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Completely symmetric resistance forms

on the stretched Sierpiński gasket

Patricia Alonso Ruiz, Uta R. Freiberg, and Jun Kigami

Abstract. The stretched Sierpiński gasket, SSG for short, is the space obtained by replacing

every branching point of the Sierpiński gasket by an interval. It has also been called

the “deformed Sierpiński gasket” or “Hanoi attractor”. As a result, it is the closure of a

countable union of intervals and one might expect that a diffusion on SSG is essentially a

kind of gluing of the Brownian motions on the intervals. In fact, there have been several

works in this direction. There still remains, however, “reminiscence” of the Sierpiński

gasket in the geometric structure of SSG and the same should therefore be expected for

diffusions. This paper shows that this is the case. In this work, we identify all the

completely symmetric resistance forms on SSG. A completely symmetric resistance form

is a resistance form whose restriction to every contractive copy of SSG in itself is invariant

under all geometrical symmetries of the copy, which constitute the symmetry group of the

triangle. We prove that completely symmetric resistance forms on SSG can be sums of the

Dirichlet integrals on the intervals with some particular weights, or a linear combination

of a resistance form of the former kind and the standard resistance form on the Sierpiński

gasket.
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1. Introduction

A major area of research interest in mathematical physics deals with the mod-

elling of heat and wave propagation in branching media. One way to tackle this

problem consists in approximating the object under consideration by unions of

one-dimensional segments, and studying the combination of the corresponding

equations on the segments. This approach has been extensively investigated un-

der different names, for instance “quantum graphs” in mathematical physics [10]

and “cable systems” in stochastic analysis [4].

Nevertheless, these models can fail to capture the essential structure of the

media they are supposed to describe. The main message of the present paper is

that reducing the analysis on an object to one-dimensional analysis on a union

of lines can ignore a significant part of its intrinsic structure and therefore give

a far too simple, hence incomplete, framework to investigate analytical questions

on it. We aim to furnish the latter statement by studying here what we call the

stretched Sierpiński gasket, SSG for short, in R2. This space has also been called

the “deformed Sierpiński gasket” [11] or “Hanoi attractor” [1, 3, 2] and it is obtained

from the classical Sierpiński gasket SG by replacing each branching point of the

SG by an interval (see Figure 1).

As a result, SSG is the closure of a countable union of one-dimensional inter-

vals. One could thus think of constructing and analysing diffusion processes on it

via quantum graphs/cable systems, an approach that has actually been considered

in several works [6, 3].
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Figure 1. The Sierpiński gasket (SG) and the stretched Sierpiński gasket (SSG).

Let us give a rough definition of a cable system/quantum graph, leaving details

to [4, 10]. Starting from a weighted graph .V; E; C / with vertex set V , edge set

E � ¹.p; q/ j p; q 2 V º and edge conductances/weights C D ¹Cpq j .p; q/ 2 Eº,

each edge .p; q/ 2 E is identified with the line segment parametrized by �p;q.t / D

.1 � t /p C tq, t 2 Œ0; 1�, and equipped with the Dirichlet energy Dpq on the line

segment pq given by

Dpq.�; �/ D

Z 1

0

d.� ı �p;q/

dt

d.� ı �p;q/

dt
dt:

The consequent energy form E on the whole space is thus defined as

E.u; v/ D
X

pq2E

CpqDpq.u; v/;

where the domain of E consists of all continuous L2-functions on the whole space

whose restriction to each edge pq belongs to the Sobolev space H 1.�p;q.Œ0; 1�/,

dx/. In a natural way, this quadratic form E induces a diffusion process that

behaves like one-dimensional Brownian motion on each edge.

Following this direction, a diffusion on SSG might be expected to consist ba-

sically in gluing the different Brownian motions on each interval. However, in

considering SSG as a union of one-dimensional lines, one overlooks the “reminis-

cence” of SG in the geometric structure of SSG. In fact, the cable system/quantum

graph approach disregards the underlying geometry of the space in the sense that

it ignores the considerable role played by the arrangement of the vertices in space.

Furthermore, classical quantum graph theory requires some finiteness condition

that makes it inapplicable to cases such as fractals or infinite trees.

Indeed, we show in this paper that the geometric “reminiscence” of the Sier-

piński gasket also appears in the diffusion on SSG, a fact that stays hidden when

using cable systems/quantum graphs.
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The diffusion processes considered here will be associated with a Dirichlet

form induced by a completely symmetric resistance form. The theory of resistance

forms was introduced in [8] and further developed in particular to study analysis on

“low-dimensional” fractals from an intrinsic point of view, see [9] and references

therein. Their most representative property is that, unlike Dirichlet forms, they

are defined without requiring any measure on the underlying space. In our case, a

completely symmetric resistance form .E;F/ on SSG is a resistance form whose

restriction to every contractive copy in itself is invariant under all geometrical

symmetries of the copy. More precisely, let X be a subset of SSG which is similar

to SSG itself and let GW SSG ! X be the associated contractive similitude. If we

denote by EX the part of the original form E associated with X , then

EX .uıG�1; vıG�1/

is again a form on SSG. We will say that .E;F/ is completely symmetric if

EX .u ı G�1; v ı G�1/ is invariant under any isometry of the regular triangle.

(See Section 5 for the exact definition.)

As a key step towards the study of such diffusion processes, the present paper

is devoted to establishing the existence of completely symmetric resistance forms

on SSG. Even more, we provide a full characterization of all possible forms of this

type by showing in Theorem 5.7 that any completely symmetric resistance form

on SSG can be written as

aE�.�; �/ C bDI
�.�; �/

for some a � 0 and b > 0. The forms E� and DI
� are briefly explained below.

Conversely, we will show that any linear combination of E� and DI
� as above with

a � 0 and b > 0 can be realized as a resistance form on SSG.

On the one hand,DI
� arises as a limit of sums of standard Dirichlet energies and

it is defined as follows. Let � D ¹�mºm�1 � .0; 1/ satisfy
P

m�1.5
3
/m�1�m D 1

and let DI
k

be the sum of the Dirichlet integrals over the line segments that appear

in the kth approximation step of SSG for the first time, i.e.

DI
k.u; v/ D

X

pq2Jk nJk�1

Dpq.u; v/;

where Jk denotes the set of line segments in the k-th approximation step. The

quadratic form DI
� is defined as the weighted sum of the DI

k
’s whose weights are

given by � D ¹�mºm�1, i.e.

DI
�.u; v/ D

X

k�1

1

�k

DI
k.u; v/:
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It resembles the cable system/quantum graph approach in this setting. In particu-

lar, the special case a D 0 has been called “fractal quantum graph” in [3], where

the authors have shown that DI
� is a resistance form for some limited choices of �.

On the other hand, the form E� corresponds to the standard resistance form

on SG. (See Definition 4.3 and [8] for further details about this form.) Notice

that any function on SG can be thought of as a function on SSG by making its

value constant on each line segment. In this manner, we can regard the standard

resistance form on SG as a quadratic form on SSG, see Definition 5.4 for a precise

formulation. This part of E, which may be called the “fractal part”, had remained

unseen in the previous works [6, 3] because there only limits of quantum graphs

were considered.

In conclusion, this paper reveals that SSG is more than just the combination of

a countably infinite number of line segments, not only from a geometric, but also

from an analytic point of view, since the reminiscence of the Sierpiński gasket in

SSG remains essentially present in both of them.

We will begin our exposition by discussing the geometry of SSG in Section 3,

providing a detailed construction as well as some of its most relevant intrinsic

geometric properties. Section 4 reviews the construction of the standard resis-

tance form on SG and establishes a first link between functions on SG and on

SSG. Completely symmetric resistance forms on SSG are rigorously introduced

in Section 5 and the main classification result of this paper is stated in Theo-

rem 5.7. The forthcoming sections develop the machinery to prove this theorem:

Section 7 proceeds with the construction of resistance forms on SSG by means

of compatible sequences based on sequences of what we call matching pairs of

resistances. We will see in Section 8 that any completely symmetric resistance

form on SSG actually corresponds to a constant multiple of a resistance form on

SSG derived from a sequence of matching pairs. Once this correspondence is set-

tled, Section 9 establishes a preliminary classification result for resistance forms

.ER;FR/ derived from matching pairs displayed in Theorem 9.4. At this point,

any such form ER becomes the sum of an SG part and a line part. In this way, the

reminiscence of SG in SSG comes to light. In Section 10, the previous theorem

is enhanced through a projection mapping onto the resistance forms having only

line part. Section 11 is the core of the paper: in Theorem 11.1, the domain of the

completely symmetric resistance forms on SSG is fully described, and the SG part

and the line part get their corresponding expression as the aforementioned forms

E�, DI
� respectively. This characterization will finally lead to the classification

provided by Theorem 5.7.
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2. Glossary of notations

For the convenience of the reader we give below an index which summarizes

notation repeatedly used throughout the text, and where the definitions may be

found.

B D ¹.1; 2/; .2; 3/; .3; 1/º

dE : the restriction of the Euclidean metric

Dpq – Definition 5.1

DI
m – Definition 5.1

DI
� – Definition 5.6

eij – Definition 3.1

ew
ij

D Gw.eij /

ER;m – Definition 7.7

E�
m – Definition 4.3

E� – Theorem 4.5

E� – Definition 5.4

EjY – Proposition 6.8

ER – Definition 7.15

ER;m – Definition 7.11

EI
R

– (9.1)

E†
R

– (9.2)
yER – Definition 7.7

Fi D Gi in case of ˛ D 0

F� – Theorem 4.5

FR – Definition 7.15

FI
R

– Definition 9.5

F†
R

– Definition 9.5

FR;� – Definition 9.3

F† – Definition 5.4

F�
m – Definition 5.5

F�
1 – Definition 5.5

F� – Definition 5.6

F�
� – Definition 5.6

F.n/ – Definition 11.2

FjY – Definition 6.7

F0.Y / – Definition 6.7
zFm – Definition 5.5
zF1 – Definition 5.5
zF – Definition 5.1
yFR – Definition 7.7

Gi – Definition 3.1

Gw – Definition 3.2

GK – (5.1)

hY – Proposition 6.8

H 1.Œ0; 1�/ – Definition 5.1

H 1.pq/ – Definition 5.1

H.E;F/.Y / – Definition 6.9

K D K˛ for ˛ 2 .0; 1/

K� D K0 D the Sierpiński gasket

K˛ – Proposition 3.3

L.R/ – Definition 10.5

`.V / D ¹uju W V ! Rº

MP – Definition 7.4

.MP
N/I – (10.1)

¹p1; p2; p3º: vertices of a regular triangle

pij – Definition 3.1

Q0 – Definition 4.3

QI
m – Definition 7.2

Q†
m – Definition 5.4

r0.E;F/ – Definition 8.2

R� – Theorem 11.1

R
.n/
� – Definition 11.2

R.E;F/ – Definition 8.4

R.n/ – Definition 11.2

RFS – Definition 5.2

RF
.0/

S
– Definition 5.2

RFN
S

– Definition 8.2

S D ¹1; 2; 3º

Vm – Definition 3.2

V �
m – Definition 4.3

Wm – Definition 3.2

W� – Definition 3.2

˛ – Definition 3.1

� D �˛

�˛ – Proof of Proposition 3.4

�; ��; �� – Definition 4.1

�.n/ – Definition 11.2

�
.n/
m – Definition 11.2

† D †˛ for ˛ 2 .0; 1/

†˛ – Definition 3.3

�pq – Definition 5.1
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3. Geometry of K

In this section, we set up the geometric construction of SSG in R2 and fix the

corresponding notation that will be carried throughout the paper.

Let S D ¹1; 2; 3º and let ¹p1; p2; p3º be the collection of vertices of a regular

triangle inR2. For the purpose of normalization, we assume that p1Cp2Cp3 D 0

and jpi � pj j D 1 for any i ¤ j .

p2

p1

p3

V0

1 1

1
p21

p12

p23 p32

p13

p31

V1

Figure 2. Geometric construction.

Definition 3.1. For each i 2 S , define Gi WR
2 ! R

2 by

Gi .x/ D
1 � ˛

2
.x � pi / C pi ;

where 0 � ˛ � 1. Moreover, set pij D Gi .pj / for i ¤ j and denote by eij the

line segment pij pj i .

If ˛ D 0, then pij D pj i for any i ¤ j and hence eij D ¹pij º. Notice that Gi ,

pij and eij actually depend on ˛. However, we will see in Proposition 3.4 that the

sets K˛ defined in Propostion 3.3 are homeomorphic to each other for ˛ 2 .0; 1/

and therefore we do not write ˛ explicitly in the notation.

Definition 3.2. Let W0 D ¹;º and define

Wm D Sm D ¹w j w D w1 : : : wm; wi 2 S for any i D 1; : : : ; mº

for m � 1, as well as W� D
S

m�0 Wm. Moreover, for any w D w1 : : : wm 2 W�,

define Gw WR2 ! R
2 by

Gw D Gw1
ıGw2

ı � � � ıGwm

and G; D id is the identity map on R2. Finally, set V0 D ¹p1; p2; p3º and

Vm D
[

w2Wm

Gw.V0/

for m � 1.
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Notation. From now on, we denote by B D ¹.1; 2/; .2; 3/; .3; 1/º, where B stands

for the word “Bond”, and write ew
ij D Gw.eij / for any .w; .i; j // 2 W� � B .

