as a dilation such
that Lk D Q ıLk, where Q is the orthogonal projection onto L. We show in
Subsection 5.2 that Q is continuous with respect to the -norm, for suitable  ,
and, hence, that the spectral properties of L on V carry over to results on the
action of L on the spaces L2.X; �/.

4.1. Construction of a graded Hilbert space of process limits. We will use
a general construction of a certain graded Hilbert space of process limits on X

under a given system of “restriction operators”  s , s 2 S . The Hilbert space is
modeled by the martingale representation of functions in L2.X; �/, but with the
di�erence that they do not necessarily converge to functions. The construction
can be generalised to non-self similar systems using a systematic approach based
on direct and inverse limits.

4.1.1. E -valued processes and �nite degree process limits. Let E denote a
�nite-dimensional linear space. An E-valued process is a function f WS� ! E,
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where S� is the set of initial cylinders. A process f .˛/, ˛ 2 S�, can be identi�ed
with the sequence fn.x/ of Fn-measurable functions fn.x/ D f .Œx�n/.

Let E0 denote the direct sum
L

˛ E˛ , where for all initial cylinders ˛ 2 S�,
E˛ is a copy of E. We interpret E0 as the space of all processes f .˛/ such that
there is a smallest integer deg.f / � 0where f .˛/ D 0 for all cylinders ˛ of length
`.˛/ > deg.f /. We refer to deg.f / as the degree of f 2 E0.

We will need a construction which, more formally (and more generally),
involves taking direct and inverse limits. Given a set  D ¹ sW s 2 Sº (a self

similar system of restriction maps) of linear maps  sWE ! E, let 	 WE0 ! E0

be the map f 7! 	f given by

.	f /.˛s/ D  sf .˛/; .	f /.;/ D f .;/:

We assume that 	 WE0 ! E0 is an injective map.

Let E� be the spaceE0 D
L

˛ E˛ modulo the subspace Ker.I �	/. The space
E� is the space of limit orbits for the map 	 . Elements f in E� can be represented
by E-valued processes which are “eventually constant” in the following sense:
there is a smallest number deg.f / � 0where f .˛s/ D  sf .˛/ for `.˛/ > deg.f /.
Two processes, f .˛/ and g.˛/ of degree at most n are identi�ed if f .˛/ D g.˛/

for all ˛ 2 Sn. The �nite dimensional space En of elements f 2 E� of degree
deg.f / � n, consists of those elements f 2 E� that can be written on the form
f D Qf C Ker.I � 	/ where Qf 2 E0 has degree less than or equal to n.

4.1.2. Invariant bilinear forms. A bilinear form F on E� is local if it has the
form

F.f; g/ D lim
n!1

X

˛2Sn

F.˛/.f .˛/; g.˛//; for all f; g 2 E�; (14)

where, for each ˛, F.˛/ is a given form on E. The local form F on E� is well
de�ned if, for all ˛ 2 S�, we have the invariance condition

F.˛/.u; v/ D
X

s

F.˛s/. su;  sv/; for all u; v 2 E: (15)

In this case the limit in (14) is the limit of an eventually constant sequence.

In particular, a given �xed form E on E gives a constant invariant form on E�

if and only if

E.u; v/ D
X

s

E. su;  sv/; for all u; v 2 E: (16)
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4.1.3. The Hilbert space of E -valued processes and the orthogonal decom-

position. Given a restriction system  D ¹ sº and an local invariant positive
de�nite form F satisfying (15), we obtain a non-degenerate inner product hf; gi

E

on E� as the limit in (14). We let E D E. ;F/ be the Hilbert space obtained as
the completion of E� with respect to the norm

kf kE D .hf; f i
E
/1=2:

The spacesEn of processes of degree less than n are closed subspaces ofE. We
can de�ne E

.n/ WD En 	 En�1 as the orthogonal complement of En�1 inside En.
This gives us an orthogonal decomposition of E, so that any f 2 E has a unique
expression f D

P1
nD0 f

.n/, where f .n/ 2 E
.n/ and kf k2

E
D
P1

nD0 kf .n/k2
E
.

