
J. Fractal Geom. 5 (2018), 1–119
DOI 10.4171/JFG/57

Journal of Fractal Geometry

© European Mathematical Society

Fractal tube formulas for compact sets

and relative fractal drums:

oscillations, complex dimensions and fractality

Michel L. Lapidus1, Goran Radunović2 and Darko Žubrinić2

Abstract. We establish pointwise and distributional fractal tube formulas for a large
class of relative fractal drums in Euclidean spaces of arbitrary dimensions. A relative
fractal drum (or RFD, in short) is an ordered pair .A; �/ of subsets of the Euclidean
space (under some mild assumptions) which generalizes the notion of a (compact) subset
and that of a fractal string. By a fractal tube formula for an RFD .A; �/, we mean an
explicit expression for the volume of the t-neighborhood of A intersected by � as a sum of
residues of a suitable meromorphic function (here, a fractal zeta function) over the complex
dimensions of the RFD .A; �/. The complex dimensions of an RFD are de�ned as the
poles of its meromorphically continued fractal zeta function (namely, the distance or the
tube zeta function), which generalizes the well-known geometric zeta function for fractal
strings. These fractal tube formulas generalize in a signi�cant way to higher dimensions
the corresponding ones previously obtained for fractal strings by the �rst author and van
Frankenhuijsen and later on, by the �rst author, Pearse and Winter in the case of fractal
sprays. They are illustrated by several interesting examples which demonstrate the various
phenomena that may occur in the present general situation. These examples include fractal
strings, the Sierpiński gasket and the 3-dimensional carpet, fractal nests and geometric
chirps, as well as self-similar fractal sprays. We also propose a new de�nition of fractality
according to which a bounded set (or RFD) is considered to be fractal if it possesses at least
one nonreal complex dimension or if its fractal zeta function possesses a natural boundary.
This de�nition, which extends to RFDs and arbitrary bounded subsets of RN the previous
one introduced in the context of fractal strings, is illustrated by the Cantor graph (or devil’s
staircase) RFD, which is shown to be “subcritically fractal.”
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1. Introduction

In this paper our main goal is to obtain fractal tube formulas for a class of
relative fractal drums in Euclidean spaces of arbitrary dimension. The fractal tube
formulas are interesting since, roughly speaking, they describe the “fractality” of
the set (or relative fractal drum) in a more detailed way than, for instance, the mere
Minkowski (or box) dimension which, by de�nition, only corresponds to a part
of the leading term of these tube formulas. The main results of this paper are the
obtained expressions of the fractal tube formulas for relative fractal drums in terms
of sums of the residues of the fractal zeta functions, i.e., the distance and tube zeta

functions associated to these relative fractal drums. Furthermore, the sum in these
expressions will be taken over the set of poles of the fractal zeta function at hand,
also called the set of complex dimensions of a given relative fractal drum. In
short, we will show that (after a suitable meromorphic continuation), the relative
distance (or tube) zeta function encodes the information about the inner geometry
of a relative fractal drum into the distribution of its poles as well as into the values
of the corresponding residues.

The notion of a relative fractal drum which is de�ned, roughly, as an ordered
pair .A; �/ of subsets of RN (see De�nition 2.1), was introduced in [LapRaŽu4]
(see also [LapRaŽu1]) in order to generalize the notion of a bounded subset as
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well as of a fractal string. It enables us to study a wide range of fractal phenom-
ena; for instance, the corresponding relative Minkowski (or box) dimension (see
equation (2.12)) can attain negative values, including �1. In particular, we stress
that the results of this paper can be applied to bounded subsets of RN , with N � 1

arbitrary. In fact, the theory developed in this paper, which gives an explicit con-
nection between complex dimensions and fractal tube formulas, very signi�cantly
generalizes the analogous theory already developed for fractal strings (i.e., when
N D 1) by the �rst author and M. van Frankenhuijsen (see [Lap-vFr3, Chapter 8]
and also [Lap-vFr1–2]). It also broadly extends the later work of the �rst author
and E. Pearse [LapPe1–2] and that of those two authors and S. Winter [LapPeWi1]
on fractal tube formulas for fractal sprays (higher-dimensional generalizations of
fractal strings, in the sense of [LapPo3]).

By a fractal tube formula of the relative fractal drum .A; �/, we mean an
exact or asymptotic expansion of the relative tube function t 7! jAt \ �jN as
t ! 0C, where At is the t -neighborhood of A (i.e., the set of points of RN within
a distance less than t from A) and j � jN denotes the N -dimensional Lebesgue
measure (or volume). The formulas obtained in this paper will hold pointwise or
distributionally (in the sense of Schwartz), depending on the growth properties
of the corresponding relative fractal zeta function. More speci�cally, the fractal
tube formulas which we will establish will be written as sums of residues of the
appropriate fractal zeta function evaluated at each (visible) complex dimension,
and will either be exact or else, involve an error term; see equation (1.1) below.

Furthermore, the relative distance and tube zeta functions which will ap-
pear in the fractal tube formulas obtained here are also introduced and exten-
sively studied in [LapRaŽu1–7] and generalize the theory of complex dimensions
and geometric zeta functions for fractal strings studied by the �rst author and
M. van Frankenhuijsen in [Lap-vFr1–3], as well as in a signi�cant number of re-
search papers by numerous experts in fractal geometry and other areas; see the
extensive list of relevant references provided in [Lap-vFr1–3] and [LapRaŽu1],
including [DemDenKoÜ, DemKoÖÜ, DubSep, ElLapMacRo, EsLi1–2, Fal2,
Fr, Gat, HamLap, HeLap, HerLap1–3, KeKom, Kom, KomPeWi, LalLap1–2,
Lap1–8, LapLéRo, LapLũ’, LapLũ’-vFr1–2, LapMa1–2, LapPe1–3, LapPeWi1–2,
LapPo1–3, LapRaŽu2–8, LapRo, LapRoŽu, LéMen, MorSep, MorSepVi, Ra1–2,
RatWi, Tep1–2, Žu].

Moreover, we expect to use the results of this paper in order to establish a
connection with earlier tube formulas and their potential interpretation in terms
of curvatures or curvature measures in Federer’s sense (see [Fed1]) associated
with integer dimensions. Namely, in [Fed1], H. Federer has uni�ed into a single
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framework (that of the “sets of positive reach”) the Steiner tube formula for com-
pact convex sets in R

N and its generalization by Weyl [Wey] for smooth compact
submanifolds of Euclidean spaces (described in [BergGos], and in the even more
general setting of Riemannian manifolds, in [Gra]). See also the book [Schn2]
and the articles [Schn1, Zä1–3], along with [HuLaWe] for a generalization to the
case of compact sets in R

N and [Wi, WiZä, Zä4–5, KeKom] for the case of certain
self-similar sets and their self-conformal and random generalizations.

As was already mentioned, the �rst fractal tube formulas were obtained in
the books [Lap-vFr1–3] in the case of fractal strings via fractal zeta functions
(called geometric zeta functions); see, in particular, [Lap-vFr3, Chapter 8]. Fur-
thermore, these fractal tube formulas were generalized to a class of (higher-
dimensional) fractal sprays in [LapPe1–2] and then in [LapPeWi1–2], via tubu-

lar zeta functions for fractal sprays and self-similar tilings which are signi�cantly
di�erent from the fractal zeta functions considered in this paper (see [Lap-vFr3,
Section 13.1] for a survey of these results). Directly inspired by the just men-
tioned earlier work on fractal tube formulas, further developments were obtained
in [DemDenKoÜ, DemKoÖÜ, DenKÖÜ]. Finally, we point out that our general
fractal tube formulas for relative fractal drums obtained here can be used to re-
cover the previously obtained results for fractal strings and self-similar sprays, as
we show in Subsections 6.2 and 6.6, respectively.

For further results concerning tube formulas and their various generaliza-
tions in a variety of settings, as well as related topics, we mention, in particu-
lar, [Bla, CheeMüSchr1–2, Fu1–2, KlRot, Kow, LapLũ’, LapLũ’-vFr2, LapPe3,
LapRaŽu7–8, Mil, Mink, MitŽu, Ol1–2, Sta, Stein], along with the many relevant
references therein.

By analogy with the case of fractal strings, the complex dimensions of a
relative fractal drum are de�ned as the poles, or more generally, singularities
of its corresponding distance or tube zeta function. Under mild hypotheses, the
Minkowski (or box) dimension of a given relative fractal drum (RFD) will be
its unique real complex dimension with maximal real part. It follows directly
from the de�nitions that in the case of a Minkowski measurable bounded subset A

of RN , its Minkowski dimension appears as the co-exponent of the (monotonic)
leading term in the asymptotic expansion of its tube function t 7! jAt jN as
t ! 0C.

We will show here that for a given relative fractal drum .A; �/ and under
appropriate assumptions, the other (visible) complex dimensions will also appear
as (complex) co-exponents, either in the leading term or in the higher order terms,
in the asymptotic expansion of the tube function t 7! jAt \ �jN as t ! 0C.
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Consequently, if ! is a nonreal complex dimension of a given relative fractal
drum .A; �/ of RN , then the corresponding term tN �! appearing in the fractal
tube formula of the RFD will generate oscillations of order tN �Re ! , to which we
refer to as being the inner geometric oscillations of .A; �/ (of order tN �Re !). In
other words, the amplitude (resp., frequency) of the associated “geometric wave”
is determined by the real (resp., imaginary) part of the complex dimension !.

In particular, for a given relative fractal drum .A; �/, under suitable growth
hypotheses on the fractal zeta function of the RFD and the assumption that all
of the (visible) complex dimensions (i.e., the poles of its distance zeta function
denoted by �A;�, see De�nition 2.1) are simple, the fractal tube formula takes the
following form:

jAt \ �jN D
X

!2P.�A;�;W /

tN �!

N � !
res.�A;�; !/ C R

Œ0�
A;�.t /: (1.1)

Here, P.�A;�; W / denotes the set of visible complex dimensions through the
window W ; that is, the poles of �A;� which are contained in the window W �
C (see De�nitions 2.15 and 2.10). Furthermore, R

Œ0�
A;�.t / is an error term that

corresponds to the terms of orders higher than those appearing in the sum in
equation (1.1). Roughly speaking, its estimate is directly connected to the “size”
of the window W ; i.e., to how far to the left of the critical line (see De�nition 2.10)
the distance zeta function �A;� can be meromorphically extended. The fractal tube
formula (1.1) should be understood pointwise or distributionally, depending on the
growth properties of �A;�. Moreover, if �A;� can be meromorphically extended to
all of C, then, under appropriate assumptions, the error term R

Œ0�
A;�.t / disappears;

i.e., it is identically equal to zero and therefore, the corresponding fractal tube
formula is said to be exact.

In order to illustrate the results of this paper, we now give a sketch of two
examples of (fractal) sets and their associated fractal tube formulas.

Let A be the Sierpiński gasket in R
2, constructed inside an equilateral triangle

of side length equal to 1. Then, its distance zeta function �A is meromorphic on all
of C and given by

�A.s/ D 6.
p

3/1�s2�s

s.s � 1/.2s � 3/
C 2�

s
C 3

s � 1
; (1.2)

for all s 2 C. (See Example 6.9 for details and note that in (1.2) above, we have
chosen ı D 1, without loss of generality.) Clearly, it then follows that the set of
complex dimensions of A is given by

P.�A/ WD P.�A;C/ D ¹0; 1º [
�

log2 3 C 2�

log 2
iZ

�

; (1.3)
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and that all of the complex dimensions are simple (i.e., are simple poles of �A).
The distance zeta function of A is shown to satisfy the appropriate conditions and
we can therefore deduce the exact fractal tube formula of A from equation (1.1).
More speci�cally, we obtain that

jAt j D
X

!2P.�A/

t2�!

2 � !
res.�A; !/

D t2�log2 3 6
p

3

log 2

C1
X

kD�1

.4
p

3/�!k t�ikp

.2 � !k/.!k � 1/!k

C
�3

p
3

2
C �

�

t2;

valid pointwise for all t 2 .0; 1=2
p

3/ and where we have let p WD 2�
log 2

and
!k WD log2 3 C ikp for every k 2 Z. Of course, the above formula coincides
with the one obtained earlier in [LapPe3] and [LapPeWi1].

Next, we discuss the example of the fractal nest .Aa; �/ in R
2 generated by the

a-string, which is given in full detail in Example 6.13. Here, a > 0 is a parameter,
Aa is a union of concentric circles centered at the origin of radii j �a for every
integer j � 1 and � is the unit ball in R

2; see Figure 3 in that example. In
Subsection 6.5, we show that the distance zeta function �Aa;� of the associated
RFD has a meromorphic continuation to all of C and that the set of complex
dimensions of .Aa; �/ satis�es the inclusion

P.�Aa;�/ WD P.�Aa;�;C/ �
°

1;
2

a C 1
;

1

a C 1

±

[
°

� m

a C 1
W m 2 N

±

: (1.4)

We do not have an equality above since some of the complex dimensions above
may vanish, due to zero-pole cancellations. Furthermore, if a ¤ 1, all of the above
(potential) complex dimensions are simple and if a D 1, the complex dimension
! D 1 has multiplicity 2. On the other hand, we do know that 1 and D WD 2

aC1

are never canceled; that is, they always belong to P.�Aa;�/. In Subsection 6.5,
we also show that the distance zeta function satis�es growth conditions which
are good enough so as to enable us to obtain the following pointwise fractal tube
formula with error term for .Aa; �/, provided a ¤ 1:

j.Aa/t \ �j D
X

!2P.�A;�;W /

tN �!

N � !
res.�A;�; !/ C O.t2��/

D t2�D

2 � D
res.�A;�; D/ C t2�1

2 � 1
res.�A;�; 1/ C O.t2��/

D 22�DD�

.2 � D/.D � 1/
aD�1t2�D C .4��.a/ � 2�/t C O.t2�� /;

(1.5)
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as t ! 0C. Here, W WD ¹Re s > �º with � 2 .�1=2.a C 1/; 0/ arbitrary and � is
the Riemann zeta function. Observe that if a 2 .0; 1/, then D > 1 and the leading
power of t in (1.5) above is 2�D. In other words, dimB.Aa; �/ D D and .Aa; �/

is Minkowski measurable with Minkowski content (see equation (2.11) and the
text surrounding it)

M
D.A; �/ D 22�DD�

.2 � D/.D � 1/
aD�1:

On the other hand, if a > 1, then D < 1 and the leading power of t in (1.5)

above is 2 � 1 D 1. Therefore, we conclude that dimB.Aa; �/ D 1 and .Aa; �/ is
Minkowski measurable with Minkowski content

M
1.A; �/ D .4��.a/ � 2�/:

Finally, when a D 1, the two distinct complex dimensions D and 1 “merge”
into a single complex dimension of order 2. In this case, we also obtain the
corresponding pointwise fractal tube formula with error term but we have to use
the more general fractal tube formula which is valid in the presence of complex
dimensions of higher order; i.e., poles of the associated distance fractal zeta
function of higher multiplicities. In that case, formula (1.1) must be replaced
by the following more general formula:

jAt \ �jN D
X

!2P.�A;�;W /

res
� tN �s

N � s
�A;�.s/; !

�

C R
Œ0�
A;�.t /: (1.6)

By choosing a window W WD ¹Re s > �º, with � 2 .�3=4; �1=2/, we now obtain
the following pointwise fractal tube formula with error term for .A1; �/:

j.A1/t \ �j D
X

!2P.�A;�;W /

res
� tN �s

N � s
�A;�.s/; !

�

C O.t2��/

D res
� t2�s

2 � s
�A1;�.s/; 1

�

C 2

3
res

�

�A1;�;
1

2

�

t
3
2

C 2

5
res

�

�A1;�; �1

2

�

t
5
2 C O.t2�� / as t ! 0C:

(1.7)

In order to calculate the residue at 1, we expand the function t2�s=.2 � s/ into a
Taylor series around s D 1 and we multiply this with the Laurent expansion of
�A1;� around s D 1, which then yields

res
� t2�s

2 � s
�A1;�.s/; 1

�

D 2�t log t�1 C const �t I (1.8)



8 M. L. Lapidus, G. Radunović, and D. Žubrinić

so that (still pointwise)

j.A1/t \ �j D 2�t log t�1 C const �t C o.t/ as t ! 0C: (1.9)

We point out that the above tube formula is in agreement with dimB.A1; �/ D 1

and the fact that .A1; �/ is Minkowski degenerate, i.e., M1.A1; �/ D C1.
In general, and under suitable assumptions, a complex dimension ! of an RFD

.A; �/ which is of order m � 1 will generate terms of the type tN �!.log t�1/k�1,
for k D 1; 2; : : : ; m, in the corresponding fractal tube formula. We note that
RFDs having (even) principal complex dimensions of arbitrary orders exist and
are relatively easy to construct, as was done in [LapRaŽu4, Section 4.4] and
also in [LapRaŽu1, Subsection 4.2.2]. Furthermore, also in the just mentioned
references, RFDs with principal complex dimensions of in�nite order (i.e., with
principal complex dimensions that are essential singularities of the associated
fractal zeta function) have been constructed; see [LapRaŽu4, Section 4.4] and
[LapRaŽu1, Subsection 4.2.2]. We stress that the theory of the present paper can
also be applied if we allow complex dimensions of in�nite order. Indeed, all of the
statements and proofs of the relevant theorems are also valid almost verbatim1 if
we allow complex dimensions to be also essential singularities (alongside poles)
of the associated fractal zeta functions.

In our forthcoming paper [LapRaŽu8], we will apply the results of this paper
in order to obtain a Minkowski measurability criterion for relative fractal drums
formulated in terms of the nonexistence of nonreal complex dimensions with
maximal real part; this criterion generalizes the corresponding Minkowski mea-
surability criterion for fractal strings obtained in [Lap-vFr1–3]. (See [Lap-vFr3,
Section 8.3]) More precisely, under appropriate hypotheses, we will show in
[LapRaŽu8] that the relative fractal drum is Minkowski measurable if and only
if the only complex dimension with maximal real part is the Minkowski dimen-
sion itself, and it is simple. The distributional fractal tube formulas obtained in
the present paper, alongside a Tauberian theorem due to Wiener and Pitt, will play
a crucial role in establishing the aforementioned criterion.

We point out that in this paper, we work with four kinds of fractal zeta functions
for relative fractal drums, including, the already mentioned distance and tube zeta
functions (see De�nitions 2.1 and 2.4, respectively). These latter two zeta func-
tions are connected by a relatively simple functional equation (see equation (2.6)),
which implies that for a given relative fractal drum .A; �/ inR

N , they generate the
same complex dimensions, provided the upper Minkowski dimension of .A; �/ is

1 One needs to appropriately replace, for instance, the phrase “meromorphic extension” by
“meromorphic extension with possible isolated essential singularities,” etc.
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strictly less than N . Of these two fractal zeta functions, the tube zeta function
has a more theoretical value, whereas the distance zeta function is more practical
since it is often easier to compute in concrete examples. In light of this, we �rst
obtain the fractal tube formulas expressed in terms of the tube zeta function and
then translate them in terms of the distance zeta function by introducing a new (in-
termediate) fractal zeta function, called the shell zeta function (see De�nition 5.1).
The reason for introducing this new fractal zeta function is of a technical nature
since the shell zeta function satis�es an even more direct functional equation con-
necting it with the distance zeta function; see equation (5.7).

Finally, the last zeta function we introduce in this work is the relative Mellin

zeta function, in Subsection 5.4. The reason for introducing this zeta function is
also of a technical nature since it will be crucial in order to extend our distribu-
tional tube formulas to a larger class of test functions. This greater generality will
be needed in our aforementioned forthcoming paper [LapRaŽu8], where we use,
in particular, our distributional tube formula to derive a Minkowski measurability
criterion for RFDs.

The results of this paper justify in a natural way the notion of complex di-
mensions and enable us to propose a new de�nition of fractality which (roughly)
states that a relative fractal drum (or a bounded subset) of RN is considered to be
“fractal” if it possesses a nonreal complex dimension. This de�nition of fractality
was already given in [Lap-vFr1–3] (see, e.g., [Lap-vFr3, Sections 12.1 and 12.2])
but we now have to our disposal a general theory of fractal zeta functions and
of associated fractal tube formulas valid in any dimension N (with N � 1) for
any bounded subset (and relative fractal drum) of RN . We will demonstrate how
this proposed de�nition “recognizes” the fractality of a number of subsets which
would not be fractal in the classical sense but which everyone “feels” that they
should nevertheless be considered fractal, just by looking at them. For instance,
this is the case with the relative fractal drum generated by the “devil’s staircase,”
i.e., the Cantor function graph (see Example 6.11), as well as with the examples of
the 1=2-square and the 1=3-square fractals (see Examples 6.19 and 6.20).

Finally, we refer the interested reader to our monograph [LapRaŽu1] for a
complete and detailed exposition of the higher-dimensional theory of complex
dimensions and fractal zeta functions.

In closing this introduction, it may be helpful to the readers to point out
the relationship between the results of our present work and the classic Steiner
tube formula [Stein], as generalized in various ways by many authors (including
Minkowski [Mink], Weyl [Wey] and later, Federer [Fed1–2]) and as stated in the
original case of compact convex sets in [Schn2, Theorem 4.2.1].2

2 Our exposition of this material closely follows part of [Lap-vFr3, Subsection 13.1.3]; see
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Let A be a compact convex subset of RN .N � 1/ and let Bk denote the k-
dimensional unit ball of Rk (for any integer k � 0), with k-dimensional volume
(or Lebesgue measure) denoted by jBkjk . (For k D 0, we let jB0j0 WD 1.) Note
that for t � 0, the t -neighborhood (or t -parallel body) of A can be written as
At D ACtBN . Then its volume VA.t / WD jAt jN can be expressed as a polynomial
of degree � N (exactly N if jAjN > 0, e.g., if A has nonempty interior) in the
variable t :

VA.t / D
N

X

kD0

�k.A/jBN �k jN �ktN �k ; (1.10)

where for k D 0; 1; : : : ; N , �k.A/ denotes the k-th intrinsic volume of A.
Up to some suitable normalizing and multiplicative constant (depending on k),

for each k 2 ¹0; 1; : : : ; N º, the k-th intrinsic volume �k.A/ coincides with the k-th
total curvature of A or the so-called .N �k/-th Quermassintegral of A. Moreover,
still for k 2 ¹0; 1; : : : ; N º, �k.A/ can be interpreted either combinatorially and al-
gebraically in terms of appropriate valuations (see [KlRot]) or (in a closely related
context) within the framework of integral geometry, as the average measure of or-
thogonal projections to .N � k/-dimensional subspaces of Euclidean space R

N ;
see, e.g., [Schn2] and [KlRot, Chapter 7]. (This latter interpretation was already
implicit in Steiner’s original work [Stein] and that of his immediate successors,
where N D 2 or 3.)

To make a long and beautiful story short, let us simply mention here that (up
to a suitable normalizing multiplicative constant) �0 corresponds to the Euler

characteristic,3 �1 to the so-called mean width, �N �1 the surface area, and �N

the N -dimensional volume of A (i.e., �N .A/ D jAN j D jAj, in our notation).
Finally, let us point out that the intrinsic volumes �k have the following

algebraic and geometric properties (for every k D 0; 1; : : : ; N ):

(i) each �k is homogeneous of degree k, i.e., for all � > 0,

�k.�A/ D �k�k.A/; (1.11)

and

(ii) each �k is rigid motion invariant; more speci�cally, for any (a�ne) isometry
R of RN , we have that

�k.R.A// D �k.A/: (1.12)

also [LapPe1–3] and [LapPeWi1].

3 In the present case of compact convex sets, �0 is always identically equal to one. However,
in the more general setting of sets of positive reach or of �nite unions of such sets, it is Z-valued;
see, e.g., [Schn2, Section 3.4] and [Fed1, Zä2].
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Remarkably, for any (visible) complex dimension ! of a bounded subset A of
R

N (or, more generally, of an RFD .A; �/ of RN ), the corresponding coe�cient
of our fractal tube formula (assuming that we are in the case of simple poles), that
is, essentially, the residue of the fractal zeta function at s D ! (see equation (1.1)

above), satis�es entirely analogous homogeneous and geometric invariance prop-
erties (with k replaced by ! in equations (1.11) and (1.12)).4 Furthermore, of
course, the resulting fractal tube formula is no longer a polynomial of degree N

in the variable t but involves a typically in�nite sum ranging over all of the un-
derlying visible complex dimensions of A (or of the RFD .A; �/). Moreover, as
we shall see in many examples, the coe�cients of the fractal tube formula that
correspond to the set of (visible) complex dimensions can frequently be naturally
decomposed as a set of integer dimensions (say, ! D k 2 ¹0; 1; : : : ; N º) and of
scaling dimensions (say, ! 2 DS).5 (See, especially, the discussion of the Sier-
piński gasket and of the 3-carpet in Section 6.3, along with that of self-similar
sprays in Section 6.6; such a situation already arose in the very special but impor-
tant case of fractal sprays studied in [LapPe1–2] and [LapPeWi1–2].)

We leave to a later work a further and much more detailed exploration of the
possible geometric, algebraic and combinatorial interpretations of our fractal tube
formulas (as well as potential local versions thereof), in the spirit of the above
discussion and particularly, the work of Stein [Stein], Minkowski [Mink] (see
also [Schn2]), Weyl [Wey] (see also [BergGos] and [Gra]), Federer ([Fed2] and,
especially in [Fed1], his work on local tube formulas and curvature measures),
Klain and Rota [KlRot], and many other authors; see, e.g., the books [Bla, Schn2,
Gra, Lap-vFr1–3], along with the articles [Fu1–2, HuLaWe, KeKom, Kom, Kow,
LapPe1–3, LapPeWi1–2, Mil, Ol1–2, RatWi, Schn1, Sta, Wi, WiZa, Zä1–5], and
the many relevant references therein.

The rest of this paper is organized as follows. In Section 2, we provide some
basic de�nitions (concerning the Minkowski dimension and the distance zeta
functions of RFDs) and technical preliminaries about the Mellin transform. In
Section 3, we establish the pointwise fractal tube formula, with or without error
term, and expressed in terms of the relative tube zeta function. In Section 4, we
then use this pointwise tube formula in order to derive the distributional fractal

4 The analog of equation (1.12) follows easily from the de�nitions, while the counterpart of
equation (1.11) follows from the scaling property of the fractal zeta function and hence of its
residues (see [LapRaŽu3, Section 2.2] or [LapRaŽu1, Theorem 4.1.38]).

5 Of course, if DS happens to be empty (which is certainly the case if A is a compact convex
set), then VA.t/ reduces to a polynomial expression of degree � N in t and the corresponding
tube formula is Steiner-like, much as in equation (1.10) above.
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tube formula, with or without error term and still expressed in terms of the tube
zeta function. In Section 5, we establish the pointwise and distributional fractal
tube formulas, with or without error term, but now formulated via the (relative)
distance zeta function. In the process, we introduce the notion of shell zeta
function (as well as that of Mellin zeta function) which enables us, in particular,
to use the results of Sections 3 and 4 formulated via the tube zeta function.
Finally, in Section 6, we illustrate our results by obtaining fractal tube formulas
in a variety of concrete examples, including fractal strings (Subsection 6.2),
the Sierpiński gasket and the 3-dimensional carpet (Subsection 6.3), the Cantor
graph RFD (Subsection 6.4), fractal nests and (unbounded) geometric chirps
(Subsection 6.5), as well as fractal sprays, and more speci�cally, self-similar
sprays (Subsection 6.6).

2. Preliminaries

We begin this section by stating some de�nitions and results from [LapRaŽu2–5]
(see also the research monograph [LapRaŽu1]) which will be needed here, such as
the de�nition of a relative fractal drum in R

N and its associated relative distance
and tube zeta functions. In order to exclude dealing with trivial cases and shorten
the statements of the results, we will always assume throughout this paper that all
the sets A and � are nonempty.

First of all, given a subset A ofRN , we denote its ı-neighborhood (or ı-parallel

set) by
Aı WD ¹x 2 R

N W d.x; A/ < ıº: (2.1)

Here, d.x; A/ WD inf¹jx � yjW y 2 Aº is the Euclidean distance between the point
x and the set A � R

N .

De�nition 2.1 ([LapRaŽu1, 4]). Let � be a Lebesgue measurable subset of RN ,
not necessarily bounded, but of �nite N -dimensional Lebesgue measure (or “vol-
ume”). Furthermore, let A � R

N , also possibly unbounded, be such that � is
contained in Aı for some ı > 0. The distance zeta function �A;� of A relative

to � (or the relative distance zeta function) is de�ned by the following Lebesgue
integral:

�A;�.s/ WD
Z

�

d.x; A/s�N dx; (2.2)

for all s 2 C with Re s su�ciently large. The ordered pair .A; �/, appearing in
De�nition 2.1 is called a relative fractal drum or RFD in short. In light of this, we
will also use the phrase zeta functions of relative fractal drums instead of relative
zeta functions.
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Remark 2.2. If we replace the domain of integration � in equation (2.2) with
Aı \ � for some �xed ı > 0, that is, if we let

�A;�.sI ı/ WD
Z

Aı\�

d.x; A/s�N dx; (2.3)

then the di�erence �A;�.s/ � �A;�.sI ı/ is an entire function (see [LapRaŽu1–5]).
Therefore, we can alternatively de�ne the relative distance function of .A; �/

by (2.3), since in the theory of complex dimensions, we are mostly interested
in the poles (or, more generally, in the singularities) of meromorphic extensions
of (various) fractal zeta functions. Then, in light of the principle of analytic
continuation, the dependence of �A;�. � I ı/ on ı is inessential from the point of
view of the complex dimensions (de�ned in De�nition 2.15 just below).

The condition that � � Aı for some ı > 0 is of a technical nature and ensures
that the function x 7! d.x; A/ is bounded for x 2 �. If � does not satisfy this
condition, we can still use the alternative de�nition given by Equation (2.3).6

Remark 2.3. As was already stated in the introduction, the notion of a relative
fractal drum generalizes the notion of a bounded subset of RN . Namely, in order
to apply the results of this paper to an arbitrary bounded subset A of R

N , one
chooses any bounded open set � containing Aı for some ı > 0 (for instance, Aı

itself) and applies the theory to the RFD .A; �/.

Analogous comments also hold for the relative tube zeta function, which we
now introduce.

De�nition 2.4 ([LapRaŽu1, 4]). Let .A; �/ be an RFD in R
N and �x ı > 0. We

de�ne the tube zeta function Q�A;�.sI ı/ of A relative to � (or the relative tube zeta

function by

Q�A;�.sI ı/ WD
ı

Z

0

t s�N �1jAt \ �j dt; (2.4)

for all s 2 C with Re s su�ciently large, where the integral is taken in the
Lebesgue sense and jAt \ �j WD jAt \ �jN denotes the N -dimensional volume
of At \ � � R

N .

6 Since then, � n Aı and A are a positive distance apart, this replacement will not a�ect the
relative box dimension of .A; �/ introduced just below or any other fractal properties of .A; �/

that will be introduced later on.
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The distance and tube zeta functions of relative fractal drums are a special
case of Dirichlet-type integrals (or, in short, DTIs), and as such, have a well-
de�ned abscissa of (absolute) convergence. The abscissa of convergence of a
DTI �W E ! C, where E � C is a domain, is de�ned as the in�mum of all the real
numbers ˛ for which the integral �.˛/ is absolutely convergent and we denote7 it
by D.�/.