Proposition 3.3. For any 0 � ˛ � 1, there exists a unique compact set K˛ � R
2

such that

K˛ D G1.K˛/ [ G2.K˛/ [ G3.K˛/ [ e12 [ e23 [ e31:

Furthermore,

K˛ D †˛ [
[

.w;.i;j //2W��B

ew
ij ;

where †˛ is the self-similar set associated with ¹G1; G2; G3º, i.e. †˛ is the unique

nonempty compact set satisfying

†˛ D G1.†˛/ [ G2.†˛/ [ G3.†˛/: (3.1)

Moreover,
S

m�0 Vm is a dense subset of †˛.

Proof. This follows from [7, Section 4, Theorem 1] since G1; G2; G3 are 1�˛
2

-

contractions. �

Remark. †˛ is a Cantor set for any 0 < ˛ < 1.

Notice that K0 coincides with the Sierpiński gasket while K1 is the union of the

three line segments p1p2, p2p3 and p3p1. Whenever ˛ 2 .0; 1/, we can refer to

any of K˛ as the stretched Sierpiński gasket SSG in view of the next proposition.

Proposition 3.4. The sets K˛, ˛ 2 .0; 1/, are pairwise homeomorphic.

Proof. Use G˛
w and e

˛;w
ij to denote Gw and ew

ij respectively. Note that †˛

is naturally homeomorphic to ¹1; 2; 3ºN by the canonical coding map �˛ de-

fined by ¹�˛.!1!2 : : :/º D \m�1Gw
!1:::!m

.K˛/. Let '˛1;˛2
D �˛2ı.�˛1/�1.

Then '˛1;˛2
W †˛1

! †˛2
is a homeomorphism. Extend '˛1;˛2

onto e
w;˛1

ij by

'˛1;˛2
j
e

w;˛1
ij

D G
˛2
w ı .G

˛1
w /�1j

e
w;˛1
ij

for any i; j 2 B and w 2 W�. Then

'˛1;˛2
W K˛1

! K˛2
is a homeomorphism. �

Since resistance forms on K˛ only depend on the topological structure of K˛,

which is the same for any ˛ 2 .0; 1/ due to the previous proposition, we will omit

˛ in the definition given by Proposition 3.3 and write K D K˛ and † D †˛ as

long as ˛ 2 .0; 1/. Moreover, we will consider dE to be the restriction of the

Euclidean metric to K1=2 and regard dE as the canonical metric on K.
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In view of (3.1), there exists a canonical map �W SN ! † defined by

�.!1!2 : : :/ D
\

m�1

G!1:::!m
.†/:

Through this map �, we identify † with SN hereafter in this paper.

4. The Sierpiński gasket

As already mentioned, if ˛ D 0 in Definition 3.1, then K˛ is the Sierpiński gasket,

pij D pj i and eij D ¹pij º for any .i; j / 2 B . In this case, we will denote Gi and

K˛ by Fi and K� respectively. We explain in this section how to view continuous

functions on the Sierpiński gasket K� as continuous functions on the stretched

Sierpiński gasket K and review the construction of the standard resistance form

on K�. Further details and proofs can be found e.g. in [8].

Definition 4.1. Let � W † ! K� be the canonical coding map given by

¹�.!1!2 : : :/º D
\

m�0

F!1:::!m
.K�/

and define ��W K ! K� by

��j† D �

and

��.ew
ij / D �.wi.j /1/ D �.wj.i/1/

for any .w; .i; j // 2 W� � B . Furthermore, define ��W C.K�/ ! C.K/ by

��.u/ D u ı ��.

From this definition it follows that u 2 ��.C.K�// if and only if u 2 C.K/ and

ujew
ij

is constant for each .w; .i; j // 2 W� �B , a fact stated in the next proposition.

Moreover, �� is injective and it preserves the supremum norm. We will thus

identify C.K�/ with ��.C.K�// and think of C.K�/ as a subset of C.K/ in this

manner. Thus we have the following proposition.

Proposition 4.2. We have

C.K�/ D ¹u j u 2 C.K/; ujew
ij

is constant for any .w; .i; j // 2 W� � Bº:

We finish this paragraph with some classical definitions and results concerning

the standard resistance form on K� that will become relevant to state our main

theorem.
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Notation. For any set V we use the standard notation `.V / D ¹u j uW V ! Rº.

Definition 4.3. Let V �
0 D ¹p1; p2; p3º and define V �

m inductively by V �
mC1 D

S3
iD1 Fi .V

�
m/ for m � 0. Furthermore, let the quadratic form E�

m.�; �/ on `.V �
m/ be

defined as

Q0.u; u/ D
X

.i;j /2B

.u.pi / � u.pj //2

for m D 0, and

E�
m.u; u/ D

�5

3

�m X

w2Wm

Q0.uıFw ; uıFw/

for m � 1.

Proposition 4.4. For any uW K� ! R and any m � 0,

E�
m.ujV �

m
; ujV �

m
/ � E�

mC1.ujV �
mC1

; ujV �
mC1

/

and lim
m!1

E�
m.ujV �

m
; ujV �

m
/ D 0 if and only if u is constant on K�.

Proof. This follows directly from Definition 4.3. �

Theorem 4.5. Define

F� D ¹u j u 2 C.K�/; lim
m!1

E�
m.ujV �

m
; ujV �

m
/ < C1º

and

E�.u; u/ D lim
m!1

E�
m.ujV �

m
; ujV �

m
/

for u 2 F�. Then F� � C.K�/ and .E�;F�/ is a resistance form on K�.

Proof. See Theorem 6.6 or [9, Theorem 3.13]. �

Analogously to C.K�/, we will identify F� with ��.F�/ and thus regard F� as

a subset of C.K/.

5. Completely symmetric resistance forms

This section is devoted to giving a rigorous definition of completely symmetric

resistance forms on SSG and presenting the main theorem of this paper, The-

orem 5.7, which provides their complete characterization and classification by

means of the forms E� and DI
� . The proof of Theorem 5.7 will require a suitable

combination of the results obtained in the succeeding sections and it will there-

fore be presented at the end of Section 11. We start by introducing some auxiliary

notation and definitions. Recall that we write K D K˛ for any ˛ 2 .0; 1/.
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Definition 5.1. (1) Let H 1.Œ0; 1�/ denote the Sobolev space

H 1.Œ0; 1�/ D
°

u
ˇ

ˇ

ˇ uW Œ0; 1� ! R;
du

dx
2 L2.Œ0; 1�; dx/;

where
du

dx
is the derivative of u in the sense of distributions

±

:

(2) For any p; q 2 R2, let pq denote the line segment with extreme points p

and q, and let �p;q W Œ0; 1� ! pq be given by �p;q.t / D .1 � t /p C tq. We define

H 1.pq/ D ¹u j uW pq ! R; uı�p;q 2 H 1.Œ0; 1�/º

and

Dpq.u; v/ D

Z 1

0

d.uı�p;q/

dx

d.vı�p;q/

dx
dx

for any u; v 2 H 1.pq/.

(3) Define

zF D ¹u j u 2 C.K/ and ujew
ij

2 H 1.ew
ij / for any .w; .i; j // 2 W� � Bº

as well as

DI
m.u; v/ D

X

.w;.i;j //2Wm�1�B

Dew
ij

.ujew
ij

; vjew
ij

/

for any u; v 2 zF and m � 1.

We introduce now the family of completely symmetric resistance forms on K

that play the central role in the classification theorem.

Basic definitions and notation concerning resistance forms are reviewed in

Section 6, see also [9]. First of all, consider the set of all linear mappings under

which K is invariant, i.e.

GK D ¹' j 'WR2 ! R
2 linear and such that '.K/ D Kº: (5.1)

Notice that this is in fact the dihedral group of symmetries of the triangle.

Definition 5.2. (1) Let RF
.0/
S be the collection of resistance forms .E;F/ on K

satisfying the following three conditions (a), (b), and (c).

(a) F � C.K/ and u 2 F if and only if ujGi .K/ 2 FjGi .K/ D ¹vjGi .K/ j v 2 Fº

for any i 2 S , and ujeij
2 H 1.eij / for any .i; j / 2 B .

(b) Let R be the resistance metric associated with .E;F/. Then, the identity map

from .K; dE / to .K; R/ is a homeomorphism.
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(c) For any ' 2 GK and u 2 F, uı' 2 F and

E.uı'; uı'/ D E.u; u/:

(2) Define RFS to be the collection of resistance forms .E;F/ 2 RF
.0/
S with

the following property.

There exist a sequence ¹.Em;Fm/ºm�0 � RF
.0/
S and a sequence ¹�mºm�1 �

.0; 1/ such that .E0;F0/ D .E;F/, Fm D ¹uıGi j u 2 Fm�1º for any m � 1 and

i 2 S , and

Em�1.u; v/ D

3
X

iD1

Em.uıGi ; vıGi / C
1

�m

DI
1 .u; v/ (5.2)

for any m � 1 and u; v 2 Fm�1. The sequence ¹.Em;Fm; �m/ºm�0 � RF
.0/
S �

.0; 1/ is called the resolution of .E;F/.

Remark. Although �0 is not needed in the previous definition, we will always set

�0 D 1 for the sake of formality.

Applying (5.2) repeatedly, one immediately obtains the following proposition.

Proposition 5.3. Let .E;F/ 2 RFS . If ¹.Em;Fm; �m/ºm�0 � RF
.0/
S � .0; 1/ is

the resolution of .E;F/, then

F D ¹u j uıGw 2 Fm for any w 2 Wm and

ujew
ij

2 H 1.ew
ij / for any .w; .i; j // 2

�

m�1
[

kD0

Wk

�

� Bº: (5.3)

Moreover, for any m � 1 and any u; v 2 F,

E.u; v/ D
X

w2Wm

Em.uıGw ; vıGw/ C

m
X

kD1

1

�k

DI
k.u; v/: (5.4)

The next quadratic form resembles the classical resistance form .E�;F�/ on

K� of Theorem 4.5 and it will be precisely the “fractal part” missed by the cable

system/quantum graph approach discussed in the introduction.
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Definition 5.4. Let the quadratic form Q†
m on `.Vm/ be given by

Q†
0 .u; u/ D

X

.i;j /2B

.u.pi / � u.pj //2

for any u 2 `.V0/, and by

Q†
m.u; u/ D

X

w2Wm

Q0.uıGw ; uıGw/

for m � 1 and any u 2 `.Vm/. Moreover, define

F† D
°

u
ˇ

ˇ

ˇ u 2 C.K/ and
°�5

3

�m

Q†
m.u; u/

±

m�0
is a Cauchy sequence

±

;

as well as

E�.u; u/ D lim
m!1

�5

3

�m

Q†
m.u; u/

for u 2 F†.

Definition 5.5. (1) For any m � 1, let

zFm D ¹u j u 2 zF; ujGw.K/ is constant for any w 2 Wmº;

and

zF1 D
[

m�1

zFm:

(2) For any m � 1, let

F�
m D ¹u j u 2 zF; uıGw 2 F� for any w 2 Wmº

and

F�
1 D

[

m�1

F�
m:

Remark. Notice that zFm � F�
m � F† and F� � C.K�/ � zF.

Finally, we introduce the quadratic form DI
� as the weighted sum of Dirichlet

integrals whose weights are given by sequences ¹�mºm�1 � .0; 1/. This form is

the part that mirrors the cable system/quantum graph approach of an energy form

on SSG.
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Definition 5.6. Let � D ¹�mºm�1 be a sequence of positive numbers and for any

u 2 zF, let

DI
�.u; u/ D

1
X

mD1

1

�m

DI
m.u; u/:

(Note that DI
�.u; u/ is well-defined if we allow the value 1.) Moreover, define

F� D ¹u j u 2 zF; DI
�.u; u/ < C1 and there exists ¹unºn�1 � zF1 such that

lim
n!1

DI
�.u � un; u � un/ D 0 and

lim
n!1

un.x/ D u.x/ for any x 2 Kº;

as well as

F�
� D ¹u j u 2 zF \ F†;DI

�.u; u/ < C1 and there exists ¹unºn�1 � F�
1 such that

lim
n!1

E�.u � un; u � un/ D lim
n!1

DI
�.u � un; u � un/ D 0 and

lim
n!1

un.x/ D u.x/ for any x 2 Kº:

Our main result fully characterizes and identifies all resistance forms in RFS

by showing the correspondence between resistance forms on SSG that belong to

RFS and linear combinations of the forms E� and DI
� .

Theorem 5.7. (1) .E;F/ 2 RFS if and only if there exist a � 0; b > 0 and a

sequence � D ¹�mºm�1 � .0; 1/ such that

1
X

mD1

�5

3

�m�1

�m D 1; (5.5)

F D

´

F� if a D 0;

F�
� if a > 0;

(5.6)

and

E.u; v/ D aE�.u; v/ C bDI
�.u; v/

for any u; v 2 F.

