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Abstract. In the Euclidean setting the Sobolev spaces W ˛;p \ L1 are algebras for the

pointwise product when ˛ > 0 and p 2 .1;1/. This property has recently been extended

to a variety of geometric settings. We produce a class of fractal examples where it fails for

a wide range of the indices ˛; p.
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1. Introduction

We consider a measure space .X; �/ equipped with a non-negative definite, self-

adjoint, Markovian operator L with dense domain in L2.�/. Such operators

play the role of the classical Laplacian when studying physical phenomena such

as diffusion and waves (e.g. the heat, wave, and Schrödinger equations) and

related PDE on a general space .X; �/. The natural setting for such problems

is a class of Sobolev spaces associated to L; following the correspondence from

the Euclidean setting we define these as Bessel potential spaces, so that the
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homogeneous Sobolev space PW ˛;p
L

and the inhomogeneous Sobolev space W
˛;p
L

are as follows:

PW ˛;p
L

D ¹f 2 Lp

loc.X; �/WL
˛=2f 2 Lp.X; �/º (1)

with seminorm kf k PW
˛;p
L

D kL˛=2f kp;

W
˛;p
L

D ¹f 2 Lp.X; �/WL˛=2f 2 Lp.X; �/º (2)

with norm kf kW
˛;p
L

D kf kp C kL˛=2f kp. The Sobolev algebra problem asks for

conditions under which the spaces PW ˛;p
L

\L1 orW
˛;p
L

\L1 are algebras under

the pointwise product. This question arises when considering the well-posedness

of non-linear PDE based on the differential operator L. The purpose of this paper

is to show that on some fractal spaces we may take L to be a natural Laplacian

operator and nonetheless the algebra property fails for a wide range of p and ˛.

The Sobolev spaces we consider have previously been studied in [13, 14]. Our

results are close kin to a result of Ben-Bassat, Strichartz and Teplyaev [4] which

applies (essentially) to the case p D 1, ˛ D 2, and are in sharp contrast to the

behavior of the classical Sobolev spaces on Euclidean spaces. Indeed, in the case

that L is the non-negative Laplacian �� on R
n, Strichartz [21] proved that the

classical Bessel potential space W
˛;p

�� is an algebra provided 1 < p < 1, ˛ > 0

and ˛p > n. More generally, Kato and Ponce [16] showedW
˛;p

� \L1 is an algebra

assuming only 1 < p < 1 and ˛ > 0. In the homogeneous case PW ˛;p
�� \L1 was

proved to be an algebra for the same range of p and ˛ by Gulisashvili and Kon [11].

Outside the Euclidean setting there are positive results due to Coulhon, Russ,

and Tardivel-Nachef [7] on Lie groups with polynomial volume growth and on

Riemannian manifolds with positive injectivity radius and non-negative Ricci

curvature. Results under weaker geometric conditions were later obtained by Badr,

Bernicot and Russ [1] and most recently by Bernicot, Coulhon and Frey [5]. There

are two main approaches: one is to characterize when f is in the Sobolev space

using functionals defined from suitable averaged differences of f and the other

is to take a paraproduct decomposition of the product and use square function

estimates to reduce the problem to the Leibniz property of a gradient operator

associated to L. Since our interest in this paper will be in negative results we will

not attempt to describe the precise state of the art but instead isolate two theorems

which give positive results of a similar type. It should be emphasized that these

results were chosen for the simplicity of their statements, and are far from the most

general statements proved in [7, 5].
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Theorem 1.1 ([7] Theorem 2). Let G be a connected Lie group of polynomial
volume growth, equipped with Haar measure and a family Yj of left-invariant
Hörmander vector fields. Let L be the associated sub-Laplacian �

Pk
j D1 Y

2
j . For

˛ � 0 and 1 < p < 1 the space PW ˛;p
L

\ L1 is an algebra under the pointwise
product.

Theorem 1.2 ([5] Theorem 1.5). Let .M; d; �;E/ be a doubling metric measure
space with Dirichlet form E and associated operator L. Suppose the energy
measures of functions in the domain of E (in the sense of Beurling-Deny) are
absolutely continuous with respect to �, and that for all x 2 M balls are measure
doubling with �.B.x; r1// � .r1=r2/

�B.x; r2/ for 0 < r2 � r1 and some � > 0.
Further assume that the heat semigroup associated to L has a kernel ht satisfying
ht .x; y/ � .�.B.x;

p
t//�.B.y;

p
t///�1=2 for a.e. x; y 2 M and t > 0. Then for

p 2 .1; 2� and 0 < ˛ < 1 or for p 2 .2;1/ and 0 < ˛ < 1 � �
�

1
2

� 1
p

�

we have

that PW ˛;p
L

\L1 is an algebra. (See Figure 1 for an illustration of the .˛; p/ region
in which the corresponding Sobolev spaces have the algebra property.)

1 � �
2 1

˛

1

1
2

1

p

Figure 1. For L satisfying the assumptions of Theorem 1.2 and .˛;p/ in the shaded region,
PW ˛;p \ L1 is an algebra.

The results of the present work indicate some of the obstacles that may be en-

countered in extending Theorem 1.2 to larger ˛. It should be noted that several of

the hypotheses of Theorem 1.2 fail in the examples of Theorem 1.3. In our exam-

ples the energy measures of functions in the domain of E are not absolutely contin-

uous with respect to the measure�; the significance of this for failure of the algebra

property was a feature of one of the basic arguments of [4]. At the same time, the

upper estimate ht .x; y/ � .�.B.x;
p
t//�.B.y;

p
t///�1=2 is also invalid on our
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examples, instead being replaced by ht .x;y/�C.�.B.x;t1=ˇ//�.B.y;t1=ˇ///�1=2

for 0 < t < 1 and constantsC > 0 and ˇ > 2. The exponentˇ here is the so-called

walk dimension of the diffusion with generator L. In our examples ˇ D D C 1,

whereD > 1 is the Hausdorff dimension of the spaceX . Our first result illustrates

the fact that the algebra property can fail for a wide range of indices.