In short, a DTI is given by

�E;';�.s/ WD
Z

E

'.x/s d �.x/; (2.5)

for all s 2 C with Re s su�ciently large, where E is a locally compact and
metrizable topological space (e.g., E WD �, E WD Aı \ � or E WD Œ0; ı�, in
equations (2.2), (2.3), or (2.4), respectively), � is a (positive or complex) local
measure with total variation measure denoted by j�j, and 'W E ! R satis�es ' � 0

j�j-a.e. on E and is tamed (i.e., there exists C < 1 such that ' � C j�j-a.e. on E).

A general result about a DTI � is the fact that it is a holomorphic function
in the open half-plane to the right of its abscissa of convergence; that is, on the
half-plane of (absolute) convergence8 ….�/ WD ¹Re s > D.�/º. In the sequel,
the vertical line ¹Re s D D.�/º is often referred to as the critical line (for �).
Furthermore, the relative distance and tube zeta functions are connected by the
functional equation

�A;�.sI ı/ D ıs�N jAı \ �j C .N � s/ Q�A;�.sI ı/; (2.6)

which is valid on any open connected subset U of C to which any of these two zeta
functions has a meromorphic continuation (see [LapRaŽu4] or [LapRaŽu1]). This
result is very useful since in many concrete examples, the distance zeta function
is much easier to calculate than the tube zeta function. On the other hand, the tube
zeta function has an important theoretical value and many results in [LapRaŽu1–5]
are proven in terms of the tube zeta function and then reformulated in terms of the
distance zeta function. This will also be the case in the present paper.

7 For a precise de�nition of a DTI, as well as for the results mentioned here concerning them
(and their generalizations), we refer the interested reader to [LapRaŽu2, Appendix A] and for
more details, to [LapRaŽu1, Appendix A].

8 Here and thereafter, subsets of C of the type ¹s 2 CW Re s < ˛º, ¹s 2 CW Re s > ˛º and
¹s 2 CW Re s D ˛º are denoted by ¹Re s < ˛º, ¹Re s > ˛º and ¹Re s D ˛º, respectively.
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A key technical observation underlying some of the methods used in this paper
is that the tube zeta function coincides with the Mellin transform of a modi�ed
tube function t 7! jAt \ �j. More speci�cally, as we will see in a moment, one
has that for all s 2 C with Re s su�ciently large,

Q�A;�.sI ı/ D
C1
Z

0

t s�1.�.0;ı/.t /t
�N jAt \ �j/dt; (2.7)

where �.0;ı/ denotes the characteristic function of the set .0; ı/. Recall that the
Mellin transform of a function f WR ! R is de�ned by

¹Mf º.s/ WD
C1
Z

0

t s�1f .t/ d t; (2.8)

where s is a complex number with large enough real part. Then, by letting

fı.t / WD �.0;ı/.t /t
�N jAt \ �j; (2.9)

we have that
Q�A;�.sI ı/ D ¹Mfıº.s/; (2.10)

for all s 2 C with Re s su�ciently large. This will enable us (in Theorem 2.19
below) to recover the tube function t 7! jAt \ �j from the relative tube zeta
function Q�A;� by using the Mellin inversion theorem (recalled in Theorem 2.18).
More interestingly, the functional equation (2.6) will then enable us to use the
distance zeta function �A;� instead of the tube zeta function Q�A;� for operating
this recovery.

Remark 2.5. The important special case of a bounded set A � R
N is obtained

by considering the RFD .A; Aı/ (i.e., by letting � D Aı , for some ı > 0) in
equation (2.2) and equation (2.4) in order to obtain the distance zeta function �A

and the tube zeta function Q�A of A, respectively. (See [LapRaŽu2] and [LapRaŽu1,
Chapters 2 and 3].) We note that the notion of distance zeta function �A was �rst
introduced by the �rst author in 2009.

An entirely analogous comment could be made for the (upper, lower) Min-
kowski dimension and (upper, lower) Minkowski content of a bounded subset A

of R
N . Namely, in the discussion just below, it would su�ce, for example, to

consider the RFD .A; Aı/ in equation (2.11) or equation (2.12) in order to recover
M

�r .A/ or dimBA, respectively.
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We now proceed by introducing the notions of Minkowski content and Min-
kowski (or box) dimension of a relative fractal drum (RFD) and relating them
to the distance and tube zeta functions of this RFD. For any real number r , we
de�ne the upper r-dimensional Minkowski content of A relative to � (or the upper

relative Minkowski content, or the upper Minkowski content of the relative fractal

drum .A; �/) by

M
�r .A; �/ WD lim sup

t!0C

jAt \ �j
tN �r

; (2.11)

and we then proceed in the usual way in order to de�ne dimB.A; �/:

dimB.A; �/ D inf¹r 2 RWM�r .A; �/ D 0º
D sup¹r 2 RWM�r .A; �/ D C1º: (2.12)

We call it the relative upper box dimension (or relative Minkowski dimension) of
A with respect to � (or else the relative upper box dimension of .A; �/). Note
that dimB.A; �/ 2 Œ�1; N �. We stress that the values of dimB.A; �/ can indeed
be negative, even equal to �1; see [LapRaŽu4] or [LapRaŽu1, Chapter 4].9 Also
note that for these de�nitions to make sense, it su�ces that jAı \ �j < 1 for
some ı > 0:

The value Mr
�.A; �/ of the lower r-dimensional Minkowski content of .A; �/,

is de�ned as in (2.11), except for a lower instead of an upper limit. Analogously
as in (2.12), we then de�ne the relative lower box (or Minkowski) dimension of
.A; �/ by using the lower r-dimensional Minkowski content of .A; �/ instead of
the upper. Furthermore, in the case when dimB.A; �/ D dimB.A; �/, we denote
by dimB.A; �/ this common value and call it the relative box (or Minkowski)

dimension. Moreover, if 0 < M
D
� .A; �/ � M

�D.A; �/ < 1, we say that the
relative fractal drum .A; �/ is Minkowski nondegenerate. It then follows that
dimB.A; �/ exists and is equal to D.

Finally, if M
D
� .A; �/ D M

�D.A; �/, we denote this common value by
M

D.A; �/ and call it the relative Minkowski content of .A; �/. IfMD.A; �/ exists
and is di�erent from 0 and 1 (in which case dimB.A; �/ exists and then necessar-
ily D D dimB.A; �/), we say that the relative fractal drum .A; �/ is Minkowski

measurable. Many examples and properties of the relative box dimension can be
found in [Lap1–3, LapPo1–3, HeLap, Lap-vFr1–3, Žu, LapPe1–2, LapPeWi1–2], in
various special cases, and in [LapRaŽu1–7] in the present general setting of RFDs.

9 However, in the important special case of a bounded set A � RN discussed in Remark 2.5,
we always have that dimB A 2 Œ0; N �; in particular, dimB A � 0.
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In the following three theorems, we recall some basic results about zeta func-
tions of relative fractal drums. (See [LapRaŽu1–2] for the special case of bounded
subsets of RN .)

Theorem 2.6 ([LapRaŽu1, 4]). Let .A; �/ be a relative fractal drum in R
N . Then

the following properties hold:

.a/ The relative distance zeta function �A;� is holomorphic in the half-plane

¹Re s > dimB.A; �/º. More precisely,

D.�A;�/ D dimB.A; �/: (2.13)

.b/ If the relative box (or Minkowski) dimension D WD dimB.A; �/ exists,

D < N and M
D
� .A; �/ > 0, then �A;�.s/ ! C1 as s 2 R converges to D from

the right.

Remark 2.7. For a general relative fractal drum .A; �/ in R
N , the right half-

plane ¹Re s > dimB.A; �/º is not necessarily the maximal open right half-plane
to which its relative distance zeta function can be holomorphically continued. For
instance, this is the case with the line segment I WD Œ0; 1� � R, understood as a
relative fractal drum .I; Iı/; see Subsection 6.1.10 However, this situation cannot
occur if .A; �/ satis�es the hypotheses of part .b/ of Theorem 2.6.

Furthermore, if dimB.A; �/ < N , in light of the functional equation (2.6),
Theorem 2.6 is also valid if we replace the relative distance zeta function by the
relative tube zeta function in its statement. Moreover, it can be shown directly
(i.e., without the use of the functional equation) that in the case of the tube zeta
function, Theorem 2.6 is also valid in the special case when dimB.A; �/ D N .

Theorem 2.8 ([LapRaŽu1, 4]). Assume that .A; �/ is a nondegenerate RFD in

R
N , that is, 0 < M

D
� .A; �/�M

�D.A; �/ < 1 (in particular, dimB.A; �/DD/,

and D < N . If �A;� D �A;�. � ; ı/ has a meromorphic extension to a connected

open neighborhood of s D D, then D is necessarily a simple pole of �A;�, the

residue res.�A;�; D/ is independent of ı and

.N � D/MD
� .A; �/ � res.�A;�; D/ � .N � D/M�D.A; �/: (2.14)

Furthermore, if .A; �/ is Minkowski measurable, then

res.�A;�; D/ D .N � D/MD.A; �/: (2.15)

10 We would like to thank E. P. J. Pearse for this example.
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The above theorem can be reformulated in terms of the relative tube zeta
function and in that case, we can remove the condition dimB.A; �/ < N .

Theorem 2.9 ([LapRaŽu1, 4]). Assume that .A; �/ is a nondegenerate RFD in

R
N (so that D WD dimB.A; �/ exists), and that for some ı > 0 there exists a

meromorphic extension of Q�A;� D Q�A;�. � I ı/ to a connected open neighborhood

of D. Then, D is a simple pole of Q�A;� and res. Q�A;�; D/ is independent of ı.

Furthermore, we have

M
D
� .A; �/ � res. Q�A;�; D/ � M

�D.A; �/: (2.16)

In particular, if .A; �/ is Minkowski measurable, then

res. Q�A;�; D/ D M
D.A; �/: (2.17)

We continue by stating some of the de�nitions that were already introduced
in [Lap-vFr1–3] in the setting of generalized fractal strings and adapt them to the
present context of relative fractal drums in R

N . (See, e.g., [Lap-vFr3, Chapter 5].)

De�nition 2.10. The screen S is the graph of a bounded, real-valued Lipschitz
continuous function S.�/, with the horizontal and vertical axes interchanged:

S WD ¹S.�/ C i� W � 2 Rº: (2.18)

The Lipschitz constant of S is denoted by kSkLip; so that

jS.x/ � S.y/j � kSkLipjx � yj; for all x; y; 2 R:

Furthermore, the following quantities are associated to the screen:

inf S WD inf
�2R

S.�/ and sup S WD sup
�2R

S.�/:

As before, given an RFD .A; �/ in R
N , we denote its upper relative box

dimension by xD WD dimB.A; �/; recall that xD � N . We always assume,
additionally, that xD > �1 and the screen S lies always to the left of the critical

line ¹Re s D xDº, i.e., that sup S � xD. Also, in the sequel, we assume that
inf S > �1 (see, however, Remark 2.11 below); hence, we have that

� 1 < inf S � sup S � xD: (2.19)

Moreover, the window W is de�ned as the part of the complex plane to the
right of S; that is,

W WD ¹s 2 CW Re s � S.Im s/º: (2.20)
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We say that the relative fractal drum .A; �/ is admissible if its relative tube (or
distance) zeta function can be meromorphically extended (necessarily uniquely)
to an open connected neighborhood of some window W , de�ned as above.

Remark 2.11. Occasionally, in the strongly languid case, in the sense of De�ni-
tion 2.13 or De�nition 5.9 below (and hence, in particular, when the fractal zeta
function involved is meromorphic on all of C), it is convenient to implicitly move
the screen S to �in�nity (i.e., to let S � �1) and thus to choose W WD C.

The next de�nition adapts [Lap-vFr3, De�nition 5.2] to the case of relative
fractal drums in R

N (and, in particular, to the case of bounded subsets of RN ).

De�nition 2.12 (languidity; adapted from [Lap-vFr3]). An admissible relative
fractal drum .A; �/ in R

N is said to be languid if for some �xed ı > 0, its tube
zeta function Q�A;�. � I ı/ satis�es the following growth conditions.

There exists a real constant � and a two-sided sequence .Tn/n2Z of real num-
bers such that T�n < 0 < Tn for all n � 1 and

lim
n!1

Tn D C1; lim
n!1

T�n D �1 (2.21)

satisfying the following two hypotheses, L1 and L2.11

L1 For a �xed real constant c > dimB.A; �/, there exists a positive constant
C > 0 such that12 for all n 2 Z and all � 2 .S.Tn/; c/,

j Q�A;�.� C iTnI ı/j � C.jTnj C 1/� : (2.22)

L2 For all � 2 R, j� j � 1,

j Q�A;�.S.�/ C i� I ı/j � C j� j�; (2.23)

where C is a positive constant which can be chosen to be the same one as in
condition L1.

11 Here, unlike in the de�nition given in [Lap-vFr3], we do not need to assume that
limn!C1 Tn=jT�nj D 1.

12 This is a slight modi�cation of the original de�nition of languidity from [Lap-vFr3], where
c was replaced by C1; compare with [Lap-vFr3, De�nition 5.2, pp. 146–147]. Furthermore, it
is clear that if condition L1 is satis�ed for some c > dimB.A; �/, then it is also satis�ed for any
c1 such that dimB.A; �/ < c1 < c.
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Note that hypothesis L1 is a polynomial growth condition along horizontal
segments (necessarily not passing through any singularities of Q�A;�. � I ı/), while
hypothesis L2 is a polynomial growth condition along the vertical direction of
the screen. These hypotheses will be needed to establish the pointwise and
distributional tube formulas with error term.

In order to obtain the pointwise and distributional tube formulas without
error terms (that is, exact tube formulas), we will need a stronger notion of
languidity. Accordingly, we introduce the following de�nition, which adapts
to our current more general situation the de�nition of strong laguidity given in
[Lap-vFr3, De�nition 5.3].

De�nition 2.13 (strong languidity; adapted from [Lap-vFr3]). We say that an ad-
missible relative fractal drum .A; �/ in R

N is strongly languid if (i) for some
ı > 0, its tube zeta function satis�es condition L1 with S.Tn/ � �1 (that is,
with S.Tn/ replaced by �1) in (2.22), i.e., estimate (2.22) holds for every � < c;
and, additionally, (ii) there exists a sequence of screens SmW � 7! Sm.�/ C i� for
m � 1, � 2 R with sup Sm ! �1 as m ! 1 and with a uniform Lipschitz
bound, supm�1 kSmkLip < 1, such that the following condition holds:

L2
0 There exist constants B; C > 0 such that for all � 2 R and m � 1,

j Q�A;�.Sm.�/ C i� I ı/j � CB jSm.�/j.j� j C 1/� : (2.24)

One immediately sees that hypothesis L20 implies hypothesis L2; so that a
strongly languid relative fractal drum is also languid. We also note that if a
relative fractal drum is languid for some � 2 R, then it is also languid for any
�1 > �. Observe that for Q�A;� WD Q�A;� (or, equivalently, the RFD .A; �/) to be
strongly languid, Q�A;� must admit a meromorphic continuation to all of C; see also
Remark 2.11 above.

We will also use the notion of languid (or else, strongly languid) relative tube
zeta function, in the obvious sense.

As we shall see, most of the geometrically interesting examples of RFDs (and,
in particular, of bounded sets) in R

N considered here are either languid (relative
to a suitable screen), in the sense of De�nition 2.12 above (or of its counterpart
for the distance zeta function, in De�nition 5.9 below) or else, strongly languid,
in the sense of De�nition 2.13 just above (or, again, in the sense of De�nition 5.9).
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Proposition 2.14. Let .A; �/ be a relative fractal drum in R
N . If the relative

tube zeta function Q�A;�. � I ı/ satis�es the languidity conditions L1 and L2 for

some ı > 0 and � 2 R, then so does Q�A;�. � I ı1/ for any ı1 > 0 and with

�ı1
WD max¹�; 0º.
Furthermore, the analogous statement is also true in the case when Q�A;�. � I ı/

is strongly languid, under the additional assumption that ı � 1 and ı1 � 1.

Proof. Without loss of generality, we may assume that ı < ı1. Then the conclu-
sion follows from the fact that Q�A;�. � I ı1/ D Q�A;�. � I ı/ C f .s/, where f is entire
and

jf .s/j �
ı1

Z

ı

tRe s�N �1jAt \ �j d t �

8

ˆ

<

ˆ

:

j�jı
Re s�N
1 � ıRe s�N

Re s � N
; Re s ¤ N;

j�j.log ı1 � log ı/; Re s D N:

(2.25)

Since, clearly, the upper bound on jf .s/j does not depend on Im s, we conclude
that f satis�es the languidity conditions L1 and L2 with the languidity exponent
�f WD 0 and for any given window W . This observation implies that then,
Q�A;�. � I ı1/ is languid for �ı1

WD max¹�; 0º and with the same window as for
Q�A;�. � I ı/.

The additional assumption for strong languidity is needed since L1 must then
be satis�ed for all � 2 .�1; c/, in the notation of De�nition 2.12, and for this to
be achieved we need that ı1 > ı � 1 in (2.25) since otherwise, we do not have an
upper bound on jf .s/j when Re s ! �1. �

Let us now introduce the notion of complex dimensions of a relative fractal
drum.

De�nition 2.15 (complex dimensions of an RFD [LapRaŽu1, 4]). Let .A; �/ be a
relative fractal drum in RN . Assume that the relative tube zeta function Q�A;�. � I ı/

has a meromorphic extension to a connected neighborhood U of the critical line
¹Re s D dimB.A; �/º. Then, the set of visible complex dimensions of .A; �/ (with

respect to U / is the set of poles of Q�A;�. � I ı/ that belong to U and we denote it by

P. Q�A;�. � I ı/; U / WD ¹! 2 U W ! is a pole of Q�A;�. � I ı/º: (2.26)

If U WD C, we say that P. Q�A;�. � I ı/;C/ is the set of complex dimensions of .A; �/

and denote it by dimC.A; �/.
Furthermore, we call the set of poles located on the critical line ¹Re s D

dimB.A; �/º the set of principal complex dimensions of .A; �/ and denote it by

dimP C .A; �/ WD ¹! 2 P. Q�A;�. � I ı/; U /W Re! D dimB.A; �/º: (2.27)
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Remark 2.16. In light of the functional equation (2.6) and the relevant discussion
concerning it, the above de�nition can also be made in terms of the relative dis-
tance zeta function; that is, we always have P. Q�A;�. � I ı/; U / D P.�A;�. � I ı/; U /

whenever one of the above zeta functions has a meromorphic extension to the
domain U containing the critical line ¹Re s D dimB.A; �/º and if13 N …
P. Q�A;�. � I ı/; U /. Furthermore, according to Remark 2.2, the set of (visible) com-
plex dimensionsP. Q�A;�. � I ı/; U / of a relative fractal drum .A; �/ does not depend
on ı.

In order to obtain the relative tube formula expressed in terms of the complex
dimensions of the relative fractal drum .A; �/, we will need to work (for each
k 2 N) with the k-th primitive (or k-th anti-derivative) function, V Œk� D V Œk�.t /,
of the relative tube function V D V.t/ vanishing along with its �rst .k � 1/

derivatives at t D 0. Therefore, we let

V.t/ D VA;�.t / D V Œ0�.t / WD jAt \ �j (2.28)

and

V Œk�.t / D V
Œk�

A;�.t / WD
t

Z

0

V Œk�1�.�/ d �; for each k 2 N: (2.29)

(Here and thereafter, we let N WD ¹1; 2; 3; : : :º and N0 WD N[¹0º.) In the case of a
bounded subset A � R

N , we use the analogous notation V Œk�.t / D V
Œk�

A .t / for the
k-th primitive function of the tube function V.t/ D VA.t / WD jAt j, where k 2 N0.
Furthermore, we recall that for any s 2 C, the Pochammer symbol is de�ned by

.s/0 WD 1; .s/k WD s.s C 1/ � � � .s C k � 1/; (2.30)

for any nonnegative integer k and, more generally, for the purpose of Section 4,
for every k 2 Z by

.s/k WD �.s C k/

�.s/
; (2.31)

where � denotes the gamma function.

Remark 2.17. One may legitimately wonder why we work with the k-th primi-
tive, for any k � 0 rather than simply for k D 0. There are several reasons for
that, one of them being that the larger k, the weaker our assumptions in the state-
ment of our pointwise tube formulas. Furthermore, in proving the distributional
tube formulas, we will essentially use our corresponding pointwise tube formula

13 In that case, the other zeta function also has a meromorphic continuation to U .
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at level k, with k su�ciently large, and then distributionally di�erentiate the re-
sulting formula in order to obtain a distributional formula valid at any level l 2 Z

(rather than for l 2 N0), the case when l D �1 being the most fundamental one in
that distributional situation.14 (See, e.g, the proof of Theorem 4.3 in Section 4.1.)
When N D 1 (i.e., in the case of fractal strings), this same method was already
used in [Lap-vFr1–3] in order to deduce the distributional explicit formula from
its pointwise counterpart; see Remark 5.20 along with the �rst proof of Theo-
rem 5.18 in [Lap-vFr3]. There will, however, be several technical di�erences in
the execution of the method, which we will not necessarily point out.

Before stating the main relationship connecting V Œk� D V
Œk�

A;� and the tube

zeta function Q�A;� of the RFD .A; �/, valid for any integer k � 0, we begin by
considering the key special case when k D 0 (so that V Œ0� D V D VA;�). In
order to proceed, we need to brie�y provide some basic information about the
Mellin transform and its inverse transform. Recall that the Mellin transform of
a function f WR ! R is de�ned by equation (2.8). Furthermore, the Mellin
inversion theorem, which we recall here for the sake of completeness, together
with equation (2.7) yields an integral expression for the tube function of a given
relative fractal drum.

Theorem 2.18 (Mellin’s inversion theorem, cited from [Tit1, Theorem 28]). Let

f W .0; C1/ ! R be such that for a given y > 0, f .t/ is of bounded variation

in a neighborhood of the point t D y. Furthermore, assume that t 7! tc�1f .t/

belongs to L1.0; C1/, where c is a real number, and de�ne

¹Mf º.s/ WD
C1
Z

0

t s�1f .t/ d t (2.32)

for all s 2 C such that Re s D c. Then, for the above value of y, the following

inversion formula holds:

1

2
.f .y C 0/ C f .y � 0// D 1

2�i

cCi1
Z

c�i1

y�s¹Mf º.s/ d s; (2.33)

where f .y C 0/ and f .y � 0/ denote, respectively, the right and left limits of f

at y. Here, on the right-hand side of (2.33), the contour integral is taken over the

vertical line ¹Re s D cº.
14 This is analogous to the way periodic distributions are shown to have a distributionally

convergent Fourier series (under rather weak hypotheses), by integrating su�ciently many times
and then using the classic pointwise result about the uniform convergence of Fourier series; see
[Schw, Section VII, I, esp., p. 226].
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We can now state the announced integral formula connecting the relative tube
function of the RFD .A; �/ and the tube zeta function Q�A;� WD Q�A;�. � I ı/.

Theorem 2.19. Let .A; �/ be a relative fractal drum in R
N and �x ı > 0. Then,

for any �xed c > dimB.A; �/ and for every t 2 .0; ı/, we have

jAt \ �j D 1

2�i

cCi1
Z

c�i1

tN �s Q�A;�.sI ı/ d s: (2.34)

Proof. Let f .t/ WD �.0;ı/.t /t
�N jAt \ �j and observe that t 7! jAt \ �j is

nondecreasing, and hence, is locally of bounded variation on .0; C1/. Since the
product of two functions of locally bounded variation is also a function of locally
bounded variation, we conclude that f is also locally of bounded variation on
.0; C1/. Furthermore, we deduce from Theorem 2.6 and from the functional
equation (2.6) (see also the end of Remark 2.7) that the integral de�ning the
tube zeta function Q�A;� in equation (2.7) is absolutely convergent (and hence,
convergent) for all s 2 C such that Re s > dimB.A; �/ or, in other words,
t 7! tRe s�1f .t/ belongs to L1.0; C1/ for such s. Consequently, the Mellin
transform ¹Mf º.s/ of f is well de�ned by equation (2.32) and coincides with
Q�A;�.sI ı/ for c D Re s > dimB.A; �/; that is, equation (2.7) holds for all s 2 C

such that Re s > dimB.A; �/, as was claimed above. Therefore, by Theorem 2.18,
we can recover the relative tube function from the relative tube zeta function and
for positive y ¤ ı, we have

�.0;ı/.y/y�N jAy \ �j D 1

2�i

cCi1
Z

c�i1

y�s Q�A;�.sI ı/ d s; (2.35)

where c > dimB.A; �/ is arbitrary; that is, equation (2.34) is valid for all
t 2 .0; ı/, as desired. �

One of our main goals in this paper will be to express formula (2.34) in a more
useful and applicable way. More speci�cally, we will express the right-hand side
of (2.34) in terms of the relative distance zeta function and as a sum (interpreted
in a suitable way) of residues over the complex dimensions of the given relative
fractal drum. The resulting identity will be called a “fractal tube formula” (as
in [Lap-vFr3]) or simply, a tube formula.

A priori, one would naively expect that equation (2.32) and hence also, equa-
tion (2.33), only holds for c � N . (Indeed, since f .t/ D 0 for all t � ı and
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jAt \ �j � j�j, we easily see that t 7! tc�1f .t/ belongs to L1.0; C1/ for
c � N .) The stronger conclusion obtained in Theorem 2.19 requires the afore-
mentioned results obtained in [LapRaŽu1–2] and [LapRaŽu4].

The following result is really a corollary of Theorem 2.19 but given its impor-
tance for the rest of this section, we state it as a separate proposition.

Proposition 2.20. Let .A; �/ be a relative fractal drum in R
N and let ı > 0 be

�xed. Then for every t 2 .0; ı/ and k 2 N0, we have

V
Œk�

A;�.t / D 1

2�i

cCi1
Z

c�i1

tN �sCk

.N � sC1/k

Q�A;�.sI ı/ d s; (2.36)

where c 2 .dimB.A; �/; N C 1/ is arbitrary.

Proof. By Theorem 2.19, we have the following equalities, valid (pointwise) for
all t 2 .0; ı/:

V
Œ1�

A;�.t / D
t

Z

0

VA;�.�/ d � D 1

2�i

t
Z

0

cCi1
Z

c�i1

�N �s Q�A;�.sI ı/ d s d �

D 1

2�i

cCi1
Z

c�i1

tN �sC1

N � s C 1
Q�A;�.sI ı/ d s;

since N � c C 1 > 0. The change of the order of integration is justi�ed by
combining Lebesgue’s dominated convergence theorem and the Fubini–Tonelli
theorem. Iterating this calculation k � 1 times, we prove the statement of the
proposition. �

We adapt the following de�nition of the truncated screen and window from
Section 5.3 of [Lap-vFr3], where it was stated for languid generalized fractal
strings and can now be used in the same form in the case of relative fractal drums
in R

N .

De�nition 2.21 (truncated screen and window). Given an integer n � 1 and a
languid relative fractal drum in R

N , the truncated screen Sjn is the part of the
screen S restricted to the interval ŒT�n; Tn�, and the truncated window Wjn is the
window W intersected with the horizontal strip between T�n and Tn; i.e.,

Wjn WD W \ ¹s 2 CW T�n � Im s � Tnº: (2.37)
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We then call P. Q�A;�; Wjn/ the set of truncated visible complex dimensions, i.e.,
it is the set of visible complex dimensions of .A; �/ relative to the window W and
with imaginary parts between T�n and Tn. Note that since by assumption, there
are no poles of Q�A;� along the screen S, we could replace Wjn by its interior VWjn,
in the aforementioned notation:

P. Q�A;�; Wjn/ D P. Q�A;�; VWjn/: (2.38)

3. Pointwise fractal tube formula

In this section, our main goal is to obtain fractal tube formulas via the tube
zeta function which are valid pointwise. Furthermore, depending on the growth
properties of the corresponding tube zeta function, these fractal tube formulas will
be either exact or else approximate with a pointwise error term.

3.1. Pointwise tube formula with error term. From now on, the phrase “let
.A; �/ be a languid (or strongly languid) relative fractal drum” will implicitly
mean that .A; �/ is admissible for some window W and for some ı > 0, the
relative tube zeta function Q�A;�.sI ı/ of .A; �/ satis�es the languidity conditions of
De�nition 2.12 (or De�nition 2.13, respectively). We will �rst obtain a “truncated
pointwise tube formula” (Lemma 3.1), from which the main result (Theorem 3.2)
will follow. (Note that Lemma 3.1 is the counterpart, now valid for any N � 1, of
[Lap-vFr3, Lemma 5.9].) Recall from the end of Section 2 that for each integer
n � 1, the truncated screen Sjn and associated truncated window Wjn were de�ned
in De�nition 2.21.

Lemma 3.1 (truncated pointwise tube formula). Let k � 0 be an integer and

.A; �/ a languid RFD in R
N for a �xed ı > 0. Furthermore, �x a constant

c 2 .dimB.A; �/; N C 1/. Then, for all t 2 .0; ı/ and all integers n � 1, we

have

In WD 1

2�i

cCiTn
Z

cCiT�n

tN �sCk

.N � s C 1/k

Q�A;�.sI ı/ d s

D
X

!2P.Q�A;�;Wjn/

res
� tN �sCk

.N � s C 1/k

Q�A;�.sI ı/; !
�

C 1

2�i

Z

Sjn

tN �sCk

.N � s C 1/k

Q�A;�.sI ı/ d s C En.t /:

(3.1)
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Moreover, assuming that hypothesis L1 is ful�lled, we have the following pointwise

remainder estimate, valid for all t 2 .0; ı/:

jEn.t /j � tN CkK� max¹T ��k
n ; jT�nj��kº.c � inf S/ max¹t�c; t� inf Sº; (3.2)

where K� is a positive constant depending only15 on �.

Finally, for each point s D S.�/ C i� , where � 2 R is such that j� j > 1, and

for all t 2 .0; ı/, the integrand over the truncated screen Sjn appearing in (3.1) is

bounded in absolute value by

C tN Ck max¹t� sup S ; t� inf Sºj� j��k; (3.3)

when hypothesis L2 holds, and by

C�tN Ck max¹B j inf S j; B j sup S jº max¹t� sup S ; t� inf Sºj� j��k; (3.4)

when hypothesis L20 holds, with the constant C� depending only16 on �.

Proof. We let xD WD dimB.A; �/ and for the sake of brevity, write Q�A;�.s/ instead
of Q�A;�.sI ı/ throughout the proof. Next, we replace the integral over the segment
Œc C iT�n; c C iTn� with the integral over the contour � consisting of this segment,
the truncated screen Sjn and the two horizontal segments joining S.T˙n/ C iT˙n

and c C iT˙n (see Figure 1). In other words, we have

In D 1

2�i

cCiTn
Z

cCiT�n

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s

D 1

2�i

I

�

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s

C 1

2�i

Z

Sjn

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s C En.t /;

where

En.t / WD 1

2�i

Z

�L[�U

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s:

15 More precisely, K� depends only on � and the constant C occurring in hypothesis L1.

16 Here, the constant C� actually depends only on � and on the constant C appearing in
hypothesis L1.
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Figure 1. The truncated window Wjn and the contour � which we use to estimate the integral
In in the proof of Lemma 3.1.