This orthogonal decomposition lets us express a process limit f by a unique

representative process

f .˛/ D f .0/.˛/C � � � C f .n/.˛/; for ˛ 2 Sn:

For a number  2 .0; 1/, we de�ne the Banach space E with the norm kxk

kf kE
D

1
X

iD0

�ikf .i/kE:

4.1.4. The martingale representation of L2.X; �/. Note that for any probabil-
ity measure � on X, we can construct the martingale representation of the space
L2.X; �/ as a graded Hilbert space according to the scheme above as follows: let
E be the space R of real numbers and let the restriction system ¹ sº be given by
 s.x/ D x. This gives the usual restriction of functions and the corresponding
limits in E� are locally constant functions: the spaces En, n � 0, will correspond
to the spaces of Fn-measurable functions. We use a non-constant local invariant
form F.˛/ given by F.˛/.x; y/ D �.˛/xy and the invariance condition (15) holds
since

X

s

�.˛s/xy D �.˛/xy:

Since, for f; g 2 En, the limit hf; giE in (14), gives

hf; giE D
X

˛

f .˛/g.˛/�.˛/ D
Z

f .x/g.x/ d�.x/:

The closure E of E� will hence give an isometric copy of the space L2.X; �/.
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4.2. The operator valued Hilbert space V. We show (by copying some argu-
ments given by Kusuoka in [13]) that, starting from a system ¹Asº of restriction
maps As WH ! H on a �nite dimensional space E, we can de�ne a Hilbert space
V D V.¹Asº/ of process limits taking values in the spaceB.E/ of linear operators
onE. The inner product .� j �/ on V is induced by a constant bi-invariant (see (19))
positive de�nite bilinear form h�; �iE on B. The space V also allow us to de�ne the
shift operator Tf , f 2 V, as an isometric injective map.

Kusuoka’s paper [13] starts with a self-similar system ¹Asº of injective maps
on a �nite dimensional spaceH which is irreducible in the sense (5). It is proved
that, modulo a re-scaling (i.e. we replace As with �As for some � > 0), there
exists a unique invariant positive de�nite form E on H . In addition, there is a
corresponding dual invariant positive de�nite form R de�ned on H�, such that

R.z; w/ D
X

s

R.A�
s z; A

�
sw/; for all z; w 2 H�: (17)

From the pair E and R, we de�ne the inner product hA;Bi
E

on the space of
operators B.E/ Š H ˝H� by setting

hu˝ v�; f ˝ g�iE D E.u; f /R.v�; g�/; u; f 2 H; v�; g� 2 H�; (18)

for rank one operators and then extend it by bilinearity. If we have a Hilbert space
structure on H (and H�) so that E and R are represented as symmetric operators
in B then the inner product is given by hA;Bi

E
D Tr.B�

EAR/. In particular, if
we assume that the inner product onH is the form R — so that R is represented by
the identity operator — then we see that (16) and (17) take the forms (3) and (4),
which were our starting points.

The system ¹Asº acts onF 2 B.E/ both from the left, AsF D As ıF , and from
the right, FAs D F ı As. The form hF;Gi

E
is then both left and right invariant,

i.e.
hF;Gi

E
D
X

s

hAsF ;AsGi
E

D
X

s

hFAs ; GAsiE ; (19)

on account of E satisfying (16) and R satisfying (17). In particular, we can
consistently de�ne the corresponding Kusuoka measure on .X;F/ by taking
�.˛/ D hA.˛/; A.˛/iE, where A.˛/ denotes the composition A˛1

ı � � � ı A˛n
.

The left invariance of h�; �iE in (19), states that the form h�; �iE on the �nite
dimensional space B is invariant with respect to the restriction system  s.F / D
AsF . We obtain, by the general construction above, a graded Hilbert space V with
a scalar product

.F j G/ D lim
n!1

X

˛2Sn

hF.˛/; G.˛/i
E
: (20)
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The grading means that V has the orthogonal decomposition ˚n�0V
.n/ so that

.F j G/ D
X

n�0

.F .n/ j G.n//:

An element G.˛s/ 2 Vn, ˛s 2 Sn, belongs to V
.n/, n � 1, if and only if the

relation
X

s

A�
s EG.˛s/ D 0 (21)

holds for all ˛ 2 Sn�1. This follows since if F.˛/ 2 Vn�1 then

.F j G/ D
X

˛

X

s

hG.˛s/; AsF.˛/iE D
X

˛

Tr
��

X

s

A�
sEG.˛s/

�

F.˛/
�

:

This can be zero for arbitrary F only if G satis�es (21).
A process F 2 V belongs to V

.0/ if and only if F.˛/ D A.˛/F0 for some
constant operator F0 D F.;/ 2 B. The process A.˛/ denotes the “identity
process” A 2 V

.0/ with A.;/ D I .