Theorem 1.3. Given ˛ 2 .1; 2/ and p 2 .1;1� satisfying ˛p > 2 there is
a compact metric space X with Ahlfors regular measure � and a Laplacian
operator L which is densely-defined on L2.�/, non-positive definite, self-adjoint,
Markovian, strongly local, and such that neither W ˛;p

L
nor PW ˛;p

L
\ L1 is an

algebra. Figure 2 illustrates the corresponding region of ˛ and p values.

Proof. This follows directly from Theorem 5.3 and Corollary 2.4 below. �

1

˛

1

2

1

p 1
2

Figure 2. The .˛; p/ values for which Theorem 1.3 proves W ˛;p and PW ˛;p \L1 can fail

to be an algebras.

The paper is organized as follows. Section 2 gives some standard background

and assumptions for our class of fractal examples. In Section 3 we use heat

kernel estimates and additional features of the fractal structure to analyze the local

behavior of Sobolev functions. The failure of the algebra property is discussed

in Section 4; as a consequence of our discussion we also note that the Sobolev

space fails to be preserved by the action of a function that is differentiable and

has a certain lower convexity bound, see Corollary 4.2. Finally, in Section 5, we

present some specific collections of fractal spaces on which our assumptions hold

and complete the arguments that prove Theorem 1.3.
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2. Laplacians on a class of fractals and estimates for the resolvent

We consider a post-critically finite fixed setX � R
N of an iterated function system

¹Fj ºj D1;:::J . For detailed definitions of such sets and their properties, including the

definition and all results on resistance forms stated without proof below, see [18].

We write V0 for the finite post-critical set, which we consider to be the boundary

of X . For a word w D w1 � � �wm of length jwj D m with letters from ¹1; : : : ; J º
let Fw D Fw1

ı � � � ı Fwm
. We refer to Fw.X/ with jwj D m as an m-cell of

X . Define Vm D
S

jwjDmFw.V0/ and consider these to be the vertices of a graph

in which the edge relation x �m y means that x; y 2 Vm and there is w with

jwj D m and both x; y 2 Fw.V0/. On thism-scale graph there is a resistance form

Em D
P

x�my.u.x/ � u.y//2.

We assume there is a resistance renormalization constant 0 < r < 1 such that

limm!1 r�m
Em.u/ is non-decreasing with limit E.u/, and this defines a regular

resistance form on V� D
S

m Vm with domain the set dom.E/ D ¹uWE.u/ < 1º.
Note that the functions with E.u/ D 0 are constants. The resistance form is self-

similar in that E.u ı F�1
w / D r jwj

E.u/ for any u on Fw .V�/ so that u ı F �1
w 2

dom.E/, and it defines the resistance metric R.x; y/ D sup¹E.u/�1Wu.x/ D 0,

u.y/ D 1º. Functions in dom.E/ are then 1
2
-Hölder with respect to R.x; y/

because ju.x/�u.y/j2 � E.u/R.x; y/, so they extend from V� to itsR-completion,

which is X . Given a function on a finite subset Y � X there is an element of

dom.E/ which extends the function on Y to X ; among such extensions there is a

unique minimizer of E, and such minimizers are said to be harmonic on X n Y .

If Y D V0 the minimizers are simply called harmonic functions, and if Y D Vm

they are called piecewise harmonic of scalem. For convenience we scale E so that

the R-diameter of the space is 1.

In addition to its resistance structure we equip X with the unique self-similar

measure in which all m-cells have equal mass �m for some constant � 2 .0; 1/.

Then � D rD for D the Minkowski dimension of X in the resistance metric; in

all cases we considerD is also the Hausdorff dimension by a well-known result of

Hutchinson [12]. Abusing notation we also use � to denote the measure. From a

theorem of Kigami (see Chapter 3 of [18]) E is a Dirichlet form on L2.�/, whence

by standard results (e.g., from Chapter 1 of [9]) we may define a non-negative

definite self-adjoint (Dirichlet) Laplacian by setting

E.u; v/ D
Z

.Lu/v d� for all v 2 dom0.E/ (3)

where dom0.E/ denotes the functions in the domain of E that vanish on V0. (Note

that it is more usual in the fractal literature to define a non-positive definite
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Laplacian �; for us L D ��.) This Laplacian has compact resolvent and

therefore its spectrum consists of non-negative eigenvalues accumulating only at

1. Moreover the eigenvalue of least magnitude is �1 > 0. One may also define

a Neumann Laplacian by instead requiring that (3) holds for all v 2 dom.E/;

our results are unchanged if the Neumann Laplacian is used in place of the

Dirichlet Laplacian. We define a normal derivative du.q/ at q 2 V0 by du.q/ D
limm!1 r�m

P

x�mq.u.q/ � u.x//. This exists for all sufficiently regular u (for

precise conditions see [19]), and in particular once Lu exists as a measure (in the

sense that v 7! E.u; v/ is a bounded linear functional on dom0.E/ with respect

to the uniform norm). Then E.u; v/ D
R

.Lu/v d� C
P

q2V0
.du.q//v.q/ for all

v 2 dom.E/.

