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Completely symmetric resistance forms
on the stretched Sierpinski gasket

Patricia Alonso Ruiz, Uta R. Freiberg, and Jun Kigami

Abstract. The stretched Sierpiriski gasket, SSG for short, is the space obtained by replacing
every branching point of the Sierpinski gasket by an interval. It has also been called
the “deformed Sierpiriski gasket” or “Hanoi attractor”. As a result, it is the closure of a
countable union of intervals and one might expect that a diffusion on SSG is essentially a
kind of gluing of the Brownian motions on the intervals. In fact, there have been several
works in this direction. There still remains, however, “reminiscence” of the Sierpiriski
gasket in the geometric structure of SSG and the same should therefore be expected for
diffusions. This paper shows that this is the case. In this work, we identify all the
completely symmetric resistance forms on SSG. A completely symmetric resistance form
is a resistance form whose restriction to every contractive copy of SSG in itself is invariant
under all geometrical symmetries of the copy, which constitute the symmetry group of the
triangle. We prove that completely symmetric resistance forms on SSG can be sums of the
Dirichlet integrals on the intervals with some particular weights, or a linear combination
of a resistance form of the former kind and the standard resistance form on the Sierpinski
gasket.
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1. Introduction

A major area of research interest in mathematical physics deals with the mod-
elling of heat and wave propagation in branching media. One way to tackle this
problem consists in approximating the object under consideration by unions of
one-dimensional segments, and studying the combination of the corresponding
equations on the segments. This approach has been extensively investigated un-
der different names, for instance “quantum graphs” in mathematical physics [10]
and “cable systems” in stochastic analysis [4].

Nevertheless, these models can fail to capture the essential structure of the
media they are supposed to describe. The main message of the present paper is
that reducing the analysis on an object to one-dimensional analysis on a union
of lines can ignore a significant part of its intrinsic structure and therefore give
a far too simple, hence incomplete, framework to investigate analytical questions
on it. We aim to furnish the latter statement by studying here what we call the
stretched Sierpiriski gasket, SSG for short, in R2. This space has also been called
the “deformed Sierpiriski gasket” [11] or “Hanoi attractor” [1, 3, 2] and it is obtained
from the classical Sierpifiski gasket SG by replacing each branching point of the
SG by an interval (see Figure 1).

As aresult, SSG is the closure of a countable union of one-dimensional inter-
vals. One could thus think of constructing and analysing diffusion processes on it
via quantum graphs/cable systems, an approach that has actually been considered
in several works [6, 3].
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Figure 1. The Sierpiriski gasket (SG) and the stretched Sierpiriski gasket (SSG).

Let us give a rough definition of a cable system/quantum graph, leaving details
to [4, 10]. Starting from a weighted graph (V, E, C) with vertex set V, edge set
E C{(p.q) | p.q € V} and edge conductances/weights C = {C,, | (p.q) € E},
eachedge (p, q) € E isidentified with the line segment parametrized by &, ,(¢) =
(1 =1t)p +1tq,t €[0,1], and equipped with the Dirichlet energy D,, on the line
segment pg given by

Ld(o d(-o
Dy = [ Ao o),

The consequent energy form & on the whole space is thus defined as

E(u,v) = Z CpgDpq(u,v),
PYEE

where the domain of € consists of all continuous L2-functions on the whole space
whose restriction to each edge pg belongs to the Sobolev space H (¢, 4([0, 1]),
dx). In a natural way, this quadratic form € induces a diffusion process that
behaves like one-dimensional Brownian motion on each edge.

Following this direction, a diffusion on SSG might be expected to consist ba-
sically in gluing the different Brownian motions on each interval. However, in
considering SSG as a union of one-dimensional lines, one overlooks the “reminis-
cence” of SG in the geometric structure of SSG. In fact, the cable system/quantum
graph approach disregards the underlying geometry of the space in the sense that
it ignores the considerable role played by the arrangement of the vertices in space.
Furthermore, classical quantum graph theory requires some finiteness condition
that makes it inapplicable to cases such as fractals or infinite trees.

Indeed, we show in this paper that the geometric “reminiscence” of the Sier-
piniski gasket also appears in the diffusion on SSG, a fact that stays hidden when
using cable systems/quantum graphs.
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The diffusion processes considered here will be associated with a Dirichlet
form induced by a completely symmetric resistance form. The theory of resistance
forms was introduced in [8] and further developed in particular to study analysis on
“low-dimensional” fractals from an intrinsic point of view, see [9] and references
therein. Their most representative property is that, unlike Dirichlet forms, they
are defined without requiring any measure on the underlying space. In our case, a
completely symmetric resistance form (€, F) on SSG is a resistance form whose
restriction to every contractive copy in itself is invariant under all geometrical
symmetries of the copy. More precisely, let X be a subset of SSG which is similar
to SSG itself and let G: SSG — X be the associated contractive similitude. If we
denote by Ey the part of the original form € associated with X, then

Ex (oG voG™Y)

is again a form on SSG. We will say that (€, J) is completely symmetric if
Ex(u o G71,v o G7!) is invariant under any isometry of the regular triangle.
(See Section 5 for the exact definition.)

As a key step towards the study of such diffusion processes, the present paper
is devoted to establishing the existence of completely symmetric resistance forms
on SSG. Even more, we provide a full characterization of all possible forms of this
type by showing in Theorem 5.7 that any completely symmetric resistance form
on SSG can be written as

al* () +bD](.)
for some @ > 0 and » > 0. The forms £* and Dfl are briefly explained below.
Conversely, we will show that any linear combination of £* and Dé as above with
a > 0 and b > 0 can be realized as a resistance form on SSG.

On the one hand, Dfl arises as a limit of sums of standard Dirichlet energies and
it is defined as follows. Let = {nm}m>1 < (0, 00) satisty ), -, (%)’”_l Mm =1
and let D,ﬁ be the sum of the Dirichlet integrals over the line segr_nents that appear
in the kth approximation step of SSG for the first time, i.e.

Di.v) =Y Dpg(u.v),
P4€I\Jk—1

where Ji denotes the set of line segments in the k-th approximation step. The
quadratic form @fl is defined as the weighted sum of the D,ﬁ’s whose weights are

given by 1) = {Nm}m=1. i.e.

1
Dl (u.v) =Y —Di(u,v).
k>1
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It resembles the cable system/quantum graph approach in this setting. In particu-
lar, the special case a = 0 has been called “fractal quantum graph” in [3], where
the authors have shown that Dfl is a resistance form for some limited choices of 7.

On the other hand, the form £* corresponds to the standard resistance form
on SG. (See Definition 4.3 and [8] for further details about this form.) Notice
that any function on SG can be thought of as a function on SSG by making its
value constant on each line segment. In this manner, we can regard the standard
resistance form on SG as a quadratic form on SSG, see Definition 5.4 for a precise
formulation. This part of €, which may be called the “fractal part”, had remained
unseen in the previous works [6, 3] because there only limits of quantum graphs
were considered.

In conclusion, this paper reveals that SSG is more than just the combination of
a countably infinite number of line segments, not only from a geometric, but also
from an analytic point of view, since the reminiscence of the Sierpiriski gasket in
SSG remains essentially present in both of them.

We will begin our exposition by discussing the geometry of SSG in Section 3,
providing a detailed construction as well as some of its most relevant intrinsic
geometric properties. Section 4 reviews the construction of the standard resis-
tance form on SG and establishes a first link between functions on SG and on
SSG. Completely symmetric resistance forms on SSG are rigorously introduced
in Section 5 and the main classification result of this paper is stated in Theo-
rem 5.7. The forthcoming sections develop the machinery to prove this theorem:
Section 7 proceeds with the construction of resistance forms on SSG by means
of compatible sequences based on sequences of what we call matching pairs of
resistances. We will see in Section 8 that any completely symmetric resistance
form on SSG actually corresponds to a constant multiple of a resistance form on
SSG derived from a sequence of matching pairs. Once this correspondence is set-
tled, Section 9 establishes a preliminary classification result for resistance forms
(Exr, F) derived from matching pairs displayed in Theorem 9.4. At this point,
any such form € becomes the sum of an SG part and a line part. In this way, the
reminiscence of SG in SSG comes to light. In Section 10, the previous theorem
is enhanced through a projection mapping onto the resistance forms having only
line part. Section 11 is the core of the paper: in Theorem 11.1, the domain of the
completely symmetric resistance forms on SSG is fully described, and the SG part
and the line part get their corresponding expression as the aforementioned forms
E*, Dé respectively. This characterization will finally lead to the classification
provided by Theorem 5.7.
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2. Glossary of notations

For the convenience of the reader we give below an index which summarizes
notation repeatedly used throughout the text, and where the definitions may be

found.

B ={(1,2).(2,3).3. D}
d g the restriction of the Euclidean metric
D pg — Definition 5.1
DI — Definition 5.1
D} - Definition 5.6
e;j — Definition 3.1

e}‘j = Gw (e,'j)

E m — Definition 7.7
&, — Definition 4.3

&« —Theorem 4.5

&* — Definition 5.4
E|y — Proposition 6.8
& x — Definition 7.15
Ex.m — Definition 7.11
852 -(9.1)

€ z-092)

& x — Definition 7.7

F; =Gjincaseofa =0
F* — Theorem 4.5

F 5 — Definition 7.15
ffé — Definition 9.5

F % — Definition 9.5
Fx .« — Definition 9.3
FZ _ Definition 5.4
F;, — Definition 5.5
F%, — Definition 5.5
5 — Definition 5.6

J,, — Definition 5.6
F) _ Definition 11.2
JF|y — Definition 6.7
Fo(Y) — Definition 6.7
5:‘;" — Definition 5.5
5’00 — Definition 5.5

F — Definition 5.1

F & — Definition 7.7
G; — Definition 3.1

G — Definition 3.2
Sk - (5.1)

hy — Proposition 6.8
H'([0, 1]) — Definition 5.1
H'(pg) — Definition 5.1
He 5 (Y) — Definition 6.9
K =K, fora € (0,1)

K. = Ko = the Sierpiniski gasket
K — Proposition 3.3

L(R) — Definition 10.5
LV)y=A{ulu:V - R}
MP — Definition 7.4
MPNM7 —(10.1)

{p1, P2, p3}: vertices of a regular triangle
pij — Definition 3.1

Qo — Definition 4.3

Q] — Definition 7.2

Q7 — Definition 5.4

ro(&€, F) — Definition 8.2
Ry — Theorem 11.1

RUY _ Definition 11.2

R(e .9y — Definition 8.4
R — Definition 11.2

RTFs — Definition 5.2
RF — Definition 5.2

RF év — Definition 8.2

S =1{1,2,3}

Vin — Definition 3.2

V> — Definition 4.3

W, — Definition 3.2

W — Definition 3.2

« — Definition 3.1

L=1"

(* — Proof of Proposition 3.4
7, s, 0 — Definition 4.1
n"" — Definition 11.2

1 _ Definition 11.2

Y =34 fora e (0,1)

Y.« — Definition 3.3

&pq — Definition 5.1
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3. Geometry of K

In this section, we set up the geometric construction of SSG in R? and fix the
corresponding notation that will be carried throughout the paper.

Let S ={1,2,3} and let { p1, p>, p3} be the collection of vertices of a regular
triangle in R2. For the purpose of normalization, we assume that p; + p + p3 = 0
and |p; — pj| = lforanyi # j.

P1

P2 P3 P23 P32
Vo V1

Figure 2. Geometric construction.

Definition 3.1. For eachi € S, define G;: R? — R? by
2
where 0 < o < 1. Moreover, set p;; = G;(p;) fori # j and denote by e;; the
line segment p;; pj;.

Gi(x) = ——(x — pi) + pis

If « = 0, then p;; = p;; foranyi # j and hence e;; = {p;;}. Notice that G;,
pij and e;; actually depend on . However, we will see in Proposition 3.4 that the
sets K, defined in Propostion 3.3 are homeomorphic to each other for o € (0, 1)
and therefore we do not write « explicitly in the notation.