4.3. The shift operator and the transfer operator on V and a spectral gap.

Because of the right invariance in (19), we can furthermore consistently de�ne
the left shift operator T as the injective map TWV ! V given by

TF.s˛/ D F.˛/As: (22)

It is an isometric embedding in the sense that .F j G/ D .TF j TG/. Note also
that if F 2 V� has �nite degree, then deg.TF / D deg.F /C 1 and that the space
V

.k/, k � 0, is embedded by T into the space V.kC1/, since T manifestly preserves
the orthogonality condition (21).

The transfer operator LWV ! V is de�ned as the dual of T, i.e. LWV ! V

satis�es .LF j G/ D .F j TG/ for all F;G 2 V. For F;G 2 V�, we have

.F j TG/ D
X

˛

X

s

Tr.A�
sG.˛/

�
EF.s˛//

D
X

˛

Tr
�

G.˛/� E
�

X

s

F.s˛/A�
s

��

provided `.˛/ is large enough. It follows that the operator LWV ! V is explicitly
given by the expression

.LF /.˛/ D
X

s2S

F.s˛/A�
s ; (23)
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which is a simple multiplicative operator, analogous to the transfer operator for a
Bernoulli measure.

Since it is dual to the isometric embedding T, it must be that L is a contraction,
i.e. kLF k � kF k. From (4), it is also clear that the process A.˛/ is an eigenvector
to L corresponding to eigenvalue � D 1, since

P

s A.˛/AsA
�
s D A.˛/. The

operator L acts as a reverse shift operator on the spaces Tk.V/, k > 0. Its essential
spectral radius is therefore 1.

Note also that L preserves the space of constants V
.0/: from (23) it follows

that if G.˛/ D A.˛/G0, ˛ 2 S�, then

LG.˛/ D A.˛/M.G0/; (24)

where, MWB ! B is the operator de�ned in (6).

For 0 <  � 1, we de�ne the Banach space V by the norm

kF k D
1
X

nD0

�nkF .n/k: (25)

We want to show that the operator L D L jV
, i.e. L restricted to V , has a

spectral gap. Recall that the spectrum �.L/ of an operator LWV ! V is the set of
complex numbers z such that the operator zI � L is not invertible.

Theorem 6. Assume 0 <  < 1 and consider the operator L of L restricted to

V . Then L has the eigenvalue � D 1 corresponding to the unique eigenvector

A. There is also a constant �1 < 1, such that �.L / n ¹1º is contained in the disc

of radius � D max¹; �1º.

Note that the essential spectral radius of L is  .

4.4. Proof of Theorem 6. We prove the following two bounds. Firstly that

kLXk D �kC1k.LX/.k�1/k � kXk ; for all X 2 V
.k/; k � 1: (26)

Secondly, we show that for some �1 < 1 and some C � 1, we have that

kLk Xk � C�k
1 kXk; for all X 2 V

.0/; .X j A/ D 0: (27)
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For � D max¹�1; º, it follows from (26) and (27) that for

Y D Y .0/ C Y .1/ C � � � ;

such that .Y j A/ D .Y .0/j A/ D 0, we have

kLk Y k �
1
X

j D0

kLk Y .j /k

�
k
X

j D0

j � C�k�j
1 kY .j /k C

1
X

j DkC1

k � kY .j /k :

Here we use that .Lj Y .j /j A/ D 0 which follows from the observation that

.LX j A/ D .X jT A/ D .X j A/:

Hence,

kLk Y k � C�k �
1
X

j D0

kY .j /k D C�k � kY k :

This shows that the spectral radius of L restricted to the space of the elements Y
in V such that .Y j A/ D 0 is less than �.