The normal derivative may be localized to a boundary vertex Fw.p/ of the cell

Fw .X/ by setting

du.Fw .p// D lim
m!1

r�m
X

x�mFw.p/

x2Fw.X/

.u.Fw.p//� u.x//; (4)

in which case we obtain a local Gauss–Green formula
Z

Fw.X/

.Lu/v � u.Lv/ d� D
X

p2Fw.V0/

u.p/.dv.p//� .du.p//v.p/: (5)

We make a strong assumption on the resistance metric and the heat semigroup

associated to our Dirichlet form. Specifically we assume there is 0 < 
 < D C 1

such that R.x; y/
 is comparable to a metric on X , and a heat kernel ht .x; y/ for

etL satisfying

ht .x; y/ � CH t
�D=.DC1/ exp

�

�cH
�R.x; y/.DC1/

t

�
=.DC1�
/�

for 0 < t < 1.

(6)

For t � 1 we may of course use the estimate from the spectral gap: ht .x; y/ �
e��1t . Although these assumptions seem very restrictive, they are known to be true

for a large class of fractals that includes the examples in Section 5. In particular

both (6) and a lower bound of the same type were proved for affine nested fractals

in [8]. Henceforth for notational convenience we write A . B if A=B is bounded

by constant depending only on the fractal and its Dirichlet form. Implicitly, then,

A . B involves a constant that may depend on r; �; 
; �1 and the above constants

CH and cH .

The heat kernel bounds will be used to obtain regularity estimates for the

various kernels we use to analyze the local properties of Sobolev functions. In

practice we will work primarily with the kernelG�.x; y/ of the resolvent .�CL/�1
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with � > 0, which may be obtained via G� D
R 1

0
e��tht dt , and with the Riesz

kernel Ks.x; y/ of L�s for s 2 .0; 1/, which may be obtained as Cs

R 1

0
t s�1ht dt

or as C 0
s

R 1

0
��sG�.x; y/ d� for suitable constants Cs ; C

0
s which will henceforth

be suppressed. Inevitably we will frequently need bounds of the following type

Z A

0

�a exp.���b/
d�

�
D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��a=b

Z �Ab

0

ua=be�udu

bu
� Ca;b�

�a=b

if a > 0, b > 0,

��a=b

Z 1

�Ab

ua=be�u du

jbju � Ca;bA
a exp.��Ab/

if b < 0;

(7)

Z 1

A

�a exp.���b/
d�

�
D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��a=b

Z 1

�Ab

ua=be�udu

bu
� Ca;bA

a exp.��Ab/

if b > 0,

��a=b

Z �Ab

0

ua=be�u du

jbju � Ca;b�
�a=b

if a < 0, b < 0.

(8)

For example we have

Proposition 2.1. There is a constant c > 0 so that for � � 0,

ˇ

ˇG�.x; y/
ˇ

ˇ . .1C �/�1=.DC1/ exp.�cR.x; y/
�
=.DC1//: (9)

Proof. Write the resolvent kernel as G�.x; y/ D
R

e��tht .x; y/ dt and split the

integral over Œ0; A/ and ŒA;1/ for A D R.x; y/
 .1C �/�.DC1�
/=.DC1/ � 1. On

Œ0; A� bound e��tht by the heat kernel estimate (6) obtaining from (7) that

Z A

0

t1=.DC1/ exp
�

�cH
�R.x; y/.DC1/

t

�
=.DC1�
/� dt

t

. A1=.DC1/ exp
�

�cH
�R.x; y/.DC1/

A

�



.DC1�
/
�

. .1C �/�1=.DC1/..1C �/A/1=.DC1/ exp
�

�cH .1C �/A
�

. .1C �/�1=.DC1/ exp.�c0R.x; y/
 .1C �/
=.DC1//

where in the last step we used that a1=.DC1/e�cH a is bounded by a multiple of

e�c0a for some choice of c0 < cH .
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On ŒA; 1/we can bound the integrand by t�D=.DC1/e��t �et�D=.DC1/e�.1C�/t ,

with the power of t coming from (6). A similar bound holds on Œ1;1/ be-

cause the spectral gap implies ht .x; y/ . e��1t � C�1;Dt
�D.DC1/e�j�1j=2t and

e�.�Cj�1j=2/t � e�c00.1C�/t for some c00 D c00.�1/ � 1. Thus using (8) the contri-

bution to the resolvent does not exceed

C.1C �/�1=.DC1/

Z 1

.1C�/A

u1=.DC1/e�udu

u

. .1C �/�1=.DC1/..1C �/A/1=.DC1/e�c00.1C�/A

. .1C �/�1=.DC1/ exp.�c000R.x; y/
 .1C �/
=.DC1//

for a suitable c depending on c0.�1/ andD, where we bounded a1=.DC1/e�c00A by

e�c000a. Choosing c to be the lesser of c0 and c000 gives the result. �

Similarly we may bound the kernel Ks.x; y/ of L�s.

Proposition 2.2. If s < 1 then

jKs.x; y/j . C.s/R.x; y/s.DC1/�D

Proof. One way to do this is to write the kernel Ks.x; y/ D
R 1

0
��sG� d� and

use the estimate from Proposition 2.1. Apply (7) with A D 1, � D R.x; y/
 ,

b D 
=.DC 1/ > 0 and a D 1� s � 1
DC1

, where we only need to know 1� s > 0
because the rest of a is from a factor .1C �/�1=.DC1/. �

We will sometimes need Lp.d�/ estimates for kernels of this sort.

Lemma 2.3. IfK.x; y/ is a kernel satisfying jK.x; y/j � R.x; y/� thenK.x; �/ 2
Lp.X; �/ for �p > �D. If B D B.x; R/ is a ball of radius R then





K.x; �/






Lp.B;�/
� 1

p�CD
R�CD=p:

Proof. The measure is Alhfors regular with dimensionD in the resistance metric

and the space has bounded diameter. Accordingly the only obstacle to integrability

is at y D x and we may integrate radially with

Z

B.x;R/

jK.x; y/jp d�.y/ .

