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Quantization and centroidal Voronoi tessellations

for probability measures on dyadic Cantor sets

Mrinal Kanti Roychowdhury1

Abstract. Quantization of a probability distribution is the process of estimating a given

probability by a discrete probability that assumes only a �nite number of levels in its

support. Centroidal Voronoi tessellations (CVT) are Voronoi tessellations of a region such

that the generating points of the tessellations are also the centroids of the corresponding

Voronoi regions. In this paper, we investigate the optimal quantization and the centroidal

Voronoi tessellations with n generators for a Borel probability measure P on R supported

by a dyadic Cantor set generated by two self-similar mappings with similarity ratios r ,

where 0 < r � 5�
p

17
2

.
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1. Introduction

In the context of communication theory, quantization is the process by which data

is reduced to a simpler, more coarse representation which is more compatible

with digital processing. Loosely speaking, quantization is the heart of analog to

digital conversion. It is an area which has increased in importance in the last

few decades due to the burgeoning advances in digital technology. Quantization

for probability distributions refers to the idea of estimating a given probability

measure by a discrete probability measure with �nite support. We refer to [4, 9, 11]

for surveys on the subject and comprehensive lists of references to the literature,

see also [1, 3, 5, 6]. For mathematical treatment of quantization one is referred

to Graf-Luschgy’s book (see [7]). Let Rd denote the d -dimensional Euclidean

space, k � k denote the Euclidean norm on R
d for any d � 1, and n 2 N. Then,

1 The research of the author was supported by U.S. National Security Agency (NSA) Grant

H98230-14-1-0320.
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the nth quantization error for a Borel probability measure P on R
d is de�ned by

Vn WD Vn.P / D inf

² Z

min
a2˛

kx � ak2dP.x/W ˛ � R
d ; card.˛/ � n

³

; (1)

where the in�mum is taken over all subsets ˛ of R
d with card.˛/ � n. If

R

kxk2dP.x/ < 1, then there is some set ˛ for which the in�mum is achieved

(see [5, 6, 7]). Such a set ˛ for which the in�mum occurs and contains no

more than n points is called an optimal set of n-means, or optimal set of n-

quantizers. If ˛ is a �nite set, in general, the error
R

mina2˛ kx � ak2dP.x/ is

often referred to as the cost or distortion error for ˛, and is denoted by V.P I ˛/.

Thus, Vn WD Vn.P / D inf¹V.P I ˛/W ˛ � R
d ; card.˛/ � nº. It is known that for a

continuous probability measure P an optimal set of n-means always has exactly

n elements (see [7]). Given a �nite subset ˛ � R
d , the Voronoi region generated

by a 2 ˛ is de�ned by

M.aj˛/ D ¹x 2 R
d W kx � ak D min

b2˛
kx � bkº

i.e., the Voronoi region generated by a 2 ˛ is the set of all elements in R
d which

are closer to a than to any other element in ˛, and the set ¹M.aj˛/W a 2 ˛º is called

the Voronoi diagram or Voronoi tessellation of R
d with respect to ˛. A Borel

measurable partition ¹AaW a 2 ˛º of Rd is called a Voronoi partition of Rd with

respect to ˛ (and P ) if P -almost surely Aa � M.aj˛/ for every a 2 ˛. Notice that

if ˛ D ¹a1; a2; : : : ; anº is an optimal set of n-means for P and ¹A1; A2; : : : ; Anº
is a Voronoi partition with respect to ˛, then Vn D

Pn
iD1

R

Ai
kx � aik2dP.x/:

Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a region

such that the generating points of the tessellations are also the centroids of the

corresponding Voronoi regions. A CVT with n generators, also called a CVT with

n-means, associated with a probability measure P is called an optimal centroidal

Voronoi tessellation (OCVT) if the n generators form an optimal set of n-means

for P . Let us now state the following proposition (see [4, 7]).

Proposition 1.1. Let ˛ be an optimal set of n-means, a 2 ˛, and M.aj˛/ be the

Voronoi region generated by a 2 ˛, i.e., M.a j ˛/ D ¹x 2 R
d W kx � ak D

minb2˛ kx � bkº. Then, for every a 2 ˛,

(i) P.M.aj˛// > 0,

(ii) P.@M.aj˛// D 0,

(iii) a D E.X W X 2 M.aj˛//, and

(iv) P -almost surely the set ¹M.aj˛/W a 2 ˛º forms a Voronoi partition of Rd .
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Remark 1.2. Let ˛ be an optimal set of n-means and a 2 ˛, then by Proposi-

tion 1.1, we have

a D 1

P.M.aj˛//

Z

M.aj˛/

xdP D

Z

M.aj˛/

xdP

Z

M.aj˛/

dP

;

which implies that a is the centroid of the Voronoi region M.aj˛/ associated

with the probability measure P (see also [2]). Thus, we can say that for a Borel

probability measure P on R
d , an optimal set of n-means forms a centroidal

Voronoi tessellation ofRd ; however, the converse is not true in general (see [2, 4]).