4.4.1. Proof of the bound (26). The bound (26) is a consequence of L being a
contraction, that is

kLXk � kXk:

Since T is an isometric embedding any ON-basis ¹Eiº of V is transported to an
ON-basis ¹TEiº of T.V/ and, by Parseval’s identity, the squared norm satis�es

kLXk2 D
X

i

.LX j Ei /
2 D

X

i

.X j TEi /
2 � kXk2: (28)

If X 2 V
.k/, k � 0, then we �nd that LX 2 V

.k�1/, since the dual operator, T,
restricts to an isometric embedding of V.k�1/ into V

.k/. Taking an ON-basis E.j /

l

of V.j / and using (28) shows that

kLXk D k.LX/.k�1/k D kL ı projW Xk � kXk;

where projW is the orthogonal projection onto the subspaceW D T.V.k�1//.
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4.4.2. Proof of the bound (27). For convenience, we extend the setting to
complex matrices in order to include the case of anti-symmetric matrices. Let
D be the space of Hermitian (self-adjoint) operators B such that hB; I i

E
D

Tr.EB/ D 0. We extend the operator M to complex matrices and D is then an
M-invariant subspace, since

Tr.EM.B/I / D Tr.M�.E/B/ D Tr.EB/

on account of (3).

Lemma 7. Assume (5) holds. There are constants �1 < 1 such that for anyB 2 D

we have

k Mk.B/k � C0�
k
1 kBk

E
; (29)

for some C0 > 0.

In order to show (27) it is enough, by (24), to consider the operator M in (6)
acting on B. Since any element in B uniquely can be represented as an orthogonal
sum of an symmetric and anti-symmetric operator, it su�ces to analyse the action
of M restricted to D, since the map B 7! i � B is an isomorphism between the
space D and the M-invariant space of anti-Hermitian matrices.

4.4.3. Proof of Lemma 7. We can take �1 as the maximum eigenvalue of the
operator M restricted to D.

For a Hermitian operator B 2 D, let �.B/ D ¹�iº � R denote its spectrum.
Let �.M.B// D ¹j º � R denote the spectrum of M.B/ 2 D. We have the
spectral decompositions

B D
X

i

�iPi and M.B/ D
X

i

�i M.Pi/ D
X

j

jQj ; (30)

where Pi and Qj refers to systems of orthogonal projections such that
P

i Pi D
P

j Qj D I . Let, for the moment, hA;Bi WD Tr.AB�/ denote the Hilbert–Schmidt
scalar product on B D B.H/. Then ¹Piº and ¹Qj º are orthogonal sets under h�; �i.
(We have PiPi 0 D 0 if i 6D i 0.) Taking the orthogonal projection in the direction
of Qj of both sides in (30) gives, for each j , the equation

�

X

i

cij�i

�

Qj D jQj (31)

where

cij D hM.Pi/;Qj i
hQj ; Qj i and

X

i

cij D hI;Qj i
hQj ; Qj i D 1; (32)
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since
P

i M.Pi / D M.I / D I by (4). The coe�cients cij cannot be negative,
since

hM.Pi /;Qj i D Tr.M.Pi/Qj / D Tr.Qj M.Pi/Qj / � 0: (33)

This is a consequence of the positivity of M, i.e. that M preserves the cone of
positive semide�nite matrices so that M.Pi /, and hence Qj M.Pi/Qj , both are
positive semi-de�nite.

Thus (31) expresses each eigenvalue j of M.B/ as a convex combination of
the eigenvalues ¹�j º. In particular, if we order them so that 1 > 2 > � � � and
�1 > �2 > � � � then

1 D
X

i

ci1�i � �1:

Since M is an operator on �nite dimensional space, there is some eigenvector
B 2 D corresponding to � 2 �.M/ of maximum modulus. If we assume that B is
an eigenvector of M then j D ��j and we can assume that Qj D Pj .

If we assume that j� j D 1, then it must hold that c11 D 1 and ci1 D 0 for
i D 2; : : : . But that is equivalent to the equalities

hM.P1/; P1i D hP1; P1i and hM.P1/; I � P1i D 0: (34)

A consequence of positivity is that Pi M.I�Pi /Pi � 0 and thus, since M.I / D I ,
that 0 � Pi M.Pi /Pi � Pi . Hence, it follows from (34) that, in fact, M.P1/ D P1.