Z R

0

rp�CD dr

r
D 1

p�CD
Rp�CD: �

From the preceding two results the following is immediate.

Corollary 2.4. If s.D C 1/ > D
p

then L�sLp � L1.
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3. Local behavior of functions in L
�s

L
p

We consider two quantities at a point q 2 Vn. Let w be a word with jwj D n and

such that q D Fw.q
0/, q0 2 V0 and define

Lmu.q/ D
X

x�mq

.u.q/ � u.x//; (10)

ımu.Fw .q
0// D

X

x�mq

x2Fw.X/

.u.q/ � u.x//; (11)

where ım is only defined for m � n. Note that we write ımu.Fw.q
0// rather than

ımu.q/ to emphasize the dependence on w. Evidently Lmu.q/ is obtained by

summing ımu.Fw.q
0// over the n-cells that meet at q, or more precisely those

choices of w of length jwj D n and points q0 2 V0 such that Fw.q
0/ D q.

Strichartz [22] used bounds of the type jLmuj . rm� to characterize Hölder–

Zygmund spaces for a range of exponents �, and in particular to prove a Sobolev

embedding theorem. His Theorem 3.13 is a special case of the Q D 1 statement

in our next result.

Theorem 3.1. Let p 2 .1;1�, s 2 .0; 1/ and q 2 Vn. If s.D C 1/ > D
p

and
u D L

�sf for f 2 Lp then

kLmu.�/klQ.Vm/ .

´

C.s/rm.s.DC1/�D=Q/kf kp if 1 � Q � p;

C.s/rm.s.DC1/�D=p/kf kp if p < Q � 1.
(12)

The quantities ımu.Fw.q
0// are related to the normal derivative du.Fw .q

0//.

Using them we can give sufficient conditions for a function in L
�sLp to have a

normal derivative at a vertex in V� and obtain it by integration against a kernel.

Theorem 3.2. Let p;Q 2 .1;1�, s 2 .0; 1/ and q D Fw.q
0/, q0 2 V0 be a vertex

in Vn. Define a normal derivative kernel by

dKs.Fw.q
0/; y/ D

Z 1

0

��sdG�.Fw.q
0/; y/ d�:

where dG� is the normal derivative defined in (4). If s.D C 1/ > D
p

C 1 then

dKs.Fw.q
0/; �/ is in Lp=.p�1/.X; �/ and for m � n













ımu.Fw.�// � rm

Z

dKs.Fw.�/; y/f .y/ d�.y/












lQ.Vm/

.

8

<

:

C.s/rm.s.DC1/�D=Q/kf kp if 1 < Q � p;

C.s/rm.s.DC1/�D=p/kf kp if p < Q � 1.
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In particular
R

dKs.Fw.q
0/; y/f .y/ d�.y/ is the normal derivative of u at Fw.q

0/

where u D L
�sf for f 2 Lp, in the sense that r�m times the Q D 1 case of the

estimate converges to zero as m ! 1, see (4).

The proofs of Theorems 3.1 and 3.2 occupy the remainder of this section. We

begin with an estimate of the normal derivative of the resolvent kernel.

Proposition 3.3. If q D Fw.q
0/ with jwj D n and q0 2 V0 then for any y ¤ q

jdG�.Fw.q
0/; y/j . .1C r�n.1C �/�1=.DC1// exp.�cR.q; y/
�
=.DC1//: (13)

Proof. Fix � > 0 and let m be the integer part of
� log �

.DC1/ log r
so r�m.DC1/ D

��m.DC1/=D ' �. If m < n let Qw D w and otherwise let Qw be the word of length

m such that q 2 F Qw.V0/ � Fw.X/. Let m be piecewise harmonic at scalemwith

value 1 at q and zero on Vm n ¹qº. We will apply the local Gauss–Green formula

to G� and  j Qwj on the cell F Qw.X/.

Recall that LG�.x; y/ D ��G�.x; y/ away from y and has a Dirac mass at y.

Apply (5) to see that if y 62 F Qw.X/ then

dG�.Fw.q
0/; y/ D

Z

F Qw.X/

� j Qwj.x/�G�.x; y/ d�.x/

C
X

p02V0

d j Qwj.p
0/.F Qw.p

0//G�.F Qw.p
0/; y/;

while if y 2 F Qw.X/ the expression needs only to be modified by adding  j Qwj.y/

on the right side. Now k j Qwjk1 � 1 by the maximum principle and each

d j Qwj.Fw.p
0// ' r�j Qwj by scaling. Since it is also the case that �.F Qw.X// D �j Qwj

we find

jdG�.Fw.q
0/; y/j . ��j QwjkG�.�; y/kL1.F Qw.X// C r�j Qwj

X

p02V0

jG�.F Qw.p
0/; y/j

. .��j Qwj C r�j Qwj/kG�.�; y/kL1.F Qw.X//

with the caveat that we must add 1 to the right side if y 2 F Qw.X/. Substituting the

estimate of Proposition 2.1 and using �j Qwj � �m ' ��D=.DC1/ we obtain

jdG�.Fw.q
0/; y/j

. .1C r�j Qwj.1C �/�1=.DC1// exp.�c inf
x2F Qw.X/

�
=.DC1/R.x; y/
 /:
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This is valid even if y 2 F Qw.X/ because in this case the infimum in the exponent

is zero, so the the Dirac mass term is absorbed into the estimate. Now if m � n

then r� Qw D r�m ' �1=.DC1/ and the first factor is just a constant. Otherwise

j Qwj D n > m and the r�n��1=.DC1/ term dominates.