Definition 3.2. Let W, = {0} and define

Wan=8"={w|w=wy...wy,w; € Sforanyi =1,...,m}

form > 1, as well as W, = UmZO W,,. Moreover, for any w = wy ... wy, € W,
define G, : R? — R? by

Gy = Gw1 oGwz O« OGwm
and Gy = id is the identity map on R2. Finally, set Vo = {p1, p>. p3} and
Vin = ) Guw (Vo)

weW,

form > 1.
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Notation. From now on, we denote by B = {(1, 2), (2, 3), (3, 1)}, where B stands
for the word “Bond”, and write e;; = Gy (e;;) for any (w. (i, j)) € Wi x B.

Proposition 3.3. Forany 0 < a < 1, there exists a unique compact set Ko C R?
such that

Ko = G1(Kqy) U G2(Ky) U G3(Ky) U ez Ueas Uesy.

Furthermore,
Ko =3, U | Jep.
(w,(@,j))eWs«xB
where X is the self-similar set associated with {G1, G, G3}, i.e. X is the unique
nonempty compact set satisfying

Zo = G1(Za) U Ga(Za) U G3(Zq). CRY
Moreover, | ), Vi is a dense subset of Zy.

Proof. This follows from [7, Section 4, Theorem 1] since G, G2, G3 are I_T"‘—
contractions. O

Remark. X, is a Cantor set forany 0 < « < 1.

Notice that K coincides with the Sierpiiski gasket while K is the union of the
three line segments pq p»2, p» p3 and p3p;. Whenever « € (0, 1), we can refer to
any of K, as the stretched Sierpiniski gasket SSG in view of the next proposition.

Proposition 3.4. The sets K,, o € (0, 1), are pairwise homeomorphic.

Proof. Use G2 and el‘.”j’w to denote G, and e/ respectively. Note that ¥,
is naturally homeomorphic to {1,2,3}N by the canonical coding map (* de-
fined by {(@102..)} = Nm21G2 . (Ka). Let guay = %20()7L,
Then ¢4, ,0,: oy — Za, is a homeomorphism. Extend gy, q, onto e by

Yoy ] wer = Gy o (Gy')7! wey forany i,j € B and w € Wi. Then
ij ij
Yay,0y: Koy = Kq, is a homeomorphism. O

Since resistance forms on K, only depend on the topological structure of K,
which is the same for any o € (0, 1) due to the previous proposition, we will omit
« in the definition given by Proposition 3.3 and write K = K, and ¥ = X, as
long as @ € (0,1). Moreover, we will consider dg to be the restriction of the
Euclidean metric to K/, and regard dg as the canonical metric on K.
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In view of (3.1), there exists a canonical map 1: S™ — X defined by

L(a)la)z . ) = m Ga)l...(um (2)

m=>1

Through this map ¢, we identify ¥ with S™ hereafter in this paper.

4. The Sierpinski gasket

As already mentioned, if @« = 0 in Definition 3.1, then K|, is the Sierpinski gasket,
pij = pji and e;; = {p;;} for any (i, j) € B. In this case, we will denote G; and
Ky by F; and K, respectively. We explain in this section how to view continuous
functions on the Sierpiniski gasket K, as continuous functions on the stretched
Sierpinski gasket K and review the construction of the standard resistance form
on K. Further details and proofs can be found e.g. in [8].

Definition 4.1. Let 7: ¥ — K, be the canonical coding map given by

{7'[(6()10)2 .. )} = ﬂ le...wm (K*)

m=>0
and define m4: K — K. by
7T*|E =7
and
ma(ey) = m(wi(j)%) = w(wj(i)™)
for any (w, (i, j)) € Wi x B. Furthermore, define n*:C(K«) — C(K) by
¥ (U) = U o Ty

From this definition it follows that u € n*(C(K4)) if and only if u € C(K) and
u |€,'-’} is constant for each (w, (i, j)) € Wi x B, a fact stated in the next proposition.
Moreover, 7* is injective and it preserves the supremum norm. We will thus
identify C(Ky) with 7*(C(K4)) and think of C(K) as a subset of C(K) in this
manner. Thus we have the following proposition.

Proposition 4.2. We have
C(Ky) ={ulueCK), u|elyj)_ is constant for any (w, (i, j)) € Wi x B}.

We finish this paragraph with some classical definitions and results concerning
the standard resistance form on K, that will become relevant to state our main
theorem.
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Notation. For any set IV we use the standard notation £(V) = {u | u: V — R}.

Definition 4.3. Let V" = {p1, p2, p3} and define V,; inductively by V5, =
U?:l F;(V,y) for m > 0. Furthermore, let the quadratic form £, (-, ) on £(V,r) be
defined as
Qo u) =Y (u(p:) —u(p;))?
(i,j)eB
for m = 0, and
m
En(u,u) = (g) w;{/ Qo(uoFy,uoFy)

form > 1.
Proposition 4.4. For any u: K. — R and any m > 0,

Emtlyulyy) < €0y (ulyx , ulyx )

and lim & (ulyx,ulyx) = 0 if and only if u is constant on K.
m—00
Proof. This follows directly from Definition 4.3. |

Theorem 4.5. Define
F" ={ulueC(Ky), lim & (ulyy. ulyy) < +oo}
m—00

and
Euluu) = lim &% (uly, uly;)
m—0o0

foru € F*. Then F* C C(Kx) and (E«, F*) is a resistance form on K.
Proof. See Theorem 6.6 or [9, Theorem 3.13]. O

Analogously to C(Ky), we will identify F* with 7*(F*) and thus regard F* as
a subset of C(K).

5. Completely symmetric resistance forms

This section is devoted to giving a rigorous definition of completely symmetric
resistance forms on SSG and presenting the main theorem of this paper, The-
orem 5.7, which provides their complete characterization and classification by
means of the forms £* and Dg. The proof of Theorem 5.7 will require a suitable
combination of the results obtained in the succeeding sections and it will there-
fore be presented at the end of Section 11. We start by introducing some auxiliary
notation and definitions. Recall that we write K = K, for any « € (0, 1).
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Definition 5.1. (1) Let H'([0, 1]) denote the Sobolev space

HY([0,1]) = {u ‘ w0.1] > R, e 12([0.1]. d).
dx

du
where Ir is the derivative of u in the sense of distributions}.
X

(2) For any p,q € R2, let pq denote the line segment with extreme points p
and ¢, and let £, 4: [0, 1] — pgq be given by &, ,(t) = (1 —t)p + tq. We define

H'(pq) = {u | u: pg — R, uok,, € H'([0,1])}

and .
d(uobpq) d(vobpq)
D ,V) = : =d
pg (U, V) /0 dx dx X
for any u,v € H'(pq).
(3) Define

F={u|ueCK) and uloy € H'(ef?) forany (w, (i, j)) € Wi x B}

as well as

Dy, 0) = 3 Do (e, vleg)
(W, (i, 7)) EWm—1xB

foranyu,veg"andmz 1.

We introduce now the family of completely symmetric resistance forms on K
that play the central role in the classification theorem.

Basic definitions and notation concerning resistance forms are reviewed in
Section 6, see also [9]. First of all, consider the set of all linear mappings under
which K is invariant, i.e.

Sk = {¢ | ¢: R? — R? linear and such that ¢(K) = K. (5.1
Notice that this is in fact the dihedral group of symmetries of the triangle.

Definition 5.2. (1) Let ZRS"EQO) be the collection of resistance forms (€, JF) on K
satisfying the following three conditions (a), (b), and (c).

(@) F € C(K)andu € Jif and only if u|g, k) € Flg,(x) = VI, (k) | v € T}
forany i € S, and ul.;, € H'(e;;) forany (i, j) € B.

(b) Let R be the resistance metric associated with (&, ). Then, the identity map
from (K, dg) to (K, R) is a homeomorphism.
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(c) Forany ¢ € Gg andu € F, uop € F and

E(uog, uop) = E(u,u).

(2) Define RFg to be the collection of resistance forms (€,F) € RCT"E?O) with
the following property.

There exist a sequence {(Em, Fm)im>0 S 923"5?0) and a sequence {nN;}m>1 S
(0, 0o0) such that (€9, Fo) = (€,F), Fi = {uoG; | u € Fpy—1} forany m > 1 and
i €S, and

> 1
Em—1(,0) = > Em(uoGi, v0G;) + H—D{(u, v) (5.2)
m

i=1

for any m > 1 and u,v € F—;. The sequence {(Em, Tm, Mm)Im>0 < Rﬁ"g)) X
(0, 00) is called the resolution of (€, F).

Remark. Although 7y is not needed in the previous definition, we will always set
no = 1 for the sake of formality.

Applying (5.2) repeatedly, one immediately obtains the following proposition.

Proposition 5.3. Let (€,F) € RFs. If {(Ems Foms 1) }mz0 S RFS) x (0, 00) is
the resolution of (€, F), then

F={u| uoGy € F,, for any w € W, and

m—1
Ulew € H'(e) for any (w. (i. })) € ( U Wk) x B). (5.3)
k=0
Moreover, for any m > 1 and any u,v € &,
|
E(u,v) = Z Em(UoGy,voGy) + Z —D,ﬁ(u, v). 5.4
weWy, k=1 Mk

The next quadratic form resembles the classical resistance form (€., F*) on
K. of Theorem 4.5 and it will be precisely the “fractal part” missed by the cable
system/quantum graph approach discussed in the introduction.
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Definition 5.4. Let the quadratic form QZ on £(V,,) be given by
Q5 (w.u) =Y (u(pi) —u(p;))>
(i,j)eB
for any u € £(V}), and by
Q1) = Y Qo(uoGy, uoGy)

weWy,

for m > 1 and any u € £(V;,). Moreover, define

7= = u ‘ u € C(K) and {(g)mgﬁ(u,u)}

is a Cauchy sequence},
m=>0

as well as

e = Jim (3)" 0Zw

foru € F=,

Definition 5.5. (1) For any m > 1, let
Fp = {uluce F, u|G, (k) is constant for any w € Wy},

and
Foo= | T
m=>1

(2) For any m > 1, let
F* = {u|u e, uoG, € F* forany w € Wy}

and
75, = T

m>1
Remark. Notice that F,, € F* < F= and F* < C(K,) € F.

Finally, we introduce the quadratic form Dé as the weighted sum of Dirichlet
integrals whose weights are given by sequences {1, }m>1 < (0, 00). This form is
the part that mirrors the cable system/quantum graph approach of an energy form
on SSG.
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Definition 5.6. Let n = {9, }m>1 be a sequence of positive numbers and for any
u € f;", let

o0

1
DI, u) = — DI (u, u).
7 ,,,Zzzl Mm "

(Note that Dfl (u, u) is well-defined if we allow the value co.) Moreover, define

Ip={uluce 7, Dg (u,u) < +o0 and there exists {u,}n>1 < Foo such that
lim Dfl(u — Up, U —Uy) = 0and
n—>oo

li)m Uy (x) = u(x) for any x € K},
as well as

Iy ={uluce FnIFE, Dg (u,u) < +oo and there exists {u, },>1 S Fn, such that
lim *(u —up,u —uy) = lim Dfl(u —Up,u—uy) =0and
n—>oo n—>o0

li)m Uy (x) = u(x) for any x € K}.

Our main result fully characterizes and identifies all resistance forms in RFg
by showing the correspondence between resistance forms on SSG that belong to
RFs and linear combinations of the forms £&* and @,’,.

Theorem 5.7. (1) (€,F) € RFg if and only if there exist a > 0,b > 0 and a
sequence 1 = {Nm}m=>1 < (0, 00) such that

i (g)m_lnm — 1, (5.5)
m=1

F = {?” ffa=0. (5.6)

gy ifa>0,

and
Eu,v) = al*(u,v) + bD} (u,v)

Joranyu,v € F.
) If n = {Mmm=1 < (0, 00) satisfies (5.5), then F, € Fy and

Fp={ulued;, & (u,u) =0}
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Remark. As we mentioned in the introduction, the case ¢ = 0 was treated in [3]
for a restricted type of sequence n. We would also like to emphasize that, even
though at first sight one might want to apply the abstract result in that paper [3,
Theorem 8.1] in order to obtain (part of) Theorem 9.4, it is not possible to do so
in this setting since in particular the resistance metric associated with (€, F) does
not lead to a geodesic metric on SSG.