Furthermore, note that the integrand appearing above is meromorphic on the
bounded domain having � as its boundary and its poles are exactly the poles of the
relative tube zeta function since c 2 .dimB.A; �/; N C 1/ ensures that there are
no zeros of .N � s C 1/k inside of �. Consequently, we deduce from the residue
theorem that

In D
X

!2P.Q�A;�;Wjn/

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

C 1

2�i

Z

Sjn

tN �sCk Q�A;�.s/

.N � s C 1/k

d s C En.t /:

To obtain the upper bound on jEn.t /j, we �rst observe that for s D � C iTn we
have j.N �s C1/kj � T k

n and then, under hypothesis L1, we estimate the integrals
over the upper segment �U and the lower segment �L as follows:

ˇ

ˇ

ˇ

ˇ

Z

�U

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

c
Z

S.Tn/

tN Ck���iTn

.N C 1 � .� CiTn//k

Q�A;�.� C iTn/ d �

ˇ

ˇ

ˇ

ˇ

� tN CkC.Tn C 1/�T �k
n

c
Z

S.Tn/

t�� d �

� tN CkK�T ��k
n .c � S.Tn// max¹t�c; t�S.Tn/º;

where K� is a positive constant such that C.jTnj C 1/� � K�jTnj� for all n 2 Z.
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Furthermore, since inf S � S.�/ for all � 2 R, we have
ˇ

ˇ

ˇ

ˇ

Z

�U

tN �sCk Q�A;�.s/ d s

.N � s C 1/k

ˇ

ˇ

ˇ

ˇ

� tN CkK�T ��k
n .c � inf S/ max¹t�c; t� inf Sº: (3.5)

Analogously, we bound the integral over the lower line segment by

tN CkK�jT�nj��k.c � inf S/ max¹t�c; t� inf Sº: (3.6)

Therefore, putting (3.5) and (3.6) together, we obtain the upper bound (3.2).17
To estimate the integrand over the truncated screen Sjn, we observe that for

s D S.�/ C i� with j� j > 1, we have

ˇ

ˇ

ˇ

tN �sCk

.N � s C 1/k

Q�A;�.s/
ˇ

ˇ

ˇ � C tN �S.�/Ck j� j��k

� C tN Ck max¹t� sup S ; t� inf Sºj� j��k;

(3.7)

under hypothesis L2 and similarly, under hypothesis L20, which completes the
proof of the lemma. �

Next, we state and prove the main result of this subsection.

Theorem 3.2 (pointwise fractal tube formula with error term, via Q�A;�). Let

.A; �/ be a relative fractal drum in R
N which is languid for some �xed ı > 0 and

some �xed exponent � 2 R. Furthermore, let k > � C 1 be a nonnegative integer.

Then, the following pointwise fractal tube formula with error term, expressed in

terms of the tube zeta function Q�A;� WD Q�A;�. � I ı/, is valid for every t 2 .0; ı/:

V
Œk�

A;�.t / D
X

!2P.Q�A;�;W /

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

C zRŒk�
A;�.t /: (3.8)

Here, for every t 2 .0; ı/, the ( pointwise) error term zRŒk�
A;� is given by the

absolutely convergent (and hence, convergent) integral

zRŒk�
A;�.t / D 1

2�i

Z

S

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s: (3.9)

Furthermore, we have the following pointwise error estimate, valid for all t 2
.0; ı/:

j zRŒk�
A;�.t /j � tN Ck max¹t� sup S ; t� inf Sº

�C.1 C kSkLip/

2�.k � � � 1/
C C 0

�

; (3.10)

17 The constant K� in (3.2) is actually equal to the present constant K� divided by �.
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where C is the positive constant appearing in L1 and L2 and C 0 is some suitable

positive constant. These constants depend only on the relative fractal drum .A; �/

and the screen, but not on the value of the nonnegative integer k.

In particular, we have the following pointwise error estimate:

zRŒk�
A;�.t / D O.tN �sup SCk/ as t ! 0C: (3.11)

Moreover, if S.�/ < sup S for all � 2 R (i.e., if the screen S lies strictly to the left

of the vertical line ¹Re s D sup Sº), then we have the following stronger pointwise

estimate:
zRŒk�

A;�.t / D o.tN �sup SCk/ as t ! 0C: (3.12)

Before proving Theorem 3.2, we make the following two comments (in parts
.a/ and .b/ of Remark 3.3), which will help the reader to understand the statement
of the theorem. Furthermore, we also point out that comments similar to those
in Remark 3.3 also apply to all other theorems stated below, in which a (typically
in�nite) sum over the (visible) complex dimensions appears, either in reference
to a pointwise or distributional fractal tube formula. Of course, in the case of
the distributional fractal tube formula the (potentially in�nite) sum has to be
interpreted as a distributional (rather than pointwise) limit of the partial sums.

Remark 3.3. .a/ The (potentially in�nite) sum appearing in (3.8) in the above
theorem (Theorem 3.2) should be interpreted as the limit

lim
n!1

X

!2P.Q�A;�;Wjn/

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

; (3.13)

where Wjn is the truncated window (see De�nition 2.21); that is, as the pointwise
limit of the partial sums over the (visible) truncated complex dimensions, i.e., the
poles of Q�A;� located in Wjn. More speci�cally, the existence of this limit follows
from the proof of the theorem in which we show that the series in (3.8) converges
pointwise and conditionally. On the other hand, we point out that Theorem 3.2
does not give any information about the possible absolute convergence of the series
in (3.8). This situation is similar to the one which occurs in [Lap-vFr3, Chapters 5
and 8] and, in fact, also in Riemann’s original explicit formula for the counting
function of the prime numbers (see, e.g., [Edw]).

.b/ The sum over the set P. Q�A;�; W / in equation (3.8) of Theorem 3.2 is
independent of the parameter ı since changing ı has no e�ect on the residues
appearing in (3.8). This follows directly from the fact that the principal parts of a
meromorphic extension of the relative tube zeta function around any of its poles do
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not depend on ı (see [LapRaŽu1–4]). In other words, when applying Theorem 3.2,
one has to determine that .A; �/ is languid for some ı > 0, but when calculating
the sum, one can take any ı > 0; that is, in practice, the most convenient one.

Proof of Theorem 3.2. Without loss of generality, let c 2 .dimB.A; �/; N C1/ be
the constant from the languidity condition L1 of De�nition 2.12. We will prove
the theorem by using Lemma 3.1 in order to obtain (3.1) for all n � 1 and then,
by letting n ! 1. We note that En.t / tends to zero for k > � at the rate of some
negative power of min¹Tn; jT�njº. Furthermore, for k > � C 1, the error term
zRŒk�

A;�.t / is absolutely convergent. Indeed, note that, since the function � 7! S.�/

is Lipschitz continuous, it is di�erentiable almost everywhere and, consequently,
the derivative of the map � 7! S.�/ C i� is bounded by .1 C kSkLip/ for almost
all � 2 R. Moreover, since

C1
Z

1

���k d � D .k � � � 1/�1

for k > � C 1, the upper bound (3.10) on the error term zRŒk�
A;�.t / now follows

from (3.3). The positive constant C 0 in (3.10) is the constant which corresponds
to the integral over the part of the screen for which j� j < 1; i.e.,

C 0 WD 1

2�

Z

S\¹j Im S j<1º

j Q�A;�.s/j
j.N � s C 1/k j jdsj:

In the case when the screen stays strictly to the left of the line ¹Re s D sup Sº,
we can obtain the better estimate (3.12) by using a well-known method; see,
e.g., [In, pp. 33–34]. Namely, for any given " > 0, we have to show that (3.9)

is bounded by "tN �sup SCk . For a given T > 0, we can split the integral (3.9) into
two parts; namely, the integral over the part of the screen for which j Im S j > T

and the integral over the part of the screen for which j Im S j � T . Since the �rst
integral is absolutely convergent, we can choose T su�ciently large so that it is
bounded by 1

2
"tN �sup SCk. For the second integral, we observe that the maximum

of S.�/ for � 2 Œ�T; T � is strictly less than sup S ; i.e., we can choose ˛ > 0 such
that S.�/ < sup S � ˛ for all � 2 Œ�T; T �. This implies that the integral over the
part of the screen for which18 j Im S j � T is of order O.tN �sup SCkC˛/ as t ! 0C.
Hence, for all su�ciently small t > 0 it is bounded by 1

2
"tN �sup SCk . This proves

that zRŒk�
A;�.t / D o.tN �sup SCk/ as t ! 0C, as desired, and therefore completes the

proof of the theorem. �

18 Observe that since the screen S avoids the poles of the relative tube zeta function, we have
that Q�A;�.s/ is bounded for all s 2 C in the part of the screen S for which j Im S j � T .
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3.2. Exact pointwise tube formula. In this subsection, we show that in the case
of a strongly languid relative fractal drum, we are able to obtain an exact pointwise
tube formula; that is, a pointwise formula without an error term. This is the main
content of the following theorem.

Theorem 3.4 (exact pointwise fractal tube formula via Q�A;�). Let .A; �/ be a

relative fractal drum in R
N which is strongly languid for some �xed ı > 0 and

some �xed exponent � 2 R. Furthermore, let k > � be a nonnegative integer.

Then, the following exact pointwise fractal tube formula, expressed in terms of

the tube zeta function Q�A;� WD Q�A;�. � I ı/, holds for all t 2 .0; min¹1; ı; B�1º/:

V
Œk�

A;�.t / D
X

!2P.Q�A;�;C/

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

: (3.14)

Here, B is the positive constant appearing in hypothesis L20.

Proof. We begin by �xing an integer n � 1 and applying Lemma 3.1 with the
screen Sm given by hypothesis L20. Next, we proceed by letting m ! 1 while
keeping n �xed. The fact that the screens Sm have a uniform Lipschitz bound
implies that if we take t < min¹1; B�1º, then the sequence of integrals over the
truncated screens .Smjn/m�1 converges to 0 as m ! 1. (Here and throughout
this proof, the truncated screen Smjn denotes the n-th restriction of the screen Sm,
in the notation of De�nition 2.21.) Indeed, to see this, let us take m0 large enough
so that sup Sm < 0 for every m � m0. This is possible since sup Sm ! �1 as
m ! 1 by hypothesis L20 of De�nition 2.13.

Furthermore, note that for every m � 1 and n � 1, the integral over the
truncated screen Smjn is given by

In;m WD 1

2�i

Z

Smjn

tN �sCk

.N � s C 1/k

Q�A;�.s/ d s (3.15)

and, similarly as in the proof of Lemma 3.1, we have that the integrand is bounded
in absolute value by

C� max¹B j inf Smjnj; B j sup SmjnjºtN Cj sup SmjnjCk; (3.16)

where C� is a suitable constant depending only on �. Here, we use the notation

inf Smjn WD inf
�2ŒT�n;Tn�

Sm.�/ and sup Smjn WD sup
�2ŒT�n;Tn�

Sm.�/: (3.17)
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We now let L WD supm�1 kSmk be the uniform Lipschitz bound for the sequence
of screens Sm. Then, the derivative of � 7! Sm.�/ C i� is bounded for almost
every � 2 ŒT�n; Tn� by .1 C L/.

We must next consider the following two cases: �rstly, if B < 1, we then have
that

jIn;mj � C�.1 C L/B j sup Smjnj

2�
.Tn � T�n/tN Cj sup SmjnjCk;

and, since t < 1, we have that In;m ! 0 as m ! 1. Secondly, if B � 1, we
deduce from the Lipschitz condition on Sm that we have

sup Smjn � inf Smjn � L.Tn � T�n/I

i.e.,
j inf Smjnj � j sup Smjnj C L.Tn � T�n/;

from which we deduce the estimate

jIn;mj � C�.1 C L/BL.Tn�T�n/

2�
.Tn � T�n/.Bt/j sup SmjnjtN Ck:

Therefore, In;m ! 0 as m ! 1 since Bt < 1.
We now let En;m.t / be the error function appearing in (3.1) for the truncated

screen Smjn and we �nalize the proof by showing that its iterated limit converges
to zero pointwise. Namely, for c 2 .dimB.A; �/; N C 1/ and since 0 < t < 1, we
have, much as in the proof of Lemma 3.1, that

ˇ

ˇ

ˇ

ˇ

Z

�Um

tN �sCk Q�A;�.s/ d s

.N � s C 1/k

ˇ

ˇ

ˇ

ˇ

� tN CkC.Tn C 1/�T �k
n

c
Z

�1

t�� d �

� tN �cCkK�T ��k
n

log t�1
:

(3.18)

Here, �Um
is the segment connecting Sm.Tn/ C iTn and c C iTn. A similar

reasoning for the corresponding integral over the lower segment gives us the
following upper bound on jEn;m.t /j, independent of m:

jEn;m.t /j � tN �cCk

� log t�1
K� max¹T ��k

n ; jT�nj��kº:

Finally, this inequality, which is valid for all m � 1 and all n � 1, implies that
for a �xed k > �, the iterated limit of En;m.t / tends to 0 when m ! 1 and then
n ! 1; i.e., we have limn!1.limm!1 En;m.t // D 0: This concludes the proof
of the theorem. �
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Of course, Theorems 3.2 and 3.4 are of most interest in the case when k D 0,
i.e., when we obtain a pointwise formula for the volume of the relative t -neigh-
borhood jAt \ �j in terms of the complex dimensions of .A; �/. In that case, the
sum over the (visible) complex dimensions of .A; �/ takes the simpler form

X

!2P.Q�A;�;W /

res.tN �s Q�A;�.s/; !/ (3.19)

or
X

!2P.Q�A;�;C/

res.tN �s Q�A;�.s/; !/ (3.20)

in equation (3.8) of Theorem 3.2 or in equation (3.14) of Theorem 3.4, respec-
tively. Observe that in the important special case considered in Remarks 3.5
and 3.6 below when all of the (visible) complex dimensions of the RFD are simple,
then equation (3.19) becomes

X

!2P.Q�A;�;W /

res. Q�A;�; !/tN �! (3.21)

(much as in the equation (1.1), where �A;� is used instead of Q�A;�), while equa-
tion (3.20) naturally becomes

X

!2P.Q�A;�;C/

res. Q�A;�; !/tN �!: (3.22)

An analogous comment applies to all the fractal tube formulas obtained in Sec-
tions 4 and 5 below (see, especially, Theorems 4.3, 4.5, 5.11, and 5.13). In the
case of the distance zeta function �A;� (instead of Q�A;�), this is so provided
dimB.A; �/ < N ; furthermore, in that case, tN �s (resp., tN �!) should be replaced
by tN�s

N �s
(resp., tN�!

N �!
) in the counterpart for �A;� of equations (3.19) and (3.20)

(resp., equations (3.21) and (3.22)).

Remark 3.5. We point out that in the applications, the common situation is when
all of the visible complex dimensions are simple. More speci�cally, if we assume
that all of the poles of Q�A;� visible through the window W (i.e., lying in W ) are
simple, then in the statement of Theorem 3.2 (when k D 0 in the statement of that
theorem), the sum over the visible complex dimensions appearing in equation (3.8)

reduces to the following expression:
X

!2P.Q�A;�;W /

Qc! tN �! ; (3.23)

where for each ! 2 P. Q�A;�; W /, we have Qc! WD res. Q�A;�; !/:
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Remark 3.6. We also note that, in light of Theorem 3.2 and Theorem 3.4, the
counterpart of Remark 3.5 holds for any level k (satisfying the assumptions of
the relevant result). For example, provided that all of the complex dimensions
visible through W are simple, the exact pointwise fractal tube formula (3.14) of
Theorem 3.4 becomes (for all t 2 .0; min¹1; ı; B�1º/)

V
Œk�

A;;�.t / D
X

!2P.Q�A;�;C/

res. Q�A;�.s/; !/
tN �!Ck

.N � ! C 1/k

; (3.24)

and similarly for the pointwise fractal tube formula with error term given in (3.8)

of Theorem 3.2.

Note that in light of (2.30) and for each k 2 N0, we have (with the obvious
convention if k D 0)

.N � s C 1/k D .N � s C 1/.N � s C 2/ � � � .N � s C k/ (3.25)

and hence, the zeros of the polynomial function s 7! .N � s C 1/k are simple and
occur precisely at s D N C 1; N C 2; : : : ; N C k: (Clearly, since .N � s C 1/0 D
1, equation (3.25) does not have any zeros if k D 0.) Consequently, since
dimB.A; �/ � N and k is nonnegative (i.e., k 2 N0) in the present case of
pointwise tube formulas, the complex number .N � ! C 1/k is never equal to
zero for ! 2 P. Q�A;�/ WD P. Q�A;�;C/ (or else for ! 2 P. Q�A;�; W /, in the case
of a pointwise tube formula with error term). Moreover, if we work with a
distributional tube formula (as will be case in Section 4 and part of Section 5,
for example), the level k is allowed to be negative (i.e., k 2 Z). However, in the
case of a negative integer k, the function s 7! .N � s C 1/k does not have any
zeros, but only simple poles located precisely at s D N C1Ck; N C2Ck; : : : ; N I
so that its reciprocal has simple zeros precisely at those same points. Therefore,
we note that in the distributional case, it may happen that ! is a zero of s 7!
.N � s C 1/�1

k
, which in that case will cancel out the term corresponding to tN �!

in equation (3.24).

Remark 3.7. As was alluded to above, the obvious counterpart of Remark 3.5
and Remark 3.6 holds for all of the fractal tube formulas considered in this paper,
whether they are pointwise or distributional formulas, with or without error term,
as well as expressed in terms of either �A;� or Q�A;� or (with the notation of
Subsection 5.1) M�A;�. In the case of �A;� and M�A;�, one must assume, in addition,
that xD WD dimB.A; �/ < N .
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4. Distributional fractal tube formula

In this section, our goal is to weaken the languidity conditions imposed on the
tube zeta function and still obtain a fractal tube formula expressed in terms of
Q�A;�. More precisely, if we want to relax the condition on the languidity exponent
�, we will still obtain a fractal tube formula but only in the sense of Schwartz
distributions. In other words, we will establish the distributional analogs of
Theorems 3.2 and 3.4 in order to derive a distributional fractal tube formula
for V

Œk�
A;�.t /, valid for any integer k 2 Z and still expressed in terms of the

(visible) poles of the tube zeta function Q�A;�. This will provide us with asymptotic
information (in the sense of Schwartz distributions or generalized functions) about
the tube function of a relative fractal drum .A; �/, independently of for which
exponent � 2 R the relative fractal drum .A; �/ is languid. (See De�nition 2.12.)
More precisely, let ı > 0 and de�ne D.0; ı/ WD C 1

c .0; ı/ to be the space of
in�nitely di�erentiable (complex-valued) test functions with compact support
contained in .0; ı/. Actually, let us introduce a larger space of test functions for
which the formulas obtained here will be valid. Namely, let K.0; ı/ be the set of
test functions ' in the class C 1.0; ı/, such that for all m 2 Z and q 2 N, we have
tm'.q/.t / ! 0, as t ! 0C and also that .t � ı/m'.q/.t / ! 0 as t ! ı�, where
'.q/ denotes the q-th derivative of '.

Note that D.0; ı/ � K.0; ı/. Hence, we have the following (reverse) inclusion
between the corresponding spaces of distributions (i.e., the dual spaces):

K
0.0; ı/ � D

0.0; ı/: (4.1)

General information about the theory of distributions (or generalized func-
tions) can be found in [Schw, Bre, Foll, Hö, JohLap, JohLapNi, ReeSim1].

De�nition 4.1. Let .A; �/ be a relative fractal drum in R
N and let k 2 Z be an

arbitrary integer. We de�ne the distributionV
Œk� D V

Œk�
A;� onK.0; ı/ to be the jkj-th

distributional derivative of V.t/ D jAt \ �j in case k < 0 and the k-th primitive
(or k-th anti-derivative) function (considered as a regular distribution in K

0.0; ı/)
of V.t/ if k > 0. For k D 0, this is the (regular) distribution generated by the
locally integrable function V.t/. (Note that the local integrability of V D V.t/

on .0; C1/ follows from its continuity.) More speci�cally, for any test function
' 2 K.0; ı/, we have

hVŒk�; 'i WD
C1
Z

0

V Œk�.t /'.t/ d t; for k � 0; (4.2)
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and

hVŒk�; 'i WD .�1/jkj

C1
Z

0

V.t/'.jkj/.t / d t; for k < 0: (4.3)

Here and thereafter, for convenience, we always extend the test function ' 2
K.0; ı/ to the interval Œı; C1/ by letting 'jŒı;C1/ � 0.

Let now ' 2 K.0; ı/ be a test function. The decay conditions on ' imply
that t s'.t/ is integrable on .0; ı/ for every s 2 C and that its Mellin transform
¹M'º.s/ is an entire function. This follows directly from a general result about
the holomorphicity of an integral depending analytically on a parameter (see,
e.g., [Tit1, Theorem 31] or [LapRaŽu1, Theorem 2.1.46]).

Furthermore, let g.s/ be a meromorphic function. The residue res.g.s/; !/

vanishes unless ! is a pole of g. Moreover, for all k 2 Z, N 2 N and by choosing
a suitable closed contour � around !, we have

C1
Z

0

'.t/ res.tN �sCkg.s/; !/ d t D
C1
Z

0

'.t/
1

2�i

I

�

tN �sCkg.s/ d s d t

D 1

2�i

I

�

g.s/

C1
Z

0

tN �sCk'.t/ d t d s

D res.¹M'º.N � s C k C 1/g.s/; !/:

The change of the order of integration is justi�ed by the Fubini–Tonelli theorem
since the last integral above is absolutely convergent. In short, for every ' 2
K.0; ı/, we have

hres.tN �sCkg.s/; !/; 'i D res.¹M'º.N � s C 1 C k/g.s/; !/; (4.4)

where g.s/ is a meromorphic function on a connected open neighborhood of
! 2 C and where k 2 Z and N 2 N.

Remark 4.2. We refer to our earlier Remark 2.17 for an explanation of the
usefulness (both conceptually and technically) of working with any k 2 N [ ¹0º,
in the pointwise case, and any k 2 Z, in the present distributional case.

As was already alluded to in that remark, particular attention should be paid
to the case when k D �1. Indeed, observe that for k D �1, the distribution
V

Œ�1� D V
Œ�1�
A;� can be viewed as a (positive) measure on .0; C1/; indeed, it is

the distributional derivative of the nondecreasing and locally integrable function
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t 7! V.t/ D VA;�.t / on .0; C1/. By analogy with the special case of fractal
strings discussed in [Lap-vFr3, Subsection 6.3.1], we call it the geometric density

of (volume) states of the RFD .A; �/. (Compare with [Lap-vFr3] and the relevant
references therein about the mathematical and theoretical physics literature on
spectral theory, semiclassical approximation and quantum mechanics.) From a
fundamental point of view, this measure V

Œ�1� D V
Œ�1�
A;� is the most important

“distributional tube function” and the corresponding fractal tube formulas the
most useful distributional tube formulas.

We leave it as a simple exercise for the reader to write explicitly the correspond-
ing distributional tube formula at level k D �1 as a mere corollary of Theorem 4.3
(in Section 4.1) and Theorem 4.5 (in Section 4.2) below, as well as of other dis-
tributional tube formulas obtained in this paper, and to also compare their general
form with the corresponding results in [Lap-vFr3, Subsection 6.3.1] obtained for
the geometry and spectra of fractal strings (i.e., when N D 1).

4.1. Distributional tube formula with error term. After having introduced the
necessary preliminaries just above, we are now able to state the distributional
analog of Theorem 3.2; that is, the distributional tube formula with an error term.

Theorem 4.3 (distributional fractal tube formula with error term, via Q�A;�). Let

.A; �/ be a relative fractal drum in R
N which is languid for some � 2 R and

ı > 0. Then, for every k 2 Z, the distribution V
Œk�
A;� in K

0.0; ı/ (and hence, also in

D
0.0; ı/) is given by the following distributional fractal tube formula, with error

term and expressed in terms of the tube zeta function Q�A;� WD Q�A;�. � I ı/:

V
Œk�
A;�.t / D

X

!2P.Q�A;�;W /

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

C zRŒk�
A;�.t /: (4.5)

That is, the action of V
Œk�
A;� on an arbitrary test function ' 2 K.0; ı/ is given by

hVŒk�
A;�; 'i D

X

!2P.Q�A;�;W /

res
�¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

; !
�

C h QRŒk�
A;�; 'i: (4.6)

Here, the (distributional) error term zRŒk�
A;� is given by the distribution in K

0.0; ı/

de�ned for all test functions ' 2 K.0; ı/ by

hzRŒk�
A;�; 'i D 1

2�i

Z

S

¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

d s: (4.7)

(The corresponding distributional error estimate for zRŒk�
A;� will be given in Theo-

rem 4.8 of Subsection 4.3 below.)



Fractal tube Formulas for compact sets and relative fractal drums 39

Proof. We begin the proof by �xing k 2 N0 such that k > � C 1 and a constant
c 2 .dimB.A; �/; N C 1/. Note that by �xing c 2 .dimB.A; �/; N C 1/, we
have ensured that none of the poles of .N � s C 1/�1

k
is located in the window

W . Indeed, according to the discussion provided in Remark 3.6, the set of poles
of .N � s C 1/�1

k
is a subset of ¹N C nW n 2 Nº. Then, for every test function

' 2 K.0; ı/, we have successively:

hV Œk�
A;�; 'i D

C1
Z

0

V
Œk�

A;�.t /'.t/ d t

D 1

2�i

cCi1
Z

c�i1

C1
Z

0

'.t/
tN �sCk Q�A;�.s/

.N � s C 1/k

d t d s

D 1

2�i

cCi1
Z

c�i1

¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

d s:

(4.8)

Here, the change of the order of integration in the second equality of (4.8) is
justi�ed by the Fubini–Tonelli theorem since the �rst integral above is absolutely
convergent. (It is easy to see that jV Œk�.t /j � jAt jtk , for all t 2 .0; C1/ and
k � 0.) One can now approximate the last integral in (4.8) above in the same way
as in Lemma 3.1; that is, we approximate it by the following expression:

X

!2P.Q�A;�;Wjn/

res
�¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

�

C 1

2�i

Z

Sjn

¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

d s

C 1

2�i

Z

�L[�U

¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

d s:

(4.9)

Furthermore, in light of (4.4), the latter expression is equal to

X

!2P.Q�A;�;Wjn/

D

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

; '
E

C 1

2�i

Z

Sjn

¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

d s

C
C1
Z

0

En.t /'.t/ d t;

(4.10)

where the error term En.t / is given as in Lemma 3.1 and its proof.
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Next, by letting n ! 1, we deduce by the same argument as in Theorem 3.2
that the integral

R C1

0
En.t /'.t/ d t tends to zero and, similarly, we show that the

above integral over the truncated screen Sjn converges absolutely. Thus, we deduce
that

hV Œk�
A;�; 'i D

X

!2P.Q�A;�;W /

res
�¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

; !
�

C h QRŒk�
A;�; 'i; (4.11)

where QRŒk�
A;� is given by its action on test functions as shown in equation (4.7).

Moreover, observe that the expression on the right-hand side of (4.11) de�nes
a distribution in K

0.0; ı/ (since V
Œk�

A;� is locally integrable). This concludes the
proof of the theorem in the case when k > max¹�1; � C 1º.

In the case when k � � C 1 and k 2 Z, we choose an integer q such that
k C q > max¹� C 1; �1º and note that by the de�nition of the distributional
derivative (or alternatively, in light of equations (4.2) and (4.3) de�ning V

Œk�
A;�),

we have that

hVŒk�
A;�; 'i D .�1/qhVŒkCq�

A;� ; '.q/i: (4.12)

Finally, in order to complete the proof, we use identity (4.12) together with (4.11)

applied at level k C q, along with the following well-known (and easy to verify)
fact about the Mellin transform (see equation (2.32) de�ning ¹Mf º.s/):

¹M'º.s/ D .�1/q

.s/q

¹M'.q/º.s C q/; (4.13)

for all s 2 C and q 2 Z. We therefore deduce that (4.6) holds, with h QRŒk�
A;�; 'i

given by (4.7), as required. This concludes the proof of the theorem. �

Remark 4.4. Note the above proof of Theorem 4.3 establishes the fact that the sum
over the (visible) complex dimensions appearing in (4.5) de�nes a distribution
in K

0.0; ı/ (since it is a di�erence of two distributions in K
0.0; ı/) and hence,

according to the inclusion (4.1), also in D
0.0; ı/. In turn, this fact implies that both

terms on the right-hand side of (4.5) are, on their own, distributions in K
0.0; ı/.

Namely, this is a consequence of a well-known fact about the convergence of
distributions, which itself follows from a suitable generalization of the Hahn–
Banach theorem to locally convex topological spaces (see, for example, [Hö,
Theorem 2.1.8, p. 39]):

An entirely analogous comment applies to Theorem 4.5 below, with the space
of test functions now coinciding with D.0; ı0/ and thus the associated space of
distributions being equal to D

0.0; ı0/.
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4.2. Exact distributional tube formula. The main result of this subsection is
a distributional analog of the pointwise tube formula without error term stated in
Theorem 3.4 of Subsection 3.2; see Theorem 4.5 just below. The resulting fractal
tube formula will be an asymptotic distributional formula meaning that it will be
valid for test functions in K.0; ı/ that are supported on the left of B�1, where
B > 0 is the constant appearing in hypothesis L20.

Theorem 4.5 (exact distributional tube formula via Q�A;�). Let .A; �/ be a relative

fractal drum in RN which is strongly languid for some � 2 R and ı > 0.

