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Non-spectral fractal measures with Fourier frames
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Abstract. We generalize the compatible tower condition given by Strichartz to the almost-

Parseval-frame tower and show that non-trivial examples of almost-Parseval-frame tower

exist. By doing so, we demonstrate the �rst singular fractal measure which has only �nitely

many mutually orthogonal exponentials (and hence it does not admit any exponential

orthonormal bases), but it still admits Fourier frames.
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1. Introduction

Let � be a compactly supported Borel probability measure on R
d . We say that

� is a frame spectral measure if there exists a collection of exponential functions

¹e2�ih�;xiº�2ƒ such that there exists 0 < A � B < 1 with

Akf k2
2 �

X

�2ƒ

ˇ̌
ˇ̌
Z

f .x/e�2�ih�;xid�.x/

ˇ̌
ˇ̌
2

� Bkf k2
2; for all f 2 L2.�/:

Whenever such ƒ exists, ¹e2�ih�;xiº�2ƒ is called a Fourier frame for L2.�/ and ƒ

is a frame spectrum for �. When � admits an exponential orthonormal basis, we

say that � is a spectral measure and the corresponding frequency set ƒ is called

a spectrum for �.

Frames on a general Hilbert space was introduced by Du�n and Schae�er [13]

and it is now a fundamental building block in applied harmonic analysis. People

regard frames as “overcomplete basis” and because of its redundancy, it makes the

reconstruction more robust to errors in data and it is now widely used in signal

1 The research of Yang Wang was partially supported by HK GRF grant 16317416.
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transmission and reconstruction. Reader may refer to [2] for the background of

general frame theory and [3] for some recent active topics.

One of the major hard problems in frame theory perhaps is constructing Fourier

frames or exponential orthonomal bases in di�erent measure space L2.�/, par-

ticularly when � is a singular measure without any atoms or people termed it

as a “fractal measure” as the support is a fractal set. These constructions allow

Fourier analysis to work on fractal space. This problem dates back to the time

of Fuglede [15] who initiated the study and proposed the well-known spectral set

conjecture. Although the conjecture was proved to be false by Tao [34], the con-

jecture has been extended into di�erent facet and related questions are still being

studied [35, 21, 22, 24, 25]. Another major advance in which fractals were in-

volved was due to Jorgensen and Pedersen [23], who discovered that the standard

one-third Cantor measure is not a spectral measure, while the standard one-fourth

Cantor measure is. Following the discovery, more fractal measures were found

to be spectral by many others [32, 27, 10]. Many unexpected properties of the

Fourier bases were discovered [33, 6, 4]. While Fourier analysis appears to work

perfectly on fractal spectral measures, for the measures which are non-spectral, it

is natural to ask the following question.

(Q). Can a non-spectral fractal measure still admit some Fourier frames?

This question was possibly �rst proposed by Strichartz [32, p.212]. In partic-

ular, there has been discussions asking whether speci�cally the one-third Cantor

measure can be frame spectral. Although we are unable to settle the case of the

one-third Cantor measure, the main purpose of this paper is to answer positively

(Q) with explicit examples. (see Theorem 1.4).

(Q) in its absolutely continuous counterpart is trivial since every bounded

Borel set � with positive �nite Lebesgue measure can be covered by a square.

The orthonormal basis on the square naturally induces a tight frame on �. If � D
g.x/dx is a general absolutely continuous measure, a complete characterization

on the density for � to be frame spectral was also given by the �rst named

author [26]. Such question becomes much more di�cult if � is unbounded but

still of �nite measure as there cannot be any ad hoc “square-covering” argument

to construct the Fourier frames. Despite the di�culty, it was recently solved to

be positive by Nitzan et al [31] who used the recent solution of the celebrated

Kadison-Singer conjecture [30].

Fractal measures are mostly supported on Lebesgue measure zero set, the

situation is similar to unbounded sets of �nite measures. However, it is even
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more complicated because if any such frame spectrum exists, there cannot be

any Beurling density [7, 4]. This prevents any weak convergence argument of

discrete sets from happening. Furthermore, some fractal measures are known not

to admit any Fourier frames if the measures are non-uniform on the support [11].

Intensive researches on this question [7, 8, 9, 11, 12, 20] has been going on and

one major advance was obtained recently in [12]. Dutkay and Lai introduced the

almost-Parseval-frame condition for the self-similar measure and proved that if

such condition is satis�ed, the self-similar measure admits a Fourier frame. We

slightly modify the de�nition as below to suit the need in the paper.

De�nition 1.1. Let �j be such that 0 � �j < 1 and
P1

j D1 �j < 1. We say that

¹.Nj ; Bj /º is an almost-Parseval-frame tower associated to ¹�j º if the following

conditions are satis�ed.

(1) Nj are integers and Nj � 2 for all j .

(2) Bj � ¹0; 1; : : : ; Nj � 1º and 0 2 Bj for all j .