6. Basics on resistance forms

For convenience of the reader, we give in this section a summary of definitions and
basic facts from the theory of resistance forms used within the paper. A detailed
and more extensive exposition of this theory can be found e.g. in [8, 9].

Definition 6.1. Let X be a set. A pair (€, F) is called a resistance form on X if it
satisfies the following conditions (RF1)—(RF5).

(RF1) Fis alinear subspace of £(X) = {u |u: X — R} containing constants and
€ is a non-negative symmetric quadratic form on ¥. &(u,u) = 0 if and
only if u is constant on X.

(RF2) Let ~ be the equivalence relation on ¥ defined by u ~ v if and only if u —v
is constant on X. Then, (F/~, €) is a Hilbert space.

(RF3) If x # y, then there exists u € F such that u(x) # u(y).
(RF4) For any p,q € X,
sup { u(p) —u(g)l?
E(u,u)
is finite. The above supremum is denoted by R¢ 5)(p, ¢) and it is called
the resistance metric on X associated with the resistance form (&, F).
(RF5) Foranyu € &, u € Fand E(u, u) < E(u,u), where u is defined by

|ue$8ww)>q

1 ifu(p) > 1,
u(p) =qu(p) if0<u(p)<l,
0 ifu(p) < 0.

Proposition 6.2. If (E,F) is a resistance form on a set X, then the associated
resistance metric R (-, ) is a distance on X.

If the set X is finite, any resistance form on X is a non-negative quadratic form
on £(X) x £(X) that satisfies several conditions stated in the following lemma.
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Lemma 6.3. Let V be a finite set. Then (E€,£(V)) is a resistance form on V if and
only if there exists (Cpq)p,qev such that forany p #q € V, Cpq = Cyp > 0 and
there exist m > 0 and (po, p1, ..., pm) € V™Y such that py = p, pm = q and
Cpipiyy > 0foranyi =0,...,m—1and

1
E(u,v) = 5 3 Cpgu(p) —u(@)(v(p) — v(g))

P9V

foranyu € £L(V).

If the set X is infinite, in many cases a resistance form on X is constructed by
means of a suitable sequence of resistance forms on finite sets that approximate
X as Theorem 6.6 indicates.

Definition 6.4. Let VV and U be finite sets satisfying V' € U and let (Ey, £(V)) and
(Ev,L(U)) be resistance forms on V and U respectively. We write (£y, £(V)) <
(Ev,£L(U)) if and only if

Ey(u,u) =min{E€y(v,v) | v € L(U), v|ly = u}

for any u € £(V). Let V,,, be a finite set and let (€,,, £(V},)) be a resistance form on
Vi for every m > 0. A sequence of resistance forms {(Ex, £(Vin))}m>o is called
compatible if and only if V},, € Vi1 and (€, £(Vin)) < (Em+1,£(Vin+1)) for any
m > 0.

Note that if {(Em, £(Vin))}m>0 is a compatible sequence, then, for any func-
tion “3Umzo Vm — R, the sequence &, (uly,,,uly,,) is monotonically non-
decreasing. By this fact, the following definition makes sense.

Definition 6.5. Let 1, be a finite set and let (€,,, £(V},)) be a resistance form on
Vi forevery m > 0. If 8 = {(Em, £(Vin)) }m>0 is a compatible sequence, then we
define

Fs ={ulueVy lim Enuly,,uly,) < oo},
m—00
where V, = Usz Vi, and for any u, v € Jg,

88(”’ U) = mh—r>noo g’m(u|Vm’ v|Vm)‘
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Theorem 6.6 (Theorem 3.13 of [9]). Let V;,, be a finite set and let (€,,,£(V},)) be a
resistance form on Vy, for everym > 0. If § = {(Em, L(Vin)) }m>o0 is a compatible
sequence, then (£g,Fs) is a resistance form on V. Furthermore, let Rg be the
associated resistance metric on V. and let (X, R) be the completion of (Vi, Rg).
Then, there exists a unique resistance form (€,F) on X such that for anyu € F, u
is continuous on (X, R), u|y, € Fs and E(u,u) = Es(uly,,ulv,). In particular,
R is the resistance metric associated with (€, F).

An important concept is the notion of trace of a resistance form. This corre-
sponds, roughly speaking, to the restriction of a resistance form to a subset of the
original domain.

Definition 6.7. Let (€, F) be a resistance form on a set X. For any Y C X, define
Fly ={uly |u e J}

and

FoY)={u|ued, uly =0}

Proposition 6.8 (Lemma 8.2 and Theorem 8.4 of [9]). Let (€, F) be a resistance
formonaset X andletY C X be non-empty. Then, for any u, € F|y, there exists
a unique u € F such that uly = ux and

E(u,u) = min{E(v,v) | v € F,v|y = ux}.

Moreover, if we denote u = hy (ux), then the map hy:F|y — F is linear. If
we define E|y (u,v) = E(hy(u), hy (v)) for any u,v € Fly, then (Ely,Fly) is a
resistance form on Y and the associated resistance metric Ry is the restriction
onto Y xX Y of the resistance metric associated with (€, F).

Definition 6.9. Let (€, F) be a resistance form on a set X and let Y € X be non-
empty. The map hy: F|y — Fis called the ¥ -harmonic extension map associated
with (€, ) and hy (u,) is called the Y -harmonic function with boundary value
uy associated with (&€, F). We define He 5)(Y) = hy (F|y). The resistance form
(Ely,F|y) on Y is called the trace of (£,F) on Y.

By [9, Lemma 8.5] and the discussion after it, the domain of a resistance form
admits the orthogonal decomposition presented below.
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Proposition 6.10. Let (€,F) be a resistance form on a set X and letY C X be

non-empty. Then,
F=He,nT)®TFo(Y),

where @ represents the direct sum. Moreover, for any u € &, the projection of u
onto He ) (Y) associated with the above direct sum is given by hy (u|y) and
Eu,u) = E(hy (u),hy(w)) + Eu —hy (), u — hy (u)).
Finally, Theorem 6.6 along with [9, Theorem 3.14] leads to the following result.

Theorem 6.11. Ler (€,F) be a resistance form on a set X and let R be the
associated resistance metric on X. If {Viu}m>o is an increasing sequence of finite
subsets of X, i.e. Vip C Viug1 € X foranym > 0, then 8§ = {(E|v,,, (Vi) }m>0
is a compatible sequence of resistance forms. If A is the closure of V. with respect
to R, then for any u € F|4, ul|y, € Fs and E|4(u, u) = Es(u|y,, ulv,).

7. Construction of resistance forms on K

In this section, we explain how to construct resistance forms on K by means
of compatible sequences in a natural way that takes into full consideration the
intrinsic symmetry of K.

Proposition 7.1. (QE, L(WVo)) is a resistance form on Vj.

Proof. Since V} is a finite set, all properties of a resistance form (see Defini-
tion 6.1) are immediately fulfilled. d

Definition 7.2. For each m > 1, define the quadratic form QI (-,-) on £(V,,) by
O (. u) =Y ((pij) —u(pji))?
G,))eB
for any u € £(V1), and by
Of(u.u) =Y 010Gy, u0Gy)
weW,—1
for m > 2 and any u € £(V},).
Note that neither QZ (-, ) defined in Definition 5.4 nor Q1 (-,-) are resistance
forms if m > 1 because « € (0, 1). However, we show in the next lemma that

any weighted combination of them actually yields a resistance form on V;, for any
m > 1.
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Lemma 7.3. Foranym > 1, let §,y1, ..., ym be positive numbers. If

Ou,u) = %Qﬁ(u,u) + Z yileﬁ(u,u)
k=1

Jor any u € £(Vyy,), then (Q,£(Vyy)) is a resistance form on Vy,.

Proof. Again, the conditions in Definition 6.1 are fulfilled because V}, is finite.
O

As a first step to construct resistance forms on K, we consider compatible
sequences of resistance forms on the sets 1;,. To this purpose, we introduce the
concept of matching pairs of resistances.

Definition 7.4. A pair (r, p) € (0, 00)? is said to be matching if and only if

> + 1
—r =1.
3 o

The collection of all matching pairs of resistances will be denoted by MP.

The next lemma displays the nature of the definition of matching pairs and it
follows from a straightforward application of the A-Y transform as illustrated in
Figure 3. For details on the A-Y transform see [8, Lemma 2.1.15].

P1

P2 P3 r P r
05 E

Figure 3. Renormalization of resistances.

Lemma 7.5. Let r and p be positive real numbers and define the resistance form
(E1.£(V1)) on V1 by

Eru) = 0P uu) + %Q{(u,m

for any u € £L(V1). Then, (E1,£(V1)) on Vi is compatible with (Qas, L(Vp)) on Vg
if and only if (r, p) is matching.
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This result is the basis leading to the relationship between sequences of match-
ing pairs and compatible sequences of resistance forms.

Theorem 7.6. Define
Eo(u.u) = OF (u.u)

for any u € £(Vy) and

1 Z1
Em(uu) = =—0p(t.u) + 3 o Qi)
m k=1

forany u € £L(Vy,) and m > 1. Then, {(En, £(Vin)) }m>o0 is a compatible sequence
if and only if there exists a sequence of matching pairs {(rm, pm)}m>1 such that
Om=r1...Tm and Yy =r1...T—1Pk

foranym > 1and any k > 1.

Proof. By definition, {(Ey, £(Vin))}m>0 is compatible if and only if (E,, £(Vin))
is compatible with (£ 41, £(Vin41)) for all m > 0.

P1

D2 P3 Sm+1 Ym+1  Sme1

Figure 4. Renormalization of resistances.

By means of the A-Y transform, this is the case if and only if the networks in
Figure 4 are also compatible, i.e. if and only if %8m+1 + Ym+1 = Om. Setting
P = 5’;}:1 s Pm = y’g% and 8o = ro = po = 1, we have that (r,,, p,,) is matching
and for all m > 0,

Omt+1 =Tmbm  and  Ymi1 = Pmlm.

Applying these equalities recursively leads to the desired statement. O

Notation. We denote by MPY the collection of sequences of matching pairs of
resistances, i.e.

5
NN = {{(ms o)zt | s € (0.00), S+ prn = 1 forany m = 1}.
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Definition 7.7. Let R = {(rm, pm)}m>1 € MPYN and define the quadratic form
Ex.m on £(Vy,) to be E,, as given in Theorem 7.6. Moreover, define

Fp = (u |u € L(Va). lim Exm(uly,,.uly,) < oo}

and

Ex(u,v) = lim EiR,m(ule’ U|Vm)
m—0o0
for any u,v € Fx.

In view of Theorem 7.6 and Theorem 6.6, (gjz, f;"gz) is a resistance form on

£(Vy) for any R = {(rm. pm)im=1 € MPY. Note that if {(rp. pm)}m=1 € MPY,
then r,, < 2 for any m > 1 and hence §,, < (%)m and y,, < (%)m_l.
Lemma 7.8. Let R = {(rm, pm)}m>1 € MPY and let R,, denote the resistance
metric on Vy, associated with (Ex m,L(Vin)). Then, diam(V,,, Rn) < 4 for any
m > 1, where diam(X, d) is the diameter of the metric space (X, d) given by
supy yex d(x, y). In particular

lu(x) — u(y)|2 <4ERm(u,u)

forany x,y € Viy and u € £L(Vyy,).

Proof. Let g = Gy,...w,,(pi). Define gk = Guy,..w; (pw,) fork =1,...,m and
set gm4+1 = q. Since Gy, (Pw;) = Pw,. We have that gx = Gy, ..w,_, (Pw, ) and
in particular g1 = Gy, (Pw,) = Pw,. Since {(Em, Vin) }mso0 is compatible, it holds
that

Rm(q]ﬁ CIk—H) = Rm(Gwl...wk (Pwk)a Gwl...wk (Pwk_;,_l))
= Rk(Gwl...wk (pwk)’ Gw1~-~wk (pwk_H))

<.
Therefore,
Rin(Pun @) = R (@1 gm+1) < 3 Rulicoque) < D86 < 3 (3) =5
k=1 k=1 k=1

Thus if x = Gy, ...w, (pi) and y = Gy, .., (p;), then

3

3
Ru(x,y) = Ru(x, pw,) + Ru(Pwy, Pvy) + Rm(pv,,y) < 3 +1 +§ =4. O
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The resistance form (E{R, 7. ) possesses every symmetry and similarity (which
is inhomogeneous with respect to m) required by the definition of completely
symmetric resistance forms, although a function v in the domain §"gz is not a
function on K but on V.