Let S1; S2WR ! R be two contractive similarity mappings such that S1.x/ D
rx and S2.x/ D rx C .1 � r/ for 0 < r < 1

2
. Then, there exists a unique Borel

probability measure P on R such that P D 1
2
P ıS�1

1 C 1
2
P ıS�1

2 , where P ıS�1
i

denotes the image measure of P with respect to Si for i D 1; 2 (see [10]). Such

a P has support the Cantor set generated by the two mappings S1 and S2. In this

paper, in Section 3, we have given a centroidal Voronoi tessellation (CVT) for

the probability measure P supported by the Cantor set generated by S1.x/ D 4
9
x

and S2.x/ D 4
9
x C 5

9
. The formula in this paper can be used to obtain a CVT

for P on any Cantor set generated by S1.x/ D rx and S2.x/ D rx C .1 � r/,

where 0:4364590141 � r � 0:4512271429 (written up to ten decimal places). For

the classical Cantor set C , i.e., when r D 1
3
, in the paper [8], Graf and Luschgy

determined the optimal sets of n-means for the probability measure P for all n � 2.

For a long time it was believed that using the same formula given in [8], one could

determine the optimal sets of n-means for all n � 2 for the probability measure

P supported by any Cantor set generated by the two mappings S1.x/ D rx and

S2.x/ D rx C .1 � r/ for 0 < r � 5�
p

17
2

, i.e., if 0 < r � 0:4384471872.

In Proposition 4.3 we have shown that it is not always true, by showing that if

0:4371985206 < r � 0:4384471872 and n is not of the form 2`.n/ for any positive

integer `.n/, then the distortion error of the CVT obtained using the formula in this

paper is smaller than the distortion error of the CVT obtained using the formula

given by Graf-Luschgy in [8]. In fact, in Section 5, we have further improved this

bound which is given in Remark 5.3. In addition, the work in this paper shows that

under squared error distortion measure, the centroid condition is not su�cient for

optimal quantization for a singular continuous probability measure. Recall that

the centroid condition is not su�cient for optimal quantization for an absolutely

continuous probability measure is already known (see [2] and [4, Chapter 6]).
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2. Preliminaries

By a string or a word � over an alphabet ¹1; 2º, we mean a �nite sequence

� WD �1�2 : : : �k of symbols from the alphabet, where k � 1, and k is called

the length of the word � . A word of length zero is called the empty word, and

is denoted by ;. By ¹1; 2º�, we denote the set of all words over the alphabet

¹1; 2º of some �nite length k including the empty word ;. By j� j, we denote

the length of a word � 2 ¹1; 2º�. For any two words � WD �1�2 : : : �k and

� WD �1�2 : : : �` in ¹1; 2º�, by �� WD �1 : : : �k�1 : : : �`, we mean the word obtained

from the concatenation of the two words � and � . Let S1 and S2 be two contractive

similarity mappings on R given by S1.x/ D 4
9
x and S2.x/ D 4

9
x C 5

9
. For

� WD �1�2 : : : �k 2 ¹1; 2ºk, set S� WD S�1
ı � � � ı S�k

and J� WD S� .Œ0; 1�/.

For the empty word ;, by S;, it is meant the identity mapping on R, and write

J WD J; D S;.Œ0; 1�/ D Œ0; 1�. Then, the set C WD
T

k2N
S

�2¹1;2ºk J� is known as

the Cantor set generated by the two mappings S1 and S2, and equals the support

of the probability measure P given by P D 1
2
P ı S�1

1 C 1
2
P ı S�1

2 . For any

� 2 ¹1; 2º�, the intervals J�1 and J�2 into which J� is split up are called the

basic intervals of J� . For � D �1�2 : : : �k 2 ¹1; 2º�, k � 0, write p� WD 1

2k and

s� WD .4
9
/k.

Let X be a random variable with probability distribution P . By E.X/ and

V WD V.X/; we mean the expectation and the variance of the random variable X .

For words ˇ; 
; : : : ; ı in ¹1; 2º�, by a.ˇ; 
; : : : ; ı/, we mean the conditional expec-

tation of the random variable X given Jˇ [ J
 [ � � � [ Jı ; i.e.,

a.ˇ; 
; : : : ; ı/ D E.X j X 2 Jˇ [ J
 [ � � � [ Jı/

D 1

P.Jˇ [ � � � [ Jı/

Z

Jˇ[���[Jı

xdP:
(2)

Let us now give the following lemmas.