(2) If � D ¹�mºm�1 � .0; 1/ satisfies (5.5), then F� � F�
� and

F� D ¹u j u 2 F�
� ; E�.u; u/ D 0º:
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Remark. As we mentioned in the introduction, the case a D 0 was treated in [3]

for a restricted type of sequence �. We would also like to emphasize that, even

though at first sight one might want to apply the abstract result in that paper [3,

Theorem 8.1] in order to obtain (part of) Theorem 9.4, it is not possible to do so

in this setting since in particular the resistance metric associated with .E;F/ does

not lead to a geodesic metric on SSG.

6. Basics on resistance forms

For convenience of the reader, we give in this section a summary of definitions and

basic facts from the theory of resistance forms used within the paper. A detailed

and more extensive exposition of this theory can be found e.g. in [8, 9].

Definition 6.1. Let X be a set. A pair .E;F/ is called a resistance form on X if it

satisfies the following conditions (RF1)–(RF5).

(RF1) F is a linear subspace of `.X/ D ¹u j uW X ! Rº containing constants and

E is a non-negative symmetric quadratic form on F. E.u; u/ D 0 if and

only if u is constant on X .

(RF2) Let � be the equivalence relation on F defined by u � v if and only if u�v

is constant on X . Then, .F=�;E/ is a Hilbert space.

(RF3) If x ¤ y, then there exists u 2 F such that u.x/ ¤ u.y/.

(RF4) For any p; q 2 X ,

sup
° ju.p/ � u.q/j2

E.u; u/

ˇ

ˇ u 2 F;E.u; u/ > 0
±

is finite. The above supremum is denoted by R.E;F/.p; q/ and it is called

the resistance metric on X associated with the resistance form .E;F/.

(RF5) For any u 2 F, Nu 2 F and E. Nu; Nu/ � E.u; u/, where Nu is defined by

Nu.p/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if u.p/ � 1;

u.p/ if 0 < u.p/ < 1;

0 if u.p/ � 0:

Proposition 6.2. If .E;F/ is a resistance form on a set X , then the associated

resistance metric R.E;F/.�; �/ is a distance on X .

If the set X is finite, any resistance form on X is a non-negative quadratic form

on `.X/ � `.X/ that satisfies several conditions stated in the following lemma.
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Lemma 6.3. Let V be a finite set. Then .E; `.V // is a resistance form on V if and

only if there exists .Cpq/p;q2V such that for any p ¤ q 2 V , Cpq D Cqp � 0 and

there exist m � 0 and .p0; p1; : : : ; pm/ 2 V mC1 such that p0 D p; pm D q and

Cpi piC1
> 0 for any i D 0; : : : ; m � 1 and

E.u; v/ D
1

2

X

p;q2V

Cpq.u.p/ � u.q//.v.p/ � v.q//

for any u 2 `.V /.

If the set X is infinite, in many cases a resistance form on X is constructed by

means of a suitable sequence of resistance forms on finite sets that approximate

X as Theorem 6.6 indicates.

Definition 6.4. Let V and U be finite sets satisfying V � U and let .EV ; `.V // and

.EU ; `.U // be resistance forms on V and U respectively. We write .EV ; `.V // �

.EU ; `.U // if and only if

EV .u; u/ D min¹EU .v; v/ j v 2 `.U /; vjV D uº

for any u 2 `.V /. Let Vm be a finite set and let .Em; `.Vm// be a resistance form on

Vm for every m � 0. A sequence of resistance forms ¹.Em; `.Vm//ºm�0 is called

compatible if and only if Vm � VmC1 and .Em; `.Vm// � .EmC1; `.VmC1// for any

m � 0.

Note that if ¹.Em; `.Vm//ºm�0 is a compatible sequence, then, for any func-

tion uW
S

m�0 Vm ! R, the sequence Em.ujVm
; ujVm

/ is monotonically non-

decreasing. By this fact, the following definition makes sense.

Definition 6.5. Let Vm be a finite set and let .Em; `.Vm// be a resistance form on

Vm for every m � 0. If S D ¹.Em; `.Vm//ºm�0 is a compatible sequence, then we

define

FS D ¹u j u 2 V�; lim
m!1

Em.ujVm
; ujVm

/ < 1º;

where V� D
S

m�0 Vm, and for any u; v 2 FS,

ES.u; v/ D lim
m!1

Em.ujVm
; vjVm

/:
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Theorem 6.6 (Theorem 3.13 of [9]). Let Vm be a finite set and let .Em; `.Vm// be a

resistance form on Vm for every m � 0. If S D ¹.Em; `.Vm//ºm�0 is a compatible

sequence, then .ES;FS/ is a resistance form on V�. Furthermore, let RS be the

associated resistance metric on V� and let .X; R/ be the completion of .V�; RS/.

Then, there exists a unique resistance form .E;F/ on X such that for any u 2 F, u

is continuous on .X; R/, ujV�
2 FS and E.u; u/ D ES.ujV�

; ujV�
/. In particular,

R is the resistance metric associated with .E;F/.

An important concept is the notion of trace of a resistance form. This corre-

sponds, roughly speaking, to the restriction of a resistance form to a subset of the

original domain.

Definition 6.7. Let .E;F/ be a resistance form on a set X . For any Y � X , define

FjY D ¹ujY j u 2 Fº

and

F0.Y / D ¹u j u 2 F; ujY � 0º:

Proposition 6.8 (Lemma 8.2 and Theorem 8.4 of [9]). Let .E;F/ be a resistance

form on a set X and let Y � X be non-empty. Then, for any u� 2 FjY , there exists

a unique u 2 F such that ujY D u� and

E.u; u/ D min¹E.v; v/ j v 2 F; vjY D u�º:

Moreover, if we denote u D hY .u�/, then the map hY WFjY ! F is linear. If

we define EjY .u; v/ D E.hY .u/; hY .v// for any u; v 2 FjY , then .EjY ;FjY / is a

resistance form on Y and the associated resistance metric RY is the restriction

onto Y � Y of the resistance metric associated with .E;F/.

Definition 6.9. Let .E;F/ be a resistance form on a set X and let Y � X be non-

empty. The map hY WFjY ! F is called the Y -harmonic extension map associated

with .E;F/ and hY .u�/ is called the Y -harmonic function with boundary value

u� associated with .E;F/. We define H.E;F/.Y / D hY .FjY /. The resistance form

.EjY ;FjY / on Y is called the trace of .E;F/ on Y .

By [9, Lemma 8.5] and the discussion after it, the domain of a resistance form

admits the orthogonal decomposition presented below.
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Proposition 6.10. Let .E;F/ be a resistance form on a set X and let Y � X be

non-empty. Then,

F D H.E;F/.Y / ˚ F0.Y /;

where ˚ represents the direct sum. Moreover, for any u 2 F, the projection of u

onto H.E;F/.Y / associated with the above direct sum is given by hY .ujY / and

E.u; u/ D E.hY .u/; hY .u// C E.u � hY .u/; u � hY .u//:

Finally, Theorem 6.6 along with [9, Theorem 3.14] leads to the following result.

Theorem 6.11. Let .E;F/ be a resistance form on a set X and let R be the

associated resistance metric on X . If ¹Vmºm�0 is an increasing sequence of finite

subsets of X , i.e. Vm � VmC1 � X for any m � 0, then S D ¹.EjVm
; `.Vm//ºm�0

is a compatible sequence of resistance forms. If A is the closure of V� with respect

to R, then for any u 2 FjA, ujV�
2 FS and EjA.u; u/ D ES.ujV�

; ujV�
/.

7. Construction of resistance forms on K

In this section, we explain how to construct resistance forms on K by means

of compatible sequences in a natural way that takes into full consideration the

intrinsic symmetry of K.

Proposition 7.1. .Q†
0 ; `.V0// is a resistance form on V0.

Proof. Since V0 is a finite set, all properties of a resistance form (see Defini-

tion 6.1) are immediately fulfilled. �

Definition 7.2. For each m � 1, define the quadratic form QI
m.�; �/ on `.Vm/ by

QI
1 .u; u/ D

X

.i;j /2B

.u.pij / � u.pj i //
2

for any u 2 `.V1/, and by

QI
m.u; u/ D

X

w2Wm�1

QI
1 .uıGw ; uıGw/

for m � 2 and any u 2 `.Vm/.

Note that neither Q†
m.�; �/ defined in Definition 5.4 nor QI

m.�; �/ are resistance

forms if m � 1 because ˛ 2 .0; 1/. However, we show in the next lemma that

any weighted combination of them actually yields a resistance form on Vm for any

m � 1.
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Lemma 7.3. For any m � 1, let ı; 1; : : : ; m be positive numbers. If

Q.u; u/ D
1

ı
Q†

m.u; u/ C

m
X

kD1

1

k

QI
k.u; u/

for any u 2 `.Vm/, then .Q; `.Vm// is a resistance form on Vm.

Proof. Again, the conditions in Definition 6.1 are fulfilled because Vm is finite.

�

As a first step to construct resistance forms on K, we consider compatible

sequences of resistance forms on the sets Vm. To this purpose, we introduce the

concept of matching pairs of resistances.

Definition 7.4. A pair .r; �/ 2 .0; 1/2 is said to be matching if and only if

5

3
r C � D 1:

The collection of all matching pairs of resistances will be denoted by MP.

The next lemma displays the nature of the definition of matching pairs and it

follows from a straightforward application of the �-Y transform as illustrated in

Figure 3. For details on the �-Y transform see [8, Lemma 2.1.15].

p2

p1

p3

Q†
0

1 1

1

E1

r � r

Figure 3. Renormalization of resistances.

Lemma 7.5. Let r and � be positive real numbers and define the resistance form

.E1; `.V1// on V1 by

E1.u; u/ D
1

r
Q†

1 .u; u/ C
1

�
QI

1 .u; u/

for any u 2 `.V1/. Then, .E1; `.V1// on V1 is compatible with .Q†
0 ; `.V0// on V0

if and only if .r; �/ is matching.
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This result is the basis leading to the relationship between sequences of match-

ing pairs and compatible sequences of resistance forms.

Theorem 7.6. Define

E0.u; u/ D Q†
0 .u; u/

for any u 2 `.V0/ and

Em.u; u/ D
1

ım

Q†
m.u; u/ C

m
X

kD1

1

k

QI
k.u; u/

for any u 2 `.Vm/ and m � 1. Then, ¹.Em; `.Vm//ºm�0 is a compatible sequence

if and only if there exists a sequence of matching pairs ¹.rm; �m/ºm�1 such that

ım D r1 : : : rm and k D r1 : : : rk�1�k

for any m � 1 and any k � 1.

Proof. By definition, ¹.Em; `.Vm//ºm�0 is compatible if and only if .Em; `.Vm//

is compatible with .EmC1; `.VmC1// for all m � 0.

p2

p1

p3mC1

ım ım

ım

mC1ımC1 ımC1

Figure 4. Renormalization of resistances.

By means of the �-Y transform, this is the case if and only if the networks in

Figure 4 are also compatible, i.e. if and only if 5
3
ımC1 C mC1 D ım. Setting

rm D
ımC1

ım
, �m D

mC1

ım
and ı0 D r0 D �0 D 1, we have that .rm; �m/ is matching

and for all m � 0,

ımC1 D rmım and mC1 D �mım:

Applying these equalities recursively leads to the desired statement. �

Notation. We denote by MP
N the collection of sequences of matching pairs of

resistances, i.e.

MP
N D

°

¹.rm; �m/ºm�1

ˇ

ˇ

ˇ rm; �m 2 .0; 1/;
5

3
rm C �m D 1 for any m � 1

±

:
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Definition 7.7. Let R D ¹.rm; �m/ºm�1 2 MP
N and define the quadratic form

ER;m on `.Vm/ to be Em as given in Theorem 7.6. Moreover, define

yFR D ¹u j u 2 `.V�/; lim
m!1

ER;m.ujVm
; ujVm

/ < 1º

and
yER.u; v/ D lim

m!1
ER;m.ujVm

; vjVm
/

for any u; v 2 yFR.

In view of Theorem 7.6 and Theorem 6.6, .yER; yFR/ is a resistance form on

`.V�/ for any R D ¹.rm; �m/ºm�1 2 MP
N. Note that if ¹.rm; �m/ºm�1 2 MP

N,

then rm � 3
5

for any m � 1 and hence ım �
�

3
5

�m
and m �

�

3
5

�m�1
.

Lemma 7.8. Let R D ¹.rm; �m/ºm�1 2 MP
N and let Rm denote the resistance

metric on Vm associated with .ER;m; `.Vm//. Then, diam.Vm; Rm/ � 4 for any

m � 1, where diam.X; d/ is the diameter of the metric space .X; d/ given by

supx;y2X d.x; y/. In particular

ju.x/ � u.y/j2 � 4ER;m.u; u/

for any x; y 2 Vm and u 2 `.Vm/.