Lemma 7.9. Let R = {(rm. pm)}m=1 € MPY. IF RO = {(ryim. putm)m=1,
then uoG,, € ?R(m) foranym > 1,u € .’fgg and w € W,,. Moreover,

E{R(M U) Z(S 8R(m)(uOGw7 UOGw) +Z Qk(u U)

weW,, ™ k= 1

foranyu,v € f;"gg and m > 1.

Proof. Letn,m > 1. For any u € C;";R it holds that

n+m
Eqmim () = Qn+m(u W+ Yy —Qk(u u) + Z Qk(u u)
k= m+1
= Z —ng(m) 2 (U0Gy, uoGy,) + Z Qk(u u).
weWm k= 1

Letting n — oo in both sides of the equality leads to the desired result, which
implies that uoGy, € Fqom for any u € I and w € Wy,. O

Lemma 7.10. Let R = {(rm, pm)}m>1 € MPY and let R be the resistance metric
on Vi associated with (E:R, 3"32). If Vi is the completion of Vi with respect to R,
then the identity map : Vi — Vi is extended to a homeomorphism from (V, R)
to (X,dE).

By the above lemma and Theorem 6.6, the resistance form (ggz, CAT";R) is natu-
rally regarded as a resistance form on X and Fx, is thought of as a subset of C(X).

Proof. Let w € Wy andlet x,y € Vi. Set p = Gy(x) and ¢ = Gy (y). By
Lemma 7.8 and Lemma 7.9,

lu(p) —u(g)|? < [u(Gw(x)) —u(Gw ()| <45
Ex,u) " Eqem oGy, uoGy) T

holds for any u € ?y. Thus, diam(Gy, (Vi), R) < 48,. Let {x,},>1 be a
Cauchy sequence in V, with respect to dg. Then, there exists x € X such that
dg(x,xp) — 0asn — oo. If x = ((wwy...), then x, € Gy, . 0, (V) for
sufficiently large n and therefore R(xg,x;) < 48, for sufficiently large k and /.
Hence, {x,}»>1 is a Cauchy sequence in (Vx, R) as well.
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On the other hand, if w,v € W, and w # v, by (RF3), there exists u € ?R
such that u|g,, (v,) = 1 and u|g,v,) = 0. Forany x € G (Vi) and y € Gy(Vy),
we thus have that

1= Ju(x) —u()* < Ex(u.u)R(x, y),
which shows that inf{R(x, y) | x € Gy, (Vx),y € Gy(Vx)} > 0. Hence,
min{inf{R(x,y) | x € Gu(Va),y € Go(Va)} | w,v € Wi, w # v} > 0.

If {yn}n>1 is a Cauchy sequence in (Vi, R), then for any m > 0, there exists
w € W, such that y, € Gy (Vs) for sufficiently large n. Thus, {y,}s>1 is a
Cauchy sequence in (Vi, dg) as well.

Consequently, the identity map from Vi to Vi is extended to a homeomorphism
between V, and X. O

In order to obtain a resistance form on K from a sequence of matching pairs
of resistances, we need to replace Q ,ﬁ (u,u) by a sum of H !-inner products on
the line segments e;;. The bilinear form that arises in this way preserves many

properties of the former and it is defined for functions in 7.

Definition 7.11. Let R = {(rm, pm)}m>1 € MPN. For each m > 1, define
1 5 1,
Ermu,v) = —0(u,v) + Z — Dy (u,v)
Om k=1 143

for any u,v € f;", where 6, = r1...rm and vy = Sm—1Pm-
We start by establishing some relations between the forms Ex ,,, and Ex .

Lemma 7.12. Forany u € Fandm > 1,
O, u) < Dy (u, u) (7.1)
and
Exrm,u) < Exmu,u). (7.2)
Proof. For any u € H'([0, 1]),

1

(1) — u(0)? < /0
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Applying this to every e;;, we obtain (7.1). Consequently,

1 |
Egm (1) = 5= Q1) + ) y—kQ,i(u,u)
m k=1

IA

1 G|
= O ) + ) —Di(uw.u)
m k=1 Yk
= Exm(u, u). O
Lemma 7.13. Assume that (r, p) € MP. Then for any u € 7,
b 1 s 1.7
Qo' (u,u) < ;Ql (u,u) + ;Dl(u,u). (7.3)
Proof. By Lemma 7.5, we see that
b 1 s 1 g
Qo (u,u) < ;Ql (u,u) + ;Ql(“su)-
Combining this with Lemma 7.12, we obtain (7.3). O

We can now use these properties in order to show that for any u € F, the
sequence {Ex (¥, U)}m>1 is monotonically non-decreasing.

Lemma 7.14. If {(rm. pm)}tm=1 € MPY, then
Erm U, u) < Ex mt1(u, u)

foranyu € F.

Proof. By Lemma 7.13, it follows that

> 0F oGy . u0Gy)

weWy,
1 1
= Z ( QF(“OGw, uoGy) + D{ (uoGy, quw)>.
weW,, Tm+1 Pm+1

Multiplying by (5,,)~" and adding Y7, 5——-Dj (u,u) on both sides of the
inequality, we verify the desired statement. O
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In view of this lemma, {Ex ,(u,u)}n>1 converges to a non-negative real
number or infinity as m — oo. Therefore, the following definition makes sense.

Definition 7.15. Let R = {(rp. pm)tm=1 € MPY. Define
Fp={uluecT, Im Exmu,u) < oo}
m—00

and

Ex(u,v) = mh_r)nC>o Exm(u,v)

for any u,v € Fgx.

The next theorem is the main result of this section. It shows that resistance
forms on K constructed from a sequence of matching pairs R are completely
symmetric resistance forms. In addition, it provides an explicit expression of their
corresponding resolution.

Theorem 7.16. Let R = {(rm. pm)im>1 € MPY. Then, (Ex.Fr) € RFs. More
precisely, if R™ = {(rn+m» Pntm)m>1 € MTP]Nfor anyn > 0, then the resolution
of (Ex, Fx) is given by {((8m) L€y s Fpmys Ym) ym=0, where 8 = ri...rm and
Ym = Sm—1pm for any m > 0.

In order to show this theorem, we need several lemmas.

Lemma 7.17. Let R = {(rm, Pm)}m>1 € MPY. Forany x # y € K, there exists
u € Foo such that u(x) # u(y).

Proof. If either x or y belong to K\ X, for instance x € K\, then there exists
w € Wi suchthatx € Gy (e;; \{pij. p;i})- Inthis case, there exists ”|e}‘; € Hl(ei"]?
such that u|f-’}’} (x) = 1 and u|f-’}’} (Guw(pij)) = “|8}‘j (Gw(pji)) = 0. Letting
u(z) = 0 for any z € K\e¢}j, we obtain the desired function u € C~ﬂw|+1.

If x, y € ¥, then there existin > 1, w € W, andv € W, suchthat x € G, (K),
y € Go(K) and Gy (K) N Go(K) = @. Now, there is a function u € F;, such that
ulG, k) = 1 and ulg, k) = 0. O

The following lemma is straightforward from the definition of €, I and
Ex.
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Lemma 7.18. Let R = {(rm, pm)}m>1 € MPYN and let R™ = {(rpin, Pm+n)tm>1
for any n > 0. Then,

Fg = {u ‘ u: K — R, uoGy € Fqm for any w € Wy,

n—1
uley € HY @) for any (w. .)€ (| W)  B)
k=0
and for any u € Fg,

1 |
Enluu) = = > Exm oGy u0Gy) + Y %ﬁ,ﬁ(u,u).
k=1

" wew,
Lemma 7.19. Let R = {(rm. pm)}m=1 € MPN. If w € W, then
lu(x) —u(y)|* < 168, Ex(u, u) (7.4)
foranyu € Fp and x,y € Gy (K).
Proof. First we show the case when m = 0 and w = @, namely
u(x) —u(y)? < 16Ex (u, 1) (7.5)

forany u € Fx and x,y € K. Let x,y € By := Uy ¢, j)ew.xp €;- Then,
x € Gyl(eij),y € Gylex) for some w,v € Wy and (i, j),(k,I) € B. Set
p = Gy(p;) and ¢ = Gy(pg). Since y, = 6y—1pn < 1 for any n > 1, it follows
that

1
u(x) = u(p)I* < Ywj+1 y Dew (1, 1) < Yjw|+1ER jwl+1 (. u) < Ex(u, u).

|lw|+1

In the same way, we obtain |u(y)—u(q)|*> < Ex(u,u). Setting m = max{|w]|, |v|},
Lemma 7.8 and (7.2) yield

lu(p) —u(q)|® < 4Ex m(u, u) < 4€x m(u,u) < 4E€x(u, u).
Combining these inequalities, we have
u(x) —u(I? < (lux) =u(p)| +u(p) —u(@)] + lu(g) —u())?> < 16Ex(u, u).

Since F € C (K) and B is dense in K with respect to the Euclidean metric, (7.5)
holds for any x, y € K.
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Consider now w € Wy, with m > 1, and set x = Gy (x') and y = Gy ().
For any u € Fx, Lemma 7.18 implies that uoG,, € Fywm. Applying (7.5) to
(Eqom s From ) and using again Lemma 7.18, we see that

lu(x) —u(y))* = u(Gw(x")) —u(Gw(y)I?
< 16Ezum (U o Gy, u 0 Gy)
< 168, Ex(u, u). O

Proof of Theorem 7.16. We start by showing that (Ex, Fx) is a resistance form

on K.

(RF1)

(RF2)

(RF3)
(RF4)

By definition, Fx < C(K) and £ is a non-negative quadratic form on
Fx. Moreover, if Ex(u,u) = 0, then Ex n(u, u) = 0 for any m > 0. This
implies that u is constant on e;; and Gy, (Vo) for any (w, (i, j)) € Wp x B.
Therefore, u is constant on K and (RFI) holds.

It suffices to prove that (F,0, Ex) is complete, where
Fpo ={u|u €Iz, u(pr) =0}
Let {u, }»>1 be a Cauchy sequence in (F 0, Ex). By (7.4),

lun(x) — Z/‘m(x)|2 = |(un — um)(p1) — (un — Z/‘m)(x)|2
< 16ER(Up — Um, Uy — Us).
This implies that {u, },>1 converges uniformly on K as n — co. Let u be

its limit. Then u, |eyj)_ converges to u|eyjj_ in the sense of H'! (e;7) and hence
13 13
ulew € H'(ef). i m > n,
1

Eri(Un —Um, U —Um) < Ex(Un — Um, Un — Up)

< sup Ex(Up — Um, Uy — Um).
m>n

Letting first m — oo and afterwards k — oo, we see that u € F5 and

Exr(uy —u,upy —u) < sup Ex(Un — Um, Up — Up).
m>n

Letting n — oo, we finally verify Ex(u, — u,u, —u) — 0asn — oo.
Thus, (Fx,0, Ex) is complete.
follows from Lemma 7.17.

is immediate by Lemma 7.19.
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(RF5) Note that for any u € F¢ and any m > 1,
O, @) < Qp(u,u) and D) (@i,a) <Dh(u,u).  (7.6)

This implies that Ex ,, (U, ) < Ex m(u,u) for any m > 1, hence u € Fg
and Ex(u, u) < Ex(u,u).

Thus we have shown that (Ex, Fx) is a resistance form on K. Let us prove
next that the identity map from (K, dg) to (K, R) is continuous. Assume that
dg(x,,x) — 0 asn — oo. For the moment, we consider the following two
cases (I) and (II).

(I) There exists (w, (i, j)) € Wi X B such that {x,}n>1 C ¢} and x € ¢;;.