Moreover, since each term in the sum

M.P1/ D
X

s

As P1A
�
s D P1

is positive de�nite, it follows that A�
s .W / � W for all s, where W is the range

of P1. This contradicts the irreducibility condition (5) unless P1 D I . However,
that would imply that B is a scalar multiple of I , which contradicts the condition
hB; I i

E
D 0.

4.5. Strict contraction in Schatten norms. If the operators ¹Asº are symmetric,
then the scalar product h�; �i

E
is proportional to h�; �i. In other wordsE D 1

d
I , where

d is the dimension of H and, in particular, we have the identity

Tr.M.B// D hM.B/; I i D hB; I i D Tr.B/; (35)

since this holds for h�; �iE.
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In this case, we obtain strict contractivity of M for all Schatten norms k�kp

on D, which we de�ne for p � 1 as

kAkp D Tr.jAjp/1=p

where jAj denotes the positive part of the operator A, i.e. the unique positive
de�nite operator jAj such that A D jAjR for some orthonormal operator R. For
any Hermitian matrix A we can write jAj D

P

i j�i jPi , where A D
P

i �iPi is
the spectral decomposition of A. The norm kAkp can then be expressed as

kAkp D
�

X

i

j�i jp hPi ; Pi i
�1=p

:

Lemma 8. Assume that the restriction maps As are all symmetric. For all p � 1,

there is a constant �1;p , 0 < �1;p < 1, such that

kM.B/kp � �1;p kBkp ; (36)

for all B 2 D.

From the explicit action of M given in (10) it is clear that �1;p D 4=5, for all
p, if we restrict to the particular case of the Sierpiński gasket.

Proof of Lemma 8. We use the notation from the argument showing Lemma 7.
From the fact that j can be expressed as a convex combination of the �is, we
obtain

kM.B/kp
p D

X

j

ˇ

ˇ

ˇ

X

i

cij�i

ˇ

ˇ

ˇ

p

hQj ; Qj i �
X

j

X

i

cij j�i jphQj ; Qj i

using Jensen’s inequality.
The de�nition cij D

˝

M.Pi /;Qj

˛

=
˝

Qj ; Qj

˛

of cij shows that

kM.B/kp
p �

X

i

j�i jp
�

X

j

˝

M.Pi /;Qj

˛

�

D
X

i

j�i jp hM.Pi/; I i

D
X

i

j�i jp hPi ; Pii

D kBkp
p

on account of (35).
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The irreducibility condition implies that Jensen’s inequality must be strict for
all B . Compactness leads us to deduce that M is a strict contraction on D in the
norm k�kp. �

5. Proofs of the main results

5.1. Proof of Theorem 1. Consider the construction of L2.X; �/ given in Sec-
tion 4.1.4 above. In the case when the measure considered is the Kusuoka measure
� for the system ¹Asº, we can represent a function f .x/ 2 L2.X; �/ with an oper-
ator valued process limit in V by

ˆ.f /.˛/ D f .˛/ A.˛/; (37)

where f .˛/ is the martingale process corresponding to f . This becomes an
isometry, since we have

F.˛/.f .˛/; g.˛// D �.˛/f .˛/g.˛/ D hf .˛/ A.˛/; g.˛/ A.˛/iE : (38)

Hence, ˆ gives an isometric representation of L D L2.X; �/ as a closed subspace
in V.

Notice that ˆ preserves the grading, so that deg.ˆ.f // D deg.f / for f 2 L�

andˆ.f / 2 V�. Hence the representations of f 2 L asˆ.f / 2 V are isometric
as well. It is also clear that ˆ commutes with the shift operator, i.e.

ˆ.Tf /.s˛/ D A.s˛/f .˛/ D Asˆ.f /.˛/ D T .ˆ.f /.s˛// :

From now on we view the space L as a closed subspace of V and drop the explicit
use of ˆ.