To complete the proof we recall thatR.x; y/
 is comparable to a metric and use

the triangle inequality and the fact that R.q; x/ . r j Qwj � ��1=.DC1/ if x 2 F Qw.X/

to obtain

�
=.DC1/R.q; y/
 � �
=.DC1/R.q; x/
 C �
=.DC1/R.x; y/


� c0 C inf
x2Fw.X/

�
=.DC1/R.x; y/


from which the result follows. �

Corollary 3.4. If s 2 .0; 1/ and jwj D n the kernel

dKs.Fw.q
0/; y/ D

Z 1

0

��sdG�.Fw.q
0/; y/ d�

satisfies
ˇ

ˇdKs.Fw.q
0/; y/

ˇ

ˇ . C.s/r�nR.q; y/1�.DC1/.1�s/CCR.q; y/�.DC1/.1�s/.
If p 2 .1;1� and s.D C 1/ > D

p
C 1 this is in Lp=.p�1/.d�.y//.

Proof. The estimate from Proposition 3.3 has two terms. The term depending

on r is relevant for � < r�n.DC1/, so should be used in (7) with A D r�n.DC1/

and a D 1 � s � 1
DC1

, b D 

DC1

> 0 and � D cR.q; y/
 . Note that we only

need assume 1 � s > 0 and not a > 0 because part of our power of � is a factor

.1 C �/�1=.DC1/. Including the factor r�n from the integrand gives a result is

bounded by r�n.cR.q; y//1�.1�s/.DC1/. The other term (which only contains the

exponential) can be done in the same way but with a D 1 � s and A D 1 to

get a bound by .cR.q; y//�.1�s/.DC1/. Both pieces are then in Lp=.p�1/.d�.y//

provided .1� s/.D C 1/p=.p � 1/ < D by Lemma 2.3. �

We now examine the difference operators Lm and ım. For

u D L
�sf D

Z

Ks.x; y/f .y/ d�.y/

write

Lmu.q/ D
Z

X

LmKs.q; y/f .y/ d� D
Z

X

Z 1

0

��s
LmG�.q; y/f .y/ d� d�.y/

(14)

and similarly, if s and p are as in Corollary 3.4 so that

du.Fw .q
0// D

Z

dKs.q; y/f .y/ d�.y/
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is well defined,

ımu.Fw.q
0// � rmdu.Fw .q

0//

D
Z

X

.ımKs.Fw.q
0/; y/ � rmdKs.Fw.q

0/; y//f .y/ d�

D
Z

X

Z 1

0

��s.ımG�.Fw.q
0/; y/ � rmdG�.Fw.q

0/; y//f .y/ d� d�.y/:

(15)

We wrote these expressions in this form because both quantities are readily esti-

mated. First we note trivial estimates that do not account for any cancellation. By

summing (9) over the m-scale neighbors of q

jLmG�.q; y/j . .1C �/�1=.DC1/ exp.�c min
x�mq

R.x; y/
�
=.DC1//: (16)

Similarly the crude bound from (9) and (13) gives (using m > n)

jımG�.Fw.q
0/; y/ � rmdG�.Fw.q

0/; y/j

. .rm C .1C �/�1=.DC1// exp.�c min
x�mq

R.x; y/
�
=.DC1//:
(17)

These estimates cannot be substantially improved if y is close to q, but if it is

not then we can estimate using regularity of G�.

Proposition 3.5. Fix q 2 Vn, m > n, � 2 Œ0; 1�. If y is not in any .m � 1/-cell
containing q then

ˇ

ˇLmG�.q; y/
ˇ

ˇ .
.r�/m���

.1C �/1=.DC1/
exp.�cR.q; y/
�
=.DC1//;

jımG�.Fw.q
0/; y/ � rmdG�.Fw.q

0/; y/j

.

� .r�/m���

.1C �/1=.DC1/
C rm�m���D=.DC1/

�

exp.�cR.q; y/
�
=.DC1//:

Proof. Let  m be piecewise harmonic of scale m with value 1 at q and zero at

all other points of Vm. Then Lmu D E.u;  m/ D
R

.Lu/ m if u is sufficiently

regular. Now with u D G� we have LG� D ��G� on the support of  m by our

assumption on y. Thus

r�mjLmG�.q; y/j D
ˇ

ˇ

ˇ

Z

.��G�.x; y// m.x/ d�.x/
ˇ

ˇ

ˇ

� ��m.1C �/�1=.DC1/ exp.�cR.q; y/
�
=.DC1//;
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because j mj � 1 by the maximum principle and jG�j may be estimated using (9).

Note that in the estimate of jG�j we must take the supremum over the support

of  m, but R.x; y/
 � cR.q; y/
 on this set by the triangle inequality and our

hypothesis that y is separated from the m-cell containing q. The desired estimate

comes from the product of the � power of this inequality with the .1 � �/ power

of (16).

The proof for ımG� is almost identical. Since q D Fw.q
0/ 2 Vn, for m > n

there is a uniquem-cellF Qw.X/ contained inFw.X/. Following the same reasoning

as for Lm but restricting toF Qw.X/we find from the local Gauss–Green formula (5)

that

r�mımG�.Fw.q
0/; y/ � dG�.Fw.q

0/; y/ D
Z

F Qw.X/

.��G�.x; y// m.x/ d�.x/

from which point we make the same estimate as before, take the � power and

multiply by the .1� �/ power of (17) to complete the proof. �

Corollary 3.6. Fix q 2 Vn, m > n, s 2 .0; 1/ and � 2 Œ0; 1�. If y is not in any
.m � 1/-cell containing q then

jLmKs.q; y/j . C.s/.r�/m�R.q; y/.s��/.DC1/�D ;

jımKs.Fw.q
0/; y/ � rmdKs.Fw.q

0/; y/j . C.s/.r�/m�R.q; y/.s��/.DC1/�D :

Proof. Integrate the estimates from Proposition 3.5 against ��s to obtainLmKs as

in (14) and .ım � rmdKs/ as in (15). In the first case we may use (7) with A D 1,

� D R.q; y/
 , b D 
=.DC 1/ and a D 1� sC � � 1
DC1

> 0. Then the integral is

bounded by R.q; y/1�.DC1/.1�sC�/, which combined with the factor .r�/m� gives

the stated bound for LmKs.