(3) Let Mj WD #Bj . There exists Lj � Z (with 0 2 Lj ) such that for all j ,

.1 � �j /2
X

b2Bj

jwbj2 �
X

�2Lj

ˇ̌
ˇ̌ 1p

Mj

X

b2Bj

wbe�2�ib�=Nj

ˇ̌
ˇ̌
2

� .1 C �j /2
X

b2Bj

jwbj2
(1)

for all w D .wb/b2Bj
2 C

Mj . Letting the matrix

Fj D 1p
Mj

�
e2�ib�=Nj

�
�2Lj ;b2Bj

and k � k the standard Euclidean norm, (1) is equivalent to

.1 � �j /kwk � kFj wk � .1 C �j /kwk (2)

for all w 2 C
Mj .

Whenever ¹Lj ºj 2Z exists, we call ¹Lj ºj 2Z a pre-spectrum for the almost-Parseval-

frame tower. We de�ne the following measures associated to an almost-Parseval-

frame tower.

�j D 1

Mj

X

b2Bj

ıb=N1N2:::Nj

(we denote by ıa the Dirac measure supported on a) and

� D �1 � �2 � � � � : (3)
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Roughly speaking, almost-Parseval-frame towers ensure every �nite level ap-

proximated measure of the fractal is a frame spectral measure. Moreover, the

frame bounds remain �nite under iterations. Once all �nite level has a frame with

uniform frame bound, we take the weak limit under a mild condition so that fractal

singular measure is also frame-spectral.

When all �j D 0, the condition is equivalent to the compatible tower condition

introduced by Strichartz [32]. This is known to be the key condition to construct

fractal spectral measures. The measures in (3) are also known as Moran-type

measures. These measures have been widely used in multifractal analysis [16, 17],

harmonic analysis, particularly the construction of Salem sets [28, 29]. Some

Moran-type measures were found to be spectral [1] and it was found later spectral

Moran measures have a far reaching consequence in understanding the spectral

set conjecture [19] and Hausdor� dimension of the support of the spectral mea-

sures [5]. We note that Moran-type measures covers self-similar measures because

if there exists an integer N � 2 and a set B � ¹0; 1; : : : ; N � 1º such that

Nj D N nj ; Bj D B C NB C � � � C N nj �1B;

then the associated measure is the self-similar measure. In particular if N D 3

and B D ¹0; 2º, � is the standard one-third Cantor measure. In such situation, the

almost-Parseval-frame tower is called self-similar.

In [12], it was proved if the almost-Parseval-frame tower is self-similar, then

the self-similar measure induced will admit an Fourier frame. However, there

was no example of such towers for which �j > 0. In this paper, we relax the

self-similar restriction and produce the �rst example almost-Parseval-frame tower

whose �j > 0.

Theorem 1.2. Let Nj and Mj be positive integers satisfying

Nj D Mj Kj C j̨ (4)

for some integer Kj and 0 � j̨ < Mj with

1X

j D1

j̨

p
Mj

Kj

< 1: (5)

De�ne

Bj D ¹0; Kj ; : : : ; .Mj � 1/Kj º and Lj D ¹0; 1; : : : ; Mj � 1º: (6)

Then .Nj ; Bj / forms an almost-Parseval-frame tower associated with

�j D
2� j̨

p
Mj

Kj

and its pre-spectrum is ¹Lj º.
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We then extend the result of [12] to general almost-Parseval-frame tower. For

the measure � de�ned in (3), we let

�n D �1 � � � � � �n; �>n D �nC1 � �nC2 � � � � :

so that � D �n � �>n. De�ne also the Fourier transform of a measure � in an

usual way,

O�.�/ D
Z

e�2�i�xd�.x/:

Theorem 1.3. (a) Suppose that ¹.Nj ; Bj /º is an almost-Parseval-frame tower

associated with ¹�j º and ¹Lj º1
j D1. Let

Ln D L1 C N1L2 C � � � C .N1 : : : Nn�1/Ln and ƒ D
1[

nD1

Ln:

If

ı.ƒ/ WD inf
n

inf
�2Ln

jb�>n.�/j2 > 0;

then the measure � in (3) admits a Fourier frame with frame spectrum ƒ.

(b) For the almost-Parseval-frame tower constructed in Theorem 1.2, the asso-

ciated ƒ satis�es ı.ƒ/ > 0 and hence the measure � is a frame spectral measure.

In the end, using the theorems above, we construct the �rst kind of the follow-

ing examples:

Theorem 1.4. There exists non-spectral fractal measure with only �nitely many

orthogonal exponentials, but it still admits Fourier frames.

We organize our paper as follows: In Section 2, we prove the existence of the

almost-Parseval-frame tower and prove Theorem 1.2. In Section 3, we construct

the Fourier frame given the tower and prove Theorem 1.3. In Section 4, we

construct the non-spectral measures with Fourier frames. In Appendix A, we study

the Hausdor� dimension of the support.

2. Existence of Almost-Parseval-frame tower

Let A be an n � n matrix. We de�ne the operator norm of A to be

kAk D max
kxkD1

kAxk
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and the Frobenius norm of A to be

kAkF D

vuut
nX

iD1

nX

j D1

jai;j j2

It follows easily from Cauchy-Schwarz inequality that kAk2 � kAkF .