For the qualitative results of this paper, it is inessential if we replace (9) by the
stronger condition that

c WD inf
F

X

s

hAsFA
�
s ; I i2

E
> 0; (39)

and then take �2 D .1 � c/1=2. If (9) holds for a certain k > 1, we can then use
an “amalgamated” symbolic space based on the symbols S 0 D Sk and the maps
by A0

s0 D A.s0/, s0 2 S 0. Moreover, using  0 D k will relate the -norms on the
original and the amalgamated system.

Let Q be the orthogonal projection of V onto L. The transfer operator L on L,
is de�ned by the duality (11). By the (implied) isometry ˆ, we have

hLf; giL D hf; TgiL D .f j Tg/ D .Lf j g/ D hQ ıL f; giL : (40)
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The operator LWL ! L can hence be expressed as the composition L D Q ıL.
From using L

k and Tk instead of L and T in (40), we deduce furthermore that

Lk D Q ıLk ; for k � 1.

It follows that R.s/ D .L � s1/�1 is given by Q ıR.s/, where R.s/ D .L�s1/�1.
If Q is a continuous map on V then kR.s/k � CkR.s/k. The spectrum �.L/ of
L is therefore contained in the spectrum �.L/ of L. Since Theorem 6 states that
L jV

has a spectral gap for all  < 1, we deduce that Theorem 1 holds for those 
such that the operator Q is a well de�ned and continuous on V .

For a process G.˛/ 2 V, the projected process QG has explicitly the form

.QG/.˛/ D �.˛/�1 hG.˛/; A.˛/iE A.˛/: (41)

In other words, the value QG.˛/ is, locally for each ˛, the h�; �iE-orthogonal
projection of the value G.˛/ 2 B onto the line in B spanned by A.˛/. The explicit
form (41) follows since an orthornomal basis for Ln D Vn \ L is given by

¹��1=2.ˇ/ A 1ˇ Wˇ 2 Snº;

where 1ˇ denotes the real-valued process

1ˇ .˛/ D

8

<

:

1 if ˛ D ˇ for some  2 S�,

0 otherwise:

We have hA.˛/; A.˛/iE D �.˛/ so, from (41), we deduce that the squared norm
k Qm F k2 of a projection can be expressed as

k Qm F k2 D
X

ˇ2Sm

hF.ˇ/; A.ˇ/i2
E
: (42)

That the projection Q is continuous as a projection operator between V and L

is a nontrivial result since the projection does not preserve the grading: the image
of V.k/ under Q spreads out on the spaces L.j / D L \ V

.j /, for j � k. Hence,
the norm k QF kV

, F 2 V , is not necessarily bounded in terms of kF kV
.

We state and prove it as a lemma.

5.2. The continuity of the projection

Lemma 9 (Continuity of Q). Let �2 D
p
1 � c where c is the constant in the

irreducibility condition (39). For any �xed k and any G 2 V
.k/

k.QG/.j /k � �
j �k
2 kGk:
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In particular, we get, for any G 2 V , that

k QGk � 1

1 � .�2=/
� kGk ;

provided  > �2. Let Qn denote the orthogonal projection onto the closed
subspace Ln. For G in V

.k/, we have QnG D 0 for n < k. Let

ZŒn� D G � QnG; n � k

so that QZŒn� D
P

m>n.QG/
.m/ and .QG/.nC1/ D QnC1Z

Œn�.

Proof of Lemma 9. It is enough to show that, with c as in the irreducibility con-
dition (9), we have, for all n > k, that

k QnC1Z
Œn�k2 � ck QZŒn�k2: (43)

By induction and orthogonality of QnC1Z
Œn� and QZŒnC1�, we obtain

k QZŒnC1�k2 D k QZŒn�k2 � k QnC1Z
Œn�k2 � �2

2 k QZŒn�k2

and the sought after statement in Lemma 9 follows by induction, since

k QZŒk�k � kGk:

Any process F of degree deg.F / � n, has the orthogonal decompositions

F D
X

˛2Sn

F 1˛

of “localised” processes. Furthermore, the projections Qm, m � 1, respect this
localisation, i.e. Qm F is the orthogonal sum

P

˛ Qm.F 1˛/. It follows that it is
enough to show that

k QnC1Zk2 � ck QZk; (44)

for a part Z D ZŒn�
1˛ of Z, where ˛ 2 Sn is �xed.