Lemma 2.1. Let f WR ! R
C be Borel measurable and k 2 N. Then

Z

fdP D
X

�2¹1;2ºk

1

2k

Z

f ı S� dP:

Proof. We know P D 1
2
P ı S�1

1 C 1
2
P ı S�1

2 , and so by induction

P D
X

�2¹1;2ºk

1

2k
P ı S�1

� ;

and thus the lemma is yielded. �
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Lemma 2.2. E.X/ D 1
2

and V WD V.X/ D 5
52

; and for any x0 2 R,

Z

.x � x0/2dP.x/ D V.X/ C
�

x0 � 1

2

�2

:

Proof. We have

E.X/ D
Z

xdP.x/

D 1

2

Z

4

9
xdP.x/ C 1

2

Z

�4

9
x C 5

9

�

dP.x/

D 4

18
E.X/ C 4

18
E.X/ C 5

18

D 4

9
E.X/ C 5

18
;

which implies E.X/ D 1
2
I

E.X2/ D
Z

x2dP.x/

D 1

2

Z

x2dP ı S�1
1 .x/ C 1

2

Z

x2dP ı S�1
2 .x/

D 1

2

Z

16

81
x2dP.x/ C 1

2

Z

�4

9
x C 5

9

�2

dP.x/

D 16

81
E.X2/ C 20

81
E.X/ C 25

162

D 16

81
E.X2/ C 20

162
C 25

162
;

which implies E.X2/ D 9
26

, and hence

V.X/ D E.X � E.X//2 D E.X2/ � .E.X//2 D 9

26
�

�1

2

�2

D 5

52
:

Then, following the standard theory of probability, we have

Z

.x � x0/2dP.x/ D V.X/ C .x0 � E.X//2;

and thus the lemma is yielded. �
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Corollary 2.3. Let � 2 ¹1; 2º�. Then, for any x0 2 R,

Z

J�

.x � x0/2dP.x/ D p�

�

s2
� V C

�

S�

�1

2

�

� x0

�2�

: (3)

Note 2.4. Notice that from the above lemma it follows that the optimal set of

one-mean is the expected value and the corresponding quantization error is the

variance V of the random variable X . For � 2 ¹1; 2ºk, k � 1, since a.�/ D
E.X W X 2 J� /, using Lemma 2.1, we have

a.�/ D 1

P.J�/

Z

J�

x dP.x/

D
Z

J�

x dP ı S�1
� .x/

D
Z

S� .x/ dP.x/

D E.S� .X//:

Since S1 and S2 are similarity mappings, it is easy to see that E.Sj .X// D
Sj .E.X// for j D 1; 2 and so by induction,

a.�/ D E.S� .X// D S� .E.X// D S�

�1

2

�

for � 2 ¹1; 2ºk, k � 1.

In the next section, Proposition 3.3, Proposition 3.11 and Proposition 3.12

determine the centroidal Voronoi tessellations with n generators for the probability

measure P for all n � 2.

3. Centroidal Voronoi tessellations for all n � 2

In this section, we determine the CVTs with n-means for each n � 2 of the Cantor

set C generated by the two mappings S1 and S2 de�ned by S1.x/ D 4
9
x and

S2.x/ D 4
9
x C 5

9
for x 2 R. As the probability distribution P has support the

Cantor set C and C � J , a CVT of J with respect to the probability distribution

is also a CVT of C and vice versa. Once we know a CVT, using the formula (3),

the corresponding distortion error can easily be obtained. Write

A� WD ¹a.�11; �121; �1221/; a.�1222; �21/; a.�22/º;
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or

A� WD ¹a.�11/; a.�12; �2111/; a.�2112; �212; �22/º:

If � is the empty word ;, then we have

A WD A; D ¹a.11; 121; 1221/; a.1222; 21/; a.22/º;
or

A WD A; D ¹a.11/; a.12; 2111/; a.2112; 212; 22/º:

Let us now prove the following lemma.

Lemma 3.1. Similarity mappings preserve the ratio of the distances of a point

from any other two points.

Proof. Let a; b; c 2 R. For any � 2 ¹1; 2ºk it is enough to prove that

jb � aj
jc � bj D jS�.b/ � S�.a/j

jS� .c/ � S� .b/j ;

which is clearly true, since

jS�.b/ � S�.a/j
jS�.c/ � S�.b/j D s� jb � aj

s� jc � bj D jb � aj
jc � bj : �

Remark 3.2. The two mappings S1 and S2 de�ned in this paper are increasing

mappings, i.e., for any x; y 2 R, x < y implies Si .x/ < Si.y/ for i D 1; 2, and

so by Lemma 3.1 if a < b < c, we have

.c � b/.S�.b/ � S�.a// D .b � a/.S�.c/ � S�.b//:

Proposition 3.3. Let n 2 N and n D 2k for some k 2 N. Then, ˛n D
¹S�.1

2
/W � 2 ¹1; 2ºkº forms a unique optimal CVT with n-means with distortion

error Vn D
�

4
9

�2k
V .