For Nj and Mj satisfying (4) and (5) and for Bj and Lj de�ned in (6), We let

Fj D 1p
Mj

�
e2�ib�=Nj

�
�2Lj ;b2Bj

; Hj D 1p
Mj

�
e2�ib�=Mj Kj

�
�2Lj ;b2Bj

:

Lemma 2.1. Hn is a unitary matrix. i.e. kHnxk D kxk.

Proof. Let b D m 2 Lj and � D nKj 2 Bj , for m; n D 0; 1; : : : ; Mj � 1. It

follows directly that e2�ib�=MKn D e2�imn=Mj . Hence,

Hj D 1p
Mj

�
e2�imn=Mj

�
m;nD0;:::;Mj �1

;

which is the standard Fourier matrix of order Mj . Thus, Hj is unitary. �

Proof of Theorem 1.2. We �rst show that for any j > 0,

kFj � Hj k �
2� j̨

p
Mj

Kj

: (7)

To see this, We note that

kFj � Hj k2 � kFj � Hj k2
F D 1

Mj

X

b2Bj

X

�2Lj

je2�ib�=Nj � e2�ib�=Mj Kj j2: (8)

We now estimate the di�erence of the exponentials inside the summation. Recall

that for any �1; �2,

jei�1 � ei�2j D jei.�1��2/ � 1j � j�1 � �2j:

This implies that

je2�ib�=Nj � e2�ib�=Mj Kj j2 � j2�b�

Nj

� 2�b�

Mj Kj

j2

D 4�2
b2�2˛2

j

M 2
j K2

j N 2
j

(by Nj D Mj Kj C j̨ )

� 4�2
M 2

j ˛2
j

N 2
j

(by b � Mj Kj and � � Mj ).
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Hence, from (8),

kFj � Hj k2 � 1

Mj

X

b2Bj

X

�2Lj

4�2
M 2

j ˛2
j

N 2
j

D 4�2
M 3

j ˛2
j

N 2
j

D 4�2
Mj ˛2

j

.Kj C j̨ =Mj /2

(9)

As j̨ � 0, kFj � Hj k2 � 4�2˛2
j Mj =K2

j and thus (7) follows by taking square

root.

We now show that ¹.Nj ; Bj /º forms an almost-Parseval-frame tower with pre-

spectrum Lj . The �rst two conditions for the almost-Parseval-frame tower are

clearly satis�ed. To see the last condition, we recall that �j D 2�
p

Mj j̨ =Kj .

From the triangle inequality and (7), we have

kFj wk � kHj wk C kFj � Hj kkwk

�
�
1 C

2� j̨

p
Mj

Kj

�
kwk

D .1 C �j /kwk:

Similarly, for the lower bound,

kFj wk � kHj wk � kFj � Hj kkwk

�
�
1 �

2� j̨

p
Mj

Kj

�
kwk

D .1 � �j /kwk:

Thus, from (2), the last condition follows and .Nj ; Bj / satis�es the almost-

Parseval-frame condition associated with ¹�j º and
P1

j D1 �j < 1 is guaranteed

by (5) in the assumption. �

Remark 2.2. In view of (9), condition (5) can be replaced by a weaker condition

1X

j D1

j̨

p
Mj

Kj C j̨ =Mj

< 1:

(5) would be enough for the convenience of our discussion. It is also worth to note

that if all j̨ D 0, then the the matrices Fj D Hj are reduced to the Hadamard

matrices. The associated measures are all spectral measures. see e.g. [1].
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We end this section by illustrating some explicit examples of Theorem 1.2.

Example 2.3. Let p be an odd prime and suppose that Nj D pj . Let Mj D 2 for

all j . Then it is clear that Nj D 2Kj C 1 for some Kj . In this case,

1X

j D1

j̨

p
Mj

Kj

D
1X

j D1

p
2

Kj

D
1X

j D1

2
p

2

pj � 1
< 1:

Thus Nj D pj and Bj D ¹0; Kj º forms an almost-Parseval-frame tower with

pre-spectrum Lj D ¹0; 1º for all j .

Example 2.4. For 0 � ˇ < 2,  � 0 and N � 1 such that

N.1 � ˇ=2 � / > 1;

let Kj ; Mj ; j̨ be integers Kj � j N , Mj � K
ˇ
j and j̨ � K


j . Then

1X

j D1

j̨

p
Mj

Kj

�
1X

j D1

K

j K

ˇ=2
j

Kj

D
1X

j D1

1

K
1��ˇ=2
j

�
1X

j D1

1

j N.1��ˇ=2/
< 1:

Hence, Nj D Kj Mj C j̨ and Bj D ¹0; Kj ; : : : ; .Mj � 1/Kj º satis�es the almost-

Parseval-frame condition.

3. Construction of Fourier frames

In this section, we consider the almost-Parseval-frame tower de�ned in Section 1

and show that the measure � de�ned in (3) is a frame spectral measure. We �rst

recall some notations.