In the ım case we split the integral over � 2 Œ0; A� and in ŒA;1/ with

A D r�m.DC1/. Observe that on Œ0; A� the first term from Proposition 3.5

dominates and we can use (7) with a,b,� as before to obtain the same bound

.r�/m�R.q; y/1�.DC1/.1�sC�/. On ŒA;1/ the second term dominates and we

use (8) with the same b and � but a D 1 � s C �D=.D C 1/, so the integral is

bounded by r�m.DC1/.1�s/�mD� exp.�c.r�mR.q; y//
/. Putting in the powers

rm�m� D rm.1CD�/ the resulting bound may be written in the form

.r�/m�rm..s��/.DC1/�D/ exp.�c.r�mR.q; y//
/. However y is not in any .m�1/-
cell containing q, soR.q; y/ � C 0rm, which makes the exponential a constant and

implies .r�/m�rm..s��/.DC1/�D/ is smaller than .r�/m�R.q; y/.s��/.DC1/�D . �
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Proof of Theorem 3.1. Fix p 2 .1;1�, s 2 .0; 1/ and q 2 Vn and suppose

s.DC1/ > D
p

. LetX0 be the union of the .m�1/-cells containing q. This contains

a disc of radius crm around q, and for j � 1 we let Xj D ¹xW c2j rm < R.x; y/ �
c2j C1rmºnX0 be the part of the annulus centered at y that is not inX0. Evidently

X D
S

j �0Xj . Break the integration Lmu.q/ D
R

LmKs.q; y/f .y/ d�.y/

according to the Xj and use Minkowski’s and Hölder’s inequalities to obtain





Lmu.q/






lQ.Vm/

D












X

j

Z

Xj

f .y/LmKs.q; y/ d�.y/













lQ.Vm/

�
X

j










Z

Xj

f .y/LmKs.q; y/ d�.y/









lQ.Vm/

�
X

j













� Z

Xj

jf .y/jp d�
�1=p� Z

Xj

ˇ

ˇLmKs.q; y/
ˇ

ˇ

p=.p�1/
d�

�.p�1/=p











lQ.Vm/

:

(18)

Now on X0 we can only bound LmG� as in (16). Since this is the same bound

as for G� the corresponding bound on LmKs is the same as for Ks, which by

Proposition 2.2 is C.s/R.q; y/s.DC1/�D. Applying Lemma 2.3 this power of

R.q; y/ is in Lp=.p�1/.d�.y// and

�Z

X0

jLmKs.q; y/jp=.p�1/ d�

�.p�1/=p

. C.s/r
m

�

s.DC1/�DC D.p�1/
p

�

D C.s/r
m

�

s.DC1/� D
p

�

:

On Xj we are outside the .m � 1/-cells containing q so so we use Corollary 3.6

with � D 1 to see

jLmKs.q; y/j . C.s/.r�/mR.q; y/.s�1/.DC1/�D

D C.s/rm.DC1/R.q; y/.s�1/.DC1/�D

Then on Xj we have control on R.q; y/ and from Ahlfors regularity the measure

is at most a multiple of .2j rm/D , so that

Z

Xj

ˇ

ˇLmKs.q; y/
ˇ

ˇ

p=.p�1/
d�

. C.s/rm.DC1/p=.p�1/.2j rm/..s�1/.DC1/�D/p=.p�1/.2j C1rm/D:
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We summarize these bounds on the Xj integrals as

�Z

Xj

ˇ

ˇLmKs.q; y/
ˇ

ˇ

p=.p�1/
d�

�.p�1/=p

. rm.s.DC1/�D=p/2j..s�1/.DC1/�D/

and combine them with (18) to obtain





Lmu.q/






lQ.Vm/

. rm.s.DC1/�D=p/
X

j �0

2j..s�1/.DC1/�D=p/













� Z

Xj

jf .y/jp d�
�1=p











lQ.Vm/

:

(19)

The dependence of
R

Xj
jf jp on q 2 Vm is through Xj D Xj .q/. IfQ � p then

Hölders inequality gives the bound













�

Z

Xj

jf .y/jp d�
�1=p













lQ.Vm/

� r
�mD

�

1
Q

� 1
p

�

�

X

q2Vm

Z

X

jf .y/jp1Xj .q/.y/ d�.y/

�1=p

because the number of points in Vm bounded by the number ofm-cells, which is at

most a multiple of ��m D r�mD . To proceed we notice that for fixed y the q such

that y 2 Xj .q/ have R.q; y/ � c2j C1rm. The number of such q is bounded by a

multiple of the number ofm-cells in the corresponding ball around y. Since these

cells are disjoint and of measure �m D rmD and the ball has measure bounded

by a multiple of
�

2j rm
�D

by Ahlfors regularity, the number of q so y 2 Xj .q/ is

bounded by 2jD . Thus

�

X

q2Vm

Z

X

jf .y/jp1Xj .q/.y/ d�.y/

�1=p

. 2jD=pkf kp:

Combining this bound for Q � p with the fact that the lQ norm is dominated by

the lp norm when Q > p we have













� Z

Xj

jf .y/jp d�
�1=p











lQ.Vm/

� min
®

1; r
�mD

�

1
Q

� 1
p

�

¯

2jD=pkf kp:
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We can substitute this into (19) to see

kLmu.q/klQ.Vm/

. kf kpr
m.s.DC1/�D=p/ min¹1; r�mD

�

1
Q

� 1
p

�

º
X

j �0

2j..s�1/.DC1/�D=p/2jD=p

D

8

<

:

kf kpr
m.s.DC1/�D=p/ if p < Q � 1,

kf kpr
m.s.DC1/�D=Q/ if 1 � Q � p

which is (12). �

Proof of Theorem 3.2. The stated properties of the integral giving dKs were

proved in Corollary 3.4 and the same argument as in the previous proof yields

the result. �

4. Failure of the algebra property

In [4] Ben-Bassat, Strichartz and Teplyaev proved that the square of a function in

L
�1L1 which has non-zero normal derivative at a point of Vm is not in L

�1L1.