(IT) There exists {w(n)}n>1 S Wi such that x,x, € Gy (K) and we have
lim, o0 |w(n)| = oo.

Assume (I). Since for any u € Fg

uen) —uP _ Juo) —u@P di (X, X)
ExCt,u) Vi Dep (1) ~ e (Gu(piy), Gu(pii))’

it follows that R(xp, X) < ymdEg(xn, x)/dE(Gw(pij), Gw(p;i)) and hence we get
R(x,,x) > 0asn — oo.

Assume (II). Then Lemma 7.19 yields R(x,,x) =< 168y (n), Which immedi-
ately implies that R(x,,x) — 0 asn — oo.

Let us now consider general cases. If x € K\ By, then there exists wjw; ... €
SN such that x = (m>1 Gw;...w, (K) and x belongs to the interior of Gy, .. 4, (K)
for any m > 1. Thus,_if dg(xy,x) — 0asn — 0, then we have case (II). If x
belongs to the interior of ¢;; for some (w, (i, j)) € Wx x B, then we have case (I).
Finally, if x = Gy (pi;) and dg(x,,x) — 0 as n — 0, then we can decompose
{Xn}n=1into {x, | x» € €]} and {x, | x, € K\¢;;} (either one may be empty).
Applying case (I) and case (II) to the first part and the second part respectively, we
verify that R(x,,x) — 0 as n — oo. Thus, we have shown that the identity from
(K,dEg) to (K, R) is continuous. Since (K, dg) is compact, so is (K, R) and the
inverse is continuous as well. Therefore, R gives the same topology as dg. Notice
that by definition, Eq m (U, u) = Ex m(uop, uop) for any ¢ € Gg and hence the
same holds for Ex.

Finally, applying Lemma 7.18, we conclude that (Ex,J %) € RIFs and its
resolution is {((8m) ™ € xumy, Fgomy» Yim) ym>0- O
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8. Identification of RF g with the resistance forms from matching pairs

In the previous section, we proved that any resistance form (Ex, Fx) derived from
a sequence of matching pairs R is completely symmetric. This section focuses
on the converse statement by proving in Theorem 8.11 that, up to multiplication
by a constant, any completely symmetric resistance form can be obtained from a
sequence of matching pairs.

First of all, notice that since (€, F) € J%&"go) is symmetric and Vj has only three
points, one immediately arrives to the following fact.

Lemma 8.1. Forany (€,F) € R?SSO), there exists ro > 0 such that

1
Evp(u,v) = — 05 (u, v)
fo
forany u,v € £(Vp), where Ey, is the trace of (€, F) on Vj.

See Proposition 6.8 for the definition of trace of a resistance form.

Proof. Since (€,5) € RCFE?O), the trace €y, has the same symmetry as the equilat-
eral triangle p p, p3. Therefore, €y, must be a constant multiple of QOE. O

Resistance forms whose trace on V; coincides with QF will play a special role
in the forthcoming discussion.

Definition 8.2. For (¢,%) € ZRS"fgo), define ro (€, ¥F) to be the constant ry given in
Lemma 8.1. Furthermore, define

RF§ ={(€,F) | (6, 9) € RFs, ro(€,F) = 1.

The superscript “N” in RF 1SV represents the word “normalized” since we have

ro(&,F) = 1.

Lemma 8.3. Let (€, F) € RFs and let {(Em, Fns M) tmz0 S RFY x(0, 00) be the
resolution of (€, F). If 6 = ro(Em, Fm) for m > 0, then (8 /6m—1, Mm/0m—-1) €
MP.

Proof. From Definition 5.2, we know that F,,, = {uoG; | u € F),—} foranyi € S
and {ule;;:u € Fp1} = H'(e;;) for any (i, j) € B. Therefore, equality (5.2)
yields

1 1
Em—1ly; (. v) = S_QF(M’ v) + n—Q{(“a v)
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for any u,v € Fp_1ly, = £€(V1), where (Em—1|v,. Fm—1]y,) is the trace of
(Em—1,Fm—1) on V7 (see Definition 6.7). On the other hand,

1
Sm—l

05 (u,v)

Em—1 |V0(U, v) =

for any u, v € Fp—1]y, = (Vo). Since (Epm—1ly, . £(V1)) and (Em—1]v,. £(Vp)) are
compatible, Lemma 7.5 shows that (8, /6m—1, tm/8m—1) € MP. O

Due to the above lemma, it is possible to associate a sequence of matching
pairs to any (€, F) € RF.

Definition 8.4. Let (£,%) € RFs and let {(Em, Fpm, Nm)Im=0 < RFY x
(0,00) be the resolution of (€,5F). We define Re,5) € MPY by Re,: =
{(8m/8m—1’ nm/gm—l)}mzl’ where §,, = ro(Ems Tm)-

We show next that for each (€, F) € RFs andm > 1, multiplied by ro(E, F), its
trace €|y, on V, coincides with the resistance form introduced in Definition 7.7
associated with the sequence of matching pairs R 7).

Lemma 8.5. For any (¢,3) € RFg and any m > 1, ro(&, F)E|y,, = Er(e 5)m-
Proof. Let{(Em, Fm, Mm)}m>o be the resolution of (£, F) and set 8, =ro(Em, Fm).

By Proposition 5.3, Fn = {uoGy | u € F}, and Flew = H'(ey) for any m > 1
and any (w, (i, j)) € W, x B. Hence, it follows from (5.4) that

1 21 1
EV . v) =Y —OF oGy, u0Gy) + > — QL. v) = —Exm(u.v)
wEWmSm k=1 Mk 80
(8.1)
for any u, v € £(Vy,). O

Lemma 8.6. Let (€,F) € RFs and let ux € F|x. If u is the X-harmonic function
with respect to (€, F) with boundary value u, then

ulew (1 =1)Guw(pij) +1Guw(pji)) = (1 = Dux(Gu (pij)) + 1w (Guw (pji)
foranyt € [0,1] and any (w, (i, j)) € Wy X B.

Proof. Since the restriction of a ¥-harmonic function to a line segment e;; is
a harmonic function with respect to the Dirichlet integral, it must be an affine
function. O



Completely symmetric resistance forms 257

The harmonic functions determined in the previous lemma provide the defi-
nition of the trace of (£, F) on X. We will denote the subspace of X-harmonic
functions by H e 5)(X) and its counterpart by F(X). The latter domain is charac-
terized in the following lemma.

Lemma 8.7. Let (€,F) € RFs and let {(Em, Fom hm)mz0 S RFS x (0, 00) be
the resolution of (€, F). If F(X) = {u | u € F,u|x = 0}, then

F(2) = {u ‘ u: K — R, u|e,’-’} € Hl(e;j?) forany (w, (i, j)) € Wi x B,

<1, (82)
ulg =0, Y —D ) < +oo}.
k=1 Tk
Moreover, for any u € F(X),
|
Euu) =Y —Df(u.u). (8.3)
=1 Tk

Proof. By Proposition 5.3, if u € F(X), then u belongs to the set on the right-hand
side of (8.2). Conversely, suppose that u belongs to the set on the right-hand side
of (8.2). Define u,,: K — R as
3 w
u(x) ifxe U(w,(i,j))e(uz;}) wi)xB i’
0 otherwise.

up(x) =

In view of (5.3), u, € F, and if m > n, it follows from (5.4) that
21
E(Un_um’un_um)zz —D,ﬁ(u,u)
e k
=n+1

Because Y 7, i@,’c(u, u) < oo, the sequence {uy},>1 is Cauchy in (€, F,),

where F,, = {u | u € F,u(p1) = 0} and since (&, F,,) is complete, there exists
u € Fp, such that E(Wi — u,,u —u,) — 0asn — oo. Moreover, for any x € K,

un (x) — #(x)]* = up(x) — i (x) — (un(p1) —ii(p1))|?
< &y —U,up —u)R(x, p1),

where R(:,-) is the resistance metric associated with (£,F). This implies that
Uy (x) — (x) as n — oo. On the other hand, for any x € K, u,(x) — u(x) as
n — oo. Hence, u = i € ¥ and
= 1
E@u,u) = lim E(up,up) = —DL(u,u). O
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We see next that the subspaces H ¢ 5)(X) and F(X) actually provide an or-
thogonal decomposition of the domain of the resistance forms (€, F) € RF.

Theorem 8.8. Let (€,F) € RFs and let {(Em, Fons ) Imz0 S RFY x (0, 00) be
the resolution of (€, F). Then,

F = He.(5) & F(T) (8.4)
and for any u € &,
£ ) = 2lsulz.ulz) + 30 —Dfw—hs(.u—hs0),  85)
k=1

where hx (u) denotes the X-harmonic extension of u|x.

Proof. The direct sum decomposition (8.4) follows from Proposition 6.10. Com-
bining Proposition 6.10 and Lemma 8.7 we immediately verify (8.5). d

Corollary 8.9. Let (£,5),(&,F) € RFs. Then, the following conditions are
equivalent:

(ED (£,9) = (€.9);

(E2) (€1, (Vi) = (€', L(Vim)) for any m > 0;
(E3) (€lz,Tlx) = (€']5, Fx);

(E4) Re,5) = Rer,g7y and ro(E,F) = ro(E', F).

Proof. By Theorem 6.11, (E2) implies (E3). Since (&|x)|y,, = €&ly, and
&), = €lv,,, we see that (E3) implies (E2). In view of Lemma 8.5, (E4)
implies (E2). Conversely, assume that (E2) holds. Since €|y, = &'|y,, then
ro(€.F) = ro(€’, ) and by Lemma 8.5 we obtain Ex . ,)m = ER er grym TOT
any m > 1. Therefore, it follows that R(¢ ) = R(¢,57) and hence we have (E4).
Moreover, (El) immediately implies (E3) and it only remains to verify that (E3)
implies (EI).

Let us assume (E2), (E3), and (E4). By Lemma 8.6, if hx:F|x — F and
W|g:F|s — F are the X-harmonic extension maps associated with (€, )
and (&', J") respectively, then hx = h%, and hence He 5(X) = Her 57)(2).
If {(Em. Fm. m)}m=>0 and {(E,. F, . n,,)m>0 are the resolutions of (€, F) and
(&, F") respectively, then (8.1) implies that n,, = 7),. Lemma 8.7 thus yields
F(X) = F(X) and by (8.4) it follows that F = F’. Finally, since (€|x, Flx) =
(&'|x,F|x) and 1, = 1, for any m > 0, (8.5) shows that E(u, u) = &'(u, u) for
any u € § = J', hence (§,F) = (&, F). O
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Resistance forms on K constructed by means of sequences of matching pairs
as explained in Section 7 have the property of belonging to RF év .

Lemma 8.10. Ler R € MPY. Then ro(Ex, Fx) = 1.

Proof. Let f:Vy — R and let u be the Vj-harmonic function with respect to
(Ex, Fx) with boundary value f. Since (Ex|vy, Txlvy) = (QF, £(Vo)), we have

Ex(u.u) = 05 (f. /).
By Lemma 7.10, Fq C C(X) and hence u € C(X). For any (w, (i, j)) € Wi x B,
we extend the domain of u to each e;; by defining
0l (1= )G (piy) +1Gu (p)) = (1= Du(Gu (piy) + (G (pj0))

for any z € [0, 1] and ¢|x = u. In this manner, u is extended to a function ¢ on K
such that ¢ € F. Since for any m > 1

OF (f: ) = Exm(9.9) = Exm(9,9),
¢ € Fg and Ex(p, @) = Q(i:(f, f). Now, if v € Fx and v|y, = f, (7.2) yields

Ex(p,9) = OF ([, f) < Exm(v,v) < Exm(v,v) < Ex(, V).

Therefore, ¢ is the Vy-harmonic function with respect to (Ex, Fx) with boundary
value f and hence Ex|y, = QF. This shows ro(Ex, Fx) = 1. O

We conclude this section by showing that
RFs = {(8&x, Fgr) | R € MPN,§ > 0}.

Theorem 8.11. We have
(1) Reep.50) = Rfor any R € MPN;

(2) (833(5!7)7 :}'ZR(g_gr)) = (}’0(8, 3:)8’ EF)fOF any (8’ 3:) € :R:}'S
In particular, the map R € MPY — (Ex, Fg) € R&"?SV is bijective.