�j D 1

Mj

X

b2Bj

ıb=N1:::Nj
and � D �1 � �2 � � � � :

We de�ne

�n D �1 � � � � � �n; �>n D �nC1 � �nC2 � � � �

so that � D �n � �>n. It is also direct to see that the support of � is the compact

set

K� D
° 1X

j D1

bj

N1 : : : Nj

ˇ̌
ˇ bj 2 Bj for all j

±
:



Non-spectral fractal measures with Fourier frames 313

We also consider the �rst nth-partial sum in K� and denote it by

Bn D 1

N1

B1 C 1

N1N2

B2 C � � � C 1

N1N2 : : : Nn

Bn

which is the support of �n. For the ¹Lj ºj 2Z in the tower, we consider

Ln D L1 C N1L2 C � � � C .N1 : : : Nn�1/Ln:

Proposition 3.1. For any n � 1, let Mn D
Qn

j D1 Mj we have

� nY

j D1

.1 � �j /
�2

kwk2 �
X

�2Ln

ˇ̌
ˇ̌ 1p

Mn

X

b2Bn

wbe�2�ib�

ˇ̌
ˇ̌
2

�
� nY

j D1

.1 C �j /
�2

kwk2

for any w D .wb/b2Bn
2 C

M1:::Mn

Proof. We prove it by mathematical induction. When n D 1, it is the almost-

Parseval condition for .N1; B1/ so the statement is true trivially. Assume now the

inequality is true for n � 1. Then we decompose b 2 Bn and � 2 Ln by

b D 1

N1 : : : Nn

bn C bn�1; � D �n�1 C N1 : : : Nn�1ln;

where bn 2 Bn, bn�1 2 Bn�1, �n�1 2 Ln�1 and ln 2 Ln. Now, we have

X

�2Ln

ˇ̌
ˇ̌
ˇ

X

b2Bn

wbe�2�ib�

ˇ̌
ˇ̌
ˇ

2

D
X

�n�12Ln�1

X

ln2Ln

ˇ̌
ˇ̌
ˇ

X

bn�12Bn�1

X

bn2Bn

1p
Mn

wbbn
eE�.�n�1CN1:::Nn�1ln/

ˇ̌
ˇ̌
ˇ

2

;

where

E D �2�i
� 1

N1 : : : Nn

bn C bn�1

�
:

Note that bn�1 � .N1 : : : Nn�1/ln is always an integer, the right hand side above can

be written as

X

�n�12Ln�1

X

ln2Ln

ˇ̌
ˇ̌
ˇ

X

bn2Bn

1p
Mn

� X

bn�12Bn�1

1p
Mn�1

wbn�1bn
eE�n�1

�
e�2�ibnln=Nn

ˇ̌
ˇ̌
ˇ

2
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Using the almost-Parseval-frame condition for .Nn; Bn/ and also the induction

hypothesis, this term

� .1 C �n/2
X

�n�12Ln�1

X

bn2Bn

ˇ̌
ˇ̌
ˇ

X

bn�12Bn�1

1p
Mn�1

wbn�1bn
eE��n�1

ˇ̌
ˇ̌
ˇ

2

D .1 C �n/2
X

bn2Bn

X

�n�12Ln�1

ˇ̌
ˇ̌
ˇ

X

bn�12Bn�1

1p
Mn�1

wbn�1bn
e�2�ibn�1��n�1

ˇ̌
ˇ̌
ˇ

2

�
� nY

j D1

.1 C �j /
�2 X

bn2Bn

X

bn�12Bn�1

jwbn�1bn
j2

D
� nY

j D1

.1 C �j /
�2

kwk2:

This completes the proof of the upper bound and the proof of the lower bound is

analogous. �

We now decompose K� as

K� D
[

b2Bn

.b C K�;n/: (10)

where

K�;n D
° 1X

j DnC1

bj

N1 : : : Nj

ˇ̌
ˇ bj 2 Bj for all j

±
:

Denote by Kb D b C K�;n and 1Kb
the characteristic function of Kb. Let

Sn D
° X

b2Bn

wb1Kb
j wb 2 C

±
:

Sn denotes the collection of all nth level step functions on K�. As

K�;n D
[

b2BnC1

� b

N1 : : : NnC1

C K�;nC1

�
;

we have S1 � S2 � : : : : Let also

S D
1[

nD1

Sn:

It is clear that S forms a dense set of functions in L2.�/.
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Lemma 3.2. Let f D
P

b2Bn
wb1Kb

2 Sn. Then

Z
jf j2d� D 1

Mn

X

b2Bn

jwbj2: (11)

Z
f .x/e�2�i�xd�.x/ D 1

Mn

b�>n.�/
X

b2Bn

wbe�2�ib�: (12)

Here Mn D M1 : : : Mn.