Furthermore, let ı0 WD min¹1; ı; B�1º. Then, for every k 2 Z, the distribution

V
Œk�
A;� in D

0.0; ı0/ is given by the following exact distributional tube formula in

D
0.0; ı0/, expressed in terms of the tube zeta function Q�A;� WD Q�A;�. � I ı/:

V
Œk�
A;�.t / D

X

!2P.Q�A;�;C/

res
� tN �sCk

.N � s C 1/k

Q�A;�.s/; !
�

: (4.14)

That is, the action of V
Œk�
A;� on an arbitrary test function ' 2 D.0; ı0/ is given by

hVŒk�
A;�; 'i D

X

!2P.Q�A;�;C/

res
�¹M'º.N � s C 1 C k/ Q�A;�.s/

.N � s C 1/k

; !
�

: (4.15)

Proof. The theorem is proved by applying Theorem 4.3 to the sequence of screens
Sm (occurring in hypothesis L20 of strong languidity, see equation (2.24)) and
then showing that the corresponding error term tends to zero as m ! 1. More
speci�cally, by choosing q 2 N such that k C q > � C 1 and m 2 N such that
sup Sm < 0, we deduce from (4.5) the following distributional identity, viewed as
an equality in D

0.0; ı0/:

V
ŒkCq�
A;� .t / D

X

!2P.Q�A;�;Wm/

res
� tN �sCkCq

.N � s C 1/kCq

Q�A;�.s/; !
�

C zRŒkCq�
m .t /: (4.16)

Next, we �x a test function ' 2 D.0; ı0/. Since by de�nition, ' has compact
support, there exists � 2 .0; 1/ such that the support of ' is contained in .0; �B�1�.
Using this fact, we estimate the Mellin transform of ' in the following way, for all
s 2 C such that Re s < 0:

j¹M'º.N � s C 1 C k C q/j � .�B�1/� Re s

C1
Z

0

tN CkCq j'.t/j d t: (4.17)
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By using the above estimate (4.17), hypothesis L20, along with the obvious fact
that j.N �Sm.�/�i�C1/kCq j � .

p
1 C �2 /kCq; we now estimate the distributional

error term zRŒkCq�
m as follows (we let j d sj WD js0.�/j d �):

jhzRŒkCq�
m ; 'ij �

Z

Sm

ˇj¹M'º.N � s C 1 C k C q/j j Q�A.s/j
j.N � s C 1/kCq j j d sj

� zK.1 C kSmkLip/

C1
Z

�1

.B�B�1/jSm.�/j .1 C j� j/�

.
p

1 C �2 /kCq
d �

� K�j sup Smj

C1
Z

�1

.1 C j� j/�

.
p

1 C �2 /kCq
d �;

(4.18)

with K being a suitable positive constant. The last inequality follows since,
according to hypothesis L20, the sequence of screens .Sm/m�1 has a uniform
Lipschitz bound; see the de�nition of strong languidity given in De�nition 2.13.
Furthermore, the last integral in the above calculation is convergent since k C q >

� C 1.
Next, by letting m!1, we deduce that hzRŒkCq�

m ; 'i!0 since j sup Smj!1,
and thus we conclude that zRŒkCq�

m ! 0 as m ! 1, in D
0.0; ı0/. Finally, in light

of (4.16), we obtain the statement of the theorem for the distribution V
ŒkCq�
A;� in

D
0.0; ı0/. Finally, in order to complete the proof of the theorem, i.e., to obtain

the statement for VŒk�
A;� itself, we use the exact same argument as in the proof of

Theorem 4.3 in Subsection 4.1 above. �

Of course, the most interesting special case of the distributional fractal tube
formula (with and without an error term) is the case when k D 0 and hence,
V

Œ0�
A;�.t / D jAt \ �j for all t > 0 (and as a regular distribution in D

0.0; ı0/).

4.3. Estimate for the distributional error term. In this subsection, our goal is
to give an asymptotic estimate for the distributional error term appearing in The-
orem 4.3, interpreted in the sense of [Lap-vFr3, Subsection 5.2.4]. In order to do
so, we now introduce the notion of the distributional order of growth (see [EstKa,
Ja�Mey, PiStVi] and also, independently, [Lap-vFr1–2] and [Lap-vFr3, De�ni-
tion 5.29]).

For a test function ' 2 D.0; C1/ and a > 0, we let

'a.t / WD 1

a
'

� t

a

�

: (4.19)

Observe that
R C1

0 'a.t / d t D R C1

0 '.t/ d t , for every a > 0.
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De�nition 4.6. Let R be a distribution in D
0.0; ı/ and let ˛ 2 R. We say that R

is of asymptotic order at most t˛ (resp., less than t˛) as t ! 0C if applied to an
arbitrary test function 'a in D.0; ı/, we have that19

hR; 'ai D O.a˛/ (resp., hR; 'ai D o.a˛/), as a ! 0C: (4.20)

We then write

R.t / D O.t˛/ (resp., R.t / D o.t˛/), as a ! 0C:

Remark 4.7. Note that it is easy to see that if f is a continuous function such that
pointwise, f .t/ D O.t˛/ or f .t/ D o.t˛/ as t ! 0C, for some ˛ 2 R, then f

also satis�es the same asymptotics, in the distributional sense of De�nition 4.6.
On the other hand, we note that clearly, a distributional asymptotic estimate (in
the case of regular distributions), does not in general imply the usual pointwise
one; see, e.g., [PiStVi] where an explicit counterexample is given.

Finally, also observe that for a test function ' 2 D.0; ı/ and a > 0, the Mellin
transform of 'a satis�es the following (see equation (2.32) de�ning ¹Mf º.s/):

¹M'aº.s/ D as�1¹M'º.s/; (4.21)

for all s 2 C.

We now state the main result of this subsection, dealing with the order of
growth of the distributional error term appearing in Theorem 4.3. It is the analog
in our present context of [Lap-vFr3, Theorem 5.30].

Theorem 4.8 (estimate for the distributional error term). Assume that the hypothe-

ses of Theorem 4.3 are satis�ed, for a �xed k 2 Z. Then, the distribution zRŒk�
A;�.t /

given by (4.7) is of asymptotic order at most tN �sup SCk as t ! 0C; i.e,

zRŒk�
A;�.t / D O.tN �sup SCk/ as t ! 0C; (4.22)

in the sense of De�nition 4.6.

Moreover, if S.�/ < sup S for all � 2 R (that is, if the screen S lies strictly to

the left of the vertical line ¹Re s D sup Sº/, then zRŒk�
A;�.t / is of asymptotic order

less than tN �sup SCk; i.e.,

zRŒk�
A;�.t / D o.tN �sup SCk/ as t ! 0C; (4.23)

also in the sense of De�nition 4.6.

19 In this formula, the implicit constant may depend on the test function '.
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Proof. For a test function ', the integral de�ning hzRŒk�
A;�; 'i in equation (4.7)

converges absolutely. Furthermore, for any a 2 .0; 1/, and by using (4.21), we
obtain the following estimate:

jhzRŒk�
A;�; 'aij � 1

2�

Z

S

j¹M'aº.N � s C 1 C k/j
j.N � s C 1/kj j Q�A;�.s/j j d sj

D 1

2�

Z

S

aN �Re sCk j¹M'º.N � s C 1 C k/j j Q�A;�.s/j
j.N � s C 1/k j j d sj:

The last integral above is bounded by CaN �sup SCk , where C is a positive constant
and this proves the �rst part of the theorem.

In order to establish the second part of the theorem, we use an argument similar
to the one used in the proof of estimate (3.12) of Theorem 3.2. �

5. Tube formulas via the relative distance zeta function

In this section, our main goal is to reformulate the results from the previous
sections in terms of the relative distance zeta function �A;� WD �A;�. � I ı/. This is
extremely useful in the applications since the relative distance zeta function �A;�

of an RFD .A; �/, can be calculated without knowing its relative tube function
t 7! jAt \ �j (which, of course, is not the case for the tube zeta function Q�A;�).
Naturally, the results will follow, in particular, from the functional equation (2.6)

which connects these two fractal zeta functions, �A;� and Q�A;�. More precisely,
in order to derive the analogous results in terms of the distance zeta function, we
will introduce a new fractal zeta function, called the relative shell zeta function,
which satis�es a more direct functional equation, compared to (2.6).

For A � R
N and t; ı > 0 with t � ı, we let

At;ı WD Aı n At : (5.1)

Note that At;ı can be thought of as the .t; ı/-shell associated with A. It was proved
in [Sta] that for any bounded set A � R

N and every t > 0, we have that j@At j D 0,
where @At denotes the boundary of At in R

N and (as usual) j@At j denotes its N -
dimensional volume. Since any unbounded set in RN may be partitioned into a
countable union of bounded subsets, this also holds for unbounded subsets of RN .
Consequently, for any relative fractal drum .A; �/ in R

N , we have (for 0 < t � ı)

jAt;ı \ �j D jAı \ �j � jAt \ �j D jAı \ �j � jAt \ �j: (5.2)
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5.1. The relative shell zeta function. Let Q�A;�. � I ı/ be the tube zeta function of
the relative fractal drum .A; �/ in R

N and assume that Re s > N , then we have

Q�A;�.sI ı/ D
ı

Z

0

t s�N �1jAt \ �j d t

D
ı

Z

0

t s�N �1.jAı \ �j � jAt;ı \ �j/ d t

D ıs�N jAı \ �j
s � N

�
ı

Z

0

t s�N �1jAt;ı \ �j d t:

(5.3)

De�nition 5.1. Let .A; �/ be an RFD inR
N and �x ı > 0. We de�ne the shell zeta

function M�A;� WD M�A;�. � I ı/ of A relative to � (or the relative shell zeta function

of .A; �/) by

M�A;�.sI ı/ WD �
ı

Z

0

t s�N �1jAt;ı \ �j d t; (5.4)

for all s 2 Cwith Re s su�ciently large. Here, the integral is taken in the Lebesgue
sense and At;ı is de�ned by equation (5.1).

In light of (5.3), we can now easily obtain the following theorem.

Theorem 5.2. Let .A; �/ be an RFD in R
N and �x ı > 0. Then the shell

zeta function M�A;�. � I ı/ of .A; �/ is holomorphic on the open right half-plane

¹Re s > N º and

d

d s
M�A;�.sI ı/ D �

ı
Z

0

t s�N �1jAt;ı \ �j log t d t; (5.5)

for all s 2 C such that Re s > N .

Furthermore, for all s 2 C such that Re s > N , M�A;�. � I ı/ satis�es the following

functional equations, connecting it to the tube and distance zeta functions of

.A; �/, respectively:

Q�A;�.sI ı/ D ıs�N jAı \ �j
s � N

C M�A;�.sI ı/ (5.6)

and

�A;�.sI ı/ D .N � s/ M�A;�.sI ı/: (5.7)
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Proof. To prove the holomorphicity of M�A;�. � I ı/, one observes that for every real
number � > N , we have

j M�A;�.� I ı/j � jAı \ �j
ı

Z

0

t��N �1 d t < 1;

and uses a well-known theorem about di�erentiation of an integral depending
analytically on a parameter (see, e.g., [Mattn] or [Tit1, Theorem 31]) which also
gives the formula (5.5) for the derivative. Formula (5.6) is a rewriting of (5.3) and
by combining it with the functional equation (2.6), which connects the relative
distance and tube zeta functions, we obtain (5.7). �

In light of Theorem 2.6, the principle of analytic continuation combined with
equation (5.6) (or (5.7)) now immediately yields the following properties of the
relative shell zeta function.

Theorem 5.3. Let .A; �/ be a relative fractal drum in R
N such that we have

dimB.A; �/ < N and �x ı > 0. Then the following properties hold:

.a/ The relative shell zeta function M�A;�.sI ı/ is meromorphic in the open half-

plane ¹Re s > dimB.A; �/º, with a single simple pole at s D N . Furthermore,

res. M�A;�. � I ı/; N / D �jAı \ �j: (5.8)

.b/ If the relative box (or Minkowski) dimension D WD dimB.A; �/ exists,

D < N and M
D
� .A; �/ > 0, then M�A;�.s/ ! C1 as s 2 R converges to D from

the right.

Proof. We deduce from the principle of analytic continuation that the functional
equations (5.6) and (5.7) continue to hold on any open connected set U such that
U � ¹Re s > N º and to which any of the three relative zeta functions, M�A;�,
Q�A;� or �A;�, has a holomorphic continuation. In light of this, part .a/ follows
from the counterpart of Theorem 2.6 for the relative tube zeta function (see also
equation (2.4) and the last paragraph of Remark 2.7) and (5.6), while part .b/

follows from Theorem 2.6 and (5.7). �

The following corollary is an immediate consequence of the above theorem, or
more precisely, of the functional equation (5.6) and the fact that for a given RFD
.A; �/ in R

N and any �xed ı1; ı2 > 0, the di�erence Q�A;�.sI ı1/ � Q�A;�.sI ı2/ is
an entire function. (See [LapRaŽu4] or [LapRaŽu1].)
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Corollary 5.4. Let .A; �/ be an RFD in R
N such that dimB.A; �/ < N and

�x ı1; ı2 > 0 such that ı1 < ı2. Then, the di�erence M�A;�.sI ı1/ � M�A;�.sI ı2/ is

meromorphic on all ofCwith a single simple pole at s D N of residue jAı1;ı2
\�j.

The next corollary follows at once from the �rst part of the proof of Theo-
rem 5.3.

Corollary 5.5. Let .A; �/ be an RFD in RN . The functional equations (5.6)

and (5.7) continue to hold on any connected open neighborhood U � C of the

critical line ¹Re s D dimB.A; �/º to which any of the three relative zeta functions
M�A;�, Q�A;� or �A;� can be meromorphically continued. More speci�cally, if either
M�A;�, Q�A;� or �A;� has a (necessarily unique) meromorphic continuation on the

domain U � C, then so do the other two fractal zeta functions and the functional

equations (5.6) and (5.7) continue to hold for all s 2 U between the resulting

meromorphic extensions of M�A;�, Q�A;� and �A;�.

Moreover, in light of Theorem 2.9 and the functional equation (5.6), we have
the following result.

Theorem 5.6. Assume that .A; �/ is a Minkowski nondegenerate RFD in R
N ,

that is, 0 < M
D
� .A; �/ � M

�D.A; �/ < 1 (in particular, dimB.A; �/ D D/,

and D < N . If M�A;�.s/ can be meromorphically extended to a connected open

neighborhood of s D D, then D is necessarily a simple pole of M�A;�.s/ and

M
D
� .A; �/ � res. M�A;�; D/ � M

�D.A; �/: (5.9)

Furthermore, if .A; �/ is Minkowski measurable, then

res. M�A;�; D/ D M
D.A; �/: (5.10)

The most useful fact about the relative shell zeta function is that the residues
of its meromorphic extension at any of its (simple) poles belonging to the open
left half-plane ¹Re s < N º have a simple connection to the residues of the relative
tube or distance zeta functions. (See also Corollary 5.5 just above.)

Lemma 5.7. Assume that .A; �/ is an RFD in R
N such that its tube or distance or

shell zeta function is meromorphic on some connected open neighborhood U � C

of the critical line ¹Re s D dimB.A; �/º. Then, the multisets of poles located in

U n ¹N º of each of the three zeta functions, M�A;�, Q�A;� and �A;�, coincide:

P. M�A;�; U n ¹N º/ D P. Q�A;�; U n ¹N º/ D P.�A;�; U n ¹N º/: (5.11)
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Moreover, if ! 2 U n ¹N º is a simple pole of one of the three fractal zeta

functions M�A;�, Q�A;� or �A;�, then it is also a simple pole of the other two fractal

zeta functions and we have

res. M�A;�; !/ D res. Q�A;�; !/ D res.�A;�; !/

N � !
: (5.12)

The shell zeta function, M�A;�, may seem rather arti�cial and unnecessary in
the present context of relative fractal drums, but it will prove to be quite useful
as a “translation tool” for deriving the tube formulas (originally obtained via the
tube zeta function, Q�A;�, in Sections 3 and 4) in terms of the much more practical
distance zeta function, �A;�. We note that the shell zeta function originally arose
naturally in [Ra1], where it was used, in particular, to generalize the theory of
complex dimensions developed in [LapRaŽu1–8] to the special case of unbounded

sets at in�nity having in�nite Lebesgue measure. (See also [Ra2] for a study of
the fractal properties of unbounded sets of �nite Lebesgue measure at in�nity.)

5.2. Pointwise tube formula via the distance zeta function. Analogously as
in the case of the relative tube zeta function of .A; �/, we observe that M�A;�.s/ D
¹Mf º.s/, where f .s/ WD �t�N �.0;ı/.t /jAt;ı \ �j. We also note that f is
continuous and of bounded variation on .0; C1/; so that we can apply the Mellin
inversion theorem (Theorem 2.18), much as in the proof of Theorem 2.19, and
conclude that

jAt;ı \ �j D � 1

2�i

cCi1
Z

c�i1

tN �s M�A;�.sI ı/ d s; (5.13)

where c > N is arbitrary and t 2 .0; ı/. In light of (5.2), the following theorem is
an immediate consequence of the identity (5.13).

Theorem 5.8. Let .A; �/ be a relative fractal drum in R
N and �x ı > 0. Then,

for every t 2 .0; ı/ and any real number c > N , we have

jAt \ �j D jAı \ �j C 1

2�i

cCi1
Z

c�i1

tN �s M�A;�.sI ı/ d s: (5.14)

It is now clear that if the shell zeta function of .A; �/ satis�es the languidity
conditions of De�nition 2.12, with the constant c > N in the condition L1, or
the strong languidity conditions of De�nition 2.13, we can rewrite the results of
Sections 3 and 4 verbatim in terms of the shell zeta function. Note that for this to
work, it was crucial that in the truncated pointwise formula of Lemma 3.1, we had
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the freedom to choose any c 2 .dimB.A; �/; N C 1/. Furthermore, observe that
the additional pole of the shell zeta function at s D N will cancel out the term
jAı \�j in (5.14) above. More speci�cally, in the analog for the relative shell zeta
function of the pointwise formula stated in Theorem 3.2, we obtain the following
pointwise fractal tube formula with error term, expressed in terms of the shell zeta
function M�A;� WD M�A;�. � I ı/:

V
Œk�

A;�.t / D
X

!2P. M�A;�;W /

res
� tN �sCk

.N � s C 1/k

M�A;�.s/; !
�

C jAı \ �j tk

.1/k

C MRŒk�
A;�.t /; (5.15)

valid pointwise for all t 2 .0; ı/. Here, just as in the statement of Theorem 3.2,
the shell zeta function M�A;�/ of the RFD .A; �/ is assumed to be languid for
some �xed ı > 0 and some �xed constant � 2 R, as well as with the constant
c satisfying c > N . Furthermore, the nonnegative integer k is assumed to be such
that k > � C 1 and for every t 2 .0; ı/, the error term MRŒk�

A;� is given (much as
in (3.9)) by the absolutely convergent (and hence, convergent) integral

MRŒk�
A;�.t / D 1

2�i

Z

S

tN �sCk

.N � s C 1/k

M�A;�.sI ı/ d s: (5.16)

Moreover, it satis�es the exact analog of the pointwise error estimate (3.10), valid
pointwise for all t 2 .0; ı/. Hence, it satis�es (for M�A;� instead of for Q�A;�) the
error estimate (3.11) and, in the special case when the screen S lies strictly to the
left of the vertical line ¹Re s D sup Sº, it satis�es the exact analog (for M�A;�) of
the stronger error estimate (3.12).

In addition, by singling out the residue at s D N from the above sum and using
Lemma 5.7 and Theorem 5.3.a/, along with the functional equation (5.7), we can
rewrite the above equation (in (5.15)) as follows:

V
Œk�

A;�.t / D
X

!2P.�A;�;W /

res
� tN �sCk

.N � s/kC1

�A;�.sI ı/; !
�

C R
Œk�
A;�.t /; (5.17)

where the pointwise error term R
Œk�
A;� is now given by the absolutely convergent

(and hence, convergent) integral

R
Œk�
A;�.t / D 1

2�i

Z

S

tN �sCk

.N � s/kC1

�A;�.sI ı/ d s: (5.18)

We next introduce the analogs of the languidity conditions for a relative fractal
drum, now formulated in terms of its relative distance zeta function. We call them
d -languidity conditions in order to stress that they are related to the distance zeta
function.
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De�nition 5.9 (d -languidity and strong d -languidity). We say that a relative
fractal drum .A; �/ in R

N is d -languid (resp., strongly d -languid) if it is languid
in the sense of De�nition 2.12 (resp., De�nition 2.13), but with the relative tube
zeta function Q�A;� D Q�A;�. � I ı/ replaced by the relative distance zeta function
�A;� D �A;�. � I ı/ and with the constant c appearing in L1 satisfying c > N .

The following lemma is an immediate consequence of the functional equa-
tion (5.7). It is crucial in the sense that it allows us to deduce the languidity expo-
nent � of the shell zeta function directly from the d -languidity exponent �d of the
distance zeta function. This cannot be done for the tube zeta function, due to the
presence of the term ıs�N jAı \ �j in the functional equation (2.6); this is in fact
the technical reason for introducing the shell zeta function in the �rst place.

Lemma 5.10. Let .A; �/ be a relative fractal drum inR
N such that dimB.A; �/ <

N and which is d -languid for some value ı > 0 and with some exponent �d 2 R.

Then the shell zeta function M�A;� of .A; �/ satis�es the languidity conditions of

De�nition 2.12 for the same value of ı and with the exponent � WD �d � 1.

Furthermore, if .A; �/ is strongly d -languid with the corresponding constant

B > 0 and for some exponent �d 2 R and some ı > 0, then the shell zeta function
M�A;� of .A; �/ satis�es the strong languidity conditions of De�nition 2.13 with the

exponent � WD �d �1 and with the same constant B as well as the same value of ı.

We are now able to state the main theorem of this section, which is the analog
for �A;� of Theorem 3.2 stated in terms of Q�A;�.

Theorem 5.11 (pointwise fractal tube formula with error term, via �A;�). Let

.A; �/ be a relative fractal drum in R
N which is d -languid for some ı > 0

and with exponent �d 2 R. Furthermore, assume that dimB.A; �/ < N and

let k > �d be a nonnegative integer. Then, the following pointwise fractal tube

formula, expressed in terms of the distance zeta function �A;� WD �A;�. � I ı/, is

valid for every t 2 .0; ı/:

V
Œk�

A;�.t / D
X

!2P.�.A;�/;W /

res
� tN �sCk

.N � s/kC1

�A;�.s/; !
�

C R
Œk�
A;�.t /: (5.19)

Here, for every t 2 .0; ı/, the error term R
Œk�
A;� is given by the absolutely convergent

(and hence, convergent) integral

R
Œk�
A;�.t / D 1

2�i

Z

S

tN �sCk

.N � s/kC1

�A;�.s/ d s: (5.20)
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Furthermore, for every t 2 .0; ı/, we have

jRŒk�
A;�.t /j � tN Ck max¹t� sup S ; t� inf Sº

�C.1 C kSkLip/

2�.k � �d /
C C 0

�

; (5.21)

where C is the constant appearing in L1 and L2 and C 0 is some suitable positive

constant. These constants depend only on the relative fractal drum .A; �/ and the

screen, but not on k.

In particular, we have the following pointwise error estimate:

R
Œk�
A;�.t / D O.tN �sup SCk/ as t ! 0C: (5.22)

Moreover, if S.�/ < sup S (i.e., if the screen S lies strictly left of the vertical

line ¹Re s D sup Sº), then we have the following stronger pointwise error estimate:

R
Œk�
A;�.t / D o.tN �sup SCk/ as t ! 0C: (5.23)

Proof. In light of Lemma 5.10, we have that M�A;�, the shell zeta function of .A; �/,
also satis�es the appropriate languidity conditions with � WD �d � 1 and for the
same value of ı. The theorem now follows much as in the case of the relative tube
zeta function Q�A;�; see the proof of Theorem 3.2 and the discussion following
Theorem 5.8. �

Remark 5.12. In Theorem 5.11, as well as in all of the following theorems below
involving the relative distance zeta function, the additional assumption according
to which dimB.A; �/ < N is made in order to avoid the situation where s D N is
a pole of Q�A;�.

The next result is the counterpart for �A;� of Theorem 3.4, which is stated in
terms of Q�A;�.

Theorem 5.13 (exact pointwise fractal tube formula via �A;�). Let .A; �/ be a

relative fractal drum in R
N which is strongly d -languid for some ı > 0 and with

exponent �d 2 R. Furthermore, let k > �d � 1 be a nonnegative integer and

assume that dimB.A; �/ < N . Then, the following exact pointwise fractal tube

formula, expressed in terms of the distance zeta function �A;� WD �A;�. � I ı/, holds

for every t 2 .0; min¹1; ı; B�1º/:

V
Œk�

A;�.t / D
X

!2P.�A;�;C/

res
� tN �sCk

.N � s/kC1

�A;�.s/; !
�

: (5.24)

Here, B is the constant appearing in L20 and �d is the exponent occurring in the

statement of hypotheses L1 and L20.
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Proof. In light of Lemma 5.10 and the functional equation (5.7), the proof of the
theorem parallels that of Theorem 5.11 and of Theorem 3.4, except (in the latter
case) for the tube zeta function Q�A;�. � I ı/ now being replaced by the shell zeta
function M�A;�. � I ı/. �

A situation that occurs frequently in the applications is when a relative fractal
drum .A; �/ is “almost” strongly d -languid. More precisely, .A; �/ will satisfy all
of the conditions of strong d -languidity, except the condition that L1 is satis�ed for
all � < c. For example, let A be the middle-third Cantor set constructed in Œ0; 1�

and let � D .0; 1/. Then, the relative distance zeta function �A;� is meromorphic
on all ofC and given for all s 2 C by (see [LapRaŽu2, Example 3.4] or [LapRaŽu1,
Example 2.1.81]):

�A;�.s/ D 21�s

s.3s � 2/
: (5.25)

As one can easily check, it almost satis�es the strong languidity conditions with
�d WD �1, where the sequence of screens Sm can be taken as the sequence of
vertical lines ¹Re s D �mº for m 2 N. The problem here arises from the factor
2�s which tends exponentially fast to C1 as Re s ! �1, so that condition L1

cannot be ful�lled for all � < c. In order to remedy this problem and obtain a
pointwise formula in this and similar situations, we can multiply �A;�.s/ by 2s

and then, the resulting function will be strongly d -languid. On the other hand,
by the scaling property of the relative distance zeta function (see [LapRaŽu3,
Section 2.2] or [LapRaŽu1, Theorem 4.1.38]), we have that 2s�A;�.s/ D �2A;2�.s/,
where .2A; 2�/ is the scaled version of the RFD .A; �/. (For a subset A of RN

and any � > 0, we de�ne �A WD ¹�xW x 2 Aº.) In light of the above discussion, we
can now state the following corollary dealing with this situation and which will
be used repeatedly (most often implicitly) in Section 6.

Corollary 5.14 (exact pointwise fractal tube formula via �A;�; scaled version). Let

.A; �/ be a relative fractal drum in R
N such that dimB.A; �/ < N . Furthermore,

assume that there exists a scaling factor � > 0 such that .�A; ��/ is a strongly

d -languid RFD in R
N , for some ı > 0 and with exponent �d 2 R. Moreover, let

k > �d � 1 be a nonnegative integer. Then, the following exact pointwise fractal

tube formula, expressed in terms of the distance zeta function �A;�, holds for every

t 2 .0; ��1 min¹1; ı; B�1º/:

V
Œk�

A;�.t / D
X

!2P.�A;�;C/

res
� tN �sCk

.N � s/kC1

�A;�.s/; !
�

: (5.26)
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Here, B is the constant appearing in L20 ( for the function s 7! ��A;��.sI ı/ D
�s�A;�.sI ı��1// and �d is the exponent occurring in the statement of hypothe-

ses L1 and L20.

Proof. Let us denote by V
Œk�

�
.�/ the k-th primitive of the function

� 7�! j.�A/� \ ��j:

It is easy to show that

V
Œ0�

�
.�/ D �N V Œ0�.�=�/

(see also [LapRaŽu1, Lemma 4.6.10]). Using this scaling property, we then see
that

V
Œ1�

�
.�/ D

�
Z

0

V
Œ0�

�
.t / d t D �N

�
Z

0

V
Œ0�

A;�.t=�/ d t D �N C1

�=�
Z

0

V
Œ0�

A;�.�/ d �; (5.27)

or, in other words, V
Œ1�

�
.�/ D �N C1V

Œ1�
A;�.�=�/. Hence, by induction, we deduce

that

V
Œk�

�
.�/ D �N CkV

Œk�
A;�.�=�/; (5.28)

for all nonnegative integers k.

We apply Theorem 5.13 to the relative fractal drum .�A; ��/ and obtain the fol-
lowing exact fractal tube formula, valid pointwise for all � 2 .0; min¹1; ı; B�1º/:

V
Œk�

�
.�/ D

X

!2P.��A;��;C/

res
� �N �sCk

.N � s/kC1

��A;��.sI ı/; !
�

: (5.29)

Next, combining (5.28) with (5.29) and the scaling property of the relative dis-
tance zeta function (namely, ��A;��.s/ D �s�A;�.s/; see [LapRaŽu4, Section 2.3]
or [LapRaŽu1, Theorem 4.1.38]), we deduce that

�N CkV
Œk�

A;�.�=�/ D
X

!2P.�A;�;C/

res
� �N �sCk�s

.N � s/kC1

�A;�.sI ı��1/; !
�

: (5.30)

Finally, we complete the proof of the corollary by multiplying the above identity
by ��N �k and introducing a new variable t WD �=�. �
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Remark 5.15. We point out that an analogous corollary can be stated in terms
of the relative tube zeta function and the exact pointwise tube formula of Theo-
rem 3.4.

The most interesting situation is, of course, the case when we can apply
Theorems 5.11 and 5.13 or Corollary 5.14 at the level k D 0. We now state
the corresponding corollaries of these two theorems as a separate (and single)
theorem.

Theorem 5.16 (pointwise fractal tube formula via �A;�; level k D 0). (i) Under

the same hypotheses as in Theorem 5.11, with k WD 0, and using the same notation

as in that theorem, with �d < 0, the following pointwise fractal tube formula with

error term, expressed in terms of the distance zeta function �A;� WD �A;�. � I ı/,

holds for all t 2 .0; ı/:

jAt \ �j D
X

!2P.�A;�;W /

res
� tN �s

N � s
�A;�.s/; !

�

C R
Œ0�
A;�.t /; (5.31)

where R
Œ0�
A;�.t / is the error term given by formula (5.20) with k WD 0. Furthermore,

we have the following pointwise error estimate:

R
Œ0�
A;�.t / D O.tN �sup S / as t ! 0C: (5.32)

Moreover, if S.�/ < sup S for every � 2 R (i.e., if the screen S lies strictly to

the left of the vertical line ¹Re s D sup Sº), we then have the following stronger

pointwise error estimate:

R
Œ0�
A;�.t / D o.tN �sup S / as t ! 0C: (5.33)

(ii) Finally, under the same hypotheses as in Theorem 5.13 or Corollary 5.14,

with k WD 0 and �d < 1, and if, in addition .�A; ��/ is strongly d -languid

for some � > 0, then the fractal tube formula (5.31) holds pointwise for all

t 2 .0; ��1 min¹1; ı; B�1º/, with R
Œ0�
A;�.t / � 0 and W WD C; so that (5.31)

becomes an exact fractal tube formula in this case.

The exact analog of Remark 3.5, and Remark 3.6 holds in the present situation,
except for the relative tube zeta function Q�A;� replaced by the relative distance zeta
function �A;� of the RFD .A; �/. We state the most interesting case in a separate
theorem which is of course, the corollary of Theorem 5.16 corresponding to the
level k D 0.
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Theorem 5.17 (pointwise fractal tube formula via �A;�; level k D 0 and the case
of simple poles). Assume that the hypotheses of Theorem 5.16 hold. Suppose, in

addition, that all of the visible complex dimensions of the RFD .A; �/ are simple

(i.e., all of the poles of �A;� or, equivalently, since xD WD dimB.A; �/ < N here,

of Q�A;�, belonging to the window W are simple). Then, the pointwise fractal tube

formula (5.31), expressed in terms of �A;�, takes the following simpler form, valid

for all t 2 .0; ı/:

jAt \ �j D
X

!2P.�A;�;W /

tN �!

N � !
res.�A;�.s/; !/ C R

Œ0�
A;�.t /; (5.34)

where the ( pointwise) error term R
Œ0�
A;� is the same as in Theorem 5.11 at level

k D 0 and hence, satis�es the same ( pointwise) error estimates [(5.32) or (5.33),

depending on the hypotheses] as in Theorem 5.16. In particular, in the strongly

languid case (i.e., if .�A; ��/ is strongly languid for some � > 0), we have

R
Œ0�
A;� � 0 and W WD C, so that (5.34) then becomes an exact pointwise fractal

tube formula, valid for all t 2 .0; ��1 min¹1; ı; B�1º/.