Proof. By Remark 3.2, for any � 2 ¹1; 2ºk we have

�

1 � 1

2

��

S�

�1

2

�

� S� .0/
�

D
�1

2
� 0

��

S� .1/ � S�

�1

2

��

;

which implies S�.1
2
/ D 1

2
.S�.0/ C S�.1//, i.e., S�.1

2
/ are the midpoints of the

basic intervals J� for all � 2 ¹1; 2ºk. In addition, by Remark 1.2 and Note 2.4,

S� .1
2
/ is the centroid of J� . Thus, the set ¹S�.1

2
/W � 2 ¹1; 2ºkº forms a CVT of the

Cantor set. Moreover, by Corollary 2.3, for a 2 R,
R

J�
.x � a/2dP is minimum
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when a D S�.1
2
/. Hence, the set ˛n forms a unique optimal CVT of the Cantor

set, and then

Vn D
Z

min
a2˛n

kx � ak2dP

D
X

�2¹1;2ºk

Z

J�

min
a2˛

.x � a/2dP

D
X

�2¹1;2ºk

p� s2
� V

D
�4

9

�2k

V:

This completes the proof of the proposition. �

Lemma 3.4. Let

A D ¹a.11; 121; 1221/; a.1222; 21/; a.22/º
or

A D ¹a.11/; a.12; 2111/; a.2112; 212; 22/º:

Then, A forms a CVT with three-means of the Cantor set C .

Proof. We have

S1221.1/ D 0:395671 <
1

2
.a.11; 121; 1221/ C a.1222; 21//

D 0:400854

< S1222.0/

D 0:405426

and

S21.1/ D 0:753086

<
1

2
.a.1222; 21/ C a.22//

D 0:754839

< S22.0/

D 0:802469:

Thus, A D ¹a.11; 121; 1221/; a.1222; 21/; a.22/º forms a CVT of C . Due to

symmetry A D ¹a.11/; a.12; 2111/; a.2112; 212; 22/ºalso forms a CVT of C . �
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Lemma 3.5. The set

¹a.111; 1121; 11221/; a.11222; 121/; a.122/; a.21/; a.22/º

forms a CVT with �ve-means.

Proof. We have

S�1
1 .¹a.111; 1121; 11221/; a.11222; 121/; a.122/º/

D ¹a.11; 121; 1221/; a.1222; 21/; a.22/º:

So, by Lemma 3.4, the set

S�1
1 .¹a.111; 1121; 11221/; a.11222; 121/; a.122/º/

forms a CVT with three-means. Similarly, by Proposition 3.3, the set

S�1
2 .¹a.21/; a.22/º/ D ¹a.1/; a.2/º

forms a CVT with two-means. By Lemma 3.1, we know that the similarity

mappings preserve the ratio of the distances of a point from any other two points,

and so the set ¹a.111; 1121; 11221/; a.11222; 121/; a.122/º forms a CVT with

three-means of J1 and the set ¹a.21/; a.22/º forms a CVT with two-means of

J2. Thus, the union of the CVTs of J1 and J2 will form a CVT of the Cantor set

C if we can prove that

S122.1/ � 1

2
.a.122/ C a.21// � S21.0/;

which is clearly true since

S122.1/ D 0:444444 <
1

2
.a.122/ C a.21// D 0:527435 < S21.0/ D 0:555556:

Hence the given set forms a CVT with �ve-means. �

Remark 3.6. Similarly, we can prove that the sets

¹a.111/; a.112; 12111/; a.12112; 1212; 122/; a.21/; a.22/º;

¹a.11/; a.12/; a.211; 2121; 21221/; a.21222; 221/; a.222/º;

¹a.11/; a.12/; a.211/; a.212; 22111/; a.22112; 2212; 222/º

also form CVTs with �ve-means, i.e., the number of CVTs with �ve-means is four.
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Lemma 3.7. The set

¹a.111; 1121; 11221/; a.11222; 121/; a.122/;

a.211; 2121; 21221/; a.21222; 221/; a.222/º

forms a CVT with six-means.

Proof. The set

¹a.11; 121; 1221/; a.1222; 21/; a.22/º

forms a CVT of J with three-means. So, by Lemma 3.1, the sets

S1.¹a.11; 121; 1221/; a.1222; 21/; a.22/º/
and

S2.¹a.11; 121; 1221/; a.1222; 21/; a.22/º/

form CVTs of J1 and J2, respectively. Thus, the given set will form a CVT with

six-means if we can prove that

S122.1/ � 1

2
.a.122/ C a.211; 2121; 21221// � S211.0/;

which is clearly true since

S122.1/ D 0:444444

<
1

2
.a.122/ C a.211; 2121; 21221//

D 0:521

< S211.0/

D 0:555556:

Thus, the lemma is yielded. �

Remark 3.8. By Lemma 3.4, since there are two di�erent CVTs of J with three-

means, one can say that each of the basic intervals J1 and J2 has two di�erent

CVTs, and thus using all possible combinations one can see that the total number

of CVTs with six-means is four.