Proof. As Kb and K 0
b

has either empty intersection or intersects at most one point,

taking �-measure on (10), we obtain �.Kb/ D 1=Mn. (11) follows from a direct

computation. For (12), we use � D �n � �>n and we have

Z
f .x/e�2�i�xd�.x/ D

X

b2Bn

wb

Z
1Kb

.x/e�2�i�xd.�n � �>n.x//

D
X

b2Bn

wb

Z
1bCK�;n

.x C y/e�2�i�.xCy/d�n.x/d�>n.y/:

Note that �>n is supported on K�;n and Kb and K 0
b

has either empty intersection

or intersects at most one point. The above is equal to

D
X

b2Bn

wb
1

Mn

Z
1bCK�;n

.b C y/e�2�i�.bCy/d�>n.y/

D
X

b2Bn

wb
1

Mn

e�2�i�b

Z
e�2�i�yd�>n.y/

D 1

Mn

b�>n.�/
X

b2Bn

wbe�2�ib�:

The lemma follows. �

Let

ƒ D
1[

nD1

Ln: (13)

As 0 2 L, the sets in the union is an increasing union. We now de�ne the following

quantity

ın0
.ƒ/ D inf

n�n0

inf
�2Ln

jb�>n.�/j2;

for some n0 � 1. The following theorem gives a su�cient condition for ƒ to be a

Fourier frame for �.
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Theorem 3.3. Suppose that .Nj ; Bj / is an almost-Parseval-frame tower and �

be the associated measure. Let L be the associated spectrum for the tower and ƒ

de�ned (13) satis�es ın0
.ƒ/ > 0. Then � admits a Fourier frame E.ƒ/ with lower

and upper frame bounds respectively equal

ı.ƒ/
� 1Y

j D1

.1 � �j /
�2

;
� 1Y

j D1

.1 C �j /
�2

:

Proof. To check the Fourier frame inequality holds, it su�ces to show that it is

true for a dense set of functions in L2.�/ [2, Lemma 5.1.7], in which we will check

it for step functions in S. Moreover, since Sn is an increasing union of sets, we

consider f D
P

b2Bn
wb1Kb

2 Sn with n � n0. By Lemma 3.2, we have

X

�2Ln

ˇ̌
ˇ̌
Z

f .x/e�2�i�xd�.x/

ˇ̌
ˇ̌
2

D
X

�2Ln

ˇ̌
ˇ̌ 1

Mn

b�>n.�/
X

b2Bn

wbe�2�ib�

ˇ̌
ˇ̌
2

D 1

Mn

X

�2Ln

jb�>n.�/j2
ˇ̌
ˇ̌ 1p

Mn

X

b2Bn

wbe�2�ib�

ˇ̌
ˇ̌
2

:

Note that ı.ƒ/ �
ˇ̌
b�>n.�/

ˇ̌2 � 1. By Proposition 3.1, we have this implies that

1

Mn

ı.ƒ/
� nY

j D1

.1 � �j /
�2

kwk2 �
X

�2Ln

ˇ̌
ˇ̌
Z

f .x/e�2�i�xd�.x/

ˇ̌
ˇ̌
2

� 1

Mn

� nY

j D1

.1 C �j /
�2

kwk2:

Using Lemma 3.2 again, we have

ı.ƒ/
� nY

j D1

.1 � �j /
�2

Z
jf j2d� �

X

�2Ln

ˇ̌
ˇ̌
Z

f .x/e�2�i�xd�.x/

ˇ̌
ˇ̌
2

�
� nY

j D1

.1 C �j /
�2

Z
jf j2d�:

To complete the proof, we note that for all m > n, f 2 Sn � Sm, the inequality

can also be written as

ı.ƒ/
� mY

j D1

.1 � �j /
�2

Z
jf j2d� �

X

�2Lm

ˇ̌
ˇ̌
Z

f .x/e�2�i�xd�.x/

ˇ̌
ˇ̌
2

�
� mY

j D1

.1 C �j /
�2

Z
jf j2d�;
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for all f 2 Sn. Taking m to in�nity, we have

ı.ƒ/
� 1Y

j D1

.1 � �j /
�2

Z
jf j2d� �

X

�2ƒ

ˇ̌
ˇ̌
Z

f .x/e�2�i�xd�.x/

ˇ̌
ˇ̌
2

�
� 1Y

j D1

.1 C �j /
�2

Z
jf j2d�:

Note that the frame bounds are �nite since
P1

j D1 �j < 1. This shows the frame

inequality for any f 2 S. Hence, E.ƒ/ is a Fourier frame for L2.�/. �

We now show that the almost-Parseval-frame tower constructed in Theorem 1.2

satis�es ı.ƒ/ > 0. Recall that

Nj D Mj Kj C j̨ ;

with Bj D ¹0; Kj ; : : : ; .Mj � 1/Kj º and Lj D ¹0; 1; : : : ; Mj � 1º. The associated

measure is given by

� D �1 � �2 � � � � and �j D 1

Mj

X

b2Bj

ıj=N1:::Nj
:

The Fourier transform is given by

O�.�/ D
1Y

j D1

b�j .�/ D
1Y

j D1

h 1

Mj

Mj �1X

kD0

e�2�ikKj �=N1:::Nj

i
:

It follows directly from summation of geometric series that

b�j .�/ D

8
ˆ̂̂
<
ˆ̂̂
:

1

Mj

e�icj .Mj �1/� sin �cj Mj �

sin �cj �
if � 62 1

cj

Z,

1 if � 2 1

cj

Z.

where cj D Kj =N1 : : : Nj .