The heart of their argument is the fact that if f has non-zero normal derivative at

q 2 V� then f is comparable to a linear function in the resistance metric near q,

but the property of being in L
�1L1 implies the difference Lm is smaller than the

square of the resistance. It is apparent from the results of [4] that this argument

can be generalized to some other L
�sLp, though their methods only work for

s D 1. The following generalizes their main argument to L
�sLp for a much larger

collection of s and p.

Theorem 4.1. Let p 2 .1;1� and s 2 .0; 1/ such that s.DC1/ > D
p

C2. Suppose
u 2 L

�sLp and there is q D Fw.q
0/ 2 V�, q0 2 V0 at which du.Fw .q

0// ¤ 0.
Then u2 62 L

�sLp.

Proof. Let v.x/ D u.x/ � u.q/. Write Lmu
2.q/ D Lmv

2.q/ C 2u.q/Lmv.q/,

and observe that Lmv.q/ D Lmu.q/ because the functions differ only by a

constant. Since u 2 L
�sLp, Theorem 3.1 implies there is C so jLmu.q/j �

Crm.s.DC1/�D=p/. If u2 2 L
�sLp then the same estimate would hold for

jLmu
2.q/j and therefore for jLmv

2.q/j. However v.q/ D 0, so

.ımu.q//
2 � L

X

x�mq

x2Fw.X/

.u.q/ � u.x//2
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� L
X

x�mq

v.x/2

D
X

x�mq

.v2.x/ � v2.q//

D jLmv
2.q/j

and we conclude jımu.q/j2 � Crm.s.DC1/�D=p/. Since s.DC1/� D
p
> 2we may

compare with the Q D 1 case of Theorem 3.2 to find du.Fw .q
0// D 0 �

The proof of the preceding theorem generalizes easily to show that composing

an element of L�sLp that has a non-vanishing normal derivative with a function

that is convex (or concave) with a Hölder estimate on the convexity produces

functions that cannot be in L
�sLp.

Corollary 4.2. Let p 2 .1;1�, s 2 .0; 1/ and s.D C 1/ � D
p
> 1. Suppose

u 2 L
�sLp and there is q D Fw.q

0/ 2 V�, q0 2 V0 at which du.Fw .q
0// ¤ 0. If ˆ

is a function with bounded derivative and which satisfies the following convexity
condition at u.q/: there is 1 � � < s.D C 1/ � D

p
and C > 0 such that

ˆ.y/ �ˆ.u.q// �ˆ0.u.q//.y � u.q// � C jy � u.q/j� :

then ˆ ı u 62 L
�sLp.

Proof. By Hölder’s inequality and the assumption on ˆ

jımu.Fw.q
0//j� � L��1

X

x�mq

x2Fw.X/

ju.x/ � u.q/j�

�
X

x�mq

ju.x/ � u.q/j�

� 1

C

X

x�mq

.ˆ.u.x// �ˆ.u.q// �ˆ0.u.q//.u.x/ � u.q///

� 1

C
jLm.ˆ ı u/.q/j C ˆ0.u.q//

C
jLmu.q/j:

If ˆ ı u 2 L
�sLp then both terms on the right are bounded by a multiple of

mr
m

�

S.DC1/� D
p

�

. From our assumption on � we conclude that ımu.Fw .q
0// D

o.rm/ and thus du.Fw .q
0// D 0. �

The preceding results are only interesting when we know something more

about functions whose normal derivatives vanish on Vm. Fortunately we can

obtain this from the Q D 2 case of Theorem 3.2 using the following result.
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Proposition 4.3. If u is a function on X for which




ımu.x/






l2.Vm/
D o.rm=2/

then u is constant. If, in addition, u 2 L
�sLp then u � 0.

Proof. Recall that the Dirichlet form was obtained as

E.u/ D lim
m!1

r�m
X

x�my

.u.x/ � u.y//2

D lim
m!1

r�m
X

¹wWjwjDmº

X

x;y2Fw.V0/

.u.x/ � u.y//2

where we have re-written the sum is over all edges of the m-scale graph as a sum

over cells using that x �m y () x; y 2 Fw.V0/ for somew with jwj D m. Now

at x 2 Fw.V0/ we have from (11)

ımu.x/ D
X

z2Fw.V0/

.u.x/ � u.z// D jV0ju.x/ �
X

z2Fw.V0/

u.z/

where jV0j denotes the number of points in V0. Hence ımu.x/ � ımu.y/ D
jV0j.u.x/ � u.y//, and therefore

E.u/ D jV0j�1 lim
m!1

r�m
X

¹wWjwjDmº

X

x;y2Fw.V0/

.ımu.x/ � ımu.y//
2

� 2jV0j�1 lim
m!1

r�m
X

¹wWjwjDmº

X

x;y2Fw.V0/

.jımu.x/j2 C jımu.y/j2/

D 4jV0j�1 lim
m!1

r�mkımu.x/k2
l2.Vm/

:

From our hypotheses we now find E.u/ D 0, whereupon u is constant. If also

u 2 L
�sLp then u D 0 on V0, so u � 0. �

Corollary 4.4. Suppose p 2 .1;1� and s 2 .1=2; 1/ with s.D C 1/ � D
p
> 1.