Proof. (1) Let R = {(rm, pm)}m>1. By Theorem 7.16, the resolution of (Ex, Fx)
is given by {((8m) 1€ xum . Frums Ym)m=0, Where 8, = ri...rm and y, =
8m—1pm- By Lemma 8.10, ro((Sm)_IE:RW), Fram) = &m and therefore we obtain
Rigp.o0) = R

(2) Without loss of generality, we may assume that ro(E€,F) = 1. Set R =
Ree,5)- Applying (1), Re,54) = R and by Lemma 8.10, ro(Ex,Tx) = 1 =
ro(€, F). Thus, condition (E4) in Corollary 8.9 is satisfied and hence (Ex, Fr) =
(€.9). O
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Remark. This result reveals that R?gv is in fact the set of fixed points of the

mapping
O: RFsg — RFg,

(&, F) —> (ro(&, \‘}")_183(8_?), ?93(8.3‘))'

9. Classification of resistance forms derived from matching pairs

In the previous section we have identified any complete symmetric resistance form
on SSG with aresistance form (Ex, F) derived from a sequence of matching pairs
R up to multiplication by a constant. The present section analyzes the detailed
structure of (Ex,Fx) by decomposing it into two parts, called the SG part in
allusion to the reminiscence of SG in SSG, and the line part that corresponds
to the cable system/quantum graph approach. In Theorem 9.4 we use a certain
property of the sequence R to determine when the SG part is non-trivial and
therefore captures the reminiscence of the SG in the geometric structure of SSG.
Let R = {(rm. pm)tm>1 € MP™ and set 8,, = ry...rm and Yy = 81 pm. For
any u € Fp andm > 1,
> - Dic(u.u) < Exlu.w)
k=1
and the left-hand side is monotonically increasing with respect to m. We can thus
define &L (u,u) as

o0
1
Ehu.u) =Y —Di(u.u). 9.1)
k=1 Vi
Moreover, we define
EX(u,u) = Ex(u,u) — L (u, u) 9.2)

and therefore
X, u) = lim iQE(u u)
R m—00 8m maT ’
Notice that both 8322 and 8& are non-negative quadratic forms on Fx. As a
consequence, it follows that
Ex(u,v) = EX(u,v) + EL(u,v).

We call 8322 (resp. 852) the SG part (resp. the line part) of Ex. It is easy to see
that, in order for £ to be a resistance form, the line part should be non-zero.
On the contrary, the SG part may vanish, as we will see in the the course of our
discussion.
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The following useful lemma is an exercise of undergraduate calculus.
Lemma 9.1. Let {(rm. om)}m=1 € MPY and define
km = —log (1 — pm).

The following three conditions are equivalent:

@) Yoo km < 400,

(b) ZS:;I Pm < 100,

(c) There exists C > 0 such that

3I\m
C<§> <rira...rm
Joranym > 1.

Note that k,, = log 2 —logry, for eachm > 1. Thus if Y p_; pm < +o00 and
we setk = Y 7 km, then

3I\m
rry...ry; = e_KeZizm—H Ki (g)
With this equality one is led to the following lemma.

Lemma 9.2. Let {(r, pm)}m>1 € MPN. There exist Cx > 0 and a sequence
{¢m}m>1 such that limy, o0 ¢y = 0 and

1

rira...rm

~e(d)a-e

if and only if Y .00 pm < oo. Moreover, if > o0 | pm < 00, then Cyx =
[Tore1 (X = pm)™Y ¢ = 0 for any m > 0, and {¢m}m>1 is monotonically
decreasing.

Definition 9.3. Define Fx «» = Fr N C(K4).

As announced at the beginning of the section, the next theorem reveals the
sufficient condition for the survival of 89%, that is ijf:l om < oo. In the next
section, this condition will be seen to be necessary as well.

Theorem 9.4. Let R = {(rm, pm)}m>1 € MPY, Fx « consists of constants if and
only if Y oo\ pm = oo. Furthermore, if Y v, pm < 00, then F* C Fg 4 and

Ex(u,u) = EX(u, u) = Cx&€*(u, u)

for any u € F*, where Cs = [[or_ (1 — pm) L.
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Proof. Foreachm > 1, set 8, = ri...rp. If Y oo pm < 0o, then Lemma 9.2
yields
Eam(1t.1) = 5= O (w ) = Col = )(3) Omta.0)
m

for any u € 3*. By Theorem 4.5 we now have that
. 1 ¥ *
Ex(u,u) = lim —Q; (u,u) = Cx &% (u, u)
m—00 §,,

and hence 7* C Fg .. On the other hand, if an":l Pm = oo, then for any
u € C(Ky),
s 1 By\m sm o
Eamen) = 50N = +(3) - (3) 2neew.
From Lemma 9.1, it follows that ﬁ(%)m is unbounded as m — oo and by
Proposition 4.4, lim,,;— o (%)m OZ(u,u) > 0 unless u is constant. Therefore,
u € Fg if and only if u is constant. O

We conclude this section with some preliminary results concerning the do-
mains of the SG part and the line part.

Definition 9.5. Let R € MPY. Define
FE = {u|ueFx, EE(u.u) =0},
Fr={ulueFx EL(u,u)=0}.
Lemma 9.6. Let R € MPN. Then,
FE={u|ueFx, Eﬁ(u,v) = 0foranyv € Fg}
and
3"52{ ={u|ueFg, 8&(74, v) = 0 forany v € Fy}.
Proof. Let us consider first F. 52. Applying the Cauchy—Schwartz inequality,
R, v)? < EX(u, ) ER (v, v)
for any u, v € Fx. Therefore, if u € FL, then €Z(u, v) = 0 for any v € Fx. The
converse direction is obvious. The argument for F % works verbatim. O

Lemma 9.7. Let R € MPY. Then, % = Fx N C(Ky).

Proof. If u € Fx N C(Ks), then u is constant on every e;;. Therefore we
have €L (u,u) = 0 and hence u € FZ. Conversely, assume that u € FZ.
Then, Deiujg (u|eiujg , ”'e,'-’}) = 0 for every ¢, and hence u is constant on ¢;%. Thus,
u € C(Ky). |
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10. Projection to the line part
Let us define (MP™)! < MPN by
PN = {93 ‘ R e MPN, (Ex, Fp) = (Eh. FL } (10.1)

In this section, we are going to introduce a natural projection £: MPN — (MPN)?
and through an explicit expression of this mapping, it will be shown in Theo-
rem 10.9 that

o
P! = R | R = {Cm, pm)mz1 € MPN, Y o = o}

m=1

In other words, the converse of Theorem 9.4 holds, i.e. an":l om = oo if and
only if E¢ = &L, or equivalently €2 = 0.

Before doing so, we present some results concerning a general theory that is
not confined to resistance forms on K and is applicable in very abstract settings.
Let (€, F) be aresistance form on a set X and let R be the associated resistance

metric. Assume that there exist non-negative symmetric quadratic forms £ (-, )
and £@(.,.) on F x F such that

Eu,v) =V, v) + P, v)
for any u, v € F. Define F® = {u |u € F, €W (u,u) = 0} and note that
Eu,v) = D (u,v)

for any u, v € F@. As in Definition 6.1, for any u, v € F we define u ~ v if and
only if u — v is constant.

Lemma 10.1. (F® /~, &) is a closed subspace of (F/~, &).

Proof. Let x € X and set T2 = {ulu € ¥ u(x) = 0} and F = {ulu €
F,u(x) = 0}. It suffices to show that (CT'")(CZ), &) is a closed subspace of (Fy, €).
Let {uy}n>1 € 33(62) and suppose that E(u, — u,u, —u) — 0 as n — oo for some
u € F. Then,

EW —up,u—up) = D (up, un) — 280wy, u) + €V, u) - 0

as n — oo. Since EM (u,, u,) = 0and €W (u,, u)? < ED(uy, u,)ED (u, u), it
follows that €@ (u, u) = 0. Thus, (FZ, &) is closed and so is (F@ /~, &). O
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Using the above lemma, we may easily verify the following statement.

Theorem 10.2. (&, F®) is a resistance form on X if the following two conditions
are satisfied:

(1) forany x # y € X, there exists u € F? such that u(x) # u(y);

() foranyu € F, €M@, i) < EW(u,u) and @ (i, 1) < €D (u, u).

Proof. (RF1) and (RF4) hold because F@ c Fand (€, F) is a resistance form.
(RF3) is condition (1) and (RF5) is condition (2). To prove (RF2), notice that

(F/ ~, &) is complete because (&,TF) is a resistance form. By Lemma 10.1,
(FP@ /~, &) is a closed subspace of (F/~, &) and hence also complete. O

Back to resistance forms on SSG, we start by constructing the projection £
from MPY onto (MPN)?.

Theorem 10.3. Let R = {(rm. pm)}m=1 € MPY. If
FE = {u|ueTFx EXu,u) =0},

then we have that (€L, ffgz) € RF s and that the resolution of (EL, 3"52) is given by
{((Sm)_lﬁgz(m), ?gxm)’ Ym)tm>0, Where 8y = ri...rm and Yy = 8m—10m for any
m > 1. Moreover, ro(EI ,3"&) < 1 and there exists a unique R’ € MPN such that
(ro(Eh, FREL. TR) = (Ex/, Tw).

To prove this theorem, we need the following lemma.

Lemma 10.4. We have
.’fgz = {u | u e C(K), uoG; € ?é(l,foranyi es,
ule,; € H'(eij) forany (i, j) € B}

and

1 1
eL(u,u) = Z Z5;2(1,(uoc;,~, uoG;) + ED{(u, u) (10.2)
ieS

1
foranyu € F3,.

Proof. Note that for any m > 1 and u € FL,

1 1
S—Qr%(u, u) = 5 Z 0Z_ (uoG;,uoGj).

mies
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By definition, u € ffgz if and only if v € F5 and

lim
m—00 Om+1

QZ(uoG;,uoG;) =0

forany i € S,ie. u € F} if and only if u € F and uoG; € FL,,. This imme-
diately implies the desired equivalence. Since {((8) 1€ xum s Fpum s Ym)}mso0 is
the resolution of (Ex, Fx), we obtain (10.2). O

Proof of Theorem 10.3. Applying Theorem 10.2 to (€, Fx) with €M = X and
€@ = ¢l we see that (€4, FL) is a resistance form on K.

Moreover, by Lemma 10.4, u € F% if and only if u|g, (k) € F& |6, (k) foranyi € S
and ul,,, € H Y(eij). If R(-,-) and R’ (-,-) are the resistance metrics associated
with (Ex, Fx) and (€L, FL) respectively, then

RI(x. y) = sup { u(x) —u(y)?

E i) u € Fhoux) # u(y)} <R(x,y) (10.3)

for any x, y € K. Hence, the identity map ¢ from (K, R) to (K, R) is continuous
and since (K, R) is compact, the map ¢ is a homeomorphism. Furthermore, &%,
is invariant under all geometric symmetries of K because £ is. Combining
these previous facts, we conclude that (€4, F%) € RFY. Applying (10.2) to
(&L ROm) an)) repeatedly, we get that (5, FL) € JQCT"S and its resolution is

{(Gm) ™" €y F ko » ) Ym0 Finally,

ro(Ex, T5) = —R (1, p2) < R(ph p2) =1
and the existence of R € MPY follows immediately from Theorem 8.11. |

Definition 10.5. For any R € MPYN, £(R) € MPN is defined as R’ given in
Theorem 10.3.

Lemma 10.6. Let R € MPN. If L(R) = {(Sm. 0m)}ms1, then

o0

Y om = o0. (10.4)

Proof. Notice that for any u € F* N Fy(x), u is constant on every e;; and hence
Eowy,u) = ro(EL, FE)EL(u,u) = 0. Since (Egx). Fowy) is a resistance
form, u is constant on K. By Theorem 9.4, we see that Y o, 0y = 00. d
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The next lemma gives an explicit expression of £(R), which plays an essential
role in the rest of the section.