Proposition 3.4. With all the notation above, there exists k0 such that ƒ DS1
kD1 Lk satis�es

ık0
.ƒ/ D inf

k�k0

inf
�2Lk

jb�>k.�/j2 > 0

where Lk D L1 C N1L2 C � � � C N1 : : : Nk�1Lk.
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Proof. We note that

jb�>k.�/j2 D
1Y

j D1

j1�kCj .�/j2

D
1Y

j D1

ˇ̌
ˇ̌ 1

MkCj

MkCj �1X

`D0

e�2�i`KkCj �=.N1:::NkNkC1:::NkCj /

ˇ̌
ˇ̌
2

:

(14)

For any � 2 Lk for which the terms j1�kCj .�/j2 < 1, we have

ˇ̌
ˇ̌ 1

MkCj

Mj �1X

kD0

e�2�ikKj �=.N1:::NkNkC1:::NkCj /

ˇ̌
ˇ̌
2

D
ˇ̌
ˇ 1

MkCj

sin �ckCj MkCj �

sin �ckCj �

ˇ̌
ˇ
2

:

Using the elementary estimate sin x � x and sin x � x � x3=3Š, we have
ˇ̌
ˇ̌ 1

MkCj

sin �ckCj MkCj �

sin �ckCj �

ˇ̌
ˇ̌
2

�
ˇ̌
ˇ
sin.�ckCj MkCj �/

�ckCj MkCj �

ˇ̌
ˇ
2

D
�
1� .�ckCj MkCj �/2

3Š

�2

:

Recall that ckCj D KkCj =N1 : : : NkCj , we have

�
1 � .�ckCj MkCj �/2

3Š

�2

D
�
1 � �2

6N 2
kC1

: : : N 2
kCj �1

�
�KkCj MkCj

NkCj

�2

�
� �

N1 : : : Nk

�2�2

:

(15)

We need to ensure all the terms inside the outermost square are positive and their

product is strictly positive. For � 2 Lk, we write

� D `1 C N1`2 C � � � C .N1:::Nk�1/`k ; for some `i 2 Li :

From Ni D MiKi C ˛i , we have `i � Mi � 1 < Ni and thus

�

N1 : : : Nk

D `k

Nk

C `k�1

NkNk�1

C � � � C `1

Nk : : : N1

<
Mk

Nk

C Mk�1

NkNk�1

C � � � C M1

Nk : : : N1

� 1

Kk

C 1

NkKk�1

C � � � C 1

Nk : : : N2K1

� 1

Kk

�
1 C 1

MkKk�1

C 1

MkNk�1Kk�2

C � � �

C 1

MkNk�1Nk�2 : : : N2K1

�

� 2

Kk

.since all Mj ; Nj � 2/:
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For the term j > 1 in (15), we use

�

N1 : : : Nk

< 1 and
KkCj MkCj

NkCj

� 1:

With Nj � 2 for all j , we have

.15/ �
�
1 � �2

6 � 22.j �1/

�2

; for j > 1:

If j D 1,

�
1 � �2

6
�
�KkCj MkCj

NkCj

�2

�
� �

N1 : : : Nk

�2�2

�
�
1 � �2

6
�
� 2

Kk

�2�2

�
�
1 � 2�2

3K2
k

�2

:

Note that our assumption that
P1

kD1
˛k

p
Mk

Kk
< 1 implies that Kk tends to in�nity.

Hence, there exists k0 such that for all k � k0, Kk � 3. This ensure the term

insider the square is greater than or equal to ı WD 1 � 2�2=27 > 0. Putting all the

inequality back to (14), we obtain

jb�>k.�/j2 � ı2 �
1Y

j D2

�
1 � �2

6 � 22.j �1/

�2

WD c0:

Hence, ı.ƒ/ � c0. As
P1

j D2 �2=.6 � 22.j �1// < 1 and �2=.6 � 22.j �1// < 1 for

all j > 1, c0 > 0 and this completes the proof. �

Proof of Theorem 1.3. (a) follows directly from Theorem 3.3. For (b), Proposi-

tion 3.4 implies that ı.ƒ/ > 0 and hence the measure � is frame spectral by

Theorem 3.3. �

4. Non-spectral measures

In this section, we will see the measures de�ned by the almost-Parseval-frame

tower in Theorem 1.2 is in general not spectral. For a given probability measure �,

we let

Z. O�/ D ¹� 2 R W O�.�/ D 0º
be its zero set of O�. We recall that the collection of the exponentials ¹e2�i�x j
� 2 ƒº is a mutually orthogonal set if the exponential functions are mutually

orthogonal in L2.�/. In order to show � cannot be a spectral measure, we need

the following simple observation.
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Lemma 4.1. If � is a spectral measure whose support is an in�nite set, then any

mutually orthogonal set ƒ must be of in�nite cardinality and satis�es ƒ � ƒ �
Z. O�/ [ ¹0º.