Proof. Let q D Gw1:::wm
.pi /. Define qk D Gw1:::wk

.pwk
/ for k D 1; : : : ; m and

set qmC1 D q. Since Gwk
.pwk

/ D pwk
, we have that qk D Gw1:::wk�1

.pwk
/ and

in particular q1 D Gw1
.pw1

/ D pw1
. Since ¹.Em; Vm/ºm�0 is compatible, it holds

that

Rm.qk; qkC1/ D Rm.Gw1:::wk
.pwk

/; Gw1:::wk
.pwkC1

//

D Rk.Gw1:::wk
.pwk

/; Gw1:::wk
.pwkC1

//

� ık:

Therefore,

Rm.pw1
; q/ D Rm.q1; qmC1/ �

m
X

kD1

Rm.qk; qkC1/ �

m
X

kD1

ık �

1
X

kD1

�3

5

�k

D
3

2
:

Thus if x D Gw1:::wm
.pi / and y D Gv1:::vm

.pj /, then

Rm.x; y/ D Rm.x; pw1
/ C Rm.pw1

; pv1
/ C Rm.pv1

; y/ �
3

2
C 1 C

3

2
D 4: �
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The resistance form .yER; yFR/ possesses every symmetry and similarity (which

is inhomogeneous with respect to m) required by the definition of completely

symmetric resistance forms, although a function u in the domain yFR is not a

function on K but on V�.

Lemma 7.9. Let R D ¹.rm; �m/ºm�1 2 MP
N. If R.n/ D ¹.rnCm; �nCm/ºm�1,

then uıGw 2 yF
R.m/ for any m � 1, u 2 yFR and w 2 Wm. Moreover,

yER.u; v/ D
X

w2Wm

1

ım

yER.m/.uıGw ; vıGw/ C

m
X

kD1

1

k

QI
k.u; v/

for any u; v 2 yFR and m � 1.

Proof. Let n; m � 1. For any u 2 yFR it holds that

yER;nCm.u; u/ D
1

ınCm

Q†
nCm.u; u/ C

nCm
X

kDmC1

1

k

QI
k.u; u/ C

m
X

kD1

1

k

QI
k.u; u/

D
X

w2Wm

1

ım

yER.m/;n.uıGw ; uıGw/ C

m
X

kD1

1

k

QI
k.u; u/:

Letting n ! 1 in both sides of the equality leads to the desired result, which

implies that uıGw 2 yFR.m/ for any u 2 yFR and w 2 Wm. �

Lemma 7.10. Let R D ¹.rm; �m/ºm�1 2 MP
N and let R be the resistance metric

on V� associated with .yER; yFR/. If V� is the completion of V� with respect to R,

then the identity map �W V� ! V� is extended to a homeomorphism from .V�; R/

to .†; dE/.

By the above lemma and Theorem 6.6, the resistance form .yER; yFR/ is natu-

rally regarded as a resistance form on † and yFR is thought of as a subset of C.†/.

Proof. Let w 2 W� and let x; y 2 V�. Set p D Gw.x/ and q D Gw.y/. By

Lemma 7.8 and Lemma 7.9,

ju.p/ � u.q/j2

ER.u; u/
� ım

ju.Gw.x// � u.Gw.y//j2

ER.m/.uıGw ; uıGw/
� 4ım

holds for any u 2 yFR. Thus, diam.Gw.V�/; R/ � 4ım. Let ¹xnºn�1 be a

Cauchy sequence in V� with respect to dE . Then, there exists x 2 † such that

dE .x; xn/ ! 0 as n ! 1. If x D �.!1!2 : : :/, then xn 2 G!1:::!m
.V�/ for

sufficiently large n and therefore R.xk; xl / � 4ım for sufficiently large k and l .

Hence, ¹xnºn�1 is a Cauchy sequence in .V�; R/ as well.
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On the other hand, if w; v 2 Wm and w ¤ v, by (RF3), there exists u 2 yFR

such that ujGw.V�/ � 1 and ujGv.V�/ � 0. For any x 2 Gw.V�/ and y 2 Gv.V�/,

we thus have that

1 D ju.x/ � u.y/j2 � yER.u; u/R.x; y/;

which shows that inf¹R.x; y/ j x 2 Gw.V�/; y 2 Gv.V�/º > 0. Hence,

min
°

inf¹R.x; y/ j x 2 Gw.V�/; y 2 Gv.V�/º
ˇ

ˇ

ˇ w; v 2 Wm; w ¤ v
±

> 0:

If ¹ynºn�1 is a Cauchy sequence in .V�; R/, then for any m � 0, there exists

w 2 Wm such that yn 2 Gw.V�/ for sufficiently large n. Thus, ¹ynºn�1 is a

Cauchy sequence in .V�; dE / as well.

Consequently, the identity map from V� to V� is extended to a homeomorphism

between V� and †. �

In order to obtain a resistance form on K from a sequence of matching pairs

of resistances, we need to replace QI
k
.u; u/ by a sum of H 1-inner products on

the line segments ew
ij . The bilinear form that arises in this way preserves many

properties of the former and it is defined for functions in zF.

Definition 7.11. Let R D ¹.rm; �m/ºm�1 2 MP
N. For each m � 1, define

ER;m.u; v/ D
1

ım

Q†
m.u; v/ C

m
X

kD1

1

k

DI
k.u; v/

for any u; v 2 zF, where ım D r1 : : : rm and m D ım�1�m.

We start by establishing some relations between the forms ER;m and ER;m.

Lemma 7.12. For any u 2 zF and m � 1,

QI
m.u; u/ � DI

m.u; u/ (7.1)

and

ER;m.u; u/ � ER;m.u; u/: (7.2)

Proof. For any u 2 H 1.Œ0; 1�/,

.u.1/ � u.0//2 �

Z 1

0

�du

dx

�2

dx:
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Applying this to every ew
ij , we obtain (7.1). Consequently,

ER;m.u; u/ D
1

ım

Q†
m.u; u/ C

m
X

kD1

1

k

QI
k.u; u/

�
1

ım

Q†
m.u; u/ C

m
X

kD1

1

k

DI
k.u; u/

D ER;m.u; u/: �

Lemma 7.13. Assume that .r; �/ 2 MP. Then for any u 2 zF,

Q†
0 .u; u/ �

1

r
Q†

1 .u; u/ C
1

�
DI

1.u; u/: (7.3)

Proof. By Lemma 7.5, we see that

Q†
0 .u; u/ �

1

r
Q†

1 .u; u/ C
1

�
QI

1 .u; u/:

Combining this with Lemma 7.12, we obtain (7.3). �

We can now use these properties in order to show that for any u 2 zF, the

sequence ¹ER;m.u; u/ºm�1 is monotonically non-decreasing.

Lemma 7.14. If ¹.rm; �m/ºm�1 2 MP
N, then

ER;m.u; u/ � ER;mC1.u; u/

for any u 2 zF.

Proof. By Lemma 7.13, it follows that

X

w2Wm

Q†
0 .uıGw ; uıGw/

�
X

w2Wm

� 1

rmC1

Q†
1 .uıGw ; uıGw/ C

1

�mC1

DI
1 .uıGw ; uıGw/

�

:

Multiplying by .ım/�1 and adding
Pm

kD1
1

ık�1�k
DI

k
.u; u/ on both sides of the

inequality, we verify the desired statement. �
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In view of this lemma, ¹ER;m.u; u/ºm�1 converges to a non-negative real

number or infinity as m ! 1. Therefore, the following definition makes sense.

Definition 7.15. Let R D ¹.rm; �m/ºm�1 2 MP
N. Define

FR D ¹u j u 2 zF; lim
m!1

ER;m.u; u/ < 1º

and

ER.u; v/ D lim
m!1

ER;m.u; v/

for any u; v 2 FR.

The next theorem is the main result of this section. It shows that resistance

forms on K constructed from a sequence of matching pairs R are completely

symmetric resistance forms. In addition, it provides an explicit expression of their

corresponding resolution.

Theorem 7.16. Let R D ¹.rm; �m/ºm�1 2 MP
N. Then, .ER;FR/ 2 RFS . More

precisely, if R.n/ D ¹.rnCm; �nCm/ºm�1 2 MP
N for any n � 0, then the resolution

of .ER;FR/ is given by ¹..ım/�1E
R.m/ ;FR.m/ ; m/ºm�0, where ım D r1: : :rm and

m D ım�1�m for any m � 0.

In order to show this theorem, we need several lemmas.

Lemma 7.17. Let R D ¹.rm; �m/ºm�1 2 MP
N. For any x ¤ y 2 K, there exists

u 2 zF1 such that u.x/ ¤ u.y/.

Proof. If either x or y belong to Kn†, for instance x 2 Kn†, then there exists

w 2 W� such that x 2 Gw.eij n¹pij ; pj iº/. In this case, there exists ujew
ij

2 H 1.ew
ij /

such that ujew
ij

.x/ D 1 and ujew
ij

.Gw.pij // D ujew
ij

.Gw.pj i // D 0. Letting

u.z/ D 0 for any z 2 Knew
ij , we obtain the desired function u 2 zFjwjC1.

If x; y 2 †, then there exist m � 1, w 2 Wm and v 2 Wm such that x 2 Gw.K/,

y 2 Gv.K/ and Gw.K/ \ Gv.K/ D ;. Now, there is a function u 2 zFm such that

ujGw.K/ D 1 and ujGv.K/ D 0. �

The following lemma is straightforward from the definition of ER;m, FR and

ER.



252 P. Alonso Ruiz, U. R. Freiberg, and J. Kigami

Lemma 7.18. LetR D ¹.rm; �m/ºm�1 2 MP
N and letR.n/ D ¹.rmCn; �mCn/ºm�1

for any n � 0. Then,

FR D
°

u
ˇ

ˇ

ˇ uW K �! R; uıGw 2 FR.n/ for any w 2 Wn;

ujew
ij

2 H 1.ew
ij / for any .w; .i; j // 2

�

n�1
[

kD0

Wk

�

� B
±

and for any u 2 FR,

ER.u; u/ D
1

ın

X

w2Wn

ER.n/.uıGw ; uıGw/ C

n
X

kD1

1

k

DI
k.u; u/:

Lemma 7.19. Let R D ¹.rm; �m/ºm�1 2 MP
N. If w 2 Wm, then

ju.x/ � u.y/j2 � 16ımER.u; u/ (7.4)

for any u 2 FR and x; y 2 Gw.K/.

Proof. First we show the case when m D 0 and w D ;, namely

ju.x/ � u.y/j2 � 16ER.u; u/ (7.5)

for any u 2 FR and x; y 2 K. Let x; y 2 B� WD
S

.w;.i;j //2W��B ew
ij . Then,

x 2 Gw.eij /; y 2 Gv.ekl / for some w; v 2 W� and .i; j /; .k; l/ 2 B . Set

p D Gw.pi / and q D Gv.pk/. Since n D ın�1�n � 1 for any n � 1, it follows

that

ju.x/ � u.p/j2 � jwjC1

1

jwjC1

Dew
ij

.u; u/ � jwjC1ER;jwjC1.u; u/ � ER.u; u/:

In the same way, we obtain ju.y/�u.q/j2 � ER.u; u/. Setting m D max¹jwj; jvjº,

Lemma 7.8 and (7.2) yield

ju.p/ � u.q/j2 � 4ER;m.u; u/ � 4ER;m.u; u/ � 4ER.u; u/:

Combining these inequalities, we have

ju.x/ � u.y/j2 � .ju.x/ � u.p/j C ju.p/ � u.q/j C ju.q/ � u.y/j/2 � 16ER.u; u/:

Since zF � C.K/ and B� is dense in K with respect to the Euclidean metric, (7.5)

holds for any x; y 2 K.
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Consider now w 2 Wm with m � 1, and set x D Gw.x0/ and y D Gw.y0/.

For any u 2 FR, Lemma 7.18 implies that uıGw 2 F
R.m/ . Applying (7.5) to

.E
R.m/ ;FR.m// and using again Lemma 7.18, we see that

ju.x/ � u.y/j2 D ju.Gw.x0// � u.Gw.y0//j2

� 16E
R.m/.u ı Gw ; u ı Gw/

� 16ımER.u; u/: �

Proof of Theorem 7.16. We start by showing that .ER;FR/ is a resistance form

on K.

(RF1) By definition, FR � C.K/ and ER is a non-negative quadratic form on

FR. Moreover, if ER.u; u/ D 0, then ER;m.u; u/ D 0 for any m � 0. This

implies that u is constant on ew
ij and Gw.V0/ for any .w; .i; j // 2 Wm � B .

Therefore, u is constant on K and (RF1) holds.