If u 2 L
�sLp has du.Fw .q// D 0 for all finite wordsw and all q 2 V0 then u � 0.

Proof. The assumption s.DC1/� D
p
> 1 is made to ensure the normal derivative

dKs from Theorem 3.2 is integrable against f . Using the Q D 2 estimate from

that result we see that if p 2 .1; 2� then kımu.x/kl2.Vm/ D O.rm.s.DC1/�D=p// D
o.rm/, so from Proposition 4.3 we get u � 0. The corresponding estimate when

p 2 .2;1/ is that




ımu.x/






l2.Vm/
D O.rm.s.DC1/�D=2//, and for p D 1 is the

same but with an extra factor of m. In either case we can apply Proposition 4.3 to

get u � 0 because s.D C 1/ � D
2
> 1

2
is simply s > 1

2
. �

Corollary 4.5. If p 2 .1;1� and s 2 .1=2; 1/with s.DC1/� D
p
> 2 then L

�sLp

is not an algebra.
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Proof. Applying Theorem 4.1 we find that any function in L
�sLp with square

in L
�sLp has vanishing normal derivative on Vm for all m, so by the previous

corollary it is identically zero. HoweverL�sLp contains many non-zero functions.

For example, by results of [20], for any compact K � X and open neighborhood

U � K there is a smooth u which is 1 on K, 0 outside U . In particular this u has

continuous Lu so is in L
�sLp. �

Similarly, but using Corollary 4.2 instead of Theorem 4.1 we have

Corollary 4.6. If p 2 .1;1� and s 2 .1=2; 1/ with s.D C 1/ � D
p
> � � 1 then

L
�sLp is not closed under the action of ˆ as in Corollary 4.2.

5. Specific fractal examples

Our arguments are applicable to the classical Sierpinski Gasket, S, which is

the unique non-empty compact fixed set of the iterated function system ¹Fj D
1
2
.x C pj /ºj D0;1;2 where the points pj are vertices of an equilateral triangle in

R
2. This fractal is very well-studied (see for example [23]) and has r D 3

5
and

� D 1
3
. The upper heat kernel estimates (originally from [3]) and resolvent kernel

estimates (for � > 0) are as in Section 2 with 
 D log 2

log.5=3/
andD D log 3

log.5=3/
. Note

that then R.x; y/
 is comparable to the Euclidean path metric on the fractal. The

case s D 1, p D 1 of the following theorem was proved in [4].

Theorem 5.1. On the Sierpinski Gasket, L�sLp is not an algebra if p 2 .1;1�

and s 2 .1=2; 1/ with s log 5� 1
p

log 3 > 2 log.5=3/.

Remark 5.1. Using Corollary 2.4 we see that in the language of Theorem 1.3

neither W ˛;p nor PW ˛;p \ L1 are algebras on S for when

max
°

1;
4 log.5=3/

log 5
C 2 log 3

log 5

1

p

±

< ˛ < 2:

Note that this interval is non-empty if p >
log 3

2 log 3�log 5
.

Our approach also works on a generalization of the Vicsek set. Following the

notation of Barlow in [2] we work in R
N , N � 2 and let L � 1 be an integer. Let

X0 D Œ0; 1�N be the unit cube, V0 D ¹qiº2N

iD1 be its vertices and x0 D
�

1
2
; : : : ; 1

2

�

its center. By dividing each axial direction into LC 1 equal pieces subdivide X0

into cubes and let X1 be the union of the 2NLC 1 cubes with centers on the lines

from x0 to each of the qi . Let ¹Fj º2N LC1
j D1 be the orientation preserving linear maps
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from X0 to each cube in X1 and let VN;L be the fixed set of the resulting iterated

function system. Evidently the self-similar measure has � D .2NL C 1/�1. It is

easy to prove that the construction of a self-similar resistance form from Section 2

works with r D .2L C 1/�1. One way to do so is to consider a function on V0

with value ai at qi and
P

i ai D 0, and suppose it extends so the value at the

corresponding point of the central cube of X1 is bi . One verifies that each string

of L cubes in X1 from the central cube to qi contributes 2N �1L�1.ai �bi /
2 to the

E1 form while the central cube contributes
P

j <k.ai � bi /
2. Minimizing over the

bi gives
P

k¤i .bi � bk/ D 2N �1L�1.ai � bi / for each i ; this has unique solution

bi D .2L C 1/�1ai , which gives E1 D .2L C 1/�1
E0. Note that this implies

the resistance metric is comparable to the Euclidean metric. Since the minimal

extension of a constant function is constant we have also obtained a description of

all harmonic functions.

The upper heat kernel estimates on VN;L depend on L and N . In the simplest

case (N D 2, L D 1) they were proved in [17], while the version we need

follows by applying standard results (such as those in [10]) to some estimates

proved in [2]. On VN;L they have the form provided in Section 2 with 
 D 1

and D D log.2N LC1/

log.2LC1/
.

A significant feature of this class of examples is that by sending N ! 1 we

have D ! 1, thus there is a D for which the condition s.D C 1/ � D
p
> 2 is

satisfied as soon as sp > 1. Our statement about when L
�sLp is an algebra is as

follows.

Theorem 5.2. On VN;L, L�sLp is not an algebra if p 2 .1;1� and s 2 .1=2; 1/
with s log..2NLC 1/.2LC 1// � 1

p
log.2NLC 1/ > 2 log.2LC 1/.

In particular, if p < 1 and sp > 1 or if p D 1 and s > 1=2 we can take N

so large that the last condition holds, proving the next result.

Theorem 5.3. If p 2 .1;1� and s 2 .1=2; 1/ with sp > 1 there is N such that
L

�sLp on VN;L is not an algebra.
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