Proof. If � is a spectral measure whose support is an in�nite set, then L2.�/

is of in�nite dimension as a vector space, so any mutually orthogonal sets must

be in�nite in cardinality. For mutually orthogonality to hold, we need for any

� ¤ �0 2 ƒ,

0 D
Z

e2�i.���0/xd�.x/ D O�.� � �0/

Hence, ƒ � ƒ � Z. O�/ [ ¹0º follows. �

Focusing on the tower we constructed in Theorem 1.2,

Nj D Kj Mj C j̨ :

and Bj D ¹0; Kj ; : : : ; .Mj � 1/Kj º; L D ¹0; 1; : : : ; Mj � 1º; we have

Lemma 4.2. We have

Z. O�/ D
1[

j D1

Z.b�j / D
1[

j D1

hN1 : : : Nj

Kj Mj

.Z n MjZ/
i
:

Proof. we can compute directly the zero set of the Fourier transform of �j as

b�j .�/ D 1

Mj

Mj �1X

kD0

e�2�ikKj �=N1:::Nj

D

8
ˆ̂̂
<
ˆ̂̂
:

1

Mj

e�icj .Mj �1/� sin �cj Mj �

sin �cj �
if � 62 1

cj

Z,

1 if � 2 1

cj

Z,

where cj D Kj =N1 : : : Nj . It follows directly that

Z.b�j / D 1

cj Mj

.Z n MjZ/ D N1 : : : Nj

Kj Mj

.Z n MjZ/

so that

Z. O�/ D
1[

j D1

Z.b�j / D
1[

j D1

hN1 : : : Nj

Kj Mj

.Z n MjZ/
i
: �
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It is natural to conjecture that:

Conjecture 4.3. Suppose that .Nj ; Bj / are the almost-Parseval-frame tower

de�ned in Theorem 1.2 and the associated measure � is spectral. Then all j̨ D 0.

However, this will let us into rather involved number theoretic and combina-

toric questions. To serve the purpose of this paper, the following proposition shows

that under simple conditions on Mj , Kj and j̨ , the measure � cannot be spectral.

Proposition 4.4. Suppose that ƒ is a mutually orthogonal set for � de�ned

in (3) with Nj D Kj Mj C 1 . j̨ D 1/ and Bj D ¹0; Kj ; : : : ; .Mj � 1/Kj º,
Lj D ¹0; 1; : : : ; Mj � 1º satisfying

(1) all M D 2 and

(2) all Kj are odd.

Then

#ƒ � 2:

Proof. Suppose that there exists mutually orthogonal set ƒ with cardinality

greater than 2. We can �nd distinct �1; �2; �3 such that �1 ��2; �3 ��2; �1 ��3 2
Z. O�/. Hence, we can write

�1 � �2 D .N1 : : : Nj /

Kj Mj

.rj C Mj qj /; �3 � �2 D .N1 : : : Nk/

KkMk

.rk C Mkqk/;

�1 � �3 D .N1 : : : N`/

K`M`

.r` C M`q`/

where 0 < rn < Mn for n D j; k; ` and qj ; qk; q` are integers. Denote by

Nn D N1 : : : Nn:

As .�1 � �2/ � .�3 � �2/ D �1 � �3, we have the following algebraic relation,

Nj

Kj Mj

.rj C Mj qj / � Nk

KkMk

.rk C Mkqk/ D N`

K`M`

.r` C M`q`/:

It follows that

Nj KkK`MkM`.rj C Mj qj / � NkKj K`Mj M`.rk C Mkqk/

D N`Kj KkMj Mk.r` C M`q`/:
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Hence,

Nj KkK`MkM`rj � NkKj K`Mj M`rk � N`Kj KkMj Mkr`

D Mj MkM` � .N`Kj Kkq` � NkKj K`qk � Nj KkK`qj /:
(16)

In the �rst case, if all Mj D 2, then all 0 < ri < 2 which means all ri D 1.

(16) is reduced to

Nj KkK` � NkKj K` � N`Kj Kk

D 2 � .N`Kj Kkq` � NkKj K`qk � Nj KkK`qj /:

The right hand side is an even number. However, as all Kj are odd numbers, and

all Nj D 2Kj C 1 are odd„ each term in the left hand side of (16) must be odd and

hence the left hand side is an odd number overall. This is a contradiction. Hence,

we cannot have a mutually orthogonal set of cardinality large than 2. �

We are now ready to construct the example in Theorem 1.4.

Proof of Theorem 1.4. Let p be a prime number of the form 4k C 3. It is well

known that there are in�nitely many primes of such form by the Dirichlet theorem.

Writing

pj D 2Kj C 1;

j we claim that Kj is an odd number whenever j is odd. Expanding in binomial

theorem, we have for some integer Lj ,

Kj D pj � 1

2
D .4k C 3/j � 1

2
D 4Lj C 3j � 1

2
:

It su�ces to show that .3j �1/=2 is an odd number if j is odd. But from Binomial

expansion, 3j �1
2

D .2C1/j �1
2

D 2j �1 C j 2j �2 C � � � C
�

j
2

�
2 C j: This shows that

3j �1
2

is an odd number.

Letting Nj D p2j �1 D 2K2j �1 C 1 where p is a prime number of the form

4k C 3 and Bj D ¹0; K2j �1º. From Example 2.3, we have an almost-Parseval-

frame tower. By Theorem 1.3(b), the associated measure � is frame spectral. On

the other hand, it is non-spectral by Proposition 4.4. �

Remark 4.5. In [20], it was proved that if � is a spectral measure on Œ0; 1� with

spectrum inside Z, then any � D � � ıA, with A � Z, is a frame spectral measure

and some of them are not spectral. In view of Theorem 1.2, the measure � we

constructed cannot be of the form � � ıA, where � is spectral and ıA is a discrete

measure supported on some set A. If it was the case, then

O�.�/ D O�.�/bıA.�/
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and this would have implied that any mutually orthogonal set of � must be mutually

orthogonal set of � and hence cardinality of such sets for � for be in�nite, which

is a contradiction by Proposition 4.4 we just proved.