(RF2) It suffices to prove that .FR;0;ER/ is complete, where

FR;0 D ¹u j u 2 FR; u.p1/ D 0º:

Let ¹unºn�1 be a Cauchy sequence in .FR;0;ER/. By (7.4),

jun.x/ � um.x/j2 D j.un � um/.p1/ � .un � um/.x/j2

� 16ER.un � um; un � um/:

This implies that ¹unºn�1 converges uniformly on K as n ! 1. Let u be

its limit. Then unjew
ij

converges to ujew
ij

in the sense of H 1.ew
ij / and hence

ujew
ij

2 H 1.ew
ij /. If m � n,

ER;k.un � um; un � um/ � ER.un � um; un � um/

� sup
m�n

ER.un � um; un � um/:

Letting first m ! 1 and afterwards k ! 1, we see that u 2 FR and

ER.un � u; un � u/ � sup
m�n

ER.un � um; un � um/:

Letting n ! 1, we finally verify ER.un � u; un � u/ ! 0 as n ! 1.

Thus, .FR;0;ER/ is complete.

(RF3) follows from Lemma 7.17.

(RF4) is immediate by Lemma 7.19.
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(RF5) Note that for any u 2 FR and any m � 1,

Q†
m. Nu; Nu/ � Q†

m.u; u/ and DI
m. Nu; Nu/ � DI

m.u; u/: (7.6)

This implies that ER;m. Nu; Nu/ � ER;m.u; u/ for any m � 1, hence Nu 2 FR

and ER. Nu; Nu/ � ER.u; u/.

Thus we have shown that .ER;FR/ is a resistance form on K. Let us prove

next that the identity map from .K; dE/ to .K; R/ is continuous. Assume that

dE .xn; x/ ! 0 as n ! 1. For the moment, we consider the following two

cases (I) and (II).

(I) There exists .w; .i; j // 2 W� � B such that ¹xnºn�1 � ew
ij and x 2 ew

ij .

(II) There exists ¹w.n/ºn�1 � W� such that x; xn 2 Gw.n/.K/ and we have

limn!1 jw.n/j D 1.

Assume (I). Since for any u 2 FR

ju.xn/ � u.x/j2

ER.u; u/
�

ju.xn/ � u.x/j2

jwj
�1Dew

ij
.u; u/

� jwj

dE .xn; x/

dE .Gw.pij /; Gw.pj i //
;

it follows that R.xn; x/ � mdE .xn; x/=dE .Gw.pij /; Gw.pj i // and hence we get

R.xn; x/ ! 0 as n ! 1.

Assume (II). Then Lemma 7.19 yields R.xn; x/ � 16ıjw.n/j, which immedi-

ately implies that R.xn; x/ ! 0 as n ! 1.

Let us now consider general cases. If x 2 KnB�, then there exists w1w2 : : : 2

SN such that x D
T

m�1 Gw1:::wm
.K/ and x belongs to the interior of Gw1:::wm

.K/

for any m � 1. Thus, if dE .xn; x/ ! 0 as n ! 0, then we have case (II). If x

belongs to the interior of ew
ij for some .w; .i; j // 2 W� � B , then we have case (I).

Finally, if x D Gw.pij / and dE .xn; x/ ! 0 as n ! 0, then we can decompose

¹xnºn�1 into ¹xn j xn 2 ew
ij º and ¹xn j xn 2 Knew

ij º (either one may be empty).

Applying case (I) and case (II) to the first part and the second part respectively, we

verify that R.xn; x/ ! 0 as n ! 1. Thus, we have shown that the identity from

.K; dE / to .K; R/ is continuous. Since .K; dE / is compact, so is .K; R/ and the

inverse is continuous as well. Therefore, R gives the same topology as dE . Notice

that by definition, ER;m.u; u/ D ER;m.uı'; uı'/ for any ' 2 GK and hence the

same holds for ER.

Finally, applying Lemma 7.18, we conclude that .ER;FR/ 2 RFS and its

resolution is ¹..ım/�1ER.m/ ;FR.m/ ; m/ºm�0. �
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8. Identification of RFS with the resistance forms from matching pairs

In the previous section, we proved that any resistance form .ER;FR/ derived from

a sequence of matching pairs R is completely symmetric. This section focuses

on the converse statement by proving in Theorem 8.11 that, up to multiplication

by a constant, any completely symmetric resistance form can be obtained from a

sequence of matching pairs.

First of all, notice that since .E;F/ 2 RF
.0/
S is symmetric and V0 has only three

points, one immediately arrives to the following fact.

Lemma 8.1. For any .E;F/ 2 RF
.0/
S , there exists r0 > 0 such that

EV0
.u; v/ D

1

r0

Q†
0 .u; v/

for any u; v 2 `.V0/, where EV0
is the trace of .E;F/ on V0.

See Proposition 6.8 for the definition of trace of a resistance form.

Proof. Since .E;F/ 2 RF
.0/
S , the trace EV0

has the same symmetry as the equilat-

eral triangle p1p2p3. Therefore, EV0
must be a constant multiple of Q†

0 . �

Resistance forms whose trace on V0 coincides with Q†
0 will play a special role

in the forthcoming discussion.

Definition 8.2. For .E;F/ 2 RF
.0/
S , define r0.E;F/ to be the constant r0 given in

Lemma 8.1. Furthermore, define

RFN
S D ¹.E;F/ j .E;F/ 2 RFS ; r0.E;F/ D 1º:

The superscript “N” in RFN
S represents the word “normalized” since we have

r0.E;F/ D 1.

Lemma 8.3. Let .E;F/ 2 RFS and let ¹.Em;Fm; �m/ºm�0 � RF
.0/
S �.0; 1/ be the

resolution of .E;F/. If ım D r0.Em;Fm/ for m � 0, then .ım=ım�1; �m=ım�1/ 2

MP.

Proof. From Definition 5.2, we know that Fm D ¹uıGi j u 2 Fm�1º for any i 2 S

and ¹ujeij
W u 2 Fm�1º D H 1.eij / for any .i; j / 2 B . Therefore, equality (5.2)

yields

Em�1jV1
.u; v/ D

1

ım

Q†
1 .u; v/ C

1

�m

QI
1 .u; v/
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for any u; v 2 Fm�1jV1
D `.V1/, where .Em�1jV1

;Fm�1jV1
/ is the trace of

.Em�1;Fm�1/ on V1 (see Definition 6.7). On the other hand,

Em�1jV0
.u; v/ D

1

ım�1

Q†
0 .u; v/

for any u; v 2 Fm�1jV0
D `.V0/. Since .Em�1jV1

; `.V1// and .Em�1jV0
; `.V0// are

compatible, Lemma 7.5 shows that .ım=ım�1; �m=ım�1/ 2 MP. �

Due to the above lemma, it is possible to associate a sequence of matching

pairs to any .E;F/ 2 RFS .

Definition 8.4. Let .E;F/ 2 RFS and let ¹.Em;Fm; �m/ºm�0 � RF
.0/
S �

.0; 1/ be the resolution of .E;F/. We define R.E;F/ 2 MP
N by R.E;F/ D

¹.ım=ım�1; �m=ım�1/ºm�1, where ım D r0.Em;Fm/.

We show next that for each .E;F/ 2 RFS and m � 1, multiplied by r0.E;F/, its

trace EjVm
on Vm coincides with the resistance form introduced in Definition 7.7

associated with the sequence of matching pairs R.E;F/.

Lemma 8.5. For any .E;F/ 2 RFS and any m � 1, r0.E;F/EjVm
D ER.E;F/;m.

Proof. Let ¹.Em;Fm; �m/ºm�0 be the resolution of .E;F/ and set ım Dr0.Em;Fm/.

By Proposition 5.3, Fm D ¹uıGw j u 2 Fº, and Fjew
ij

D H 1.ew
ij / for any m � 1

and any .w; .i; j // 2 Wm � B . Hence, it follows from (5.4) that

EjVm
.u; v/ D

X

w2Wm

1

ım

Q†
0 .uıGw ; uıGw/ C

m
X

kD1

1

�k

QI
k .u; v/ D

1

ı0

ER;m.u; v/

(8.1)

for any u; v 2 `.Vm/. �

Lemma 8.6. Let .E;F/ 2 RFS and let u� 2 Fj†. If u is the †-harmonic function

with respect to .E;F/ with boundary value u�, then

ujew
ij

..1 � t /Gw.pij / C tGw.pj i // D .1 � t /u�.Gw.pij // C tu�.Gw.pj i //

for any t 2 Œ0; 1� and any .w; .i; j // 2 W� � B .

Proof. Since the restriction of a †-harmonic function to a line segment ew
ij is

a harmonic function with respect to the Dirichlet integral, it must be an affine

function. �
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The harmonic functions determined in the previous lemma provide the defi-

nition of the trace of .E;F/ on †. We will denote the subspace of †-harmonic

functions by H.E;F/.†/ and its counterpart by F.†/. The latter domain is charac-

terized in the following lemma.

Lemma 8.7. Let .E;F/ 2 RFS and let ¹.Em;Fm; �m/ºm�0 � RF
.0/
S � .0; 1/ be

the resolution of .E;F/. If F.†/ D ¹u j u 2 F; uj† D 0º, then

F.†/ D
°

u
ˇ

ˇ

ˇ uW K ! R; ujew
ij

2 H 1.ew
ij / for any .w; .i; j // 2 W� � B;

uj† � 0;

1
X

kD1

1

�k

DI
k.u; u/ < C1

±

:
(8.2)

Moreover, for any u 2 F.†/,

E.u; u/ D

1
X

kD1

1

�k

DI
k.u; u/: (8.3)

Proof. By Proposition 5.3, if u 2 F.†/, then u belongs to the set on the right-hand

side of (8.2). Conversely, suppose that u belongs to the set on the right-hand side

of (8.2). Define unW K ! R as

un.x/ D

8

<

:

u.x/ if x 2
S

.w;.i;j //2
�

Sn�1
kD0 Wk

�

�B
ew

ij ;

0 otherwise.

In view of (5.3), un 2 F, and if m � n, it follows from (5.4) that

E.un � um; un � um/ D

m
X

kDnC1

1

�k

DI
k.u; u/:

Because
P1

kD1
1

�k
DI

k
.u; u/ < 1, the sequence ¹unºn�1 is Cauchy in .E;Fp1

/,

where Fp1
D ¹u j u 2 F; u.p1/ D 0º and since .E;Fp1

/ is complete, there exists

Qu 2 Fp1
such that E. Qu � un; Qu � un/ ! 0 as n ! 1. Moreover, for any x 2 K,

jun.x/ � Qu.x/j2 D jun.x/ � Qu.x/ � .un.p1/ � Qu.p1//j2

� E.un � Qu; un � Qu/R.x; p1/;

where R.�; �/ is the resistance metric associated with .E;F/. This implies that

un.x/ ! Qu.x/ as n ! 1. On the other hand, for any x 2 K, un.x/ ! u.x/ as

n ! 1. Hence, u D Qu 2 F and

E.u; u/ D lim
n!1

E.un; un/ D

1
X

kD1

1

�k

DI
k.u; u/: �
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We see next that the subspaces H.E;F/.†/ and F.†/ actually provide an or-

thogonal decomposition of the domain of the resistance forms .E;F/ 2 RFS .

Theorem 8.8. Let .E;F/ 2 RFS and let ¹.Em;Fm; �m/ºm�0 � RF
.0/
S � .0; 1/ be

the resolution of .E;F/. Then,

F D H.E;F/.†/ ˚ F.†/ (8.4)

and for any u 2 F,

E.u; u/ D Ej†.uj†; uj†/ C

1
X

kD1

1

�k

DI
k.u � h†.u/; u � h†.u//; (8.5)

where h†.u/ denotes the †-harmonic extension of uj†.

Proof. The direct sum decomposition (8.4) follows from Proposition 6.10. Com-

bining Proposition 6.10 and Lemma 8.7 we immediately verify (8.5). �

Corollary 8.9. Let .E;F/; .E0;F0/ 2 RFS . Then, the following conditions are

equivalent:

(E1) .E;F/ D .E0;F0/;

(E2) .EjVm
; `.Vm// D .E0jVm

; `.Vm// for any m � 0;

(E3) .Ej†;Fj†/ D .E0j†;F0j†/;

(E4) R.E;F/ D R.E0;F0/ and r0.E;F/ D r0.E0;F0/.

Proof. By Theorem 6.11, (E2) implies (E3). Since .Ej†/jVm
D EjVm

and

.E0j†/jVm
D E0jVm

, we see that (E3) implies (E2). In view of Lemma 8.5, (E4)

implies (E2). Conversely, assume that (E2) holds. Since EjV0
D E0jV0

, then

r0.E;F/ D r0.E0;F0/ and by Lemma 8.5 we obtain ER.E;F/;m D ER.E0;F0/;m for

any m � 1. Therefore, it follows that R.E;F/ D R.E0;F0/ and hence we have (E4).

Moreover, (E1) immediately implies (E3) and it only remains to verify that (E3)

implies (E1).

Let us assume (E2), (E3), and (E4). By Lemma 8.6, if h†WFj† ! F and

h0j†WF0j† ! F0 are the †-harmonic extension maps associated with .E;F/

and .E0;F0/ respectively, then h† D h0
† and hence H.E;F/.†/ D H.E0;F0/.†/.