Lemma 10.7. Let R = {(rm, pm)}m=1 € MPYN and let py = ro(Eh, FE). If
L’(:R) = {(Sn’h Um)}mzl, then

m—1 m—1
po [ [ —00) =TT =pi) (1= po) (10.5)

i=1 i=1

for any m > 1. In particular,
m—1
[Ta-p)
i=1

m—1
[Ta—=p) -1 —=po)
i=1

Pm (10.6)

Oom =

and -
po [ [(1—00)
pm = ———— T (10.7)
po [ J(1 = 01) + (1= po)
i=1

Proof. For (w, (i, j)) € Wi x B, choose u € Fx so that u(x) = 0 for any x ¢ e}
and Ex(u,u) > 0. Then, u € FL and polk(u,u) = Ex(u,u) = L, (u,u).
Hence, we get

F1iF2 .o . Tm—1Pm = P0S152 - - - Sm—10m (10.8)

for any m > 1, which yields

m—1 m—1
pm [ [(1 = pi) = poom [ [(1 = 00). (109)

i=1 i=1
By induction, we obtain (10.5). 0
Lemma 10.8. Let R = {(rm,pm)}mZI c M(.P]N and let py = ro(gl’g:gz). If
L’(:R) = {(Sn’h Um)}mzl, then

1 —oy,

Pm (10.10)

for anym > 1, where ayy = 1 — ]_[;"z_ll(l — pi). In particular,

po = lim oy,.
m—00
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Proof. The equality follows directly from Lemma 10.7, which also implies that
for any m > 1,

m—1 m—1 m—1
po=po[[1—on)+ 1] =p) = 1-[](1 = pi) = am

i=1 i=1 i=1
and therefore pg > limy,— o0 0ty O

Remark. {«,},>1 is monotonically increasing and o, 1 o as n — oo for some
a € (0,1].

Finally, we present the main theorem of this section. It characterizes (MP™)?
and essentially says that the SG part 8% truly exists if and only if Y | pm < 0.

Theorem 10.9. Let R = {(rm, pm)}m>1 € MPYN. Then, L(R) = R if and only if
Y o1 pm = oco. In particular, Ex = &L if and only if Y ooy pm = 00.

Proof. Assume that ano:l pm = 00. Then o = 1, which implies that py > 1 and
therefore pp = 1. In view of (10.6), we have that p,, = o, for any m > 1, hence
R = R’. Thus we have shown that E¢ = Ex/ = 852. Conversely, if R = R, then
Lemma 10.6 shows that > o, o = Y oo Om = 00. O

m=1
As a consequence of this theorem,
LLR) = LR)

for any R € MPY and LOMPY) = MP™)!. Thus, we may regard £ as a
projection onto (MPN)Z .

We finish this section with several useful equalities leading to an explicit
expression of ro (&%, ?52) in terms of the elements of R.

Lemma 10.10. Let R = {(rp. pm)tm=1 € MPN. Then,

(1) Foranym > 1,

5\ i—1 5\m
1(5) ]/i+(§) Sm:L
where 8y = r1...Fm and y; = 8;_1p;.

() Yoo pm = 0o if and only if liMp—co (3)" 8m = 0.

m

4
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Proof. Lety,, =ry...rm—1pm. Since grm + pm = 1, we have

(3)" === pom
=1 =p1)--.(1 = pm—1) — (L= p1)...(1 = pm)

and hence

i (%)i—lw =1- ﬁ(l —pi)=1- (g)m&n.
' i=1

i=1

This proves (1). Assertion (2) follows immediately from the fact that
m
5\m
i=1
Proposition 10.11. Let R = {(rm, pm)}m>1 € MPY. Then,

o) 00 m—1
ro(€h. 75 = 1=TT0 = pm) =" (om [ J1 - p0)). (10.11)
m=1 m=1 i=1
In particular, ro(E1 ,3"&) < 1lifandonly if Y 00_| pm < 0.

Proof Set py = ro(€%.Fh) and £(R) = {(sm.0m)}m=1. I Y00_; pm = 00,
then we have already shown in the proof of Theorem 10.9 that pp = 1. Since
[To_,(1 — pm) = 0, Lemma 10.10 implies (10.11).

Suppose that Y o pm < oo and set @ = 1 — [[_;(1 — pm). Note that
(1 = am)pm = (5/3)™ 1y, as in the proof of Lemma 10.10-(1). Therefore, if
0o > o, then (10.10) and Lemma 10.10-(1) lead to

Zam < Z (1- am):om 1 < oo,

-« -«
me1 PO Po

This contradicts (10.4), hence pp = «. Applying Lemma 10.10 again, we imme-
diately obtain (10.11). O

11. Domain of resistance forms given by infinite sequences of matching pairs

The results obtained in previous sections come together in the present one to
prove the main theorem of this paper, Theorem 5.7. In fact, Theorem 8.11 and
Theorem 10.9 already identify any completely symmetric resistance form on
SSG as the sum of its line part and its SG part, whenever the latter survives.
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This identification is now completed by giving a full description of the domains
of these forms. This characterization of the domains in the next theorem is the key
step to showing Theorem 5.7.

Theorem 11.1. Let R = {(rm, pm)}m=1 € MPY and set R = [[5_,(1 — pm).

Moreover, define
r..."m—1Pm

Nm = 1— R,

foranym > 1and n = {Nm}m>1.

(1) If > po_y pm = 00, then Ry = 0, F = F, and
Ex(u,v) = D], v)

Jorany u,v € Fx.

(2) If Y= om < 00, then Ry € (0,1), Fx = F;; and

1
Ex(u,v) = R—e*(u,v) + DI, v)

l_R*

Jorany u,v € Fx.

The idea to prove this theorem will be to show that the restriction of (Ex, Fx)
to F, in the case ) ,_; pm = 0o, respectively F in the case Y ", pm < 00, is
again completely symmetric and derived from the same matching pair as (Ex, Fx).
Developing this strategy requires some effort and consists in several steps shown
in the subsequent lemmas.

We start with two remarks.

Remark. (i) By Lemma 10.10-(1),

> (%)m_lym =1-[]a-pm (11.1)
m=1 m=1

and therefore

(ii) By Proposition 10.11,

1—R. = ro(El,Sjgz) = 0.



270 P. Alonso Ruiz, U. R. Freiberg, and J. Kigami

Definition 11.2. For each R = {(rm, pm)}m>1 € MPYN and each n > 0, define
RO = {(Fntns pmtn)Imz1s R = TTon=y (1= pmeen)

77(”) _ "nt1- - -"'n+m—1Pn+m
" 1—R™

form > 1, and n(”) = {nf,’,’)}mzl. Moreover, for each n > 0, define

.F:an) if 2310=1 Pm = 00,

£ . (o8}
Foon if 2 m=1Pm < 00,

Fn) —

with &)@ and 3":;(,,) as in Definition 5.6.

Lemma 11.3. Let R = {(rm, pm)im>1 € MPY and define for each n > 0
8%)(% v) = Eqxm (U, v) + u(pr)v(p1) for any u,v € Fym. Further, recall the
domains F, and F7%, introduced in Definition 5.5.

(D) If Yoy pm = oo, then F® s the closure of Foo with respect to the inner
product 8},"1).

(2) If Yoy pm < 00, then F™ is the closure of F%, with respect to the inner
product €.

In either case, F™ C Fqm.

Proof. (1) It suffices to show the case n = 0. Let us assume that Z;’:;l Pm = Q.
Then, R, = 0 and €x = &4 = DJ. Consider now u € F,, ie. u € 7,
DI(u,u) < oo and there exists {un}n=1 < F o such that lim,_ DI(u — up,
U —u,) = 0and lim,— o0 s (x) = u(x) for any x € K. Then, {u,}n>1 is a
Cauchy sequence in (Ix, €p,). Since (Dfl, Fx) is a resistance form, there exists
i € Fx such that €, (4 — u,, 4 —u,) — 0 and u,(x) — u(x) asn — oo for
any x € K. Therefore, u = ti € Fx and hence it belongs to the closure of 5"00
with respect to the inner product €, . Conversely, it is easy to see that the closure
of Fo, with respect to €p, is a subset of J;,. Thus, J;, is the closure of Foo with
respect to the inner product €,, and in particular F, € Fx. If Y07, pm < 00, it
follows from Theorem 9.4 that

Ex(u,v) = Rie*(u,v) + Dl v) (11.2)

l_R*
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for any u,v € Fx. Consider now u € J7, ie. u € F NIz, DI(u,u) <
oo and there exists {u,},>1 S JF% such that lim, o0 E* (U — Uy, u —u,) =
limy, 00 DY (U — tp,u — up) = 0 and lim, o0 up(x) = u(x) for any x €
K. Similar arguments as the previous case imply that u belongs to F¢ and
Ep, (U — Up,u —uy) — 0asn — oo, hence FO js a subset of the closure of
F%, with respect to €,, . The converse inclusion is straightforward and the desired

statement follows. O

Definition 11.4. For each R = {(rm, pm)}m>1 € MPN and any n > 1, define
EM = & |gmxgm.

Lemma 11.5. Let R = {(rm, pm)}m>1 € MPY. Foranyn > 0andanyi € S,

{uoG; | u e FMW} = g+,

g — {u | u € C(K), uoG; € ¥+ foranyi € S,
ule;; € Hl(eij)forany (i, j)e B},

and

1 1
EM(u,v) = Z — &0+ (40G;, voG;) +

I
. Di(u,v)
ies nt1 Pn+1

foranyu,v € FO),

Proof. From Theorem 7.16 we know that {((§,) ™' €4, Frm, ¥n)}n=0, Where
Op = r1...rp and vy, = 6,—1pn, is the resolution of (Ex,Fx). This directly
implies the last equality of the lemma because T C F ) by Lemma 11.3. In
view of that equality, if u € F, then ule;,; € H'(e;;) for any (i, j) € B. In
addition, u € 7™ implies the existence of a sequence {uy }x>; that approximates
u, see Definition 5.6, so that {1z oG; }x>1 approximates uoG; in the corresponding
way and hence uoG; € F#+1_ On the other hand, consider u € C(K) such that
uoG; € F@+D forany i € S and ul,;, € H'(e;;) for all (i, j) € B. Our aim is
to prove that u € F™_ Since uoG; € F*+V £+ (406G, uoG;) < oo and by
Lemma 11.3 there exists {ux ; }x>1 € C:"OO (resp. F%,) such that

lim "D (uoG; — Ugi - uoG; —up ;) =0 and  lim wg;(x) = uoG;(x).
k—o0 k—o00

for any x € G;(K). For each k > 1 define v;: K — R by

) ug oG (x) if x € Gi(K),
Vp(X) i= ..
‘ u(x) + ¢ (1) ifx € ey, (i j) € B.
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where @,’z is an affine function on e;; chosen so that vy € C(K). Since
limg o0 9 (pij) = limgoo @ (pji) = 0, we have D, (¢ . ¢) — 0. By
construction, vy € C(K) and vy € C:"OO (resp. F%) for any k > 1. Furthermore,
DI (u—vy, u—vy) — 0asn — oo and hence €™ (u— vy, u—vg) — Oas k — oo.
Moreover, limg o0 Uk (P1) = limg— 00 Ve (G1(p1)) = limg— oo ug,1(p1) = u(p1)
and therefore u € ¥,

It remains to prove that {uoG; | u € F®} = F@+D_ On the one hand, it
follows from the previous discussion that if u € F ™) then uoG; € F"+tD_ On the

other hand, consider u € F#*D, By Lemma 11.3, F®+D C Fpu41) = {v0G; |
v € Fgpan} and we can pick v € Fyam such that voG; = u foranyi € S. In
particular, v € C(K), voG; € F®*V and vy, € H'(e;;) forall (i, j) € B, s0
that v € T, O

Lemma 11.6. Let R = {(rm. pm)im=1 € MPY. Then, (6@, FO) e RFg and
its resolution is {((8,) '€, T 'y, )\ uso, Where 8,y = r1...1m and v, =
Sm—1Pm-

Proof. We start by showing that (£©, 7(®) is a resistance form. Condition (RF1)
is obvious. Condition (RF2) follows immediately from Lemma 11.3. Moreover,
since Foo already has the property (RF3) and Foo € FO, (RF3) is also fulfilled.
Condition (RF4) holds because J;, € F, and

2

up{M u €Ty, Enluu) # 0} < R(x.) (11.3)
E(u,u)

for any x, y € K.