Appendix A. Hausdor� dimension

In this section, we study the Hausdor� dimension, denoted by dimH , of the

support of �, which is an important question in fractal geometry. We refer the

reader to [14] the de�nition of Hausdor� dimension. Given a sequence of positive

integers Mj and a sequence of numbers rj . Suppose that 0 < rj < 1, Mj � 2

and rj Mj � 1 for all j . For k � 1, we let D0 D ;, Dk D ¹.i1; : : : ; ik/ W
ij 2 ¹0; 1; : : : ; Mj � 1ºº. For i 2 Dk and j 2 D`, ij 2 DkC` is the standard

concatenation of two words. For each � 2
S1

kD1 Dk, we de�ne an interval J� .

We say that

E D
1\

kD1

[

�2Dk

J�

is a homogeneous Moran set if the following conditions are satis�ed.

(1) J; D Œ0; 1�. For any � 2 Dk, J�0,. . . ,J�.MkC1�1/ are subinterval of J�

enumerated from left to right and J�i \ J�j has intersects at most one point.

(2) For any k � 1, for any � 2 Dk�1 and j 2 ¹0; 1; : : : ; Mk � 1º,

rk D jJ�j j
jJ� j :

j � j denotes the Lebesgue measure of the interval.

(3) For any � 2 Dk, the gaps between J�i and J�.iC1/ are equal in length, the

left endpoint of J�0 is equal to the left endpoint of J� and the right endpoint

of J�.MkC1�1/ is equal to the right endpoint of J� .

It was shown that [18] (see also [17, Proposition 3.1]) that the Hausdor� dimension

of E is equal to

dimH .E/ D lim inf
j !1

log.M1 : : : Mj /

� log.r1 : : : rj /
:

Turning to our case where Nj D Mj Kj C j̨ and Bj D ¹0; Kj ; : : : ; Kj .Mj � 1/º,
the support of the measure � is

K� D
° 1X

j D1

ij Kj

N1 : : : Nj

W ij Kj 2 Bj

±
D

1\

kD1

[

�2Dk

J�
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where J� D Œ
Pk

j D1 ij Kj .N1 : : : Nj /�1;
Pk

j D1 ij Kj .N1 : : : Nj /�1C.N1 : : : Nk/�1�

and � D .i1; : : : ; ik/. Note that The support K� is contained in the interval Œ0; ��,

where � D
P1

j D1.Kj .Mj �1//.N1 : : : Nj /�1: By a simple rescaling, C D ��1K�.

It is easy to see that C is actually a homogeneous Moran set with r1 D 1=N1 and

rk D .N1 : : : Nk/�1=.N1 : : : Nk�1/�1 D 1=Nk . Hence, we have thus proved

Proposition A.1. We have

dimH .K�/ D lim inf
j !1

log.M1 : : : Mj /

log.N1 : : : Nj /
:

We now compute the Hausdor� dimension of some frame spectral measures �.

Example A.2. In Example 2.3, Nj D pj D 2Kj C 1 and Mj D 2 for all j .

In this case, the Hausdor� dimension

dimH .K�/ D lim inf
j !1

log 2j

log.p1C2C���Cj /
D lim inf

j !1

2j log 2

j.j C 1/ log p
D 0:

The non-spectral measure with Fourier frame given in Theorem 1.4 is a special

case of this type, and thus the support has Hausdor� dimension 0.

This example shows that frame spectral measure can be very “ thin”, similar

situation happens for spectral measures [5]. The following example shows that

our construction does give frame spectral measures with positive Hausdor� di-

mension.

Example A.3. In Example 2.4, Mj D K
ˇ
j and j̨ D 1 (i.e.  D 0) for all j . Then

Nj D K
1Cˇ
j C 1. In this case, the Hausdor� dimension

dimH .K�/ D lim inf
j !1

log..K1 : : : Kj /ˇ /

log..K
1Cˇ
1 C 1/ : : : .K

1Cˇ
j C 1//

:

As limx!1 log.1 C x/= log x D 1, for x large, C �1 log x � log.1 C x/ � C log x

for some constant C > 0. Hence, if Kj is large enough,

C �1 log..K1 : : : Kj /1Cˇ / � log..K
1Cˇ
1 C 1/ : : : .K

1Cˇ
j C 1//

� C log..K1 : : : Kj /1Cˇ /:
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This implies that

ˇ

C.1 C ˇ/
D lim inf

j !1

ˇ log..K1 : : : Kj //

C.1 C ˇ/ log..K1 : : : Kj //

� dimH .K�/

� lim inf
j !1

ˇ log..K1 : : : Kj //

C �1.1 C ˇ/ log..K1 : : : Kj //

D ˇ

.1 C ˇ/C �1
:

Hence, the support of the frame spectral measure has Hausdor� dimension at least
ˇ

C.1Cˇ/
> 0.
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