If ¹.Em;Fm; �m/ºm�0 and ¹.E0
m;F0

m; �0
m/ºm�0 are the resolutions of .E;F/ and

.E0;F0/ respectively, then (8.1) implies that �m D �0
m. Lemma 8.7 thus yields

F.†/ D F0.†/ and by (8.4) it follows that F D F0. Finally, since .Ej†;Fj†/ D

.E0j†;F0j†/ and �m D �0
m for any m � 0, (8.5) shows that E.u; u/ D E0.u; u/ for

any u 2 F D F0, hence .E;F/ D .E0;F0/. �
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Resistance forms on K constructed by means of sequences of matching pairs

as explained in Section 7 have the property of belonging to RFN
S .

Lemma 8.10. Let R 2 MP
N. Then r0.ER;FR/ D 1.

Proof. Let f W V0 ! R and let u be the V0-harmonic function with respect to

.yER; yFR/ with boundary value f . Since .yERjV0
; yFRjV0

/ D .Q†
0 ; `.V0//, we have

yER.u; u/ D Q†
0 .f; f /:

By Lemma 7.10, yFR � C.†/ and hence u 2 C.†/. For any .w; .i; j // 2 W� � B ,

we extend the domain of u to each ew
ij by defining

'jew
ij

..1 � t /Gw.pij / C tGw.pj i // D .1 � t /u.Gw.pij // C tu.Gw.pj i //

for any t 2 Œ0; 1� and 'j† D u. In this manner, u is extended to a function ' on K

such that ' 2 zF. Since for any m � 1

Q†
0 .f; f / D ER;m.'; '/ D ER;m.'; '/;

' 2 FR and ER.'; '/ D Q†
0 .f; f /. Now, if v 2 FR and vjV0

D f , (7.2) yields

ER.'; '/ D Q†
0 .f; f / � ER;m.v; v/ � ER;m.v; v/ � ER.v; v/:

Therefore, ' is the V0-harmonic function with respect to .ER;FR/ with boundary

value f and hence ERjV0
D Q†

0 . This shows r0.ER;FR/ D 1. �

We conclude this section by showing that

RFS D ¹.ıER;FR/ j R 2 MP
N; ı > 0º:

Theorem 8.11. We have

(1) R.ER;FR/ D R for any R 2 MP
N;

(2) .ER.E;F/
;FR.E;F/

/ D .r0.E;F/E;F/ for any .E;F/ 2 RFS .

In particular, the map R 2 MP
N ! .ER;FR/ 2 RFN

S is bijective.

Proof. (1) Let R D ¹.rm; �m/ºm�1. By Theorem 7.16, the resolution of .ER;FR/

is given by ¹..ım/�1ER.m/ ;FR.m/ ; m/ºm�0, where ım D r1: : :rm and m D

ım�1�m. By Lemma 8.10, r0..ım/�1ER.m/ ;FR.m// D ım and therefore we obtain

R.ER;FR/ D R.

(2) Without loss of generality, we may assume that r0.E;F/ D 1. Set R D

R.E;F/. Applying (1), R.ER;FR/ D R and by Lemma 8.10, r0.ER;FR/ D 1 D

r0.E;F/. Thus, condition (E4) in Corollary 8.9 is satisfied and hence .ER;FR/ D

.E;F/. �
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Remark. This result reveals that RFN
S is in fact the set of fixed points of the

mapping

ˆWRFS �! RFS ;

.E;F/ 7�! .r0.E;F/�1ER.E;F/
;FR.E;F/

/:

9. Classification of resistance forms derived from matching pairs

In the previous section we have identified any complete symmetric resistance form

on SSG with a resistance form .ER;FR/ derived from a sequence of matching pairs

R up to multiplication by a constant. The present section analyzes the detailed

structure of .ER;FR/ by decomposing it into two parts, called the SG part in

allusion to the reminiscence of SG in SSG, and the line part that corresponds

to the cable system/quantum graph approach. In Theorem 9.4 we use a certain

property of the sequence R to determine when the SG part is non-trivial and

therefore captures the reminiscence of the SG in the geometric structure of SSG.

Let R D ¹.rm; �m/ºm�1 2 MP
N and set ım D r1: : :rm and m D ım�1�m. For

any u 2 FR and m � 1,

m
X

kD1

1

k

DI
k.u; u/ � ER.u; u/

and the left-hand side is monotonically increasing with respect to m. We can thus

define EI
R

.u; u/ as

EI
R

.u; u/ D

1
X

kD1

1

k

DI
k.u; u/: (9.1)

Moreover, we define

E†
R

.u; u/ D ER.u; u/ � EI
R

.u; u/ (9.2)

and therefore

E†
R

.u; u/ D lim
m!1

1

ım

Q†
m.u; u/:

Notice that both E†
R

and EI
R

are non-negative quadratic forms on FR. As a

consequence, it follows that

ER.u; v/ D E†
R

.u; v/ C EI
R

.u; v/:

We call E†
R

(resp. EI
R

) the SG part (resp. the line part) of ER. It is easy to see

that, in order for ER to be a resistance form, the line part should be non-zero.

On the contrary, the SG part may vanish, as we will see in the the course of our

discussion.
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The following useful lemma is an exercise of undergraduate calculus.

Lemma 9.1. Let ¹.rm; �m/ºm�1 2 MP
N and define

�m D � log .1 � �m/:

The following three conditions are equivalent:

(a)
P1

mD1 �m < C1,

(b)
P1

mD1 �m < C1,

(c) There exists C > 0 such that

C
�3

5

�m

� r1r2 : : : rm

for any m � 1.

Note that �m D log 3
5

� log rm for each m � 1. Thus if
P1

mD1 �m < C1 and

we set � D
P1

mD1 �m, then

r1r2: : :rm D e��e
P

i�mC1 �i

�3

5

�m

:

With this equality one is led to the following lemma.

Lemma 9.2. Let ¹.rm; �m/ºm�1 2 MP
N. There exist C� > 0 and a sequence

¹cmºm�1 such that limm!1 cm D 0 and

1

r1r2 : : : rm

D C�

�5

3

�m

.1 � cm/

if and only if
P1

mD1 �m < 1. Moreover, if
P1

mD1 �m < 1, then C� D
Q1

mD1.1 � �m/�1, cm � 0 for any m � 0, and ¹cmºm�1 is monotonically

decreasing.

Definition 9.3. Define FR;� D FR \ C.K�/.

As announced at the beginning of the section, the next theorem reveals the

sufficient condition for the survival of E†
R

, that is
P1

mD1 �m < 1. In the next

section, this condition will be seen to be necessary as well.

Theorem 9.4. Let R D ¹.rm; �m/ºm�1 2 MP
N. FR;� consists of constants if and

only if
P1

mD1 �m D 1. Furthermore, if
P1

mD1 �m < 1, then F� � FR;� and

ER.u; u/ D E†
R

.u; u/ D C�E
�.u; u/

for any u 2 F�, where C� D
Q1

mD1.1 � �m/�1.
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Proof. For each m � 1, set ım D r1: : :rm. If
P1

mD1 �m < 1, then Lemma 9.2

yields

ER;m.u; u/ D
1

ım

Q†
m.u; u/ D C�.1 � cm/

�5

3

�m

Q†
m.u; u/

for any u 2 F�. By Theorem 4.5 we now have that

ER.u; u/ D lim
m!1

1

ım

Q†
m.u; u/ D C�E

�.u; u/

and hence F� � FR;�. On the other hand, if
P1

mD1 �m D 1, then for any

u 2 C.K�/,

ER;m.u; u/ D
1

ım

Q†
m.u; u/ D

1

ım

�3

5

�m

�
�5

3

�m

Q†
m.u; u/:

From Lemma 9.1, it follows that 1
ım

�

3
5

�m
is unbounded as m ! 1 and by

Proposition 4.4, limm!1

�

5
3

�m
Q†

m.u; u/ > 0 unless u is constant. Therefore,

u 2 FR if and only if u is constant. �

We conclude this section with some preliminary results concerning the do-

mains of the SG part and the line part.

Definition 9.5. Let R 2 MP
N. Define

FI
R

D ¹u j u 2 FR; E†
R

.u; u/ D 0º;

F†
R

D ¹u j u 2 FR; EI
R

.u; u/ D 0º:

Lemma 9.6. Let R 2 MP
N. Then,

FI
R

D ¹u j u 2 FR; E†
R

.u; v/ D 0 for any v 2 FRº

and

F†
R

D ¹u j u 2 FR; EI
R

.u; v/ D 0 for any v 2 FRº:

Proof. Let us consider first FI
R

. Applying the Cauchy–Schwartz inequality,

E†
R

.u; v/2 � E†
R

.u; u/E†
R

.v; v/

for any u; v 2 FR. Therefore, if u 2 FI
R

, then E†
R

.u; v/ D 0 for any v 2 FR. The

converse direction is obvious. The argument for F†
R

works verbatim. �

Lemma 9.7. Let R 2 MP
N. Then, F†

R
D FR \ C.K�/.

Proof. If u 2 FR \ C.K�/, then u is constant on every ew
ij . Therefore we

have EI
R

.u; u/ D 0 and hence u 2 F†
R

. Conversely, assume that u 2 F†
R

.

Then, Dew
ij

.ujew
ij

; ujew
ij

/ D 0 for every ew
ij and hence u is constant on ew

ij . Thus,

u 2 C.K�/. �
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10. Projection to the line part

Let us define .MP
N/I � MP

N by

.MP
N/I D

°

R

ˇ

ˇ

ˇ R 2 MP
N; .ER;FR/ D .EI

R
;FI

R
/
±

: (10.1)

In this section, we are going to introduce a natural projection LWMP
N ! .MP

N/I

and through an explicit expression of this mapping, it will be shown in Theo-

rem 10.9 that

.MP
N/I D

°

R

ˇ

ˇ

ˇ R D ¹.rm; �m/ºm�1 2 MP
N;

1
X

mD1

�m D 1
±

:

In other words, the converse of Theorem 9.4 holds, i.e.
P1

mD1 �m D 1 if and

only if ER D EI
R

, or equivalently E†
R

D 0.

Before doing so, we present some results concerning a general theory that is

not confined to resistance forms on K and is applicable in very abstract settings.

Let .E;F/ be a resistance form on a set X and let R be the associated resistance

metric. Assume that there exist non-negative symmetric quadratic forms E.1/.�; �/

and E.2/.�; �/ on F � F such that

E.u; v/ D E.1/.u; v/ C E.2/.u; v/

for any u; v 2 F. Define F.2/ D ¹u j u 2 F; E.1/.u; u/ D 0º and note that

E.u; v/ D E.2/.u; v/

for any u; v 2 F.2/. As in Definition 6.1, for any u; v 2 F we define u � v if and

only if u � v is constant.

Lemma 10.1. .F.2/=�;E/ is a closed subspace of .F=�;E/.

Proof. Let x 2 X and set F
.2/
x D ¹uju 2 F.2/; u.x/ D 0º and Fx D ¹uju 2

F; u.x/ D 0º. It suffices to show that .F
.2/
x ;E/ is a closed subspace of .Fx ;E/.

Let ¹unºn�1 2 F
.2/
x and suppose that E.un � u; un � u/ ! 0 as n ! 1 for some

u 2 Fx . Then,

E.1/.u � un; u � un/ D E.1/.un; un/ � 2E.1/.un; u/ C E.1/.u; u/ ! 0

as n ! 1. Since E.1/.un; un/ D 0 and E.1/.un; u/2 � E.1/.un; un/E.1/.u; u/, it

follows that E.1/.u; u/ D 0. Thus, .F
.2/
x ;E/ is closed and so is .F.2/=�;E/. �
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Using the above lemma, we may easily verify the following statement.

Theorem 10.2. .E;F.2// is a resistance form on X if the following two conditions

are satisfied:

(1) for any x ¤ y 2 X , there exists u 2 F.2/ such that u.x/ ¤ u.y/;

(2) for any u 2 F, E.1/. Nu; Nu/ � E.1/.u; u/ and E.2/. Nu; Nu/ � E.2/.u; u/.

Proof. (RF1) and (RF4) hold because F.2/ � F and .E;F/ is a resistance form.

(RF3) is condition (1) and (RF5) is condition (2). To prove (RF2), notice that

.F= �;E/ is complete because .E;F/ is a resistance form. By Lemma 10.1,

.F.2/=�;E/ is a closed subspace of .F=�;E/ and hence also complete. �

Back to resistance forms on SSG, we start by constructing the projection L

from MP
N onto .MP

N/I .

Theorem 10.3. Let R D ¹.rm; �m/ºm�1 2 MP
N. If

FI
R

D ¹u j u 2 FR;E†
R

.u; u/ D 0º;

then we have that .EI
R

;FI
R

/ 2 RFS and that the resolution of .EI
R

;FI
R

/ is given by

¹..ım/�1EI
R.m/ ;F

I
R.m/ ; m/ºm�0, where ım D r1: : :rm and m D ım�1�m for any

m � 1. Moreover, r0.EI
R

;FI
R

/ � 1 and there exists a unique R0 2 MP
N such that

.r0.EI
R

;FI
R

/EI
R

;FI
R

/ D .ER0 ;FR0/.

To prove this theorem, we need the following lemma.