5.3. Distributional tube formula via the distance zeta function. In this sub-
section, we state the distributional analogs of the results from Section 5.2 above,
still expressed in terms of the relative distance zeta function. The proofs are com-
pletely analogous to the ones from Section 4 for the case of the relative tube zeta
function. Again, we use the relative shell zeta function and the same scaling tech-
nique as in the proof of Corollary 5.14 (and Theorem 5.13) above in order to obtain
the desired results under the hypotheses of d -languidity or of strong d -languidity.

Theorem 5.18 (distributional fractal tube formula with error term, via �A;�).
Let .A; �/ be a d -languid relative fractal drum in R

N for some ı > 0 and

�d 2 R. Furthermore, assume that dimB.A; �/ < N . Then, for every k 2 Z, the

distribution V
Œk�
A;� in K

0.0; ı/ (and hence, also in D
0.0; ı/) is given by the following

distributional fractal tube formula, with error term and expressed in terms of the

distance zeta function �A;� WD �A;�. � I ı/:

V
Œk�
A;�.t / D

X

!2P.�A;�;W /

res
� tN �sCk

.N � s/kC1

�A;�.s/; !
�

C R
Œk�
A;�.t /: (5.35)

That is, the action of V
Œk�
A;�.t / on an arbitrary test function ' 2 K.0; ı/ is given by

hVŒk�
A;�; 'i D

X

!2P.�A;�;W /

res
�¹M'º.N � s C 1C k/�A;�.s/

.N � s/kC1

; !
�

C hRŒk�
A;�; 'i: (5.36)
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Here, the distribution R
Œk�
A;� in K

0.0; ı/ is the distributional error term given for

all ' 2 K.0; ı/ by

hRŒk�
A;�; 'i D 1

2�i

Z

S

¹M'º.N � s C 1 C k/�A;�.s/

.N � s/kC1

d s: (5.37)

Furthermore, the distribution R
Œk�
A;�.t / is of asymptotic order at most tN �sup SCk

as t ! 0C; i.e,

R
Œk�
A;�.t / D O.tN �sup SCk/ as t ! 0C (5.38)

in the sense of De�nition 4.6.

Moreover, if S.�/ < sup S for all � 2 R (that is, if the screen lies strictly to

the left of the line Re s D sup S/, then R
Œk�
A;�.t / is of asymptotic order less than

tN �sup SCk; i.e.,

R
Œk�
A;�.t / D o.tN �sup SCk/ as t ! 0C: (5.39)

In the case of a (possibly scaled) strongly d -languid relative fractal drum, as
before, we obtain a distributional formula without an error term, as stated in the
next theorem.

Theorem 5.19 (exact distributional fractal tube formula via �A;�). Let .A; �/ be a

relative fractal drum in R
N and assume also that dimB.A; �/ < N . Furthermore,

assume that there exists � > 0 such that .�A; ��/ is strongly d -languid for some

ı > 0, �d 2 R, and let20 ı0 WD ��1 min¹1; ı; B�1º. Then, for every k 2 Z, the

distribution V
Œk�
A;� in D

0.0; ı0/ is given in terms of �A;� WD �A;�. � I ı/ by

V
Œk�
A;�.t / D

X

!2P.�A;�;C/

res
� tN �sCk

.N � s/kC1

�A;�.s/; !
�

: (5.40)

That is, the action of V
Œk�
A;� on an arbitrary test function ' 2 D.0; ı0/ is given by

hVŒk�
A;�.t /; 'i D

X

!2P.�A;�;C/

res
�¹M'º.N � s C 1 C k/�A;�.s/

.N � s/kC1

; !
�

: (5.41)

We conclude this section by stating as a separate (and single) theorem the most
interesting special case of Theorems 5.18 and 5.19, when k D 0.

20 Here, B is the constant appearing in condition L20 for the function ��A.s; ��I ı/.
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Theorem 5.20 (distributional fractal tube formula via �A;�; level k D 0). Under

the same hypotheses as in Theorem 5.18, with k WD 0, we have the following

distributional equality in K0.0; ı/ for the relative tube function t 7! jAt \ �j
of the relative fractal drum .A; �/ in R

N :

jAt \ �j D
X

!2P.�A;�;W /

res
� tN �s

N � s
�A;�.s/; !

�

C R
Œ0�
A;�.t /; (5.42)

where R
Œ0�
A;�.t / is given by (5.37) for k D 0 and R

Œ0�
A;�.t / D O.tN �sup S / as t ! 0C

or, if S.�/ < sup S for all � 2 R, then R
Œ0�
A;�.t / D o.tN �sup S / as t ! 0C.

Moreover, under the same hypotheses as in Theorem 5.19, with k WD 0, and if

.�A; ��/ is strongly d -languid for some � > 0, then the analog of (5.42) holds in

D
0.0; ı0/, where ı0 WD ��1 min¹1; ı; B�1º and with R

Œ0�
A;�.t / � 0 and W WD C; so

that we obtain an exact distributional fractal tube formula in this case.

Finally, if, in addition, each visible complex dimension of .A; �/ is simple (i.e.,

if each pole of �A;� or, equivalently, of Q�A;�, located in W is simple), then the sum

over the complex dimensions in (5.42) (or in its analog with W WD C, for the exact

tube formula) becomes

X

!2P.�A;�;W /

tN �!

N � !
res.�A;�.s/; !/: (5.43)

5.4. The relative Mellin zeta function. In this subsection, we introduce a new
fractal zeta function, called the relative Mellin zeta function. Our motivation for
doing so is to use this new zeta function in order to obtain a distributional tube
formula which is valid on a larger space of test functions. This extension will be
required in order to obtain a Minkowski measurability criterion in [LapRaŽu8]
(see also [LapRaŽu1]) but will not be needed elsewhere in the present paper.
Nevertheless, we include it here since it is a natural extension of the present theory
of fractal tube formulas and essentially follows from the same ideas already used
in previous sections.

We want to extend our distributional tube formulas to the space21 K.0; C1/.
Recall that in De�nition 2.1, we have assumed that an RFD .A; �/ has the property
that there exists ı > 0 such that � � Aı . Therefore, for an RFD .A; �/ we
observe that Aı \ � D � for all ı su�ciently large; for such values of ı, we
have that jAı \ �j D j�j, which enables us to rede�ne the tube zeta function in

21 Here, K.0; C1/ is de�ned exactly as K.0; ı/ just before De�nition 4.1, except for ı

replaced by C1, and in this case, we require that for every ' 2 K.0; C1/, tm'.q/.t/ ! 0

as t ! C1, where '.q/ denotes the q-th derivative of '.
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the following way. Namely, assume that xD WD dimB.A; �/ < N and recall the
functional equation (2.6), written in the following integral form:

Z

Aı\�

d.x; A/s�N d x D ıs�N jAı \ �j C .N � s/

ı
Z

0

t s�N �1jAt \ �j d t; (5.44)

initially valid for all s 2 C such that Re s > xD. Now, we may take the complex
number s to be in the vertical strip ¹Re s > xDº \ ¹Re s < N º and let ı ! C1 to
obtain the following equality:

Z

�

d.x; A/s�N d x D .N � s/

C1
Z

0

t s�N �1jAt \ �j d t: (5.45)

Observe that on the right-hand side of (5.45), we have the Mellin transform of the
function t�N jAt \ �j and this integral is absolutely convergent inside the vertical
strip ¹Re s > xDº \ ¹Re s < N º. Indeed, to see this, we note that

C1
Z

0

t s�N �1jAt \ �j d t

D
1

Z

0

t s�N �1jAt \ �j d t C
C1
Z

1

t s�N �1jAt \ �j d t;

(5.46)

where the integral over .0; 1/ is equal to Q�A.s; �I 1/ and hence, is absolutely
convergent on ¹Re s > xDº, while for the integral over .1; C1/, we have

ˇ

ˇ

ˇ

ˇ

C1
Z

1

t s�N �1jAt \ �j d t

ˇ

ˇ

ˇ

ˇ

�
C1
Z

1

tRe s�N �1jAt \ �j d t

� j�j
C1
Z

1

tRe s�N �1 d t

D j�j
N � Re s

:

(5.47)

The classic theorem about the holomorphicity of an integral depending ana-
lytically on a complex parameter (see [LapRaŽu1, Theorem 2.1.46] or [Mattn])
implies that the integral on the right-hand side of (5.45) de�nes a holomorphic
function on the vertical strip ¹ xD < Re s < N º and upon analytic continuation, that
the entire right-hand side of (5.45) coincides (within that strip) with the relative
distance zeta function �A;�.s/; i.e., the identity (5.45) holds as an equality between
holomorphic functions de�ned on the open vertical strip ¹ xD < Re s < N º.
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Moreover, upon further meromorphic continuation (and since, by Theorem 2.6,
�A;� is holomorphic in the open right half-plane ¹Re s > xDº), we also deduce that
if �A;� can be meromorphically continued to a given connected open neighbor-
hood U of the critical line ¹Re s D xDº, then (with the terminology and notation
of De�nition 5.21 just below), so can the Mellin zeta function �MA;�. Hence, we
deduce that the following functional equation holds (between meromorphic func-
tions):

�A;�.s/ D .N � s/�MA;�.s/; (5.48)

for all s 2 U .

De�nition 5.21. Let .A; �/ be an RFD in R
N such that dimB.A; �/ < N . We

de�ne the Mellin zeta function �MA;� of .A; �/ by

�MA;�.s/ WD
C1
Z

0

t s�N �1jAt \ �j d t; (5.49)

for all s 2 C with Re s 2 .dimB.A; �/; N /, where the integral is taken in the
Lebesgue sense.

In the discussion preceding De�nition 5.21, we have already proven a part of
the following theorem.

Theorem 5.22. Let .A; �/ be an RFD in R
N such that dimB.A; �/ < N .

Then, the Mellin zeta function �MA;� is holomorphic on the open vertical strip

¹dimB.A; �/ < Re s < N º and

d

d s
�MA;�.s/ D

C1
Z

0

t s�N �1jAt \ �j log t d t; (5.50)

for all s in ¹dimB.A; �/ < Re s < N º. Furthermore, ¹dimB.A; �/ < Re s < N º is

the largest vertical strip (of the form ¹˛ < Re s < ˇº, with �1 � ˛ < ˇ � C1)

on which the integral on the right-hand side of (5.49) is absolutely convergent

(i.e., is a convergent Lebesgue integral).

Moreover, for all s 2 C such that dimB.A; �/ < Re s < N and for any �xed

ı > 0 such that � � Aı , �MA;� satis�es the following functional equations:

�MA;�.s/ D Q�A;�.sI ı/ C ıs�N j�j
N � s

(5.51)

and

�MA;�.s/ D �A;�.sI ı/

N � s
: (5.52)
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Proof. We have already proven the �rst part of the theorem. The optimality of
the vertical strip follows directly from (5.46) (or, more precisely, from (5.48)).
Namely, the lower bound dimB.A; �/ is a consequence of the presence of the
�rst integral on the right-hand side of (5.46) since the latter integral is equal to
Q�A.s; �I 1/. Furthermore, the upper bound N is a consequence of the presence of
the second integral on the right-hand side of (5.46), since that integral is divergent
for any real number s such that s > N . To see this, let ı � 1 be such that � � Aı

and make the following observation:

C1
Z

1

t s�N �1jAt \ �j d t �
C1
Z

ı

t s�N �1jAt \ �j d t

D j�j
C1
Z

ı

t s�N �1 d t D C1:

(5.53)

The functional equation (5.52) is already proven, while (5.51) can be proven
directly by splitting the integral de�ning �MA;� over the intervals .0; ı/ and .ı; C1/

or by using the functional equation (2.6) connecting the tube and distance zeta
functions. �

As a consequence of the functional equations (5.52) and (5.51) and the princi-
ple of analytic continuation, we immediately obtain the following two theorems,
which follow from the corresponding ones for the relative distance and tube zeta
functions (see [LapRaŽu4, Theorem 2.1 and Section 2.4] or [LapRaŽu1, Theo-
rems 2.1.11 and 2.2.11], as well as Theorems 2.8 and 2.9).

Theorem 5.23. Let .A; �/ be a relative fractal drum in R
N such that we have

dimB.A; �/ < N . Then the following properties hold.

.a/ The Mellin zeta function �MA;� is meromorphic in the open half-plane

¹Re s > dimB.A; �/º with a single, simple pole at s D N . Furthermore,

res.�MA;�; N / D �j�j: (5.54)

.b/ If the relative box (or Minkowski) dimension D WD dimB.A; �/ exists, and

M
D
� .A; �/ > 0, then �MA;�.s/ ! C1 as s 2 R converges to D from the right.

Proof. By the principle of analytic continuation, we conclude that the functional
equalities (5.51) and (5.52) continue to hold on any connected open neighbor-
hood U � C of the vertical strip ¹dimB.A; �/ < Re s < N º to which any of the
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three relative zeta functions has a holomorphic continuation. (See also the text
surrounding equation (5.48).) As a result, part .a/ follows from the counterpart
of Theorem 2.6 for the relative tube zeta function (see also [LapRaŽu1, Theo-
rem 2.2.11]) and (5.51), while part .b/ follows from Theorem 2.6 and (5.52). �

Furthermore, in light of Theorem 2.9 and (5.51), one obtains the following
analogous result.

Theorem 5.24. Assume that .A; �/ is a Minkowski nondegenerate RFD in R
N ,

that is, 0 < M
D
� .A; �/ � M

�D.A; �/ < 1 (in particular, D WD dimB.A; �/

exists), and D < N . If �MA;� can be extended meromorphically to a connected

open neighborhood of s D D, then D is necessarily a simple pole of �MA;� and

M
D
� .A; �/ � res.�MA;�; D/ � M

�D.A; �/: (5.55)

Furthermore, if .A; �/ is Minkowski measurable, then

res.�MA;�; D/ D M
D.A; �/: (5.56)

Lemma 5.25. Assume that .A; �/ is an RFD in R
N with dimB.A; �/ < N and

such that its tube or distance or Mellin zeta function is meromorphic on some

connected open neighborhoodU of the vertical strip22 ¹dimB.A; �/ < Re s < N º.
Then, all of the above fractal zeta functions are meromorphic on U and the

multisets of poles located in U n ¹N º of each of these three zeta functions, Q�A;�,

�A;� and �MA;�, coincide:

P. Q�A;�; U n ¹N º/ D P.�A;�; U n ¹N º/ D P.�MA;�; U n ¹N º/: (5.57)

Moreover, if ! 2 U n ¹N º is a simple pole of any of these three zeta functions,

then23

res.�MA;�; !/ D res. Q�A;�; !/ D res.�A;�; !/

N � !
: (5.58)

We may now use the Mellin inversion theorem (Theorem 2.18) to derive the
following inversion formula for the Mellin zeta function.

22 Recall from Theorem 2.6 and its counterpart for the relative tube zeta function that �A;� D

�A;� and Q�A;� D Q�A;� are holomorphic on the open right-half plane ¹Re s > dimB.A; �/º.

23 Clearly, in the case when ! 2 U n ¹N º is a multiple pole, an analogous relation
holds between the principal parts at ! of Q�A;�.s/, �M

A;�.s/ and the meromorphic function

�A;�.s/=.N � s/. Also, ! has the same multiplicity for either of Q�A;�, �A;� or �M

A;�.
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Theorem 5.26. Let .A; �/ be an RFD in R
N such that dimB.A; �/ < N . Then,

for any c 2 .dimB.A; �/; N / and t > 0, the following formula is valid pointwise:

jAt \ �j D 1

2�i

cCi1
Z

c�i1

tN �s�MA;�.s/ d s: (5.59)

Proof. The conclusion follows directly from Theorem 2.18, along with the fact that
the function t 7! t�N jAt \ �j is continuous and of locally bounded variation on
.0; C1/ and t 7! tc�N �1jAt \�j is in L1.0; C1/ for every c 2 .dimB.A; �/; N /.
(See also the proof of Theorem 2.19 since the reasoning here is analogous.) �

One can now impose languidity conditions on the Mellin zeta function �MA;� and
rewrite the results of Sections 3 and 4 in terms of �MA;� since the fact that we have

to choose c 2 .dimB.A; �/; N / in the above theorem is not a hindrance. Indeed,
recall that originally, we had the freedom to choose any c 2 .dimB.A; �/; N C 1/

in Proposition 2.20. Furthermore, choosing c 2 .dimB.A; �/; N / also ensures
that although s D N is always a pole of the Mellin zeta function, it will never be
a part of the sum over the residues of �MA;� in the fractal tube formulas since it is
always located strictly to the right of the vertical line ¹Re s D cº over which we
integrate in (5.59).

One could now also potentially derive the corresponding results about the
fractal tube formulas in terms of the distance zeta function �A;� directly from
the Mellin zeta function �MA;� and without the use of the shell zeta function M�A;�.
However, one then has to be careful and always choose ı su�ciently large so that
� � Aı in order for (5.52) to be satis�ed. Another issue that is not fully resolved
in this potential alternative approach is whether the restriction of having to choose
ı large enough for the inclusion � � Aı to hold could increase the “languidity
exponent” �d of �A;�. This is not the case in all of the examples we will consider,
but a general result along these lines has yet to be obtained.

Proposition 5.27. Let .A; �/ be a relative fractal drum in R
N . If the relative

distance zeta function �A;�. � I ı/ satis�es the languidity conditions L1 and L2

for some ı > 0 and �d 2 R, then so does �A;�. � I ı1/ for any ı1 > 0 and for

.�d /ı1
WD max¹�d ; 0º.

Furthermore, the analogous statement is also true in the case when �A;�. � I ı/

is strongly d -languid, under the additional assumption that ı � 1 and ı1 � 1.
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Proof. Without loss of generality, we may assume that ı < ı1. Then, the conclu-
sion follows from the fact that for a given a window W , we have �A.s; �I ı1/ D
�A;�.sI ı/ C g.s/ for all s 2 W , where g is de�ned for all s 2 C and is an entire
function. (This fact follows directly from the classical theorem about the holomor-
phicity of an integral depending on a parameter; see [LapRaŽu1, Theorem 2.1.46]
or [Mattn].) Furthermore, for all s 2 C, we have the following upper bound on
jg.s/j:

jg.s/j �
Z

.Aı1
nAı/\�

d.x; A/Re s�N d x � j�j max¹ıRe s�N ; ıRe s�N
1 º: (5.60)

As we can see, the upper bound on jg.s/j does not depend on Im s and therefore, we
conclude that g satis�es the languidity conditions L1 and L2 with the languidity
exponent �g WD 0 and for any given window W . This observation implies that
then, �A;�. � I ı1/ is languid for .�d /ı1

WD max¹�d ; 0º and for the same window as
for �A;�. � I ı/.

The additional assumption about the strong d -languidity is needed since L1

must then be satis�ed for all � 2 .�1; c/, in the notation of De�nition 2.12.
Furthermore, for this condition to be achieved, we need that ı1 > ı � 1 in (5.60)

since otherwise, we cannot obtain an upper bound on jg.s/j when Re s ! �1.
�

We refrain from restating all of the theorems of Sections 3 and 4 in terms
of the Mellin zeta function and leave this task for the interested reader. We
will restate only the distributional fractal tube formula with error term, which
will be explicitly needed in [LapRaŽu8] (see also [LapRaŽu1]) for establishing
a Minkowski measurability criterion for a large class of RFDs in terms of the
location of the principal complex dimensions. Recall that our original motivation
for introducing the Mellin zeta function was to obtain a distributional fractal tube
formula valid on a larger space of test functions, more precisely, on the space
K.0; C1/; that is, the space of test functions ' in the class C 1.0; C1/, such
that for all m 2 Z and q 2 N, we have tm'.q/.t / ! 0, as t ! 0C and t ! C1.
We point out that the key di�erence from working with the tube or distance zeta
function which enables us to obtain the distributional tube formula in this greater
generality is in Theorem 5.26. More precisely, the integral representation of the
tube function t 7! jAt \ �j in Theorem 5.26 is now valid for all t > 0, while
in Theorem 2.19 we obtained an integral representation valid only for t 2 .0; ı/.
Hence, the integral representation given in Theorem 5.26, valid for all t > 0,
enables us to work with test functions K.0; C1/ when deriving the distributional
tube formulas in terms of the Mellin zeta function.
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Also note that D.0; C1/ � K.0; C1/, and hence, we have the following (re-
verse) relation between the corresponding spaces of distributions (or dual spaces):

K
0.0; C1/ � D

0.0; C1/: (5.61)

Theorem 5.28 (distributional fractal tube formula with error term, via �MA;�; level

k D 0). Let .A; �/ be a relative fractal drum in R
N such that dimB.A; �/ < N .

Furthermore, assume that �MA;� satis�es the languidity conditions for some � 2 R

and ı > 0. Then, the regular distribution V
Œ0�
A;�.t / WD jAt \ �j in K

0.0; C1/ is

given by the following distributional identity in K
0.0; C1/:

V
Œ0�
A;�.t / D

X

!2P.�M

A;�
;W /

res.tN �s�MA;�.s/; !/ C R
MŒ0�
A;� .t /: (5.62)

That is, the action of V
Œ0�
A;� on an arbitrary test function ' 2 K.0; C1/ is given by

hVŒ0�
A;�; 'i D

X

!2P.�M

A;�
;W /

res.¹M'º.N � s C 1/�MA;�.s/; !/ C hRMŒ0�
A;� ; 'i: (5.63)

Here, the distributional error term R
MŒ0�
A;� is the distribution in K

0.0; C1/ given

for all ' 2 K.0; C1/ by

hRMŒ0�
A;� ; 'i D 1

2�i

Z

S

¹M'º.N � s C 1/�MA;�.s/ d s: (5.64)

Furthermore, the distribution R
MŒ0�
A;� .t / is of asymptotic order at most tN �sup S as

t ! 0C; i.e.,

R
MŒ0�
A;� .t / D O.tN �sup S / as t ! 0C; (5.65)

in the sense of De�nition 4.6.

Moreover, if S.�/ < sup S for all � 2 R (that is, if the screen S lies strictly to

the left of the vertical line ¹Re s D sup Sº), then R
MŒ0�
A;� .t / is of asymptotic order

less than tN �sup S ; i.e.,

R
MŒ0�
A;� .t / D o.tN �sup S / as t ! 0C; (5.66)

again in the sense of De�nition 4.6.

6. Examples and applications

In this �nal section, we illustrate the theory of fractal tube formulas developed
in Sections 3–5 by means of several examples of bounded (fractal) sets and rela-
tive fractal drums. These examples include the line segment, the recovery of the



Fractal tube Formulas for compact sets and relative fractal drums 65

known tube formulas (from [Lap-vFr3]) for fractal strings (Subsection 6.2), the
Sierpiński gasket and the 3-dimensional Sierpiński carpet, along with the inho-
mogeneous higher-dimensional N -gasket RFDs, with N � 3 (Subsection 6.3), a
suitable version of the Cantor graph (the “devil’s staircase”) and an associated
discussion of “fractality” expressed in terms of the presence of nonreal com-
plex dimensions (Subsection 6.4), fractal nests and (unbounded) geometric chirps
(Subsection 6.5), as well as, �nally, the recovery and signi�cant extensions of
the known fractal tube formulas (from [LapPe2–3, LapPeWi1–2]) for self-similar
sprays (Subsection 6.6).

6.1. The line segment, convex sets, and smooth submanifolds. Let us �rst
consider the trivial example of the unit interval in R, which illustrates the case
when we cannot use the distance zeta function in order to recover the tube formula,
since D D N D 1.

Example 6.1. Let I D Œ0; 1� be the unit interval in R. Then the meromorphic
continuations to C of its distance and tube zeta functions are respectively given by

�I .s/ D 2ıs

s
and Q�I .s/ D 2ıs

s
C ıs�1

s � 1
; for all s 2 C: (6.1)

As we can see, the distance zeta function fails to provide information about the
Minkowski content in this case, because the pole at s D 1 is canceled by means
of the functional equation (2.6). This also demonstrates why when working with
meromorphic extensions of the relative distance zeta function, one must always
assume additionally that dimB.A; �/ < N , as opposed to the situation with the
relative tube zeta function. Furthermore, it is clear that Q�I is strongly languid if
we choose ı > 1 for � WD �1 and a sequence of screens consisting of the vertical
lines ¹Re s D �mº, where m 2 N. We then recover from Theorem 3.4 (with k D 0

in the notation of that theorem) the following exact pointwise tube formula:

jIt j D tN �0 res. Q�I ; 0/ C tN �1 res. Q�I ; 1/ D 2t C 1; (6.2)

initially valid for all t 2 .0; ı/. Actually, since ı > 1 may be taken arbitrary
large, the exact tube formula (6.2) is valid for all t > 0. Note that, of course, it is
immediate to check directly that the tube formula (6.2) holds for all t > 0.

We next explain how to calculate the tube and distance zeta functions, as well
as the complex dimensions, of compact convex sets (or, more generally, of sets of
positive reach) and smooth compact submanifolds of Euclidean space R

N , based
on key results of Federer [Fed1] unifying and extending Steiner’s tube formula for
convex sets [Stein] and Weyl’s tube formula for compact submanifolds of R

N ,
see [Wey] (see also [BergGos] and [Schn2, Chapter 4] for an exposition).
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Recall that a closed subset A of R
N is said to be of positive reach if there

exists ı > 0 such that every point x 2 Aı has a unique metric projection onto A;
see [Fed1]. The reach of A, denoted by reach.A/, is then de�ned as the supremum
of all such positive ı. Clearly, every closed convex subset of R

N is of in�nite
(and hence, positive) reach. Furthermore, if, for instance, A � R

2 is an arc of a
circle of radius r , then the reach of A is equal to r . Moreover, compact smooth
submanifolds of Euclidean space R

N are also examples of sets of positive reach.
In the present context, for a compact set A � R

N of positive reach, it is easy to
deduce from the tube formula obtained in [Fed1] an explicit expression24 for Q�A.

Theorem 6.2. Let A be a (nonempty) compact set of positive reach in R
N . Then,

for any ı > 0 such that 0 < ı < reach.A/, we have that

Q�A.s/ WD Q�A.sI ı/ D
N

X

kD0

ck

ıs�k

s � k
; (6.3)

where jAt j D PN
kD0 cktN �k for all t 2 .0; ı/ and the coe�cients ck are the

(normalized) Federer curvatures. (From the functional equation (2.6), one then

deduces at once a corresponding explicit expression for �A.s/ WD �A.sI ı/.)

Hence, dimB A exists and

D WD D. Q�A/ D D.�A/ D dimB A D max¹k 2 ¹0; 1; : : : ; N ºW ck ¤ 0º (6.4)

and25

P WD P. Q�A/ D P.�A/ � ¹0; 1; : : : ; N º: (6.5)

In fact,

P D ¹k 2 ¹0; 1; : : : ; N ºW ck ¤ 0º � ¹k0; : : : ; Dº; (6.6)

where k0 WD min¹k 2 ¹0; 1; : : : ; DºW ck ¤ 0º. Furthermore, each of the complex

dimensions of A is simple.

Finally, if A is such that its a�ne hull is all of RN (which is the case when

the interior of A is nonempty and, in particular, if A is a convex body), then

D D N , while if A is a (smooth) compact d -dimensional submanifold of RN

(with 0 � d � N ), then D D d .

For example, for the 2-torus A � R
3, we have N D 3, D D 2 (since the Euler

characteristic of A is equal to zero), and26 c2 ¤ 0, c1 D 0, and hence, c0 D 0,
k0 D 2 and P D ¹2º, as can also be easily checked via a direct computation.

24 Relative versions of Theorem 6.2 are also possible, but we will not consider them here.

25 More precisely, the second equality in equation (6.5) holds only if D < N .

26 Note that c2 is just proportional to the the area of the 2-torus, with the proportionality
constant being a standard positive constant.
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6.2. Tube formulas for fractal strings. In the present subsection, we apply
our general theory of fractal tube formulas for relative fractal drums (and, in
particular, for bounded sets) in RN to the one-dimensional case (i.e., N D 1)
in order to recover the known (pointwise and distributional) fractal tube formulas
for fractal strings obtained in [Lap-vFr3]. We begin by discussing the prototypical
example of the Cantor string (viewed as an RFD), in Example 6.3, and further
illustrate our results by means of the well-known example of the a-string (in
Example 6.8). Along the way, we discuss the case of general fractal strings as
well as the associated fractal tube formulas.

Example 6.3 (standard ternary Cantor set and string). Let C be the standard
ternary Cantor set in Œ0; 1� and �x ı � 1=6. Then, it is not di�cult to show that
the “absolute” distance zeta function of C is meromorphic in all of C and given
by

�C;Cı
.s/ D 21�s

s.3s � 2/
C 2ıs

s
; for all s 2 C; (6.7)

where the term 2ıs=s corresponds to the integral over the “outer” neighborhood
of the two endpoints 0 and 1 (see [LapRaŽu2, Example 3.4] or [LapRaŽu1,
Example 2.1.18] ). Consequently, the relative distance zeta function of .C; .0; 1//

is also meromorphic on all of C and given by

�C;.0;1/.s/ D 21�s

s.3s � 2/
; for all s 2 C: (6.8)

Furthermore, the sets of complex dimensions of the Cantor set C and of the Cantor
string .C; .0; 1//, viewed as an RFD, coincide:

P.�C / D P.�C;.0;1// D ¹0º [
�

log3 2 C 2�

log 3
iZ

�

: (6.9)

In (6.9), each of the complex dimensions is simple. Furthermore, the Minkowski
dimension of the Cantor string D WD dimB.C; .0; 1// exists and D D log3 2, the
Minkowski dimension of the Cantor set, which also exists. Furthermore, p WD 2�

log 3

is the oscillatory period of the Cantor set (or string), viewed as a lattice self-similar
set (or string); see [Lap-vFr3, Chapter 2, esp., Subsection 2.3.1 and Section 2.4].

It is clear that .�C; �.0; 1// is strongly d -languid for �d WD �1, any � � 2 and
a sequence of screens consisting of the vertical lines ¹Re s D �mº for m 2 N,
along with the constant B� WD 2=� in the strong languidity condition L20.27 The-
orem 5.16 (or, really, Theorem 5.17 since all of the complex dimensions of the
RFD are simple) then enables us to recover the following exact pointwise fractal

27 Without loss of generality, we can �x ı � 1 here.
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formula for the inner t -neighborhood of C , valid for all t 2 .0; min¹1=�; 1=2º/ D
.0; 1=2/:

jCt \ .0; 1/j D
X

!2P.�C;.0;1//

res
� t1�s

1 � s
�C;.0;1/.s/; !

�

D
X

!2P.�C;.0;1//

t1�! res.�C;.0;1/; !/

1 � !