Lemma 3.9. The set

¹a.111; 1121; 11221/; a.11222; 121/; a.122/; a.211/; a.212/; a.221/; a.222/º

forms a CVT with seven-means.
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Proof. The set

¹a.11; 121; 1221/; a.1222; 21/; a.22/º

forms a CVT of J with three-means. So, by Lemma 3.1, the set

¹a.111; 1121; 11221/; a.11222; 121/; a.122/º

forms a CVT of J1 with three-means. Again by Proposition 3.3, the set

¹a.211/; a.212/; a.221/; a.222/º

forms a CVT of J2 with four-means. Hence, the union of the two CVTs will form

a CVT with seven-means if we can prove that

S122.1/ � 1

2
.a.122/ C a.211// � S211.0/;

which is clearly true since

S122.1/ D 0:444444 <
1

2
.a.122/ C a.211// D 0:5 < S211.0/ D 0:555556:

Thus, the lemma is obtained. �

Remark 3.10. Each Ji for i D 1; 2, has two di�erent CVTs, and so using all

possible combinations we see that the total number of CVTs with seven-means is

four.

Let us now prove the following two propositions.

Proposition 3.11. Let n 2 N be such that n D 2`.n/ C k, where 1 � k � 2`.n/�1.

Let I � ¹1; 2º`.n/�1 with card.I / D k D n � 2`.n/. Then, the set ˛n WD ˛n.I /,

where

˛n.I / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

[

�2I

A� [
°

S�1

�1

2

�

; S�2

�1

2

�

W � 2 ¹1; 2º`.n/�1 n I
±

if 1 � k < 2`.n/�1;
[

�2I

A� if k D 2`.n/�1 ¤ 1;

A; if k D 2`.n/�1 D 1; i.e., when n D 3;

forms a CVT with n-means. The number of CVTs for 1 � k < 2`.n/�1 is

2n�2`.n/ � 2`.n/�1

Cn�2`.n/ , and the number of CVTs for k D 2`.n/�1 is 22`.n/�1

.
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Proof. Let us �rst assume that n D 2`.n/ C k, where 1 � k < 2`.n/�1. Let

I � ¹1; 2º`.n/�1 with card.I / D n � 2`.n/. By Lemma 3.4, for each � 2 I , the

set S�1
� .A�/ forms a CVT of J with three-means, and so by Lemma 3.1 the set

A� forms a CVT of J� with three-means. Now, proceeding in the similar way as

Lemma 3.7, we can say that the set
S

�2I A� forms a CVT of
S

�2I J� . Again, for

each � 2 ¹1; 2º`.n/�1 n I the set S�1
� .¹S�1.1

2
/; S�2.1

2
/º/ forms a CVT of J with

two-means, and so by Lemma 3.1 the set ¹S�1.1
2
/; S�2.1

2
/º forms a CVT of J� with

two-means. Now, proceeding in the similar way as Lemma 3.5, we can say that the

set
S

�2I A� [ ¹S�1.1
2
/; S�2.1

2
/W � 2 ¹1; 2º`.n/�1 n I º forms a CVT with n-means.

Notice that card.I / D n � 2`.n/ and I can be chosen in 2`.n/�1
Cn�2`.n/ ways. For

each � 2 I there are two di�erent choices for A� . Hence, the number of CVTs in

this case is 2n�2`.n/ � 2`.n/�1
Cn�2`.n/ . Similarly, by Lemma 3.1, Lemma 3.4 and

proceeding in the similar way as Lemma 3.7, we can prove that if n D 2`.n/ C k,

where k D 2`.n/�1 ¤ 1 or k D 2`.n/�1 D 1, the set
S

�2I A� forms a CVT of C ,

and the number of CVTs in either case is given by 22`.n/�1
. Hence, the proposition

is yielded. �

Proposition 3.12. Let n 2 N be such that n D 3 � 2`.n/�1 C k, where 1 � k �
2`.n/�1 � 1. Let I � ¹1; 2º`.n/�1 with card.I / D n � 3 � 2`.n/�1. Then, the set

˛n WD ˛n.I /, where

˛n.I / D
�

[

�2¹1;2º`.n/�1nI

A�

�

[
°

S��

�1

2

�

W � 2 I and � 2 ¹1; 2º2
±

;

forms a CVT with n-means. The number of such sets is

22`.n/C1�n � 2`.n/�1

Cn�3�2`.n/�1 :