Lemma 10.4. We have

FI
R

D
®

u
ˇ

ˇ u 2 C.K/; uıGi 2 FI
R.1/ for any i 2 S;

ujeij
2 H 1.eij / for any .i; j / 2 B

¯

and

EI
R

.u; u/ D
X

i2S

1

r1

EI
R.1/.uıGi ; uıGi / C

1

�1

DI
1 .u; u/ (10.2)

for any u 2 FI
R

.

Proof. Note that for any m � 1 and u 2 FI
R

,

1

ım

Q†
m.u; u/ D

1

ım

X

i2S

Q†
m�1.uıGi ; uıGi /:
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By definition, u 2 FI
R

if and only if u 2 FR and

lim
m!1

1

ımC1

Q†
m.uıGi ; uıGi / D 0

for any i 2 S , i.e. u 2 FI
R

if and only if u 2 FR and uıGi 2 FI
R.1/ . This imme-

diately implies the desired equivalence. Since ¹..ım/�1ER.m/ ;FR.m/ ; m/ºm�0 is

the resolution of .ER;FR/, we obtain (10.2). �

Proof of Theorem 10.3. Applying Theorem 10.2 to .ER;FR/ with E.1/ D E†
R

and

E.2/ D EI
R

, we see that .EI
R

;FI
R

/ is a resistance form on K.

Moreover, by Lemma 10.4, u 2 FI
R

if and only if ujGi .K/ 2 FI
R

jGi .K/ for any i 2 S

and ujeij
2 H 1.eij /. If R.�; �/ and RI .�; �/ are the resistance metrics associated

with .ER;FR/ and .EI
R

;FI
R

/ respectively, then

RI .x; y/ D sup
° ju.x/ � u.y/j2

ER.u; u/

ˇ

ˇ

ˇ u 2 FI
R

; u.x/ ¤ u.y/
±

� R.x; y/ (10.3)

for any x; y 2 K. Hence, the identity map � from .K; R/ to .K; RI / is continuous

and since .K; R/ is compact, the map � is a homeomorphism. Furthermore, EI
R

is invariant under all geometric symmetries of K because ER is. Combining

these previous facts, we conclude that .EI
R

;FI
R

/ 2 RF
.0/
S . Applying (10.2) to

.EI
R.m/ ;F

I
R.m// repeatedly, we get that .EI

R
;FI

R
/ 2 RFS and its resolution is

¹..ım/�1EI
R.m/ ;F

I
R.m/ ; m/ºm�0. Finally,

r0.EI
R

;FI
R

/ D
3

2
RI .p1; p2/ �

3

2
R.p1; p2/ D 1

and the existence of R0 2 MP
N follows immediately from Theorem 8.11. �

Definition 10.5. For any R 2 MP
N, L.R/ 2 MP

N is defined as R0 given in

Theorem 10.3.

Lemma 10.6. Let R 2 MP
N. If L.R/ D ¹.sm; �m/ºm�1, then

1
X

mD1

�m D 1: (10.4)

Proof. Notice that for any u 2 F� \ FL.R/, u is constant on every ew
ij and hence

EL.R/.u; u/ D r0.EI
R

;FI
R

/EI
R

.u; u/ D 0. Since .EL.R/;FL.R// is a resistance

form, u is constant on K. By Theorem 9.4, we see that
P1

mD1 �m D 1. �
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The next lemma gives an explicit expression of L.R/, which plays an essential

role in the rest of the section.

Lemma 10.7. Let R D ¹.rm; �m/ºm�1 2 MP
N and let �0 D r0.EI

R
;FI

R
/. If

L.R/ D ¹.sm; �m/ºm�1, then

�0

m�1
Y

iD1

.1 � �i / D

m�1
Y

iD1

.1 � �i / � .1 � �0/ (10.5)

for any m � 1. In particular,

�m D

m�1
Y

iD1

.1 � �i /

m�1
Y

iD1

.1 � �i / � .1 � �0/

�m (10.6)

and

�m D

�0

m�1
Y

iD1

.1 � �i /

�0

m�1
Y

iD1

.1 � �i / C .1 � �0/

�m: (10.7)

Proof. For .w; .i; j // 2 W� � B , choose u 2 FR so that u.x/ D 0 for any x … ew
ij

and ER.u; u/ > 0. Then, u 2 FI
R

and �0E
I
R

.u; u/ D ER0.u; u/ D EI
R0.u; u/.

Hence, we get

r1r2 : : : rm�1�m D �0s1s2 : : : sm�1�m (10.8)

for any m � 1, which yields

�m

m�1
Y

iD1

.1 � �i / D �0�m

m�1
Y

iD1

.1 � �i /: (10.9)

By induction, we obtain (10.5). �

Lemma 10.8. Let R D ¹.rm; �m/ºm�1 2 MP
N and let �0 D r0.EI

R
;FI

R
/. If

L.R/ D ¹.sm; �m/ºm�1, then

�m D
1 � ˛m

�0 � ˛m

�m (10.10)

for any m � 1, where ˛m D 1 �
Qm�1

iD1 .1 � �i /. In particular,

�0 � lim
m!1

˛m:
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Proof. The equality follows directly from Lemma 10.7, which also implies that

for any m � 1,

�0 D �0

m�1
Y

iD1

.1 � �i / C 1 �

m�1
Y

iD1

.1 � �i / � 1 �

m�1
Y

iD1

.1 � �i / D ˛m

and therefore �0 � limm!1 ˛m. �

Remark. ¹˛nºn�1 is monotonically increasing and ˛n " ˛ as n ! 1 for some

˛ 2 .0; 1�.

Finally, we present the main theorem of this section. It characterizes .MP
N/I

and essentially says that the SG part E†
R

truly exists if and only if
P1

mD1 �m < 1.

Theorem 10.9. Let R D ¹.rm; �m/ºm�1 2 MP
N. Then, L.R/ D R if and only if

P1
mD1 �m D 1. In particular, ER D EI

R
if and only if

P1
mD1 �m D 1.

Proof. Assume that
P1

mD1 �m D 1. Then ˛ D 1, which implies that �0 � 1 and

therefore �0 D 1. In view of (10.6), we have that �m D �m for any m � 1, hence

R D R0. Thus we have shown that ER D ER0 D EI
R

. Conversely, if R D R0, then

Lemma 10.6 shows that
P1

mD1 �m D
P1

mD1 �m D 1. �

As a consequence of this theorem,

L.L.R// D L.R/

for any R 2 MP
N and L.MP

N/ D .MP
N/I . Thus, we may regard L as a

projection onto .MP
N/I .

We finish this section with several useful equalities leading to an explicit

expression of r0.EI
R

;FI
R

/ in terms of the elements of R.

Lemma 10.10. Let R D ¹.rm; �m/ºm�1 2 MP
N. Then,

(1) For any m � 1,
m

X

iD1

�5

3

�i�1

i C
�5

3

�m

ım D 1;

where ım D r1: : :rm and i D ıi�1�i .

(2)
P1

mD1 �m D 1 if and only if limm!1

�

5
3

�m
ım D 0.
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Proof. Let m D r1: : :rm�1�m. Since 5
3
rm C �m D 1, we have

�5

3

�m�1

m D .1 � �1/: : :.1 � �m�1/�m

D .1 � �1/: : :.1 � �m�1/ � .1 � �1/: : :.1 � �m/

and hence
m

X

iD1

�5

3

�i�1

i D 1 �

m
Y

iD1

.1 � �i / D 1 �
�5

3

�m

ım:

This proves (1). Assertion (2) follows immediately from the fact that

m
Y

iD1

.1 � �i / D
�5

3

�m

ım: �

Proposition 10.11. Let R D ¹.rm; �m/ºm�1 2 MP
N. Then,

r0.EI
R

;FI
R

/ D 1 �

1
Y

mD1

.1 � �m/ D

1
X

mD1

�

�m

m�1
Y

iD1

.1 � �i/
�

: (10.11)

In particular, r0.EI
R

;FI
R

/ < 1 if and only if
P1

mD1 �m < 1.

Proof. Set �0 D r0.EI
R

;FI
R

/ and L.R/ D ¹.sm; �m/ºm�1. If
P1

mD1 �m D 1,

then we have already shown in the proof of Theorem 10.9 that �0 D 1. Since
Q1

mD1.1 � �m/ D 0, Lemma 10.10 implies (10.11).

Suppose that
P1

mD1 �m < 1 and set ˛ D 1 �
Q1

mD1.1 � �m/. Note that

.1 � ˛m/�m D .5=3/m�1m as in the proof of Lemma 10.10-(1). Therefore, if

�0 > ˛, then (10.10) and Lemma 10.10-(1) lead to

1
X

mD1

�m �

1
X

mD1

.1 � ˛m/�m

�0 � ˛
�

1

�0 � ˛
< 1:

This contradicts (10.4), hence �0 D ˛. Applying Lemma 10.10 again, we imme-

diately obtain (10.11). �

11. Domain of resistance forms given by infinite sequences of matching pairs

The results obtained in previous sections come together in the present one to

prove the main theorem of this paper, Theorem 5.7. In fact, Theorem 8.11 and

Theorem 10.9 already identify any completely symmetric resistance form on

SSG as the sum of its line part and its SG part, whenever the latter survives.
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This identification is now completed by giving a full description of the domains

of these forms. This characterization of the domains in the next theorem is the key

step to showing Theorem 5.7.

Theorem 11.1. Let R D ¹.rm; �m/ºm�1 2 MP
N and set R� D

Q1
mD1.1 � �m/.

Moreover, define

�m D
r1: : :rm�1�m

1 � R�

for any m � 1 and � D ¹�mºm�1.

(1) If
P1

mD1 �m D 1, then R� D 0, FR D F� and

ER.u; v/ D DI
�.u; v/

for any u; v 2 FR.

(2) If
P1

mD1 �m < 1, then R� 2 .0; 1/, FR D F�
� and

ER.u; v/ D
1

R�

E�.u; v/ C
1

1 � R�

DI
�.u; v/

for any u; v 2 FR.

The idea to prove this theorem will be to show that the restriction of .ER;FR/

to F� in the case
P1

mD1 �m D 1, respectively F�
� in the case

P1
mD1 �m < 1, is

again completely symmetric and derived from the same matching pair as .ER;FR/.

Developing this strategy requires some effort and consists in several steps shown

in the subsequent lemmas.

We start with two remarks.

Remark. (i) By Lemma 10.10-(1),

1
X

mD1

�5

3

�m�1

m D 1 �

1
Y

mD1

.1 � �m/ (11.1)

and therefore
1

X

mD1

�5

3

�m�1

�m D 1:

(ii) By Proposition 10.11,

1 � R� D r0.EI
R

;FI
R

/ D �0:
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Definition 11.2. For each R D ¹.rm; �m/ºm�1 2 MP
N and each n � 0, define

R.n/ D ¹.rmCn; �mCn/ºm�1, R
.n/
� D

Q1
mD1.1 � �mCn/,

�.n/
m D

rnC1: : :rnCm�1�nCm

1 � R
.n/
�

for m � 1, and �.n/ D ¹�
.n/
m ºm�1. Moreover, for each n � 0, define

F.n/ D

8

<

:

F�.n/ if
P1

mD1 �m D 1;

F�
�.n/ if

P1
mD1 �m < 1;

with F�.n/ and F�
�.n/ as in Definition 5.6.

Lemma 11.3. Let R D ¹.rm; �m/ºm�1 2 MP
N and define for each n � 0

E
.n/
p1

.u; v/ D ER.n/.u; v/ C u.p1/v.p1/ for any u; v 2 FR.n/ . Further, recall the

domains zF1 and F�
1 introduced in Definition 5.5.

(1) If
P1

mD1 �m D 1, then F.n/ is the closure of zF1 with respect to the inner

product E
.n/
p1

.

(2) If
P1

mD1 �m < 1, then F.n/ is the closure of F�
1 with respect to the inner

product E
.n/
p1

.

In either case, F.n/ � FR.n/ .

Proof. (1) It suffices to show the case n D 0. Let us assume that
P1

mD1 �m D 1.

Then, R� D 0 and ER D EI
R

D DI
� . Consider now u 2 F�, i.e. u 2 zF,

DI
�.u; u/ < 1 and there exists ¹unºn�1 � zF1 such that limn!1 DI

�.u � un;

u � un/ D 0 and limn!1 un.x/ D u.x/ for any x 2 K. Then, ¹unºn�1 is a

Cauchy sequence in .FR;Ep1
/. Since .DI

� ;FR/ is a resistance form, there exists

Qu 2 FR such that Ep1
. Qu � un; Qu � un/ ! 0 and un.x/ ! Qu.x/ as n ! 1 for

any x 2 K. Therefore, u D Qu 2 FR and hence it belongs to the closure of zF1

with respect to the inner product Ep1
. Conversely, it is easy to see that the closure

of zF1 with respect to Ep1
is a subset of F�. Thus, F� is the closure of zF1 with

respect to the inner product Ep1
and in particular F� � FR. If

P1
mD1 �m < 1, it

follows from Theorem 9.4 that

ER.u; v/ D
1

R�

E�.u; v/ C
1

1 � R�

DI
�.u; v/ (11.2)



Completely symmetric resistance forms 271

for any u; v 2 FR. Consider now u 2 F�
� , i.e. u 2 zF \ F†, DI

�.u; u/ <

1 and there exists ¹unºn�1 � F�
1 such that limn!1 E�.u � un; u � un/ D

limm!1 DI
�.u � un; u � un/ D 0 and limn!1 un.x/ D u.x/ for any x 2

K. Similar arguments as the previous case imply that u belongs to FR and

Ep1
.u � un; u � un/ ! 0 as n ! 1, hence F.0/ is a subset of the closure of

F�
1 with respect to Ep1

. The converse inclusion is straightforward and the desired

statement follows. �

Definition 11.4. For each R D ¹.rm; �m/ºm�1 2 MP
N and any n � 1, define

E.n/ D ER.n/ jF.n/�F.n/ .