Furthermore, for ˇ D ˛ 2 Sm, where m � n, we have

hZ.ˇ/; A.ˇ/i
E

D Tr.EZ.ˇ/ A.˛/� A./�/ D hZ.˛/ A.˛/�; A./i
E
: (45)

It follows that
k QmZk D k Qm�nXk; for m � n;

where X./ D A./X0 2 V
.0/ is a constant process with X0 D Z.˛/ A.˛/�.

Moreover, it follows from (45) that

QnX D Qn
zX;
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where

zX.˛/ D A.˛/
1

2
.X0 CX�

0 /;

i.e the process based on the symmetric part of X0: if W 2 B is anti-symmetric
and Y D AW then QY D 0 since

hA.˛/W ; A.˛/iE D Tr.E A.˛/W A.˛/�/ D 0:

It follows that to show (44) is equivalent to showing that

k Q1Xk2 D
X

s

hAsX0A
�
s ; I i2

E
� ck QXk2; (46)

where X D AX0 2 V
.0/ and X0 is the symmetric part of ZŒn�.˛/ A.˛/�. Since

ZŒn� D G � QnG, we moreover have that

hX0; I i
E

D hZŒn�.˛/; A.˛/iE D 0:

But, since Q is a projection, we have

k QXk2 � kXk D kX0k2
E
;

and thus (46) is a direct consequence of the strong irreducibility condition (9). �

5.3. Proof of Theorem 4. In the case of the of the Sierpiński gasket and its
generalizations, the family SGn, the restriction maps As, s 2 S , are symmetric.
It follows that the kAkE is 1=d times the Hilbert–Schmidt norm. Moreover, as is
shown in Section 4.5, the symmetry of As also implies that M contracts strictly in
the Schatten-norms.

It follows directly from (3) that

Hn.x/ D An.x/
�
EAn.x/

Tr.An.x/�EAn.x//

is a positive semi-de�nite and bounded matrix-valued �-martingale process that,
by the Martingale Convergence Theorem, converges �-almost everywhere to a
limit H.x/ such that

Tr.H.x// D 1: (47)

We can write

�.˛ j Œx�n/ D Tr.EAn.x/ A.˛/ A.˛/
�
An.x/

Tr.An.x/�EAn.x//
D Tr.Hn.x/ A.˛/ A.˛/

�/:
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If we take the limit n ! 1 we obtain

�.˛jx/ D Tr
�

H.x/ A.˛/ A.˛/�
�

(48)

�-almost everywhere.

Assume now that f is Fk-measurable function, f .x/ D f .˛/ for ˛ 2 S Œ0;k/.
By linearity of trace,

LmCkf .x/ D
X

˛2Sk

ˇ2S Œk;mCk/

�.˛ˇjx/f .˛ˇx/

D
X

˛

Tr
�

H.x/
�

X

ˇ

A.ˇ/ A.˛/ A.˛/� A.ˇ/�
��

f .˛/

D
X

˛

Tr
�

H.x/Mm
�

A.˛/ A.˛/�
��

f .˛/:

Since Mm.I / D I and Tr.H.x// D 1, we obtain that

LmCkf .x/ �
Z

f d� D
X

˛

Tr.H.x/Mm.A.˛/ A.˛/� � �.˛/I //f .˛/:

For the proof of Theorem 4, it thus remains to show that for some constant
0 < �1 < 1

j Tr.H.x/Mm.A.˛/ A.˛/� � �.˛/I //j � d � �m
1 � �.˛/; (49)

uniformly for all x

Let B˛ denote the symmetric zero-trace matrix B˛ D A.˛/ A.˛/� � �.˛/I .
By Hölder’s inequality for the Schatten norms we have

j Tr.H.x/Mm.B˛//j � kH.x/k1 � kMm.B˛/k1 : (50)

We have kH.x/k1 � kH.x/k1 D 1, by (47), and (36) implies that

Tr.j Mm.B˛/j/ � �m
1 Tr.jB˛j/ D d � �m

1 Tr.EjB˛j/;

where �1 D �1;1. We then see that (49) follows from the estimate

Tr.EjB˛j/ D Tr.E � j A.˛/ A.˛/� � �.˛/I j/ � Tr.E A.˛/ A.˛/�/ D �.˛/:
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