Proof. Let n D 3 � 2`.n/�1 C k, where 1 � k � 2`.n/�1 � 1. Let I � ¹1; 2º`.n/�1

with card.I / D n�3�2`.n/�1. For each � 2 ¹1; 2º`.n/�1nI we have S�1
� .A�/ D A,

which is a CVT of C with three-means, and so the set A� forms a CVT of J� for

each � 2 ¹1; 2º`.n/�1 n I . Again, the set ¹J�� W � 2 ¹1; 2º2º forms a CVT with four-

means of J� for each � 2 I . Thus, proceeding in the similar way as Lemma 3.9,

we can prove that the set

˛n.I / D
�

[

�2¹1;2º`.n/�1nI

A�

�

[
°

S��

�1

2

�

W � 2 I and � 2 ¹1; 2º2
±

forms a CVT of C with n-means. Notice that I can be chosen in 2`.n/�1

Cn�3�2`.n/�1

ways and card.¹1; 2º`.n/�1 n I / D 2`.n/�1 � .n � 3 � 2`.n/�1/ D 2`.n/C1 � n.
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For each � 2 ¹1; 2º`.n/�1 n I there are two di�erent choices for A� . Hence,

the number of CVTs in this case is 22`.n/C1�n � 2`.n/�1
Cn�3�2`.n/�1 . Thus, the

proposition is yielded. �

Let us now prove the following lemma.

Lemma 3.13. Let P D 1
2
P ıS�1

1 C 1
2
P ıS�1

2 be the probability measure supported

by the Cantor set generated by S1.x/ D rx and S2.x/ D rx C .1 � r/. Let n 2 N,

n � 2 and n is not of the form 2`.n/ for any `.n/ 2 N. Then, ˛n.I /, given by

Proposition 3.11 or Proposition 3.12, for each n � 2 forms a CVT if

0:4364590141 � r � 0:4512271429

(written up to ten decimal places).

Proof. Let

˛3.I / D ¹a.11; 121; 1221/; a.1222; 21/; a.22/º:

It forms a CVT if

S1221.1/ � 1

2
.a.11; 121; 1221/ C a.1222; 21// � S1222.0/

and

S21.1/ � 1

2
.a.1222; 21/ C a.22// � S22.0/;

i.e., if

0:4364590141 � r � 0:4521904271

and

0:2076973455 � r � 0:4512271429;

which yields

0:4364590141 � r � 0:4512271429:

Similarly, if

˛3.I / D ¹a.11/; a.12; 2111/; a.2112; 212; 22/º;

it will form a CVT if

0:4364590141 � r � 0:4512271429:

By Lemma 3.1, we can say that the set ˛n.I / for each n � 2 also forms a CVT if

0:4364590141 � r � 0:4512271429, and thus the lemma is yielded. �
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Remark 3.14. Proposition 3.3, Proposition 3.11 and Proposition 3.12 give the

CVTs with n-means for the probability distribution P supported by the Cantor

set generated by the mappings S1.x/ D 4
9
x and S2.x/ D 4

9
x C 5

9
for any positive

integer n � 2. Lemma 3.13 says that using the formula given in this paper, if

n is not of the form 2`.n/ for any `.n/ 2 N, one can determine the CVTs with

n-means for any n � 2, and hence the corresponding distortion error, for the

probability measure P supported by any Cantor set generated by S1.x/ D rx and

S2.x/ D rx C .1 � r/, where 0:4364590141 � r � 0:4512271429.

4. Distortion errors for two di�erent CVTs

In this section we compare the distortion errors for two di�erent CVTs with

n-means: one is obtained using the formula given by Proposition 3.3, Proposi-

tion 3.11, or Proposition 3.12 in this paper, and one is obtained using the formula

given in [8]. Let P D 1
2
P ıS�1

1 C 1
2
P ıS�1

2 be the probability measure supported

by the Cantor set generated by S1.x/ D rx and S2.x/ D rx C .1 � r/. Then, it

can be shown that if V is the variance of a random variable with distribution P in

this case, then V D 1�r
4.rC1/

.

De�nition 4.1. For n 2 N with n � 2 let `.n/ be the unique natural number with

2`.n/ � n < 2`.n/C1. For I � ¹1; 2º`.n/ with card.I / D n � 2`.n/ let ˇn.I / be the

set consisting of all midpoints a� of intervals J� with � 2 ¹1; 2º`.n/ n I and all

midpoints a�1, a�2 of the basic intervals of J� with � 2 I . Formally,

ˇn.I / D ¹a� W � 2 ¹1; 2º`.n/ n I º [ ¹a�1W � 2 I º [ ¹a�2W � 2 I º:

In [8], it was shown that ˇn.I / forms an optimal set of n-means for r D 1
3
. Let

us now prove the following lemma.

Lemma 4.2. Let ˇn.I / be the set given by De�nition 4.1. Then, ˇn.I / forms a CVT

with n-means for each n � 2 if 0 < r � 5�
p

17
2

, i.e., if 0 < r � 0:4384471872

(written up to ten decimal places).

Proof. Let a11 be the midpoint of J11, a12 be the midpoint of J12, and a2 be

the midpoint of J2. Then, ˇ3.¹1º/ D ¹a11; a12; a2º, and it will form a CVT if

S12.1/ � 1
2
.a12 C a2/ � S2.0/, which implies r � 1

2

�

�r2 C r C 2
�

� 1 � r ,

which after simpli�cation yields 0 < r � 5�
p

17
2

, i.e., 0 < r � 0:4384471872.