Lemma 11.5. Let R D ¹.rm; �m/ºm�1 2 MP
N. For any n � 0 and any i 2 S ,

¹uıGi j u 2 F.n/º D F.nC1/:

F.n/ D
®

u
ˇ

ˇ u 2 C.K/; uıGi 2 F.nC1/ for any i 2 S;

ujeij
2 H 1.eij / for any .i; j / 2 B

¯

;

and

E.n/.u; v/ D
X

i2S

1

rnC1

E.nC1/.uıGi ; vıGi / C
1

�nC1

DI
1 .u; v/

for any u; v 2 F.n/.

Proof. From Theorem 7.16 we know that ¹..ın/�1E
R.n/ ;FR.n/; n/ºn�0, where

ın D r1 : : : rn and n D ın�1�n, is the resolution of .ER;FR/. This directly

implies the last equality of the lemma because F.n/ � FR.n/ by Lemma 11.3. In

view of that equality, if u 2 F.n/, then ujeij
2 H 1.eij / for any .i; j / 2 B . In

addition, u 2 F.n/ implies the existence of a sequence ¹ukºk�1 that approximates

u, see Definition 5.6, so that ¹ukıGiºk�1 approximates uıGi in the corresponding

way and hence uıGi 2 F.nC1/. On the other hand, consider u 2 C.K/ such that

uıGi 2 F.nC1/ for any i 2 S and ujeij
2 H 1.eij / for all .i; j / 2 B . Our aim is

to prove that u 2 F.n/. Since uıGi 2 F.nC1/, E.nC1/.uıGi ; uıGi / < 1 and by

Lemma 11.3 there exists ¹uk;i ºk�1 � zF1 (resp. F�
1) such that

lim
k!1

E.nC1/.uıGi � uk;i ; uıGi � uk;i / D 0 and lim
k!1

uk;i .x/ D uıGi .x/:

for any x 2 Gi .K/. For each k � 1 define vkW K ! R by

vk.x/ WD

´

uk;i ıG�1
i .x/ if x 2 Gi .K/;

u.x/ C '
ij

k
.x/ if x 2 eij ; .i; j / 2 B;
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where '
ij

k
is an affine function on eij chosen so that vk 2 C.K/. Since

limk!1 '
ij

k
.pij / D limk!1 '

ij

k
.pj i / D 0, we have Deij

.'
ij

k
; '

ij

k
/ ! 0. By

construction, vk 2 C.K/ and vk 2 zF1 (resp. F�
1) for any k � 1. Furthermore,

DI
1 .u�vn; u�vn/ ! 0 as n ! 1 and hence E.n/.u�vk; u�vk/ ! 0 as k ! 1.

Moreover, limk!1 vk.p1/ D limk!1 vk.G1.p1// D limk!1 uk;1.p1/ D u.p1/

and therefore u 2 F.n/.

It remains to prove that ¹uıGi j u 2 F.n/º D F.nC1/. On the one hand, it

follows from the previous discussion that if u 2 F.n/, then uıGi 2 F.nC1/. On the

other hand, consider u 2 F.nC1/. By Lemma 11.3, F.nC1/ � FR.nC1/ D ¹vıGi j

v 2 FR.n/º and we can pick v 2 FR.n/ such that vıGi D u for any i 2 S . In

particular, v 2 C.K/, vıGi 2 F.nC1/ and vjeij
2 H 1.eij / for all .i; j / 2 B , so

that v 2 F.n/. �

Lemma 11.6. Let R D ¹.rm; �m/ºm�1 2 MP
N. Then, .E.0/;F.0// 2 RFS and

its resolution is ¹..ım/�1E.m/;F.m/; m/ºm�0, where ım D r1: : :rm and m D

ım�1�m.

Proof. We start by showing that .E.0/;F.0// is a resistance form. Condition (RF1)

is obvious. Condition (RF2) follows immediately from Lemma 11.3. Moreover,

since zF1 already has the property (RF3) and zF1 � F.0/, (RF3) is also fulfilled.

Condition (RF4) holds because F� � FR, and

sup
° ju.x/ � u.y/j2

E.u; u/

ˇ

ˇ

ˇ u 2 F�; ER.u; u/ ¤ 0
±

� R.x; y/ (11.3)

for any x; y 2 K.

It remains to prove (RF5). Suppose first that
P1

mD1 �m D 1. Obviously, zF1

has the Markov property. Now, let � be a Borel regular probability measure on K

that satisfies �.O/ > 0 for any non-empty open set O and �.A/ D 0 for any finite

set A. Define

E�.u; v/ D ER.u; v/ C

Z

K

ju.x/j2�.dx/

for any u; v 2 FR. Due to the fact that

ju.x/ � u.p1/j2 � ER.u; u/R.x; p1/ � CER.u; u/;

where C D supx2K R.x; p1/, we can find C 0 > 0 such that

1

C 0
Ep1

.u; u/ � E�.u; u/ � C 0Ep1
.u; u/

for any u 2 FR. Therefore, by Lemma 11.3,F.0/ is the closure of zF1 with respect to

E� and [5, Theorem 3.1.1] implies that .E.0/;F.0// is a Dirichlet form on L2.K; �/.
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In particular, F.0/ has the Markov property and hence (RF5) holds in this case.

Suppose now that
P1

mD1 �m < 1. Replacing zF1 by F�
1, the previous arguments

show that (RF5) holds again. Thus, .E.0/;F.0// is a resistance form.

Let R.0/ be the resistance metric on K associated with .E.0/;F.0// that equals

the left-hand side of (11.3). In view of (11.3), the identity map from .K; R/ to

.K; R.0// is continuous and since .K; R/ is homeomorphic to .K; dE/, it is com-

pact. Therefore, the identity map from .K; R/ to .K; R.0// is a homeomorphism.

The rest of the statement follows immediately from Lemma 11.5. �

We finally show Theorem 11.1 by making use of these preliminary lemmas to

prove that any completely symmetric resistance form .ER;FR/ actually coincides

with the resistance form .E.0/;F.0// introduced in Definition 11.2. The representa-

tion of E.0/ as linear combination ofE� andDI
� appears in the proof of Lemma 11.3,

while the domain F.0/ is explicitly given in Definition 5.6.

Proof of Theorem 11.1. Set �m D r0.E.m/;F.m//. Then r0..ım/�1E.m/;F.m// D

ım�m. By Lemma 11.6, the resolution of .E.0/;F.0// is ¹..ım/�1E.m/;F.m/; m/ºm�0

and the results in Section 8, in particular Definition 8.4 and Theorem 8.11, yield

R.E.0/;F.0// D
°� ım�m

ım�1�m�1

;
m

ım�1�m�1

�±

m�1

D
°�

rm

�m

�m�1

;
�m

�m�1

�±

m�1
:

(11.4)

Thus, for any m � 1,
5

3
rm

�m

�m�1

C
�m

�m�1

D 1: (11.5)

Since rm D 3
5
.1 � �m/, (11.5) yields

.1 � �m/.1 � �m/ D 1 � �m�1 (11.6)

for any m � 1, and therefore

�m D
�0 � 1

.1 � �1/ : : : .1 � �m/
C 1 (11.7)

for any m � 1. Now, it suffices to show that �m D 1 for any m � 0.

Case 1. Assume that
P1

mD1 �m D 1. Since �m > 0, we have

1 � �0 < .1 � �1/ : : : .1 � �m/ (11.8)
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for any m � 1. The limit of the right-hand side of (11.8) as m ! 1 is 0, hence

�0 � 1. On the other hand, it follows from (11.3) that �0 D r0.E.0/;F.0// �

r0.ER;FR/ D 1. Therefore, �0 D 1 and (11.7) implies that �m D 1 for any m � 1.

Thus, R.E.0/;F.0// D R. Moreover, r0.E.0/;F.0// D �0 D 1 D r0.ER;FR/ and

Corollary 8.9 yields .ER;FR/ D .E.0/;F.0//.

Case 2. Assume that
P1

mD1 �m < 1. By (11.2) we have that

ER
.E.0/;F.0//

.u; v/ D �0E
.0/.u; v/ D

�0

R�

E�.u; v/ C
�0

1 � R�

DI
�.u; v/

for any u; v 2 F.0/. Since F� � F.0/, Theorem 9.4 and (11.4) yield

1
X

mD1

�m

�m�1

< 1

as well as

R�

�0

D

1
Y

mD1

�

1 �
�m

�m�1

�

: (11.9)

On the one hand, in view of (11.7), we have that ¹�mºm�1 converges as m ! 1.

Set � D limm!1 �m. Now, (11.6) leads to

1 �
�m

�m�1

D
�m

�m�1

.1 � �m/;

hence by (11.9),

R�

�0

D
R�

�0

�

and therefore � D 1. On the other hand, it follows from (11.7) that

� D
�0 � 1

R�

C 1:

This implies �0 D 1 and thus R.E.0/;F.0// D R, which shows .E.0/;F.0// D

.ER;FR/. �

The final step to prove Theorem 5.7 consists in showing that any (positive)

linear combination of E� and DI
� can be realized as a completely symmetric

resistance form on SSG.
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Proof of Theorem 5.7. (1) If .E;F/ 2 RFS , then Theorem 8.11 implies .E;F/ D

.cER;FR/ for some c > 0 and R 2 MP
N. By Theorem 11.1, there exist a �

0; b > 0 and a sequence � D ¹�mºm�1 � .0; 1/ such that � satisfies (5.5) and

E.u; v/ D aE�.u; v/ C bDI
�.u; v/ for any u; v 2 F with F as in (5.6).

Conversely, let � D ¹�mºm�1 � .0; 1/ satisfy (5.5). Inductively we may

construct a sequence ¹�mºm�1 such that

�m D
�3

5

�m�1

.1 � �1/: : :.1 � �m�1/�m

D
�3

5

�m�1

..1 � �1/: : :.1 � �m�1/ � .1 � �1/: : :.1 � �m//

for any m � 1. In view of (5.5), it follows that
Q1

mD1.1 � �m/ D 0, hence
P1

mD1 �m D 1. Defining sm D 3
5
.1 � �m/ for any m � 1, R� D ¹.sm; �m/ºm�1 2

MP
N and Theorem 11.1 yields

ER�
.u; v/ D DI

�.u; v/

for any u; v 2 FR�
D F�. Thus, for any b > 0, .bDI

� ;F�/ D .bER�
;FR�

/ 2 RFS

and the case a D 0 of Theorem 5.7-(1) is proven.

In order to prove the case a > 0, choose �0 2 .0; 1/ arbitrarily and define �m

for m � 1 by (10.7). Then, �m 2 .0; 1/ for any m � 1. Taking rm D 3
5
.1��m/, we

have that R D ¹.rm; �m/ºm�1 2 MP
N. Now, set Am D �0

Qm
iD1.1 � �i/ C .1 � �0/

and notice that (10.7) leads to

1 � �m D
Am

Am�1

;

hence

R� D

1
Y

mD1

.1 � �m/ D lim
m!1

Am D 1 � �0 > 0:

Moreover, by (10.9),

r1: : :rm�1�m D
�3

5

�m�1

.1 � �1/: : :.1 � �m�1/�m

D
�3

5

�m�1

�0�m

m�1
Y

iD1

.1 � �i /

D �m�0

and Theorem 11.1 yields

ER.u; v/ D
1

1 � �0

E�.u; v/ C
1

�0

DI
�.u; v/
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for any u; v 2 FR D F�
� . Since �0 2 .0; 1/ is arbitrary, for every pair .a; b/ 2

.0; 1/ � .0; 1/ in the statement of Theorem 5.7-(1), we find .aE� C bDI
� ;F�

�/ D

.cER;FR/ 2 RFS by setting �0 D a=.a C b/ and c D ab=.a C b/.

(2) Let � D ¹�mºm�1 satisfy (5.5). Choose any �0 2 .0; 1/ and construct R� and

R as in (1). Then, it follows that L.R/ D R�. Note that F� D FR�
and F�

� D FR,

hence Theorem 10.3 yields F� D FR�
D FI

R
D ¹u j u 2 F�

� ;E†
R

.u; u/ D 0º. Since

E†
R

D 1
R�

E�, we finally obtain (2). �
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