D 1

2 log 3

C1
X

kD�1

.2t/1�!k

.1 � !k/!k

� 2t

D .2t/1�D

2 log 3

C1
X

kD�1

.2t/�ikp

.1 � !k/!k

� 2t

D t1�DG.log3.2t/�1/ � 2t;

(6.10)

where !k WD D C ikp for each k 2 Z, D WD dimB.C; .0; 1// D log3 2 (as above),
and p WD 2�

log 3
denote, respectively, the relative Minkowski dimension and the

“oscillatory period” of the Cantor string RFD .C; .0; 1// in R (or, equivalently,
of the Cantor string LCS). Furthermore, G is the positive, nonconstant 1-periodic
function, which is bounded away from zero and in�nity and given by the following
Fourier series expansion:

G.x/ WD
X

k2Z

2�D e2�ikx

!k.1 � !k/ log 3
: (6.11)

In (6.10), the second equality follows from the fact that all of the complex dimen-
sions of �C;.0;1/ are simple (see also Theorem 5.17 above), while the third equality
is obtained by computing the residues of �C;.0;1/ at each s WD !k (for k 2 Z) and
at s D 0; in particular, we have that

res.�C;.0;1/; !k/ D 2�!k

!k log 3
; for all k 2 Z: (6.12)

Of course, the above exact pointwise fractal tube formula (6.10) coincides with
the one obtained by a direct computation for the Cantor string (see [Lap-vFr3, Sub-
section 1.1.2]) or from the general theory of fractal tube formulas for fractal strings
(see [Lap-vFr3, Chapter 8, esp., Sections 8.1 and 8.2]) and, in particular, for self-
similar strings (see, especially, [Lap-vFr3, Subsection 8.4.1, Example 8.2.2]).28
Note that the “absolute” tube function jCt j has the same expression as in (6.10)

above but now without the term �2t , which is in accordance with (6.7).

28 Caution: in [Lap-vFr1, Section 8.4], the Cantor string is de�ned slightly di�erently, and
hence, C is replaced by 3�1C .
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Finally, observe that, in agreement with the lattice case of the general theory
of self-similar strings developed in [Lap-vFr3, Chapters 2–3, and Section 8.4],
we can rewrite the pointwise fractal tube formula (6.10) as follows (with D WD
dimB C D log2 3):

t�.1�D/VC;.0;1/.t / D t�.1�D/jCt \ .0; 1/j D G.log3.2t/�1/ C o.1/; (6.13)

where G is given by (6.11). Therefore, since G is periodic and nonconstant,
it is clear that t�.1�D/VC;.0;1/.t / cannot have a limit as t ! 0C. It follows
that the Cantor string RFD .C; .0; 1// (or, equivalently, the Cantor string LCS)
is not Minkowski measurable but (since G is also bounded away from zero and
in�nity) is Minkowski nondegenerate. (This was �rst proved in [LapPo1–2] via a
direct computation, leading to the precise values of M� and M

�, and reproved in
[Lap-vFr3, Subsection 8.4.2] by using either the pointwise fractal tube formulas or
a self-similar fractal string Minkowski measurability criterion; which is expanded
to the case of RN with N arbitrary in [LapRaŽu8].

The above example demonstrates how the theory developed in this paper
generalizes (to arbitrary dimensions N � 1) the corresponding one for fractal
strings developed in [Lap-vFr3, Chapter 8].29 More generally, the following result
gives a general connection between the geometric zeta function of a nontrivial
bounded fractal string L D . j̀ /j �1 and the (relative) distance zeta function of the
bounded subset of R given by

AL WD
°

ak WD
X

j �k

j̀ W k � 1
±

(6.14)

or, more speci�cally, of the RFD .AL; .0; `//.

Proposition 6.4. Let L D . j̀ /j �1 be a nontrivial bounded fractal string and

let ` WD �L.1/ D P1
j D1 j̀ denote its total length. Then, for every ı � `1=2, we

have the following functional equation for the distance zeta function of the relative

fractal drum .AL; .0; `//:

�AL;.0;`/.sI ı/ D 21�s�L.s/

s
; (6.15)

29 One should slightly qualify this statement, however, because the higher-dimensional coun-
terpart of the theory of fractal tube formulas for self-similar strings developed in [Lap-vFr3, Sec-
tion 8.4] is not developed in this paper in the general case of self-similar RFDs (and, for example,
of self-similar sets satisfying the open set condition), except in the special case of self-similar
sprays discussed in Subsection 6.6 below.
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valid on any connected open neighborhood U � C of the critical line ¹Re s D
dimB.AL; .0; `//º to which any of the two fractal zeta functions �AL;.0;`/ and �L

possesses a meromorphic continuation.30

Furthermore, if �L is languid for some �L 2 R, then �AL;.0;`/. � I ı/ is d -languid

for �d WD �L � 1, with any ı � `1=2.

Moreover, if �L is strongly languid, then so is ��AL;.0;�`/.sI ı�/ for any � � 2

and any ı � `1=2.

Proof. The functional equation (6.15) is derived in [LapRaŽu2, Example 2.9 and
Theorem 2.10] (see also [LapRaŽu1, Example 2.1.57]) and can be easily obtained
directly from the appropriate de�nitions. Furthermore, the statements about the
languidity follow directly from the de�nition. �

Remark 6.5. There is nothing special about the bounded set AL � R associated
with L. In fact, in the statement of Proposition 6.4, we could replace AL with @�,
where the bounded open set � � R is an arbitrary geometric realization of the
fractal stringL. Similarly, in recovering the fractal tube formulas for fractal strings
obtained in [Lap-vFr3, Chapter 8], one can use �@�;� WD �@�;�. � I ı/ instead of
�AL;.0;`/ WD �AL;.0;`/. � I ı/. This is precisely what we will do in the subsequent
discussion.

Let @� be the boundary of �, where the bounded open set � � R is
any geometric realization of the bounded (nontrivial) fractal string L such that
dimB.@�; �/ < 1. That is, we can write � as a disjoint union of bounded open
intervals Ij (i.e., the connected components of �) such that Ij has length j̀ ,
for each j � 1. It is unimportant in which order the intervals Ij are arranged.
Then, under suitable hypotheses (namely, we assume that either �@�;� or �L has
a meromorphic continuation to a connected open neighborhood of the critical
line ¹Re s D dimB.@�; �/º), we have (much as in (6.15) above) the following
key functional equation connecting the distance zeta function �@�;� of the RFD

.@�; �/ and the geometric zeta function �L of the fractal string31 L WD . j̀ /1
j D1:

�@�;�.s/ D 21�s�L.s/

s
; (6.16)

30 If we do not require that ı � `1=2, then we have that �AL
.sI ı/ D 21�ss�1�L.s/ C v.s/,

where v is holomorphic on ¹Re s > 0º. On the other hand, for applying the theory, we may
restrict ourselves to the case when ı � `1=2.

31 We note that the functional equation (6.16) is valid, without any hypothesis on the bounded
fractal string L (or on its distance and geometric zeta functions), for all s 2 C with Re s

su�ciently large (namely, for Re s > xD, where xD WD dimB.@�; �/ D D.�@�;�/ D D.�L/).
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valid for all s 2 U . (Of course, it then follows that each of the two fractal zeta
functions �@�;� and �L has a unique meromorphic continuation to all of U .)

Consequently, by choosing U WD VW to be the interior of a suitable window W

(with an associated screen S), we deduce from the results of Section 5 (especially,
Subsections 5.2 and 5.3) that the tube function

VL.t / WD j¹x 2 �W d.x; @�/ < tºj1 D V@�;�.t / (6.17)

can be expressed via the following fractal tube formula (with or without error
term and pointwise or distributionally, depending on the assumptions),32 for every
ı � `1=2:

VL.t / D V@�;�.t /

D
X

!2P.�@�;�;W /

res
� t1�s

1 � s
�@�;�.s/; !

�

C R
Œ0�

@�;�
.t /

D
X

!2P.�@�;�;W /

res
� .2t/1�s

s.1 � s/
�L.s/; !

�

C R
Œ0�

@�;�
.t /;

(6.18)

where, in the languid case, we have the error estimate R
Œ0�

@�;�
.t / D O.t1�sup S /

as t ! 0C or R
Œ0�

@�;�
.t / D o.t1�sup S / as t ! 0C (also depending on the

hypotheses),33 or else, R
Œ0�

@�;�
.t / � 0 and W WD C in the strongly languid case.

Here, P.�@�;�; W / denotes the set of visible complex dimensions of .@�; �/,
visible through a given window W (with an associated screen S), and in light of
the counterpart for the RFD .@�; �/ of equation (6.15) along with Remark 6.5,
we have that

P.�@�;�; W n ¹0º/ D P.�L; W n ¹0º/; (6.19)

where the equality holds between multisets. Furthermore, if 0 2 W and if �L.0/ is
de�ned and not equal to zero (i.e., if �L.0/ ¤ 0), then, 0 2 P.�@�;�; W / and it has
multiplicity one. On the other hand, if 0 2 P.�L; W / and is a pole of multiplicity
m for some m 2 N, then, 0 2 P.�@�;�; W / and it has multiplicity m C 1. In other
words, we have the following equality between multisets:

P.�@�;�; W / D P.�L; W / [ ¹0º02W;�L.0/¤0; (6.20)

32 Namely, the hypotheses of Theorem 5.16 (i.e., of Theorem 5.11 at level k D 0), for the
pointwise tube formula, or else, the hypotheses of Theorem 5.20 (i.e., of Theorem 5.18 at level
k D 0), for the distributional tube formula.

33More speci�cally, in order to obtain the better error estimate, we also have to assume that
the screen is strictly to the left of the vertical line ¹Re s D sup Sº.



72 M. L. Lapidus, G. Radunović, and D. Žubrinić

where ¹0º02W;�L.0/¤0 is equal to ¹0º if 0 2 W and �L.0/ ¤ 0, and to the empty
set otherwise.

If, in addition, each of the visible complex dimensions of .@�; �/ (i.e., each
pole of �@�;� in W ) is simple, then (in light of (6.16)) the fractal tube for-
mula (6.18) takes the following simpler form:

VL.t / D V@�;�.t /

D
X

!2P.�L;W /

.2t/1�!

!.1 � !/
res.�L.s/; !/ C ¹2t�L.0/º02W C R

Œ0�

@�;�
.t /;

(6.21)

where the (pointwise or distributional) error term R
Œ0�

@�;�
.t / is estimated as above

(in the languid case) or else, R
Œ0�

@�;�
.t / � 0 and W WD C (in the strongly languid

case). Here, provided �L.0/ is well de�ned, the term ¹2t�L.0/º02W is equal to
zero if 0 … W and to 2t�L.0/ if 0 2 W . If, however, 0 is a simple, visible pole
of �L, then we should replace ¹2t�L.0/º02W on the right-hand side of (6.21) with
the term

2t.1 � log.2t// res.�L; 0/ C 2t�LŒ0�0; (6.22)

where �LŒ0�0 stands for the constant term in the Laurent series expansion of
�L around s D 0. This is in agreement with [Lap-vFr3, Corollary 8.3] (resp.,
[Lap-vFr3, Corollary 8.10]) in the case of a distributional (resp., pointwise) fractal
tube formula.

Note that in light of (6.19), formula (6.18) can be rewritten as follows, in terms
of the set P.�L; W / of all visible poles of �L (see also Remark 6.6 below):

VL.t / D V@�;�.t /

D
X

!2P.�L;W /

res
� .2t/1�s

s.1 � s/
�L.s/; !

�

C ¹2t�L.0/º02W nP.�L;W / C R
Œ0�

@�;�
.t /;

(6.23)

which is in agreement with [Lap-vFr3, Theorem 8.1] (resp., [Lap-vFr3, Theo-
rem 8.7]) in the case of a distributional (resp., pointwise) fractal tube formula.

Naturally, P.�L; W / is viewed as a multiset; that is, on the right-hand side
of (6.19) or (6.20), each visible “scaling complex dimension” ! 2 P.�L; W /

(i.e., each visible pole of the geometric zeta function �L) occurs according to
its multiplicity. An entirely analogous comment can be made about the multiset

P.�@�;�; W / and the associated visible complex dimensions ! 2 P.�@�;�; W /.
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Remark 6.6. In [Lap-vFr3], the elements of P.�L; W / are called the (visible)
complex dimensions of L. In the present paper, the relationship with the actual
(visible) complex dimension of the RFD .@�; �/ (i.e., the visible poles of �@�;�)
is given by (6.19) and the text surrounding it. Much as in [LapPe2–3, LapPeWi1–2]
and [Lap-vFr3, Section 13.1], we propose to refer to the elements of P.�L; W /

(i.e., to the visible poles of the geometric zeta function �L) as the visible scaling

complex dimensions of the fractal string L. Similarly, �L will also be occasionally
referred to as the scaling zeta function of L (or rather, of the associated RFD
.@�; �/) and denoted by �S.

Remark 6.7. We leave it as an easy exercise for the interested reader to use the
counterpart for the RFD .@�; �/ of the functional equation (6.15) in Proposi-
tion 6.4 in order to express the languidity, as well as the strong languidity con-
ditions, in terms of the geometric zeta function �L instead of the distance zeta
function �@�;�. Furthermore, the reader can easily check that the results of Ex-
ample 6.3 concerning the Cantor string L WD ®

1; 1
3
; 1

3
; 1

9
; 1

9
; 1

9
; 1

9
; : : :

¯

(see, espe-
cially, equation (6.10)) are compatible with both (6.21) and (6.23). Indeed, in light
of (6.8) and (6.15), we have (for all s 2 C)

�CS.s/ D 1

3s � 2
; (6.24)

from which it follows that �CS.0/ D �1 and (with W WD C) the term ¹2t�L.0/º02W

in both (6.21) and (6.23) becomes �2t , in agreement with (6.10).

Example 6.8 (the a-string). For a given a > 0, the a-string La can be realized
as the bounded open set �a � R obtained by removing the points j �a for j 2 N

from the interval .0; 1/; that is,

�a D
1
[

j D1

..j C 1/�a; j �a/; (6.25)

so that the sequence of lengths of La is de�ned by

j̀ WD j �a � .j C 1/�a; for j D 1; 2; : : : ; (6.26)

and @�a D ¹j �aW j � 1º [ ¹0º D ALa
[ ¹0º. Hence, its geometric zeta function

is given (for all s 2 C such that Re s > dimB La) by

�La
.s/ D

1
X

j D1

`s
j D

1
X

j D1

.j �a � .j C 1/�a/s
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and it then follows from Proposition 6.4 that for ı > .1 � 2�a/=2, its distance zeta
function is given by

�ALa ;.0;1/.sI ı/ D �La
.s/

2s�1s
D 1

2s�1s

1
X

j D1

.j �a � .j C 1/�a/s ; (6.27)

where the second equality holds for all s 2 C such that Re s > dimB La while
the �rst equality holds for all s 2 C (since, as will be recalled just below, �La

and
hence also �ALa ;.0;1/, admits a meromorphic extension to all of C).

Furthermore, the properties of the geometric zeta function �La
of the a-string

are well-known (see [Lap-vFr3, Theorem 6.21]). Namely, �La
has a meromorphic

continuation to the whole of C and its poles in C are located at

D WD dimB La D dimB ALa
D 1

a C 1
(6.28)

and at (a subset of) ¹� m
aC1

W m 2 Nº. Furthermore, all of its poles are simple and34
res.�La

; D/ D DaD . Moreover, for any screen S not passing through a pole, the
function �La

satis�es L1 and L2 with � WD 1
2

� .a C 1/ inf S , if inf S � 0 and
� WD 1

2
if inf S � 0. From these facts and equation (6.27), we conclude that the set

ALa
is d -languid with �d WD �1

2
� .a C 1/ inf S if inf S � 0 and with �d WD �1

2

if inf S � 0. For M 2 N [ ¹0º, we can now choose the screen SM to be some
vertical line between �M C1

1Ca
and �M C2

1Ca
and let WM be the corresponding window.

Applying Theorem 5.20, we now obtain the following asymptotic distributional
formula for the tube function t 7! j.ALa

/t \ .0; 1/j when t ! 0C:

j.ALa
/t \ .0; 1/j D

X

!2P.�ALa
;WM /

res
� t1�s

1 � s
�ALa

.sI ı/; !
�

C O.t1�sup SM /: (6.29)

More speci�cally, since we know that all the poles are simple and �La
.0/ D �1=2

(see [Lap-vFr3, p. 205]), we have that

res.�ALa
; D/ D 21�DD�1 res.�La

; D/ D 21�DaD; (6.30a)

res.�ALa
; 0/ D 2�La

.0/ D �1: (6.30b)

Consequently, and in agreement with the discussion following Proposition 6.4 in
the special case of simple complex dimensions (see, especially, equation (6.21)

34 In [Lap-vFr3, Theorem 6.21], it is stated that res.�La
; D/ D aD , which is a misprint. More

speci�cally, in the proof of that theorem, the source of the misprint is the fact that the residue of
�..a C 1/s/ at s D 1=.a C 1/ is equal to 1=.a C 1/ and not to 1. Here, � is the Riemann zeta
function.
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above), we have that

j.ALa
/t \ .0; 1/j

D 21�DaD

1 � D
t1�D � t �

M
X

mD1

res.�La
; �mD/.2t/1CmD

.1 C mD/mD
C O.t1C.M C1/D/;

as t ! 0C,
(6.31)

where the sum is interpreted as being equal to 0 if M D 0. In particular, since by
choosing a screen to the right of �D=2, we conclude that (6.31) is actually valid
pointwise because in that case �d < 0 (see Theorem 5.16), the above (pointwise)
tube formula for such a screen then implies that dimB ALa

D D (as was stated
above), and that the a-string is Minkowski measurable with Minkowski content
given by

M
D.ALa

/ D 21�DaD

1 � D
; (6.32)

as was �rst established in [Lap1, Example 5.1] and later reproved in [LapPo1–2]
via a general Minkowski measurability criterion for fractal strings (expressed in
terms of the asymptotic behavior of . j̀ /1

j D1, here, j̀ � aj �1=D as j ! 1) and
then, in [Lap-vFr1–3] (via the the theory of complex dimensions of fractal strings).
We point out that (6.31) coincides with the “inner” tube formula of the a-string
(see [Lap-vFr3, Subsection 8.1.2]).35

6.3. The Sierpiński gasket and 3-carpet. In this subsection, we provide an ex-
act, pointwise fractal tube formula for the Sierpiński gasket (Example 6.9) and
for a three-dimensional analog of the Sierpiński carpet (Example 6.10). Naturally,
although the required computation involved is somewhat more complicated, one
could similarly derive from our general results in Section 5 (and by using, in par-
ticular, the results of [LapRaŽu4, Example 4.1.4] or [LapRaŽu1] concerning the
inhomogeneous Sierpiński N -gasket RFD) exact, pointwise fractal tube formulas
for the N -dimensional analogs of the Sierpiński gasket and carpet, with N � 2

arbitrary. We leave it to the interested reader to carry out the corresponding de-
tailed computations and to imagine other (two- or higher-dimensional) examples
of self-similar fractal sets or self-similar RFDs which can be dealt with explicitly
within the present general theory of (higher-dimensional) fractal tube formulas.36

35 More precisely, the two expressions coincide after we have taken into account the misprint
mentioned in footnote 34 and add the term 2�L.0/ which seems to be forgotten in [Lap-vFr3].

36 The authors have recently obtained an explicit fractal tube formula for the Koch drum (or
the Koch RFD). This important example should be discussed in a later work and its conclusions
compared with those of [LapPe1] (as discussed in [Lap-vFr3, Subsection 12.2.1]).
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The example of the 3-carpet discussed in detail in Example 6.10 below should give
a good idea as to how to proceed in other, related situations, including especially
for the higher-dimensional inhomogeneous N -gasket RFDs (with N � 4).

Example 6.9 (the Sierpiński gasket). Let A be the Sierpiński gasket in R
2,

constructed in the usual way inside the unit triangle. Furthermore, we assume
without loss of generality that ı > 1=4

p
3, so that Aı be simply connected. Then,

the distance zeta function �A of the Sierpiński gasket is meromorphic on the whole
complex plane and is given by

�A.sI ı/ D 6.
p

3/1�s2�s

s.s � 1/.2s � 3/
C 2�

ıs

s
C 3

ıs�1

s � 1
; (6.33)

for all s 2 C (see [LapRaŽu1, Proposition 3.2.3] or [LapRaŽu4, Example 3.27]).
In particular, the set of complex dimensions of the Sierpiński gasket is given by

P.�A/ WD P.�A;C/ D ¹0; 1º [
�

log2 3 C 2�

log 2
iZ

�

; (6.34)

with each complex dimension being simple.
By letting !k WD log2 3 C ikp (for each k 2 Z) and p WD 2�= log 2, we have

that

res.�A; !k/ D 6.
p

3/1�!k

4!k .log 2/!k.!k � 1/
for all k 2 Z; (6.35)

res.�A; 0/ D 3
p

3 C 2�; and res.�A; 1/ D 0: (6.36)

Similarly as in Example 6.3, one can check that ��A. � I ı�/ is strongly languid
with �d WD �1 for every ı � 1=2

p
3 and any � � 2

p
3; so that we can apply

Theorem 5.16 (or, more speci�cally, its corollary given in Theorem 5.17 at level
k D 0 and in the case of simple poles) in order to obtain the following exact
pointwise fractal tube formula:

jAt j D
X

!2P.�A/

res
� t2�s

2 � s
�A.sI ı/; !

�

D t2�log2 3 6
p

3

log 2

C1
X

kD�1

.4
p

3/�!k t�ikp

.2 � !k/.!k � 1/!k

C
�3

p
3

2
C �

�

t2;

valid for all t 2 .0; 1=2
p

3/. Note that this formula coincides with the one obtained
in [LapPe3] and [LapPeWi1] and, more recently, via a di�erent (but related)
technique in [DenKÖÜ].
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Figure 2. Left: The mutually congruent pyramids into which we subdivide the cube A1

from Example 6.10. Eight of them, corresponding to one face of A1, are shown here.
Right: The third step in the construction of the Cantor graph relative fractal drum .A; �/

from Example 6.11. One can see, in particular, the sets Bk , 4k and z4k for k D 1; 2; 3.

Example 6.10 (The 3-carpet). Let A be the three-dimensional analog of the
Sierpiński carpet. More speci�cally, we construct A by dividing the closed unit
cube of R3 into 27 congruent cubes and remove the open middle cube. Then, we
iterate this step with each of the 26 remaining smaller closed cubes; and so on, ad
in�nitum. By choosing ı > 1=6, we have that Aı is simply connected. Let us now
calculate the distance zeta function �A of the three-dimensional carpet A. Note
that

�A.sI ı/ D �A;I .s/ C �A;AınI .s/;

where I denotes the closed unit cube in R
3. Let us denote by B1 the open unit

cube of side 1=3 removed in the �rst step of the construction; so that we have the
following equalities:

�A;I .s/ D �A;B1
.s/ C �A;InB1

.s/ D �@B1;B1
.s/ C 26�3�1A;3�1I .s/; (6.37)

for all s 2 C with Re s su�ciently large. The �rst equality is obvious, while the
second equality in (6.37) follows from the self-similarity of A. More precisely, it
follows since the relative fractal drum .A; I n B1/ consists of 26 copies of .A; I /

scaled down by 3�1. Hence, by the scaling property of the relative distance zeta
function (see [LapRaŽu1, Theorem 4.1.38] or [LapRaŽu3, Section 2.2]), we have
that

�A;I .s/ D �@B1;B1
.s/ C 26 � 3�s�A;I .s/;
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which yields

�A;I .s/ D �@B1;B1
.s/

1 � 26 � 3�s
; (6.38)

for all s 2 C with Re s su�ciently large. The distance zeta function �@B1;B1
can

be easily calculated by dividing the cube B1 into 48 mutually congruent pyramids
(see Figure 2, left) and then integrating in local Cartesian coordinates .x; y/ 2 R

2

over each resulting pyramid:

�@B1;B1
.s/ D 48

1=6
Z

0

d x

x
Z

0

d y

y
Z

0

zs�3 d z D 48 � 6�s

s.s � 1/.s � 2/
; (6.39)

valid for all s 2 C such that Re s > 2. On the other hand, the distance zeta function
�A;AınI .s/ corresponding to the “outside” of the unit cube I is easy to calculate
once we have subdivided the parts that correspond to the faces, edges and vertices
of the unit cube and used local Cartesian, cylindrical and spherical coordinates in
R

3, respectively:

�A;AınI .s/ D 6

1
Z

0

d x

1
Z

0

d y

ı
Z

0

zs�3 d z C 12

�=2
Z

0

d '

ı
Z

0

rs�2 d r

1
Z

0

d z

C 8

�=2
Z

0

sin � d �

�=2
Z

0

d '

ı
Z

0

rs�1 d r

D 6ıs�2

s � 2
C 6�ıs�1

s � 1
C 4�ıs

s
;

(6.40)

again valid for all s 2 C such that Re s > 2. From the above calculation and
from (6.38) together with (6.39), we deduce that �A can be meromorphically
continued to all of C and is then given by

�A.s/ WD �A.sI ı/ D 48 � 2�s

s.s � 1/.s � 2/.3s � 26/
C 4�ıs

s
C 6�ıs�1

s � 1
C 6ıs�2

s � 2
; (6.41)

for every s 2 C.
It follows that the set of complex dimensions of the 3-carpet A is given by

P.�A/ WD P.�A;C/ D ¹0; 1; 2º [ .log3 26 C piZ/; (6.42)

where D WD log3 26 (D D.�A/) is the Minkowski (or box) dimension of the 3-
carpet A and p WD 2�= log 3 is the oscillatory period of A (viewed as a lattice self-
similar set). In (6.42), each of the complex dimensions is simple. Furthermore, a
routine computation shows that

res.�A; 0/ D 4� � 24

25
; res.�A; 1/ D 6� C 24

23
; res.�A; 2/ D 96

17
(6.43)
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and, by letting !k WD log3 26 C ikp (for all k 2 Z),

res.�A; !k/ D 24

13 � 2!k !k.!k � 1/.!k � 2/ log 3
: (6.44)

One also easily checks that the hypotheses of Theorem 5.16 (or, really, The-
orem 5.17 since all of the complex dimensions in (6.42) are simple) are satis�ed
for every ı � 1=2 and any scaling factor � � 2, and thus we obtain the following
exact pointwise tube formula, valid for all t 2 .0; 1=2/:

jAt j D 24t3�log3 26

13 log 3

C1
X

kD�1

2�!k t�ikp

.3 � !k/.!k � 1/.!k � 2/!k

C
�

6 � 6

17

�

t C
�

3� C 12

23

�

t2 C
�4�

3
� 8

25

�

t3:

(6.45)

In particular, from the above formula we conclude that D WD dimB A D log3 26

(as was noted before) and that the three-dimensional Sierpiński carpet is not
Minkowski measurable, which is expected (see [Lap3]). We also point out that
the part 6t C 3�t2 C 4�t3=3 from the above Equation (6.45) is exactly equal to
jIt j � jI j, where I is the closed unit cube of R3.

Finally, we note that clearly, the �rst term in the right-hand side of (6.45) can
be rewritten in the following form (still with D WD dimB A):

.2t/3�DG.log3.2t/�1/; (6.46)

where G is a positive, nonconstant 1-periodic function which is bounded away
from zero and in�nity. Therefore, also as expected (see [Lap3]), the 3-carpet is
Minkowski nondegenerate: 0 < M�.A/ < M

�.A/ < 1.

Of course, exactly the same comment as above about the Minkowski nonmea-
surability and the Minkowski nondegeneracycould have been made about the Sier-
piński gasket discussed in Example 6.9.

We caution the reader, however, that the situation concerning the N -dimen-
sional Sierpiński N -gasket studied in [LapRaŽu4, Example 4.1.4] or [LapRaŽu1,
Example 4.2.24] is more complicated in higher dimensions. For instance, for
N D 3, this RFD is Minkowski degenerate (speci�cally, M D C1) but
(because its distance zeta function has a double pole at s D D D 2) it is
h-Minkowski measurable with respect to the gauge function h.t/ WD log t�1.
(See also [LapRaŽu5], in addition to [LapRaŽu1, 4].) Furthermore, and some-
what surprisingly, when N � 4, the Sierpiński N -gasket RFD is Minkowski mea-
surable and subcritically Minkowski nonmeasurable (while nondegenerate); see
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[LapRaŽu1, Remark 5.5.26.c/]. This follows from the fact that when N � 4,
the dimension of the boundary of the generator of the N -gasket RFD (viewed as
a self-similar fractal spray) is strictly larger that the similarity dimension of the
RFD.

6.4. A relative fractal drum generated by the Cantor function. The example
dicussed in this subsection, namely, a version of the Cantor graph (or “devil’s
staircase,” in the terminology of [Man]) plays an important role in showing why
the notion of complex dimensions gives a lot more information than the mere
(Minkowski or Hausdor�) fractal dimension, as will be explained below in relation
to the elusive notion of “fractality.”

Example 6.11 (the Cantor function RFD). In this example, we compute the
distance zeta function of the RFD .A; �/ in R

2, where A is the graph of the Cantor
function and � is the union of triangles 4k that lie above and the triangles z4k

that lie below each of the horizontal parts of the graph denoted by Bk. (At each
step of the construction there are 2k�1 mutually congruent triangles 4k and z4k .)
Each of these triangles is isosceles, has for one of its sides a horizontal part of the
Cantor function graph, and has a right angle at the left end of Bk , in the case of
4k , or at the right end of Bk , in the case of z4k. (See Figure 2, right.)

For obvious geometric reasons and by using the scaling property of the rel-
ative distance zeta function of the resulting RFD .A; �/ (see [LapRaŽu1, Theo-
rem 4.1.38] or [LapRaŽu3, Section 2.2]), we then have the following identity:

�A;�.s/ D
1

X

kD1

2k�Bk ;4k
.s/

D
1

X

kD1

2k�3�kB1;3�k41
.s/

D �B1;41
.s/

1
X

kD1

2k

3ks

D 2�B1;41
.s/

3s � 2
;

(6.47)

valid for all s 2 C with Re s su�ciently large. Here, .B1; 41/ is the relative
fractal drum described above with two perpendicular sides of length equal to 1. It
is straightforward to compute its relative distance zeta function:

�B1;41
.s/ D

1
Z

0

d x

x
Z

0

ys�2 d y D 1

s.s � 1/
; (6.48)
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valid, initially, for all s 2 C such that Re s > 1 and, upon meromorphic continua-
tion, for all s 2 C. This fact, combined with (the last equality of) equation (6.47),
gives us the distance zeta function of .A; �/, which is clearly meromorphic on all
of C:

�A;�.s/ D 2

s.3s � 2/.s � 1/
; for all s 2 C: (6.49)

We therefore deduce that the set of complex dimensions of the RFD .A; �/ is
given by

P.�A;�/ WD P.�A;�;C/ D ¹0; 1º [
�

log3 2 C 2�

log 3
iZ

�

; (6.50)

with each complex dimension being simple.

We will see in a moment that dimB.A; �/ D 1 and that the RFD .A; �/ is
Minkowski measurable. Moreover, we will also see that the (one-dimensional)
Minkowski content of .A; �/ is given by

M
1.A; �/ D res.�A;�; 1/

2 � 1
D 2; (6.51)

which coincides with the length of the Cantor graph (i.e., the graph of the Cantor
function, also called the devil’s staircase in [Man]).

In the sequel, we associate the RFD .A; A1=3/ in R
2 to the classic Cantor

graph. We do not know if (6.50) coincides with the set of complex dimensions
of the ‘full’ graph of the Cantor function (i.e., the original devil’s staircase), or
equivalently, the RFD .A; A1=3/, but we expect that this is indeed the case since
.A; �/ is a “relative fractal subdrum” of .A; A1=3/. Moreover, it is obvious that
for the distance zeta function of the RFD .A; A1=3/ associated with the graph of
the Cantor function, one has

�A;A1=3
.s/ D �A;�.s/ C �A;A1=3n�.s/: (6.52)

In order to prove that P.�A;�/, given by (6.50), is a subset of the complex di-
mensions of the “full” Cantor graph, it would therefore remain to show that
�A;A1=3n�.s/ has a meromorphic continuation to some connected open neigbor-
hood U of the critical line ¹Re s D 1º such that U contains the set of complex
dimensions of .A; �/, as given by (6.50), and that there are no pole-pole cancel-
lation in the right-hand side of (6.52).