Thus, by Lemma 3.1, it can be seen that if 0 < r � 0:4384471872, ˇn.I / for each

n � 2 also forms a CVT, and thus the lemma is yielded. �
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Let us now prove the following proposition.

Proposition 4.3. Let ˛n.I / be the set as de�ned by Proposition 3.3, Proposi-

tion 3.11, or Proposition 3.12, and ˇn.I / be the set given by De�nition 4.1. Sup-

pose n is not of the form 2`.n/ for any positive integer `.n/. Then, V.P; ˛n.I // <

V.P; ˇn.I // if 0:4371985206 < r � 0:4384471872, where V.P; ˛n.I // and

V.P; ˇn.I // respectively denote the distortion errors for the sets ˛n.I / and ˇn.I /.

Proof. If n is of the form 2`.n/ for some positive integer `.n/, then it is easy to see

that V.P; ˛n.I // D V.P; ˇn.I //. Let us assume that n is not of the form 2`.n/ for

any positive integer `.n/. To prove V.P; ˛n.I // < V.P; ˇn.I //, due to Lemma 3.1,

it is enough to prove the inequality for n D 3, then it will be satis�ed for all other

values n D 5; 6; 7; 9; 10, etc., which are not of the form 2`.n/. Notice that in ˛3.I /

as de�ned in Proposition 3.11, the set I is an empty set. By Lemma 3.4, take

˛3.I / D ¹a.11; 121; 1221/; a.1222; 21/; a.22/º. Then, using (1) and (3), we have

V.P; ˛3.I // D V.P; ¹a.11; 121; 1221/; a.1222; 21/; a.22/º/

D
Z

J11[J121[J1221

.x � a.11; 121; 1221//2dP.x/

C
Z

J1222[J21

.x � a.1222; 21//2dP.x/

C
Z

J22

.x � a.22//2dP.x/

D
Z

J11

.x � a.11; 121; 1221//2dP.x/

C
Z

J121

.x � a.11; 121; 1221//2dP.x/

C
Z

J1221

.x � a.11; 121; 1221//2dP.x/

C
Z

J1222

.x � a.1222; 21//2dP.x/

C
Z

J21

.x � a.1222; 21//2dP.x/

C
Z

J22

.x � a.22//2dP.x/;
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which implies

V.P; ˛3.I // D 1

22
.r4V C .a.11/ � a.11; 121; 1221//2/

C 1

23
.r6V C .a.121/ � a.11; 121; 1221//2/

C 1

24
.r8V C .a.1221/ � a.11; 121; 1221//2/

C 1

24
.r8V C .a.1222/ � a.1222; 21//2/

C 1

22
.r4V C .a.21/ � a.1222; 21//2/

C 1

22
r4V:

Now, use (2), and simplify to obtain

V.P; ˛3.I // D 1

560.r C 1/
. � 3r9 � 3r8 C 14r7 � 22r6 � 71r5

C 49r4 C 4r3 C 88r2 � 84r C 28/:
(4)

To calculate V.P; ˇ3.I // we take I D ¹1º, then ˇ3.I / D ¹a.11/; a.12/; a.2/º.
Thus,

V.P; ˇ3.I //

D
Z

J11

.x � a.11//2dP C
Z

J12

.x � a.12//2dP C
Z

J2

.x � a.2//2dP

D 1

2
r4V C 1

2
r2V:

We see that V.P; ˛3.I // < V.P; ˇ3.I // if 0:4371985206 < r . Combining this

with the values of r in Lemma 4.2, we see that V.P; ˛3.I // < V.P; ˇ3.I // if

0:4371985206 < r � 0:4384471872, which yields the proposition. �

Remark 4.4. Proposition 4.3 says that if 0:4371985206 < r � 0:4384471872 and

n is not of the form 2`.n/ for any positive integer `.n/, then the distortion error for

the CVT ˛n.I / obtained in this paper is less than the distortion error for the CVT

obtained using the formula in [8]. But, until now it is not known whether this ˛n.I /

forms an optimal CVT with n-means for 0:4371985206 < r � 0:4384471872.