It remains to prove (RF5). Suppose first that Y >, pn = co. Obviously, Foo
has the Markov property. Now, let u be a Borel regular probability measure on K
that satisfies u(O) > 0 for any non-empty open set O and u(A) = 0 for any finite
set A. Define

utr.0) = Ex(r.0) + [ uC0Pu(dx)
K
for any u, v € Fx. Due to the fact that
u(x) —u(p)? < Ex(u, u)R(x, p1) = CEx(u,u),
where C = sup,.x R(x, p1), we can find C’ > 0 such that
1
Egm(u’“) < &u(u,u) < C'Ep, (u,u)

for any u € F. Therefore, by Lemma11.3, F(© is the closure of F oo with respect to
€, and [5, Theorem 3.1.1] implies that (€@, F©) is a Dirichlet form on L2(K, ).
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In particular, 7 has the Markov property and hence (RF5) holds in this case.
Suppose now that Y, p, < oo. Replacing Foo by 7%, the previous arguments
show that (RF5) holds again. Thus, (£, F©) is a resistance form.

Let R© be the resistance metric on K associated with (£, F(©) that equals
the left-hand side of (11.3). In view of (11.3), the identity map from (K, R) to
(K, R©) is continuous and since (K, R) is homeomorphic to (K, dg), it is com-
pact. Therefore, the identity map from (K, R) to (K, R©®) is a homeomorphism.
The rest of the statement follows immediately from Lemma 11.5. O

We finally show Theorem 11.1 by making use of these preliminary lemmas to
prove that any completely symmetric resistance form (€, Fx) actually coincides
with the resistance form (€@, () introduced in Definition 11.2. The representa-
tion of £(© as linear combination of £* and Dé appears in the proof of Lemma11.3,
while the domain T is explicitly given in Definition 5.6.

Proof of Theorem 11.1. Set &, = ro(E™, F™) . Then ro((8,) 1™, Fm) =
8mEm. By Lemma 11.6, the resolution of (€@, F©) is {((6,,) "1™, F™ )} m=o0
and the results in Section 8, in particular Definition 8.4 and Theorem 8.11, yield

R 50y = {(Sma_r;é:_l ’ (gm_)l/rgm_l >}mzl

(11.4)
={(mg )
Em—l Em—l m=1
Thus, for any m > 1,
2y Py (11.5)

_rm
3 Em—l i‘-m—l
Since r;,, = %(1 — pm), (11.5) yields
(1 - ‘i‘_m)(l - Pm) =1- %—m—l (11.6)
for any m > 1, and therefore

_ o — 1
= U= (=pm T

for any m > 1. Now, it suffices to show that &,, = 1 for any m > 0.

Em

1 11.7)

CAsE 1. Assume that anozl om = 0o. Since &,, > 0, we have

I=§ <(=p)...(1 — pm) (11.8)
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for any m > 1. The limit of the right-hand side of (11.8) as m — oo is 0, hence
£ > 1. On the other hand, it follows from (11.3) that & = ro(E@,F©®) <
ro(Ex, Fxr) = 1. Therefore, & = 1 and (11.7) implies that &,, = 1 for any m > 1.
Thus, R gy = R. Moreover, ro(E@ FOY) = g/ = 1 = ro(Ex, Fx) and
Corollary 8.9 yields (€&, Fx) = (€@, F©),

CAsE 2. Assume that Y o, pm < co. By (11.2) we have that

€0 ox £o
R*E (u,v) + _R.

893(5(0).9(0))(”’ v) = EOE(O)(u, v) = D,I] (u,v)

for any u, v € . Since 7* € F©, Theorem 9.4 and (11.4) yield

DR
m=1 %—m—l
as well as
R, ad Pm
& =El(1 - sm_l)‘ (11.9)

On the one hand, in view of (11.7), we have that {£,,}m>1 converges as m — oo.
Set & = limy;— 00 £n. Now, (11.6) leads to

Om Em
1 - - 1 - Mm)>
Bt Eagl O™
hence by (11.9),
R* R*
PR
and therefore £ = 1. On the other hand, it follows from (11.7) that
§o— 1
= 1.
3 R. +

This implies & = 1 and thus R 50, = R, which shows (€@ FO) =
(Ex, Tx). O

The final step to prove Theorem 5.7 consists in showing that any (positive)
linear combination of £* and Dé can be realized as a completely symmetric
resistance form on SSG.
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Proof of Theorem 5.77. (1) If (€,F) € RF g, then Theorem 8.11 implies (€, F) =
(cEx,Fg) for some ¢ > 0 and R € MPN, By Theorem 11.1, there exist a >
0,b > 0 and a sequence n = {Nm}m>1 < (0, 00) such that n satisfies (5.5) and
E(u,v) =al*(u,v) + bDfl(u, v) for any u, v € F with F as in (5.6).

Conversely, let n = {nm}tm>1 S (0, 1) satisty (5.5). Inductively we may
construct a sequence {0y, }m>1 such that

NMm = (%)m_l(l —01)...(1 —0m-1)0m

3\m—1
(g) (1 =01)...(1 —om—1) — (1 —01)...(1 —om))

for any m > 1. In view of (5.5), it follows that ]_[fn":l(l — om) = 0, hence
> ooy Om = 00. Defining s, = 2(1—0p) forany m > 1, Ru = {(Sm. Om)}m=1 €

MP™ and Theorem 11.1 yields
Ex, (u,v) = DI (u,v)

for any u,v € Fx, = F,. Thus, for any b > 0, (DL, F,) = (b€x,,Fx,) € RTFs
and the case a = 0 of Theorem 5.7-(1) is proven.

In order to prove the case a > 0, choose py € (0, 1) arbitrarily and define p,
for m > 1by (10.7). Then, p, € (0, 1) forany m > 1. Taking ry = 2(1— pm), we
have that R = {(rym, om)tm=1 € MPN. Now, set Ay = po [ 11, (1—03) + (1 — po)
and notice that (10.7) leads to

1_:Om=A 1’
m—

hence

o0
R*:H(l—pm):mlgnooAmzl—po>O.
m=1

Moreover, by (10.9),

3\m—1
FL. . 1 Pm = (g) (1= p1)...(1 = pm1)Pm

3\ m—1 m—1
= (g) PoOm 1_[ (1—o0i)
i=1
= NmPo
and Theorem 11.1 yields

1 1
Exu,v) = T——&"(u,v) + — D! (u,v)
— Po Po
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for any u,v € Fx = Fy. Since po € (0,1) is arbitrary, for every pair (a,b) €
(0, 00) x (0, o0) in the statement of Theorem 5.7-(1), we find (¢&* + ng, ) =
(c€x,Fx) € RT g by setting po = a/(a + b) and ¢ = ab/(a + b).

(2) Let n = {nm}m>1 satisfy (5.5). Choose any py € (0, 1) and construct R, and
R as in (I). Then, it follows that £(R) = R.. Note that F;, = Fx, and 3";‘; = Fqp,
hence Theorem 10.3 yields ¥, = Fx, = 3"& ={u|ued;, Eg(u, u) = 0}. Since
e% = z-¢&*, we finally obtain (2). O

Acknowledgment. P. A. Ruiz has been partially supported by the NSF grant
DMS-1613025 and the Feodor-Lynen Fellowship program from the Alexander von
Humboldt Foundation.

References

[1] P. Alonso Ruiz and U. R. Freiberg, Hanoi attractors and the Sierpinski Gasket. Int. J.
Math. Model. Numer. Optim. 3 (2012), no. 4, 251-265.

[2] P. Alonso Ruiz and U. R. Freiberg, Weyl asymptotics for Hanoi attractors. Forum
Math. 29 (2017), no. 5, 1003-1021. MR 3692024 Zbl 1373.28006

[3] P. Alonso-Ruiz, D. J. Kelleher, and A. Teplyaev, Energy and Laplacian on Hanoi-

type fractal quantum graphs. J. Phys. A 49 (2016), no. 16, 165206, 36 pp. MR 3479135
Zbl 1342.81140

[4] M.T. Barlow and R. F. Bass, Stability of parabolic Harnack inequalities. Trans. Amer.
Math. Soc. 356 (2004), no. 4, 1501-1533. MR 2034316 Zbl 1034.60070

[5] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet forms and symmetric Markov
processes. De Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin,
1994. MR 1303354 Zbl 0838.31001

[6] A. Georgakopoulos and K. Kolesko, Brownian motion on graph-like spaces. Preprint,
2014. arXiv:1405.6580 [math.PR]

[7]1 M. Hata, On some properties of set-dynamical systems. Proc. Japan Acad. Ser. A
Math. Sci. 61 (1985), no. 4, 99-102. MR 0796477 Zbl 0573.54033

[8] J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics, 143. Cambridge
University Press, Cambridge, 2001. MR 1840042 Zbl 0998.28004

[9] J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates. Mem.
Amer. Math. Soc. 216 (2012), no. 1015. MR 2919892 Zbl 1246.60099

[10] P. Kuchment, Quantum graphs: an introduction and a brief survey. In P. Exner,
J. P. Keating, P. Kuchment, T. Sunada, and A. Teplyaev (eds.), Analysis on graphs and
its applications. Papers from the program held in Cambridge, January 8—June 29,
2007. Proceedings of Symposia in Pure Mathematics, 77. American Mathematical
Society, Providence, R.I., 2008, 291-312. MR 2459876 Zbl 1210.05169


http://www.ams.org/mathscinet-getitem?mr=3692024
http://zbmath.org/?q=an:1373.28006
http://www.ams.org/mathscinet-getitem?mr=3479135
http://zbmath.org/?q=an:1342.81140
http://www.ams.org/mathscinet-getitem?mr=2034316
http://zbmath.org/?q=an:1034.60070
http://www.ams.org/mathscinet-getitem?mr=1303354
http://zbmath.org/?q=an:0838.31001
http://arxiv.org/abs/1405.6580
http://www.ams.org/mathscinet-getitem?mr=0796477
http://zbmath.org/?q=an:0573.54033
http://www.ams.org/mathscinet-getitem?mr=1840042
http://zbmath.org/?q=an:0998.28004
http://www.ams.org/mathscinet-getitem?mr=2919892
http://zbmath.org/?q=an:1246.60099
http://www.ams.org/mathscinet-getitem?mr=2459876
http://zbmath.org/?q=an:1210.05169

Completely symmetric resistance forms 277

[11] M. Okada, T. Sekiguchi, and Y. Shiota, Heat kernels on infinite graph networks
and deformed Sierpinski gaskets. Japan J. Appl. Math. 7 (1990), no. 3, 527-543.
MR 1076302 Zbl 0723.60122

Received June 28, 2016; revised November 16, 2016

Patricia Alonso Ruiz, Department of Mathematics, University of Connecticut,
341 Mansfield Rd, Unit-1009, Storrs, CT-06269, USA

e-mail: patricia.alonso-ruiz@uconn.edu

Uta R. Freiberg, Institute of Stochastics and Applications, University of Stuttgart,
Pfaffenwaldring 57, 70569 Stuttgart, Germany

e-mail: Uta.Freiberg @mathematik.uni-stuttgart.de

Jun Kigami, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

e-mail: kigami@i.kyoto-u.ac.jp


http://www.ams.org/mathscinet-getitem?mr=1076302
http://zbmath.org/?q=an:0723.60122
mailto:patricia.alonso-ruiz@uconn.edu
mailto:Uta.Freiberg@mathematik.uni-stuttgart.de
mailto:kigami@i.kyoto-u.ac.jp

	Introduction
	Glossary of notations
	Geometry of K
	The Sierpinski gasket
	Completely symmetric resistance forms
	Basics on resistance forms
	Construction of resistance forms on K
	Identification of RF_S with the resistance forms from matching pairs
	Classification of resistance forms derived from matching pairs
	Projection to the line part
	Domain of resistance forms given by infinite sequences of matching pairs
	Acknowledgment
	References