82 M. L. Lapidus, G. Radunović, and D. Žubrinić

One easily checks that �s�A;�.sI 1=3/ is strongly d -languid for any � � 1, with
�d WD �2, and thus we can apply Theorem 5.16 in order to obtain the following
exact pointwise fractal tube formula for the RFD .A; �/, valid for all t 2 .0; 1/:

VA;�.t / WD jAt \ �j

D
X

!2P.�A;�/

res
� t2�s

2 � s
�A;�.s/; !

�

D
X

!2P.�A;�/

t2�!

2 � !
res.�A;�; !/

D 2t C t2�log3 2

log 3

C1
X

kD�1

t�ikp

.2 � !k/.!k � 1/!k

C t2

D 2t2�DCF C t2�DCSGCF.log3 t�1/ C t2;

(6.53)

where !k WD log3 2 C ikp (for each k 2 Z), DCF D dimB.A; �/ D 1,
DCS D log3 2 and p WD 2�= log 3.

In the last line of (6.53), GCF is a nonconstant 1-periodic function on R, which
is bounded away from zero and in�nity. It is given by the following absolutely
convergent (and hence, convergent) Fourier series:

GCF.x/ WD 1

log 3

C1
X

kD�1

e2�ikx

.2 � !k/.!k � 1/!k

; for all x 2 R: (6.54)

Note that in order to obtain the third equality in (6.53), and hence also the above
expression for GCF given in (6.54), we have used the fact that (in light of (6.49)

and (6.50))

res.�A;�.s/; !k/ D 1

log 3.!k � 1/!k

; (6.55)

for all k 2 Z.
It is interesting that it follows from (6.53) and (6.54) that even though this

version of the Cantor graph, described by the RFD .A; �/, is Minkowski measur-
able and hence does not have any oscillations of leading order, it has oscillations

of lower order, corresponding to the complex dimensions of the Cantor set (or
string) of the form DCS C ikp, with k 2 Z (see Example 6.3, especially, equa-
tion (6.9)); that is, it has subcritical oscillations, of order 2�DCS � 1:3691, where
DCS WD log3 2 is the Minkowski dimension of the Cantor set (or string). In fact,
in light of the pointwise fractal tube formula (6.53) and since the RFD .A; �/ has
Minkowski content MCF WD M.A; �/ D 2 (see equation (6.51) above), as well as
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Minkowski dimension DCF WD dimB.A; �/ D 1, we have that

0 < lim inf
t!0C

t�.2�DCS/jMCFt2�DCF � VA;�.t /j

< lim sup
t!0C

t�.2�DCS/jMCFt2�DCF � VA;�.t /j

< 1:

(6.56)

Hence, we see that even though the leading term (as t ! 0C) in the fractal
tube formula (6.53) is of order 2 � DCF D 1, determined by the Minkowski
dimension DCF D 1 of .A; �/, as should be case, and is monotonic (and therefore,
nonoscillatory), the asymptotic second term, h.t/ WD t2�DCSG.log3 t�1/, is of
order 2 � DCS, determined by the Minkowski dimension DCS D log3 2 of the
Cantor set (or string), and is oscillatory (in fact, multiplicatively periodic, or “log-
periodic,” to use the physicists’ terminology).

Remark 6.12 (critical vs subcritical fractals). The above example motivates us to
propose to call a geometric object “fractal” if it has at least one nonreal complex
dimension (or if its fractal zeta function has a natural boundary along a suitable
screen, in which case it is said to be “hyperfractal”). (See [Lap-vFr3, Sections 12.1
and 12.2], along with [Lap-vFr3, Subsection 13.4.3], as adapted and extended
to our general higher-dimensional theory of complex dimensions in [LapRaŽu4,
De�nition 2.38] and [LapRaŽu1, De�nition 4.6.23 and Remark 4.6.24 of Subsec-
tion 4.6.3].) Accordingly, the present version of the Cantor graph (i.e., the RFD
.A; �/ from Example 6.11 just above) is “fractal” in this sense.

In addition, following [Lap-vFr1–3] (see, especially, [Lap-vFr3, Section 3.7]),
given d 2 R (with d � N ), we say that a geometric object is fractal in dimension

d if37 it has at least one nonreal (visible) complex dimension of real part d .
(Automatically, it will have at least one pair of nonreal complex conjugate complex
dimensions of real part d .) If the object in question is an RFD .A; �/ (and, in
particular, a bounded set A) in RN , with upper (relative) Minkowski dimension
dimB.A; �/ (or, in particular dimBA) denoted by xD, then we can distinguish
between the following two di�erent and interesting cases.38

37We allow here the number d to be nonpositive, since it enables us to deal with a broader
class of potential fractals.

38 We assume here implicitly that the fractal zeta function of .A; �/ under consideration
has a meromorphic extension to a connected open neighborhood of the critical line ¹Re s D

dimB .A; �/º, say, to the interior of a window W with associated screen S such that sup S <
xD WD dimB.A; �/. We also assume that xD 2 R; i.e. (since xD � N ), xD ¤ �1.
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(i) Critical case. The RFD .A; �/ is fractal in dimension d WD xD,
in which case .A; �/ is said to be critically fractal. Indeed, under suitable
hypotheses, it then follows from the fractal tube formulas of Sections 3–5 that
it has at least one nonreal complex dimension on the critical line ¹Re s D xDº,
thereby giving rise to geometric oscillations of leading order.

(ii) Subcritical case. The RFD .A; �/ is not fractal in dimension xD
(i.e., it does not have any nonreal principal complex dimension), but it is fractal
in some dimension d < xD. The RFD .A; �/ is then said to be subcritically

fractal. (Sometimes, we will also say that .A; �/ is “strictly subcritically fractal”

in order to emphasize the fact that d < D, and we will say that .A; �/ is “possibly

subcritically fractal” in order to indicate that d � D instead of d < D.)

[Other cases are possible, such as .A; �/ being hyperfractal (in the sense
of [LapRaŽu1–4]), even in case (i) or (ii), or else .A; �/ being nonfractal; that
is, neither having a nonreal (visible) complex dimension nor being hyperfractal.
However, we are not concerned with these situations in the present context.]

Given an RFD .A; �/, we de�ne ˛ 2 R [ ¹�1º, the subcriticality index of
.A; �/, via the following formula:

˛ D ˛A;� WD sup¹d 2 RW .A; �/ is fractal in dimension dº: (6.57)

By convention, we let ˛A;� D �1 if .A; �/ is not fractal for any d 2 R. (Clearly,
we always have ˛A;� � xD � N .)

We note that even if .A; �/ is subcritically fractal, it could happen that ˛A;� D
xD WD dimB.A; �/. This is the case, for instance, if .A; �/ WD .@�; �/ is a generic,
nonlattice self-similar string, in the sense of [Lap-vFr3, Subsection 3.2.1].39 Then,
as was conjectured in [Lap-vFr3, Subsection 3.7.1] (as well as, more speci�cally,
in reference [Lap-vF6] of [Lap-vFr3]) and later proved in [MorSepVi], the set

of dimensions of fractality of .A; �/ (i.e., the set of real numbers d such that
.A; �/ is fractal in dimension d ) is dense in some compact interval of the form
ŒD�; xD�, with D� 2 R and D� < xD. As a result, in light of (6.57), it follows
that ˛A;� D xD. However, .A; �/ is not critically fractal (because according to
[Lap-vFr3, Theorem 2.16], a (generic) nonlattice string does not have any nonreal
complex dimensions of real part xD), even though it is subcritically fractal in
dimension d < xD for a dense (and countable) set of real numbers d in ŒD�; xD�.

39 Recall from [Lap-vFr3, Chapters 2–3] that a self-similar string with distinct scaling ratios
�1; : : : ; �n in .0; 1/ is said to be lattice (resp., nonlattice) if the rank of the group generated
by �1; : : : ; �n (viewed as a multiplicative subgroup of .0; C1/) is equal to 1 (resp., > 1), and
generic nonlattice if the rank is equal to n, the maximal possible rank.
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We now return to the RFD considered in Example 6.11 (that is, the version of
the Cantor graph denoted by .A; �/), and we refer to Remark 6.12 just above for
the appropriate terminology and de�nitions. As we have seen, .A; �/ is fractal.
More speci�cally, it is not critically fractal (because its only complex dimension
of real part DCF (D xD D dimB.A; �// D 1 is 1 itself, the Minkowski dimension
of the Cantor graph, and it is simple) but it is (strictly) subcritically fractal.
In fact, it is subcritically fractal in a single dimension, namely, in dimension
d D DCS D log3 2, the Minkowski dimension of the Cantor set. Consequently, in
light of (6.57), the subcriticality index of .A; �/ is given by ˛A;� D DCS D log3 2;

and it is attained.

We expect the same result to hold for the devil’s staircase itself (i.e., the
“full” graph of the Cantor function), represented by the RFD .A; A1=3/ and of
which .A; �/ is a “relative fractal subdrum,” as above. Clearly, in light of (6.52)

and (6.50), we have the following inclusions (between multisets):

P.�A;A1=3
/ � P.�A;�/ [ P.�A;A1=3n�/ � ¹0; 1º [

°

DCS C 2�

log 3
iZ

±

: (6.58)

Also, we know for a fact that dimB.A; A1=3/ exists and

D.�A;A1=3
/ D dimB.A; A1=3/ D 1; (6.59)

so that

dimP C .A; A1=3/ WD Pc.�A;A1=3
/ D ¹1º: (6.60)

(Thus, we also have that ¹1º � P.�A;A1=3
/ in (6.58).) Note that (6.59) (and

hence, (6.60)) follows from the recti�ability of the devil’s staircase, combined
with a well-known result in [Fed2] and with part .b/ of Theorem 2.6.

As was mentioned earlier in the discussion of Example 6.11 (and was predicted
in [Lap-vFr3, Subsections 12.1.2 and 12.3.2], based on an “approximate tube
formula”), we expect that P.�A;A1=3

/ D P.�A;�/, as given by (6.50), and hence,
that we actually have equalities instead of inclusions in (6.58), even equalities
between multisets. If so, then the “full” Cantor graph .A; A1=3/ is fractal, not
critically fractal, but (strictly) subcritically fractal in the single dimension d WD
DCS D log3 2.

Clearly, both .A; �/ and .A; A1=3/ should be fractal for a proper de�nition of
fractality. This would completely resolve the following apparent paradox: the RFD
.A; A1=3/ is not “fractal” according to Mandelbrot’s original de�nition of fractality
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given in [Man],40 even though everyone feels and expects it to be “fractal” simply
after having glanced at the “full” Cantor graph .A; A1=3/ (the “devil’s staircase”
in the sense of [Man]). The same is true for the “partial” Cantor graph .A; �/, for
which we can now rigorously prove that it is “fractal” (in the sense of the theory of
complex dimensions) even though it is only (strictly) subcritically fractal, which
may explain, in hindsight, why some practitioners refer to it as a “borderline
fractal.”

We conclude this discussion by quoting (as in [Lap-vFr3, p. 335]) Mandelbrot
[Man, p. 82] writing about the devil’s staircase (the “full” Cantor graph, depicted
in [Man, Plate 83, p. 83]):

One would love to call the present curve a fractal, but to achieve

this goal we would have to de�ne fractals less stringently, on the

basis of notions other than D [the Hausdor� dimension] alone.

Thanks to the higher-dimensional theory of complex dimensions of fractals
and associated fractal tube formulas developed in this paper and in [LapRaŽu1–8],
building on the corresponding theory for fractal strings developed in [Lap-vFr1–3],
we are now tentatively close to having resolved this apparent paradox. Further-
more, if we use the “partial” Cantor graph .A; �/ as a suitable substitute for the
“full” Cantor graph, viewed as the RFD .A; A1=3/, the corresponding paradox is
indeed completely resolved here. We invite the interested reader to extend the con-
clusions of the present example (i.e., Example 6.11) from .A; �/ to .A; A1=3/, and
thereby, to fully prove the conjectures and statements made in [Lap-vFr3, Subsec-
tion 12.1.2] as well as here about the devil’s staircase itself.

6.5. Fractal nests and unbounded geometric chirps. In this subsection, we
apply our general fractal tube formulas to several families of fractal nests (Ex-
ample 6.13) and of (unbounded) geometric chirps (Example 6.16). Both of these
families are examples of “fractal” sets which are not self-similar or, more gener-
ally, “self-alike” in any sense.

40 Indeed, Mandelbrot’s de�nition, given in [Man, p. 15], can be stated as follows. A geometric
object is “fractal” if its Hausdor� dimension is strictly greater than (i.e., is not equal to) its
topological dimension. However, note that the Hausdor�, Minkowski and topological dimensions
coincide and are equal to 1 in the case of (either the “full” or the “partial”) Cantor graph. If, in
addition, we replaced “Hausdor� dimension” by (relative, upper) “Minkowski dimension” in the
above de�nition and we interpreted the topological dimension in the obvious way, we would also
reach the analogous conclusion for both .A; A1=3/ and .A; �/, which therefore would still not
be fractal according to this modi�ed Mandelbrot de�nition.
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Example 6.13 (fractal nests). We let L D . j̀ /j �1 be a bounded fractal string
and, as before, let AL D ¹ak W k 2 Nº � R, with ak WD P

j �k j̀ for each k � 1.
Furthermore, consider now AL as a subset of the x1-axis in R2 and let A be the
planar set obtained by rotating AL around the origin; i.e., A is a union of concentric
circles of radii ak and center at the origin which we call the fractal nest of center

type generated by the fracctal string L; see Figure 3. For ı > `1=2, the distance
zeta function of A is given by

�A.s/ D 22�s�

s � 1

1
X

j D1

`s�1
j .aj C aj C1/ C 2�ıs

s
C 2�a1ıs�1

s � 1
I (6.61)

see [LapRaŽu1, Example 3.5.1]. The last two terms in the above formula corre-
spond to the annulus a1 < r < a1 C ı and we will neglect them; that is, we
will consider only the relative distance zeta function �A;�, with41 � WD Ba1

.0/.
Furthermore, since aj C1 D aj � j̀ for each j � 1, we have

�A;�.s/ D 22�s�

s � 1

1
X

kD1

`s�1
j .2aj � j̀ /

D 23�s�

s � 1
�1.s/ � 22�s�

s � 1
�L.s/;

(6.62)

where we have denoted by �1 the �rst of the two sums appearing after the �rst
equality and where �L is the geometric zeta function of the fractal string L.

Let us next consider a special case of the fractal nest above; that is, the relative
fractal drum .Aa; �/ corresponding to the a-string L WD La, with a > 0; so that

j̀ WD j �a � .j C 1/�a for all j � 1 and hence, aj D j �a for every j � 1. In this
case, we have that

�Aa;�.s/ D 23�s�

s � 1

1
X

j D1

j �a`s�1
j � 22�s�

s � 1
�L.s/: (6.63)

Since the geometric zeta function �L D �La
has already been analyzed in Exam-

ple 6.8 (based on the results of [Lap-vFr3, Subsection 6.5.1]), we will now do the
same for the zeta function �1 by means of a technique analogous to the one used
in the proof of [Lap-vFr3, Theorem 6.21]. Here, �1.s/ is initially de�ned by the
following Dirichlet series (still with j̀ WD j �a � .j C 1/�a, for all j � 1):

�1.s/ D
1

X

j D1

j �a`s�1
j ; (6.64)

41 Here, Br .x/ denotes the open ball of radius r with center at x.
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Figure 3. The fractal nest of center type in the plane R
2 generated by the fractal string

L D . j̀ /j �1. Note that for every k � 1 we have `k D ak �akC1, where ak WD P

j �k j̀ .
Furthermore, we have AL WD ¹ak W k � 1º.

for all s 2 C with Re s su�ciently large. Hence, we have �1.s/ D �L;�a.s � 1/,
in the notation of the next theorem, and �1.s/ D �L;�a;1.s/, in the notation of
Corollary 6.15 following it.

Theorem 6.14. Let a > 0, b 2 R, and let L D La be the a-string with lengths

j̀ given by (6.26); i.e., j̀ D j �a � .j C 1/�a for all j � 1. Then, the Dirichlet

series �L;b.s/ WD P1
j D1 j b`s

j (de�ned initially for all s 2 C with Re s su�ciently

large) has a meromorphic continuation to all of C. The poles of �L;b are located

at

C WD D.�L;b/ D b C 1

a C 1
(6.65)

and in (a subset of )
®

b�m
aC1

W m 2 N0

¯n¹0º, and they are all simple.42 In particular,

we have the following inclusions:43

42 Here, as usual, we let N0W D N [ ¹0º.

43 For “generic” values of a and b, the second inclusion in (6.66) should be an equality while
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°b C 1

a C 1

±

� P.�L;b/ WD P.�L;b;C/ �
°b C 1

a C 1

±

[
�°b � m

a C 1
W m 2 N0

±

n ¹0º
�

:

(6.66)

Furthermore, the residue of �L;b at C D bC1
aC1

is equal to aC

aC1
; so that bC1

aC1
is

always a (necessarily simple) pole of �L;b.

Moreover, for any screen S� chosen to be a vertical line ¹Re s D �º, with

� 2 R n P.�L;b/, the zeta function �L;b satis�es the languidity conditions L1

and L2, with � D 1
2

C b � .a C 1/� if � � b
aC1

and � D 1
2
.1 C b � .a C 1/�/ if

� 2 �

b
aC1

; bC1
aC1

�

.

Finally, we have that �L;b.0/ D �.�b/ for all b 2 R n ¹�1º, where � is the

Riemann zeta function.

Proof. We begin by computing the �rst term of an asymptotic expansion of j̀ :

j̀ D j �a � .j C 1/�a D a

j C1
Z

j

x�a�1 d x D aj �a�1 C H.j /; (6.67)

where j � 1 and

H.j / WD a

j C1
Z

j

.x�a�1 � j �a�1/ d x:

We next introduce a new variable t WD x=j � 1 and let

hj WD a�1j aC1H.j / D j

1=j
Z

0

..1 C t /�a�1 � 1/ d t: (6.68)

Note that hj D O.1=j / as j ! 1. By now choosing an integer M � 0, we have

j b`s
j D j b.aj �a�1.1 C hj //s

D asj b�s.aC1/

� M
X

nD0

�

s

n

�

hn
j C O

� .jsj C 1/M C1

j M C1

�

�

as j ! 1;
(6.69)

where we have let
�

s

n

�

WD .s � n C 1/n

nŠ
; for all s 2 C and n 2 N0: (6.70)

for “most” values of those parameters, P.�L;b/ should at least contain an in�nite subset of
¹ b�m

aC1
W m 2 N0º. However, this informal comment will not be needed in the sequel and the

underlying conjecture has not been proved.



90 M. L. Lapidus, G. Radunović, and D. Žubrinić

(Clearly,
�

s
n

�

is a natural generalization of the usual binomial coe�cient to an
arbitrary value of the parameter s 2 C.) We thus obtain the following identity:

�L;b.s/ D
M

X

nD0

as

�

s

n

� 1
X

j D0

hn
j j b�s.aC1/ C f .s/; (6.71)

where f .s/ is de�ned and holomorphic on the open half-plane
®

Re s > b�M
aC1

¯

.
Furthermore, the �rst term (i.e., the term corresponding to n D 0 in the above
sum) is equal to as�..a C 1/s �b/, where � is the Riemann zeta function, and thus
has a single, simple pole44 at s D C WD D.�L;b/ D bC1

aC1
. In order to compute the

residue of as�..a C 1/s � b/ at s D bC1
aC1

, we use the fact that the principal part of
the Riemann zeta function at s D 1 is equal to 1=.s � 1/ and consequently,

lim
s!C

.s � C /as�..a C 1/s � b/ D lim
s!C

as s � C

.a C 1/s � b � 1
D a

bC1
aC1

a C 1
: (6.72)

A well-known result about the growth of the Riemann zeta function along vertical
lines (see, e.g., [Edw, Section 9.2]) implies that the �rst term in (6.71) grows along
the vertical lines ¹Re s D �º, with � 2 R, as .jt j C 1/

1
2 Cb��.aC1/ if � < b

aC1
,

as .jt j C 1/
1
2

.bC1�.aC1/�/ for � 2 �

b
aC1

; bC1
aC1

�

, and is bounded from above by a

constant (possibly depending on �) if � > bC1
aC1

.
It now remains to analyze the functions

1
X

j D1

hn
j j b�.aC1/s ; (6.73)

for each n � 1.
Let us �x M 2 N0, for now. Then, the asymptotic expansion .1 C t /�a�1 D

PM
mD0

�

�a�1
m

�

tm C O.tM C1/ as t ! 0C, together with (6.68), yields

hj D j

1=j
Z

0

M
X

mD1

��a � 1

m

�

tm d t C O.j �M �1/

D �1

a

M
X

mD1

� �a

m C 1

�

j �m C O.j �M �1/ as j ! C1:

(6.74)

44 See, e.g., [Tit2] or [Edw] for the relevant properties of the Riemann zeta function. Recall,
in particular, that � has a meromorphic continuation to all of C with a single, simple pole at s D 1

(with residue 1) and that it is initially de�ned by the Dirichlet series �.s/ D
P1

j D1 j �s for all
s 2 C with Re s > 1.
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We proceed by taking the n-th power of the above expansion to obtain an asymp-
totic expansion for hn

j and substitute this into (6.73). This enables us to express
each of the functions in (6.73) as a sum of constant multiples of �.mC.aC1/s�b/,
for n � m � M , and of a remainder term of order O.j �M �1/. Since
�.m C .a C 1/s � b/ has a simple pole at s D bC1�m

aC1
and in view of (6.71), we

conclude that �L;b.s/ has a meromorphic continuation to the open right half-plane
¹Re s > bC1�M

1Ca
º, with simple poles at s D bC1�m

1Ca
for m D 0; 1; 2; : : : ; M . To

be more speci�c, some of these potential poles of �L;b may not actually be poles
(due to cancellations), depending on the choice of the parameters a and b. (See,
however, the unproven assertion in footnote 43.) Furthermore, 0 is never a pole of
�L;b, since by looking at (6.71) we can see that it is canceled by the factor

�

s
m

�

for
m � 1. Moreover, since M is arbitrary, we conclude that �L;b has a meromorphic
continuation to all of C. Next, note that for each integer m � 1, the growth of
�.m C .a C 1/s � b/ is dominated by the growth of the �rst term as�..a C 1/s � b/

and therefore, we have proved the statement about the languidity of �L;b.
Finally, the last statement of the theorem follows from an application of the

principle of analytic continuation since we deduce directly from the de�nition of
�L;b that �L;b.0/ D �.�b/ for all b 2 ¹Re s < �1º. �

In order to complete the present discussion of the example of the fractal nests,
as well as in preparation for the example of the unbounded geometric chirps
(Example 6.16 below), we will need the following simple consequenceof the above
theorem.

Corollary 6.15. Let a > 0, b 2 R, � 2 R and let L WD La be the a-string with

lengths j̀ given by (6.26). Then, the Dirichlet series �L;b;� .s/ WD P1
j D1 j b`s��

j

(initially de�ned for all s 2 C with Re s su�ciently large) has a meromorphic

continuation to all of C. The poles of �L;b;� are located at

D.�L;b;�/ D b C 1

a C 1
C � (6.75)

and in (a subset of )
®

b�m
aC1

C� W m 2 N0

¯n¹�º, and they are all simple. In particular,

we have the following inclusions:45

°b C 1

a C 1
C �

±

� P.�L;b;�/ WD P.�L;b;� ;C/

�
°b C 1

a C 1
C �

±

[
�°b � m

a C 1
C � W m 2 N0

±

n ¹�º
�

:

(6.76)

45 A comment entirely analogous to the one made in footnote 43 on page 89 holds relative
to “generic” (or else “most”) values of the parameters a, b and � . (Recall that L D La, so that
�L;b;� depends on a, b and � .)
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Furthermore, the residue of �L;b;� at bC1
aC1

C � is equal to a.bC1/=.aC1/

aC1
; so that

D.�L;b;�/ D bC1
aC1

C � is always a (necessarily simple) pole of �L;b;� .

Moreover, for any screen S� chosen to be a vertical line ¹Re s D �º, with

� 2 R n P.�L;b;�/, the zeta function �L;b;� satis�es the languidity conditions L1

and L2, with � D 1
2

C b � .a C 1/� if � � b
aC1

C � and � D 1
2
.1 C b � .a C 1/�/

if � 2 �

b
aC1

C �; bC1
aC1

C �
�

.

Finally, we have that �L;b;�.�/ D �.�b/ for all b 2 R n ¹�1º.

Proof. Since �L;b;�.s/ D �L;b.s � �/, this an immediate consequence of Theo-
rem 6.14. �

Let us now return to Example 6.13, where the distance zeta function of .Aa; �/

is given by (6.63); see also (6.64) and the brief discussion following it. We there-
fore deduce from Corollary 6.15 and the discussion of �L D �La

in Example 6.13,
combined with an application of the principle of analytic continuation, that �Aa;�

is meromorphic on all of C and is given for all s 2 C by

�Aa;�.s/ D 23�s�

s � 1
�L;�a;1.s/ � 22�s�

s � 1
�L.s/: (6.77)

Moreover, the set of complex dimensions of .Aa; �/ satis�es the inclusion

P.�Aa;�/ WD P.�Aa;�;C/ �
°

1;
2

a C 1
;

1

a C 1

±

[
°

� m

a C 1
W m 2 N

±

: (6.78)

Provided a ¤ 1, all of the above (potential) complex dimension are simple and
if a D 1 the complex dimension ! D 1 has multiplicity 2. Furthermore, we
are certain that 2

aC1
is always a complex dimension of .Aa; �/ since it is never

canceled, as a pole. Namely, by letting D WD 2
aC1

, we have for all positive a ¤ 1

that

res.�Aa;�; D/ D 22�DD�

D � 1
aD�1: (6.79)

We will see shortly that it will then follow from the fractal tube formula for .Aa; �/

that if a 2 .0; 1/, dimB.Aa; �/ D D.�Aa;�/ D D and .Aa; �/ is Minkowski
measurable with Minkowski content given by

M
D.Aa; �/ D 22�DD�

.2 � D/.D � 1/
aD�1: (6.80)

Furthermore, it will also follow that if a > 1, we have that dimB.Aa; �/ D 1

and the corresponding residue is given by

res.�Aa;�; 1/ D 4��L;�a;1.1/ � 2��L.1/ D 4��.a/ � 2� (6.81)
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Therefore, still for a > 1, the RFD .Aa; �/ is Minkowski measurable with
Minkowski content given by

M
1.Aa; �/ D 4��.a/ � 2� I (6.82)

note that M
1.Aa; �/ is positive since �.a/ > 1 for a > 1; so that 2� <

M
1.Aa; �/ < 1:

In the critical case when a D 1, we have that s D 1 is a pole of second order
(i.e., of multiplicity two) of �A1;�.s/ and since it is a simple pole of �L;�1;1, we
deduce from (6.77) that

res.�A1;�; 1/ D 4��L;�1;1Œ1�0 � 2�; (6.83)

where for each m 2 Z, �L;�1;1Œ!�m indicates the m-th coe�cient in the Laurent
series expansion of �L;�1;1 around s D !. We conclude that in this case (i.e.,
when a D 1), by Theorem 2.8 (and part .b/ of Theorem 2.6), the RFD .A1; �/

must be Minkowski degenerate46 with dimB.A1; �/ D D.�Aa;�/ D 1. We can
also compute the coe�cient corresponding to .s � 1/�2 in the Laurent expansion
of �A1;� around s D 1, by using Corollary 6.15:

�A1;�Œ1��2 D 4� res.�L;�1;1; 1/ D 2�: (6.84)

Assume now that a ¤ 1. For M 2 N [ ¹0º, as before, we choose the
screen SM to be some vertical line between �M C1

1Ca
and �M C2

1Ca
, and let WM be

the corresponding window. After having applied Theorem 5.20, we then obtain
the following asymptotic distributional formula for the tube function V.t/ WD
j.Aa/t \ �j, as t ! 0C:

V.t/ D 22�DD�

.2 � D/.D � 1/
aD�1t2�D C .4��.a/ � 2�/t C res

�

�Aa;�; 1
aC1

�

t2� 1
aC1

2 � 1
aC1

C
M

X

mD1

res
�

�Aa;�; � m
aC1

�

t2C m
aC1

2 C m
aC1

C O.t2C M C1
aC1 / as t ! 0C;

(6.85)

where the sum is interpreted as being equal to 0 if M D 1. By choosing as a
screen a vertical line ¹Re s D �º, with � > � 1

2.aC1/
, we obtain a pointwise

fractal tube formula with a pointwise error term of order O.t2�� /; indeed, in
light of Corollary 6.15, we have that �d < 0 and hence, we can apply part (i) of
Theorem 5.16. This pointwise formula is still given by (6.85) but now interpreted

46 Actually, it can also be shown directly that M1.A1; �/ exists in this case and is equal to
C1.
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pointwise and valid for all t > 0. It is actually initially valid for all t 2 .0; ı/

but since ı > `1=2 may be taken arbitrary large, we conclude that it is valid
for all t > 0. Of course, we actually do not know much about the above
error term when t is not close to zero, which is unimportant since we are not
interested in the value of V.t/ D j.Aa/t \ �j for large t . (Note also that clearly,
j.Aa/t \ �j D j�j D jB1.0/j D � for t su�ciently large.) From the obtained
pointwise formula, it now follows (as was claimed) that for a ¤ 1, .Aa; �/ is
Minkowski measurable with dimB.Aa; �/ D max¹1; Dº and with Minkowski
content given by (6.80) if a < 1 or (6.82) if a > 1.

Let us next consider the critical case when a D 1. Choose a screen given by
the vertical line ¹Re s D �º, with � 2 .�3=4; �1=2/; we then obtain the following
pointwise fractal tube formula with error term:

V.t/ D res
� t2�s

2 � s
�A1;�.s/; 1

�

C 2

3
res

�

�A1;�;
1

2

�

t
3
2

C 2

5
res

�

�A1;�; �1

2

�

t
5
2 C O.t2��/ as t ! 0C:

(6.86)

We expand the function t2�s=.2 � s/ into a Taylor series around s D 1, as folows:

t2�s

2 � s
D t

1
X

nD0

.s � 1/n

n
X

kD0

.�1/n�k.log t�1/k

kŠ.n � k/Š
: (6.87)

We then deduce from (6.83) and (6.84) that

res
� t2�s

2 � s
�A1;�.s/; 1

�

D 2�t log t�1 C 4�t.�L;�1;1Œ1�0 � 1/I (6.88)

so that (still pointwise)

V.t/ D 2�t log t�1 C 4�t.�L;�1;1Œ1�0 � 1/ C o.t/ as t ! 0C: (6.89)

The above tube formula is in agreement with the fact that .A1; �/ is Minkowski
degenerate but it is also clear that one can choose the function h.t/ WD log t�1,
for all t 2 .0; 1/, as an appropriate gauge function (see [LapRaŽu4, Section 2.5],
[LapRaŽu8], or [LapRaŽu1, Subsection 6.1.1] for an introduction to gauge func-
tions; see also [HeLap]). More precisely, one then has that M1.A1; �; h/, the
gauge relative Minkowski content of .A1; �/, is well de�ned and

M
1.A1; �; h/ D lim

t!0C

j.A1/t \ �j
th.t/

D 2�: (6.90)

In particular, the RFD .A; �/ is h-Minkowski measurable.
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Figure 4. The unbounded .˛; ˇ/-geometric chirp from Example 6.16, which approximates
the function x 7! x˛ sin.�x�ˇ/ for x 2 .0; 1/. Here, ˛ D �1=2 and ˇ D 1. In the
corresponding RFD .A; �/, the set A is de�ned as the union of the vertical segments while
the set � is de�ned as the union of the (open) rectangles.