In the following section, in Theorem 5.2, we give an answer of it.
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5. The CVT ˛n.I/ does not form an optimal CVT

In this section, we show that if n is not of the form 2`.n/ for any positive integer

`.n/, then the CVT ˛n.I / does not form an optimal CVT for

0:4371985206 < r � 5 �
p

17

2
� 0:4384471872:

Write

C� WD ¹a.�11; �1211; �12121/; a.�12122; �122; �211/; a.�212; �22/º;
or

C� WD ¹a.�11; �121/; a.�122; �211; �21211/; a.�21212; �2122; �22/º:

If � is the empty word ;, then we have

C WD C; D ¹a.11; 1211; 12121/; a.12122; 122; 211/; a.212; 22/º;
or

C WD C; D ¹a.11; 121/; a.122; 211; 21211/; a.21212; 2122; 22/º:

Let n 2 N. If n D 2`.n/ C k, where 1 � k � 2`.n/�1, then write

ın.I / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

[

�2I

C� [
°

S�1

�1

2

�

; S�2

�1

2

�

W � 2 ¹1; 2º`.n/�1 n I
±

if 1 � k < 2`.n/�1;

[

�2I

C� if k D 2`.n/�1 ¤ 1;

C; if k D 2`.n/�1 D 1; i.e., when n D 3;

where I � ¹1; 2º`.n/�1 with card.I / D k D n�2`.n/. If n D 3 �2`.n/�1 Ck, where

1 � k � 2`.n/�1 � 1, then write

ın.I / D
�

[

�2¹1;2º`.n/�1nI

C�

�

[
°

S��

�1

2

�

W � 2 I and � 2 ¹1; 2º2
±

;

where I � ¹1; 2º`.n/�1 with card.I / D k D n � 3 � 2`.n/�1.

We now prove the following proposition.

Proposition 5.1. Let 0:4364590141 � r � 0:4486234903. Then, both ın.I / and

˛n.I / form CVTs. Moreover, if n is not of the form 2`.n/ for any positive integer

`.n/, then V.P; ın.I // < V.P; ˛n.I // if 0:4364590141 � r � 0:4486234903,

where V.P; ın.I // and V.P; ˛n.I // respectively denote the distortion errors for

the CVTs ın.I / and ˛n.I /.
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Proof. Let us �rst �nd the values of r for which ın.I / forms a CVT. Pro-

ceeding in the similar way as Lemma 3.13, we see that ın.I / forms a CVT if

0:4332840530 � r � 0:4486234903. Moreover, by Lemma 3.13, ˛n.I / forms a

CVT if 0:4364590141 � r � 0:4512271429. Thus, both ın.I / and ˛n.I / forms a

CVT if 0:4364590141 � r � 0:4486234903. Now, to �nd the values of r for which

V.P; ın.I // < V.P; ˛n.I //, we proceed in the similar way as the proof of Propo-

sition 4.3. Take ı3.I / D ¹a.11; 1211; 12121/; a.12122; 122; 211/; a.212; 22/º.
Then, using (1) and (3), we have

V.P; ı3.I // D 1

22
.r4V C .a.11/ � a.11; 1211; 12121//2/

C 1

24
.r8V C .a.1211/ � a.11; 1211; 12121//2/

C 1

25
.r10V C .a.12121/ � a.11; 1211; 12121//2/

C 1

25
.r10V C .a.12122/ � a.12122; 122; 211//2/

C 1

23
.r6V C .a.122/ � a.12122; 122; 211//2/

C 1

23
.r6V C .a.211/ � a.12122; 122; 211//2/

C 1

23
.r6V C .a.212/ � a.212; 22//2/

C 1

22
.r4V C .a.22/ � a.212; 22//2/:

Then, using (2),

V.P; ı3.I // D � 1

3168.r C 1/
.5r11 C 5r10 � 2r9 C 18r8 C 89r7 C 21r6

C 180r5 � 48r4 � 140r3 � 568r2 C 660r � 220/:

Equation (4) gives V3.P; ˛3.I //. Thus, we see that V.P; ı3.I // < V.P; ˛3.I //

if 0:4307442489 < r . Combining this with the values of r for which both ı3.I /

and ˛3.I / simultaneously form a CVT, we see that V.P; 
3.I // < V.P; ˛3.I // if

0:4364590141 � r � 0:4486234903, which yields the proposition. �

Let us now give the following theorem.

Theorem 5.2. Let n 2 N be such that n is not of the form 2`.n/ for any `.n/ 2 N.

Let ˛n.I / be the set as de�ned in Section 3. Then, ˛n.I / does not form an optimal

CVT for 0:4371985206 < r � 0:4384471872.
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Proof. By Proposition 5.1 we see that for 0:4364590141 � r � 0:4486234903,

both ın.I / and ˛n.I / form CVTs, and V.P; ın.I // < V.P; ˛n.I //. Thus, ˛n.I /

does not form an optimal CVT for 0:4371985206 < r � 0:4384471872, which is

the theorem. �

Remark 5.3. Comparing Proposition 4.3 and Proposition 5.1, if n is not of the

form 2`.n/ for any positive integer `.n/, we can say that if 0:4364590141 � r �
5�

p
17

2
� 0:4384471872, then the CVT ˇn.I /, which is obtained using the formula

given in [8] does not form an optimal CVT. The least upper bound of r for which

ˇn.I / forms an optimal CVT is still unknown. The investigation of it will appear

elsewhere.
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