Example 6.16 (unbounded geometric chirps). In this example, we consider and
study a type of unbounded geometric chirp depicted in Figure 4. A standard
geometric .˛; ˇ/-chirp, with positive parameters ˛ and ˇ, is a simple geometric
approximation of the graph of the function f .x/ D x˛ sin.�x�ˇ /, for all x 2
.0; 1/. (See [LapRaŽu1, Example 4.4.1 and Proposition 4.4.2].)

By choosing parameters �1 < ˛ < 0 < ˇ, we obtain an example of an
unbounded chirp function f which we approximate by the unbounded geometric
.˛; ˇ/-chirp. More speci�cally, let A˛;ˇ be the union of vertical segments with
abscissae x D j �1=ˇ and of lengths j �˛=ˇ , for every j 2 N. Furthermore,
de�ne � as a union of the open rectangles Rj for j 2 N, where Rj has a base of
length j �1=ˇ � .j C 1/�1=ˇ and height j �˛=ˇ . The relative distance zeta function
of .A; �/ can be easily computed by the interested reader (see also [LapRaŽu1,
Example 4.4.1]) and is given by

�A˛;ˇ;�.s/ D 22�s

.s � 1/

1
X

j D1

j �˛=ˇ .j �1=ˇ � .j C 1/�1=ˇ /s�1 D 22�s

.s � 1/
�L;�˛=ˇ;1.s/;

(6.91)

where L is the ˇ�1-string. In light of Corollary 6.15, we conclude that �A˛;ˇ;�.s/
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has a meromorphic continuation to all of C and

P.�A˛;ˇ;�/ �
°

1; 2 � 1 C ˛

1 C ˇ

±

[
°

DmW m 2 N

±

; (6.92)

where Dm WD 2 � 1C˛Cmˇ
1Cˇ

. Let D WD 2 � 1C˛
1Cˇ

. Also, by the same corollary and
from (6.91) we have that both 1 and D are simple poles of �A˛;ˇ;�. Furthermore,
we have that D > 1 and, consequently, from the tube formula (6.95) just below,
it follows that dimB.A˛;ˇ ; �/ D D and that the RFD .A˛;ˇ ; �/ is Minkowski
measurable with Minkowski content given by

M
D.A˛;ˇ ; �/ D 22�D

.2 � D/.D � 1/

ˇ
1C˛
1Cˇ

1 C ˇ
D .2ˇ/2�D

.2 � D/.D � 1/.1 C ˇ/
: (6.93)

Moreover, the residue at s D 1 is given by

res.�A˛;ˇ;�; 1/ D 2�L;�˛=ˇ;1.1/ D 2�
�˛

ˇ

�

: (6.94)

It follows that s D 1 is indeed a simple pole of �A˛;ˇ;�.s/.
Similarly as in Example 6.13, for M 2 N [ ¹0º, we choose the screen SM

to be a vertical line ¹Re s D �º, for some real number � lying strictly between
2 � 1C˛C.M C1/ˇ

1Cˇ
and 2 � 1C˛C.M C2/ˇ

1Cˇ
, and let WM be the corresponding win-

dow. From Theorem 5.20, we then obtain the following asymptotic distributional
formula for the tube function V.t/ WD j.A˛;ˇ /t \ �j:

V.t/ D .2ˇt/2�D

.2 � D/.D � 1/.1 C ˇ/
C t2�D1 res.�A˛;ˇ;�; D1/

2 � D1

C 2t�
�˛

ˇ

�

C
M

X

mD2

t2�Dm res.�A˛;ˇ;�; Dm/

2 � Dm

C O.t2�DM C1/ as t ! 0C:

(6.95)

Note that the second noninteger complex dimension, namely, D1 D 1 � ˛
1Cˇ

, is
also greater than 1. Finally, by choosing as a screen a vertical line to the right of
�2˛Cˇ

1Cˇ
, we actually obtain a pointwise formula still given by (6.95) above; indeed,

we then have �d < 0, so that we can apply part (i) of Theorem 5.16.

6.6. Tube formulas for self-similar sprays. We conclude this paper by explain-
ing how the results obtained here may also be applied to recover and signi�cantly
extend, as well as place within a general conceptual framework, the tube formu-
las for self-similar sprays generated by an arbitrary open set G � R

N of �nite
N -dimensional Lebesgue measure. (See, especially, [LapPe2–3] extended to a
signi�cantly more general setting in [LapPeWi1], along with the exposition of
those results given in [Lap-vFr3, Section 13.1]; see also [DenKÖÜ] for another,
but related, proof of some of those results.)
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Recall that a self-similar spray (with a single generator G, assumed bounded
and open) is de�ned as a collection .Gk/k2N of pairwise disjoint (bounded) open
sets Gk � RN , with G0 WD G and such that for each k 2 N, Gk is a scaled copy
of G by some factor �k > 0. (We let �0 WD 1.) The associated scaling sequence
.�k/k2N is obtained from a ratio list ¹r1; r2; : : : ; rJ º, with 0 < rj < 1 for each
j D 1; : : : ; J and such that

PJ
j D1 rN

j < 1, by considering all possible words built
out of the scaling ratios rj . Here, J � 2 and the scaling ratios r1; : : : ; rJ are
repeated according to their multiplicities

Let us next assume that .A; �/ is the self-similar spray considered as a rela-
tive fractal drum and de�ned as A WD @

�
F1

kD0 Gk

�

and � WD F1
kD0 Gk , with

dimB.@G; G/ < N . Then, by [LapRaŽu4, Theorem 3.36] or [LapRaŽu1, Theo-
rem 4.2.17], we have the following key formula, called a factorization formula, for
its associated distance zeta function �A;�, expressed in terms of the distance zeta
function of the boundary of the generator (relative to the generator), �@G;G , and
the scaling ratios ¹rj ºJ

j D1:

�A;�.s/ D �@G;G.s/

1 � PJ
j D1 rs

j

: (6.96)

(See also Remark 6.17 below.) It now su�ces to assume that the relative dis-
tance zeta function �@G;G of the generating relative fractal drum .@G; G/ satis�es
suitable languidity conditions in order to apply (at level k D 0) the fractal tube
formulas of Sections 3–5 and to obtain a pointwise or distributional formula, with
or without error term, for the “inner” volume47 of

F1
kD0 Gk:

VA;�.t / WD jAt \ �j

D
X

!2.D\W /[P.�@G;G ;W /

res
� tN �s�@G;G.s/

.N � s/
�

1 � PJ
j D1 rs

j

�
; !

�

C RA;�.t /;
(6.97)

whereD denotes the set of solutions inC of
PJ

j D1 rs
j D 1, the complexi�ed Moran

equation, and RA;� WD R
Œ0�
A;� is a pointwise or distributional error term (or else

RA;�.t / � 0 and W WD C, in the case of an exact tube formula, provided �@G;G

is strongly d -languid), depending on the d -languidity growth conditions satis�ed
by �@G;G .

47 Here and throughout the rest of this subsection, we use the notation VA;�, consistent with
the statement of a pointwise tube formula. In the case of the distributional tube formulas, we
should use instead the notation VA;�. (And analogously for the error term RA;�.t/ in (6.97),
which should then be denoted by RA;�.t/, in the distributional case.) For notational simplicity,
however, we will not do so in this discussion.



98 M. L. Lapidus, G. Radunović, and D. Žubrinić

In the d -languid (but not necessarily strongly d -languid) case, RA;� D R
Œ0�
A;�

satis�es the following (pointwise or distributional) error estimate (at level k D 0):

RA;�.t / D O.tN �sup S / as t ! 0C; (6.98)

where S is the screen associated to the window W .

Remark 6.17. Observe that we can rewrite equation (6.96) as follows:

�A;�.s/ D �S.s/ � �@G;G.s/; (6.99)

where the geometric zeta function �S of the associated self-similar string (with
scaling ratios ¹rj ºJ

j D1 and a single gap length, equal to one, in the terminology of
[Lap-vFr3, Chapters 2 and 3]) is meromorphic in all of C and given for all s 2 C

by

�S.s/ D 1

1 � PJ
j D1 rs

j

: (6.100)

In general, given a connected open set U � C, �A;� is meromorphic in U if
and only if �@G;G is; furthermore, in that case, the factorization formula (6.99)

(or (6.96)) then holds for all s 2 U . We note that in the sequel and follow-
ing [LapPe2–3] and [LapPeWi1–2], we will often refer to �S as the scaling zeta

function of the self-similar spray .A; �/ and to its poles in C (composing the mul-
tiset D) as the scaling complex dimensions of .A; �/. We will also sometimes
write DS instead of D, so that DS WD D; hence, similarly, DS \ W D D \ W ,
the set of visible scaling complex dimensions of .A; �/, denotes the set of poles
of �S visible through the window W . (See equation (6.97) above.)

Typically, we will work with generators such that �@G;G is strongly d -languid
and consequently, since �S (as given by (6.100)) is strongly d -languid (after a
possible scaling by an appropriate scaling factor �S > 0; see Corollary 5.14
and the discussion preceding it), �A;� will be strongly d -languid (also after a
possible scaling by the same scaling factor �S) and given by the factorization
formula (6.99) (or (6.96)), for all s 2 C. As a result, unless we need to work with
a “truncated tube formula” (corresponding to a fractal tube formula with error term
associated with a suitable screen S), we will be able to obtain an exact fractal tube
formula, as we will now see.

Assume next that the generator G is monophase (in the sense of [LapPe2–3]
and [LapPeWi1–2]); that is, the volume of its “inner” t -neighborhood is given by
a polynomial

PN �1
iD0 �i t

N �i for all t 2 R such that 0 < t < g. Here, g is the
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inradius of G, i.e., the supremum of the radii of all the balls which are contained
in G. Since then,

V@G;G.t / WD j.@G/t \ Gj D
N �1
X

iD0

�i t
N �i ; (6.101)

for 0 < t < g, we can explicitly calculate the relative tube zeta function of G, as
follows:

Q�@G;G.sI g/ D
g

Z

0

t s�N �1

N �1
X

iD0

�i t
N �i d t D

N �1
X

iD0

�i g
s�i

s � i
: (6.102)

It is obviously meromorphic on all of C and still given by (6.102) for all s 2 C.
Using the functional equation which connects the relative tube and distance

zeta functions (see equation (2.6)), we now obtain the following explicit expres-
sion for the relative distance zeta function of the generator G:

�@G;G.s/ WD �@G;G.sI g/ D gs�N j.@G/g \ Gj C .N � s/ Q�@G;G.sI g/

D gs�N jGj C .N � s/

N �1
X

iD0

�ig
s�i

s � i
D .N � s/

N
X

iD0

�ig
s�i

s � i
;

(6.103)

where we have let �N WD �jGj.
Consequently, by substituting (6.103) into (6.97), we recover (and signi�cantly

extend as well as place within the broader framework of the theory of fractal tube
formulas via fractal zeta functions) a well-known result obtained in [LapPe3] and
more generally in [LapPeWi1], as well as more recently via a di�erent (but related)
technique in [DenKÖÜ]:

VA;�.t / WD jAt \ �j D
X

!2D[¹0;1;:::;N �1º

res
�

tN �s

PN
iD0 �i

gs�i

s�i
�

1 � PJ
j D1 rs

j

�
; !

�

: (6.104)

This is an exact pointwise fractal tube formula. Indeed, after an appropriate scal-
ing by a factor �G > 0, �@G;G is shown to be strongly d -languid with .�d /G WD 0

for a suitable in�nite sequence of vertical lines ¹Re s D ˛mº, m � 1 with ˛m 2 R

and ˛m ! �1 as m ! 1. Also, it is easy to check (after an appropriate scal-
ing by a factor �S > 0) that �S.s/ D .1 � PJ

j D1 rs
j /�1 is strongly d -languid,

with .�d /S WD 0 (see [Lap-vFr3, equation (6.36), p. 195]). Hence (after a suit-
able scaling by � WD �A;�, depending on both �G and �S), we deduce from
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the factorization formula (6.96) (or, equivalently, (6.99)) that �A;� is strongly
d -languid, with exponent .�d /A;� WD 0 for this same sequence of vertical lines
¹Re s D ˛mº, m � 1. We can therefore conclude from Theorem 5.16 that the tube
formula (6.104) is valid pointwise and without an error term in this case, for all
positive t su�ciently small.48

If needed, one can also obtain a corresponding “truncated” pointwise fractal
tube formula (with error term), relative to a suitable screen.

A completely analogous reasoning can be used for the case of pluriphase gen-
erators G for which the “inner” tubular volume is given as a piecewise polynomial.
(See [LapPe3] or [LapPeWi1] for the corresponding precise de�nition.) In a future
work, we plan to investigate for which classes of generators the tube formula (6.97)

can be applied pointwise or distributionally. It is clearly a very large class, cor-
responding to essentially all of the self-similar sprays (and hence, also all of the
self-similar tilings, in the sense of [Pe, LapPe2–3, LapPeWi1–2, PeWi]) of inter-
est, including (in light of the results of [KoRati]) those with generators that are
convex polyhedra (or polytopes), under mild assumptions.

Remark 6.18. We point out that in [LapPeWi1], which (prior to the present
work and that in [LapRaŽu1–5]) was the paper containing the most elaborate
results concerning the fractal tube formulas for self-similar sprays (and other
fractal sprays), a lot of e�ort was required to obtain analogous (but less general)
fractal tube formulas, with or without error term. Furthermore, the “tubular zeta
functions” used in [LapPe2–3] and, in the more general context of [LapPeWi1],
were introduced in an ad hoc manner. Here, by contrast, both the fractal tube
formulas and the fractal zeta functions (in the present situation, the distance zeta
functions) occurring in the corresponding formulas follow naturally from the
general theory developed in [LapRaŽu1–6], and in particular, in the present paperr.

We close this comment by mentioning that the interested reader can �nd
in [LapPe2–3, LapPeWi1–2], as well as in the exposition given in [Lap-vFr3,
Subsection 13.1.4], a number of concrete examples illustrating the fractal tube
formulas for self-similar sprays (or tilings). These examples include the Cantor
tiling, the Koch tiling, the Sierpiński gasket and carpet tilings, along with the
pentagasket tiling (see, e.g., [Lap-vFr3, Example 13.33]), which is an interesting
and natural example of a self-similar spray with multiple generators. In all of these
examples, the underlying generators of the fractal sprays (or tilings) are convex
polygons and therefore, satisfy the required assumptions.

48 For an exact interval within which the fractal tube formula is valid, one has to explicitly
calculate the scaling factors �G and �S, which we leave as an exercise for the interested reader.
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The next three examples illustrate interesting phenomena that may occur in the
inhomogeneous self-similar setting, in the sense of [Fra1] (see also [BarDem, Fra2,
BakFraMa, OlSni]). We obtain here their corresponding fractal tube formulas and
illustrate the interesting situations which may arise, in particular, for self-similar
sprays (or tilings), or, more generally, for self-similar RFDs. These examples en-
able us, in particular, to illustrate our proposed de�nition of (critical and subcrit-
ical) fractality (see Remark 6.12). Accordingly, the sets and RFDs considered in
these examples are indeed fractal, in that sense, and their fractality re�ects their
intrinsic geometric oscillations, as is made evident by the corresponding fractal
tube formulas.

Figure 5. Left: The 1=2-square fractal A from Example 6.19. We start with a unit square
Œ0; 1�2 and in the �rst step remove the open squares G1 and G2. In the next step, we repeat
this with the remaining squares Œ1=2; 1�2 and Œ0; 1=2�2; we then continue this process ad
in�nitum and, by de�nition, A � R2 is the compact set which remains behind. The �rst 6
iterations are depicted. Here, G WD G1 [ G2 is the single generator of the corresponding
self-similar spray or RFD .A; �/, where � D .0; 1/2. Right: The 1=3-square fractal A

from Example 6.20. We start with a unit square Œ0; 1�2 and, in the �rst step, remove the
open polygon G. In the next step, we repeat this with the remaining squares Œ1=3; 1�2 and
Œ0; 1=3�2; we then continue this process ad in�nitum and, by de�nition, A � R

2 is the
compact set which remains behind. The �rst 4 iterations are depicted. Here, G is the single
generator of the corresponding self-similar spray or RFD .A; �/, where � WD .0; 1/2.

Example 6.19 (Fractal tube formula for the 1=2-square fractal). Let us consider
the 1=2-square fractal A from [LapRaŽu4, Example 3.38] and depicted in Figure 5,
left. Its distance zeta function was obtained in [LapRaŽu4], where it was shown
to be meromorphic on all of C and given by

�A.s/ D 2�s

s.s � 1/.2s � 2/
C 4

s � 1
C 2�

s
; (6.105)



102 M. L. Lapidus, G. Radunović, and D. Žubrinić

for every s 2 C. In (6.105), without loss of generality, we have chosen ı WD 1.
Furthermore, as was discussed in [LapRaŽu4], it follows at once from (6.105) that

D.�A/ D 1; P.�A/ WD P.�A;C/ D ¹0º [ .1 C piZ/ (6.106)

and

dimP C A WD Pc.�A/ D 1 C piZ; (6.107)

where the oscillatory period p of A is given by p WD 2�
log 2

and all of the complex
dimensions in P.�A/ are simple, except for !0 D 1 which is a double pole of �A.

One easily sees that �A is strongly d -languid for �d WD �1, any � � 2 and a
sequence of screens consisting of the vertical lines ¹Re s D �mº, m 2 N, along
with the constant B� WD 2=� in the strong languidity condition L20. Therefore,
we can use Theorem 5.16 in order to recover the following exact pointwise fractal
tube formula, valid for all t 2 .0; min¹1=�; 1=2º/ D .0; 1=2/:

VA.t / WD jAt j D
X

!2P.�A/

res
� t2�s

2 � s
�A.s/; !

�

D res
� t2�s

2 � s
�A.s/; 1

�

C
X

!2P.�A/n¹1º

t2�!

2 � !
res.�A; !/:

(6.108)

We now let !k WD 1 C ipk for each k 2 Z and note that

res.�A; 0/ D 1 C 2� and res.�A; !k/ D 4�ipk

4!k.!k � 1/
; (6.109)

for every k 2 Z n ¹0º.
In order to compute the residue at !0 D 1 in (6.108), we reason analogously

as in Example 6.13 (see equation (6.87) and the text surrounding it) to conclude
that

res
� t2�s

2 � s
�A.s/; 1

�

D t

1
X

nD0

n
X

kD0

.�1/n�k.log t�1/k�AŒ1��n�1

kŠ.n � k/Š

D t .�AŒ1��1 � �AŒ1��2 C �AŒ1��2 log t�1/:

(6.110)

(Recall that for q 2 Z, �AŒ1�q denotes the q-th coe�cient in the Laurent expansion
of �A around s D 1.) The coe�cients �AŒ1��2 and �AŒ1��1 are not di�cult to
compute and are given by

�AŒ1��2 D 1

4 log 2
and �AŒ1��1 D 29 log 2 � 2

8 log 2
; (6.111)
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which, combined with (6.110), yields

res
� t2�s

2 � s
�A.s/; 1

�

D 1

4 log 2
t log t�1 C 29 log 2 � 4

8 log 2
t: (6.112)

Finally, we obtain the following exact fractal tube formula for the 1=2-square
fractal A, valid for all t 2 .0; 1=2/:

VA.t / WD jAt j D 1

4 log 2
t log t�1 C 29 log 2 � 4

8 log 2
t

C t
X

k2Zn¹0º

.4t/�ipk

4!k.!k � 1/.2 � !k/
C 1 C 2�

2
t2

D 1

4 log 2
t log t�1 C tG.log2.4t/�1/ C 1 C 2�

2
t2;

(6.113)

where G is a nonconstant 1-periodic function on R, which is bounded away from
zero and in�nity. It is given by the following absolutely convergent (and hence,
convergent) Fourier series:

G.x/ WD 29 log 2 � 4

8 log 2
C 1

4

X

k2Zn¹0º

e2�ikx

.2 � !k/.!k � 1/!k

; for all x 2 R: (6.114)

To conclude our discussion of this example, we note that it is now clear from
the fractal tube formula (6.113) for the 1=2-square fractal that dimB A D 1

and that A is Minkowski degenerate with M
1.A/ D C1. On the other hand,

A is h-Minkowski measurable with h.t/ WD log t�1 (for all t 2 .0; 1/) and
with h-Minkowski content given by M

1.A; h/ D .4 log 2/�1: Finally, although
D WD dimB A D 1 (which is also the topological dimension of A) and hence, A

would not be considered fractal in the classical sense, we also see from (6.113)

that the nonreal complex dimensions of A with real part equal to D give rise to
(intrinsic) geometric oscillations of order t2�D (or simply, 2 � D) in its fractal
tube formula. More speci�cally, according to our proposed de�nition of fractality
given in Remark 6.12, A is critically fractal in dimension d WD D D dimB A D 1.

Example 6.20 (fractal tube formula for the 1=3-square fractal). Let us now con-
sider the 1=3-square fractal A from [LapRaŽu4, Example 3.39] and depicted in
Figure 5, right. Its distance zeta function was obtained in [LapRaŽu4], where it
was shown to be meromorphic on all of C and given by

�A.s/ D 2

s.3s � 2/

� 6

s � 1
C Z.s/

�

C 4

s � 1
C 2�

s
; (6.115)
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for all s 2 C. Here, the entire function Z is given by

Z.s/ WD
�=2
Z

0

.cos ' C sin '/�s d '

and, without loss of generality, we have chosen ı WD 1. Furthermore, as was
discussed in [LapRaŽu4], it follows at once from (6.115) that D.�A/ D 1 and

P.�A/ WD P.�A;C/ � ¹0º [ .log3 2 C piZ/ [ ¹1º; (6.116)

where the oscillatory period p of A is given by p WD 2�
log 3

and all of the complex
dimensions in P.�A/ are simple. In equation (6.116), we only have an inclusion
since, at least in principle, some of the complex dimensions with real part log3 2

may be canceled by the zeros of 6=.s � 1/ C Z.s/. However, it can be checked
numerically that there exist nonreal complex dimensions with real part log3 2 in

P.�A/. Furthermore, observe that we have

jZ.s/j �
´

2� Re s=2�1� if Re s < 0;

�=2 if Re s � 0;
(6.117)

from which we conclude that that �A is strongly d -languid for �d WD �1, any � �p
2 and a sequence of screens consisting of the vertical lines ¹Re s D �mº, m 2 N,

along with the constant B� WD p
2=� in the strong languidity condition L20.

Therefore, we can use Theorem 5.16 to recover the following exact pointwise
fractal tube formula, valid for all t 2 .0; min¹1=�; 1=

p
2º/ D .0; 1=

p
2/:

VA.t / WD jAt j

D
X

!2P.�A/

res
� t2�s

2 � s
�A.s/; !

�

D
X

!2P.�A/

t2�s

2 � s
res.�A; !/

D 16t C t2�log3 2

log 3

C1
X

kD�1

.3t/�ipk

!k.2 � !k/

� 6

!k � 1
C Z.!k/

�

C 12 C �

2
t2

D 16t C t2�log3 2G.log3.3t/�1/ C 12 C �

2
t2:

(6.118)

Here, we have used the fact that

res.�A; 1/ D 16; res.�A; 0/ D 12 C � (6.119)
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and

res.�A; !k/ D 3�ipk

.log 3/!k

� 6

!k � 1
C Z.!k/

�

; (6.120)

where we have let !k WD log3 2 C ipk for each k 2 Z. It can be checked
numerically that res.�A; !k/ ¤ 0 (at least) for k D �1; 0; 1 and we conjecture49
that this is also true for all k 2 Z. However, the fact that res.�A; !k/ ¤ 0 for
k D �1; 0; 1 su�ces to deduce that the function G in the last line of (6.118)

is a nonconstant 1-periodic function on R, which is bounded away from zero
and in�nity and is given by the following absolutely convergent (and hence,
convergent) Fourier series:

G.x/ WD 1

log 3

C1
X

kD�1

e2�ikx

.2 � !k/!k

� 6

!k � 1
C Z.!k/

�

; for all x 2 R: (6.121)

In conclusion, we observe that it is clear from the fractal tube formula (6.118)

that dimB A D 1 and A is Minkowski measurable, with Minkowski content
given by M

1.A/ D 16: Moreover, since the set A is recti�able, we have that
H 1.A/ D M

1.A/=2 D 8, which can, of course, also be computed directly. On the
other hand, although D WD dimB A D 1 (which also coincides with the topological
dimension of A) and thus A would not be considered fractal in the classical sense,
we also see from (6.118) that the nonreal complex dimensions of A with real part
equal to log3 2 give rise to (intrinsic) geometric oscillations of order t2�log3 2 (or
simply, 2�log3 2) in its fractal tube formula. Therefore, according to our proposed
de�nition of fractality given in Remark 6.12, the 1=3-square fractal A is fractal;
more precisely, it is strictly subcritically fractal in dimension d WD log3 2.

Example 6.21 (fractal tube formula for the self-similar fractal nest). Let us now
consider the self-similar fractal nest A from [LapRaŽu4, Example 3.40], which
is de�ned as a union of concentric circles in R

2 centered at the origin and of
radius ak for k 2 N0, with a 2 .0; 1/ being a real parameter. Its distance zeta
function was obtained in [LapRaŽu4, Example 4.25], where it was shown to be
meromorphic on all of C and given by

�A.s/ D 22�s�.1 C a/.1 � a/s�1

.s � 1/.1 � as/
C 2�

s � 1
C 2�

s
; (6.122)

for all s 2 C, where without loss of generality, we have chosen ı WD 1. Recall
from [LapRaŽu4, Example 4.25] that we have D.�A/ D 1 and

P.�A/ WD P.�A;C/ D piZ [ ¹1º; (6.123)

49 We caution the reader that we do not have a rigorous proof of this last statement.
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where the oscillatory period p of A is given by p WD 2�
log a�1 and all of the complex

dimensions in P.�A/ are simple.

It is now easy to check that �A is strongly d -languid with �d WD �1, any
� � 2 if a 2 .0; 1=2� or any � � 2.1 � a/=a if a 2 .1=2; 1/ and (in both cases)
for a sequence of screens consisting of vertical lines ¹Re s D �mº, m 2 N,
in the strong languidity condition L20. Again, we can use Theorem 5.16 in
order to obtain the following exact pointwise fractal tube formula, valid for all
t 2 .0; min¹1=2; a=2.1 � a/º/:

VA.t / WD jAt j D
X

!2P.�A/

res
� t2�s

2 � s
�A.s/; !

�

D
X

!2P.�A/

t2�s

2 � s
res.�A.s/; !/

D 4�

1 � a
t C

�

� C 4�.1 C a/

.log a�1/.1 � a/

C1
X

kD�1

�

2t
1�a

��ipk

.!k � 1/.2 � !k/

�

t2

D 4�

.1 � a/
t C t2G

�

loga�1

� 2t

1 � a

��

:

(6.124)

Here, we have used the fact that

res.�A; 1/ D 4�

1 � a
; res.�A; 0/ D 2� C 4�.1 C a/

.log a/.1 � a/
; (6.125)

and

res.�A; !k/ D 4�.1 C a/

.log a�1/.!k � 1/

� 2

1 � a

��ipk

; (6.126)

where we have let !k WD ipk for each k 2 Z. Furthermore, the function G

appearing in the last line of (6.124) is a nonconstant 1-periodic function on R,
which is bounded away from zero and in�nity and is given by the following
absolutely convergent (and hence, convergent) Fourier series:

G.x/ WD � C 4�.1 C a/

.log a�1/.1 � a/

C1
X

kD�1

e2�ikx

.2 � !k/.!k � 1/
; for all x 2 R:

(6.127)

It clearly follows from the fractal tube formula (6.124) that dimB A D 1 and
A is Minkowski measurable with Minkowski content given by M

1.A/ D 4�
1�a

:

Furthermore, since the set A is recti�able, we have that H 1.A/ D M
1.A/=2 D

2�=.1 � a/, which, of course, can also be easily checked via a direct computation.
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Finally, we conclude this example by observing that although D WDdimB AD1

(which is also the topological dimension of A) and A would not be considered
fractal in the classical sense, we also see from (6.124) that the nonreal complex
dimensions of A with real part equal to 0 give rise to (intrinsic) geometric oscilla-
tions of order t2 (or simply 2) in its fractal tube formula. Consequently, according
to our proposed de�nition of fractality given in Remark 6.12, the self-similar frac-
tal nest A is indeed fractal; more precisely, it is strictly subcritically fractal in
dimension d WD 0.

We close this section by mentioning that one could provide many further
examples illustrating our tube formulas, as applied to self-similar sprays or, more
generally, fractal sprays. These examples would include the Koch curve tiling,
the Sierpiński gasket tiling, the pentagasket tiling and the Menger sponge tiling
depicted, respectively, in Figures 6.1–6.5 of [LapPeWi1]. We refer to [LapPe2–3]
for the corresponding exact (pointwise) fractal tube formulas. We point out that
the pentagasket tiling is of special interest because it is a natural example of a
self-similar spray with multiple generators.50

Other interesting examples include the Cantor carpet, the U -shaped modi�ca-
tion of the Sierpiński carpet (which has a generator which is itself “fractal”), the
binary trees, and the Apollonian packings depicted, respectively, in Figures 6.6,
6.9, 6.11, and 6.12 of [LapPeWi1] and whose associated fractal tube formulas are
provided or discussed in Subsections 6.1–6.4 of [LapPeWi1].

We also mention that the authors have recently obtained an explicit fractal tube
formula for the Koch drum (or the Koch snow�ake RFD), by using the general
theory developed in this paper. This important example (which is not a fractal
spray) should be discussed in a later work, as well as compared with the earlier
tube formula obtained by the �rst author and E. Pearse in [LapPe1], as described
in [Lap-vFr3, Subsection 12.2.1].

Finally, we point out that our methods apply naturally to fractal sprays which
are not necessarily self-similar (such as the last three examples mentioned just
above). Moreover, as was alluded to in the introduction of this paper, our general
(pointwise or distributional) fractal tube formulas can be extended (under suitable
hypotheses) to include the case where the associated fractal zeta function have
nonremovable singularities which are not poles. Some examples of such situations
are provided in [LapRaŽu1, 4] but we plan to develop the corresponding systematic
theory in a later work.

50 Of course, in the case of fractal sprays with multiple (say Q) generators, it su�ces to apply
the results of the present subsection to each of the corresponding Q fractal sprays with a single
generator, and then to add-up the resulting Q fractal tube formulas.
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