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Abstract. We find estimates for the error in replacing an integral
R

fd� with respect

to a fractal measure � with a discrete sum
P

x2E w.x/f .x/ over a given sample set E

with weights w. Our model is the classical Koksma–Hlawka theorem for integrals over

rectangles, where the error is estimated by a product of a discrepancy that depends only

on the geometry of the sample set and weights, and variance that depends only on the

smoothness of f . We deal with p.c.f. self-similar fractals, on which Kigami has constructed

notions of energy and Laplacian. We develop generic results where we take the variance to

be either the energy of f or the L1 norm of 4f , and we show how to find the corresponding

discrepancies for each variance. We work out the details for a number of interesting

examples of sample sets for the Sierpiński gasket, both for the standard self-similar measure

and energy measures, and for other fractals.
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1. Introduction

Numerical integration on domains in Euclidean space is a highly developed sub-

ject that is of interest from both a theoretical and practical point of view, with

many open problems still being actively pursued ([5], [8]). The goal of this paper

is to develop a similar theory on fractals, following up on earlier work in [1].

The gist of the matter, in any context, may be succinctly stated as follows.

Given a measure � on some space and a finite set of points E, the sample set, we

would like to approximate the integral
R

fd� by the sum
P

x2E w.x/f .x/ for a set

of weights ¹w.x/º. The main problem is to estimate the error of the approximation.

A desirable form of the error estimate is in terms of a product of two factors, a

discrepancy of the weights (or just of the set E if the weights are chosen uniformly

w.x/ D 1
#E

) depending on the “geometry” of E, and a variance of f that measures

the “smoothness” of f in a suitable norm. A well known version of such an

estimate in the case of rectangles is the Koksma–Hlawka theorem ([8]), and some

of our results are modeled on this theorem. Other interesting questions concern

how to choose the sample set E to minimize the discrepancy, and how to choose

“natural” weights on E.

We will restrict attention to Kigami’s class of p.c.f. self-similar fractals with

a regular harmonic structure [3]. A basic example is the Sierpiński gasket SG

(see [10] for a detailed description of this example) and we will give the most

detailed results for this example. We hope that our results will serve as a foun-

dation for future work on products of fractals, motivated by the observation that

rectangles are products of intervals, and intervals are in fact the most elementary

examples of p.c.f. self-similar sets.

There are two types of measures that are natural to consider in this context.

The first are the self-similar measures that are naturally associated with the self-

similar structure of the fractal, and include the normalized Hausdorff measure

in the appropriate Hausdorff dimension. The second are the energy measures

associated with the harmonic structure. Very briefly, the harmonic structure

provides an energy E.f; g/, a bilinear Dirichlet form analogous to the energy
R

�.rf �rg/dx on a domain � in Euclidean space. Harmonic functions are energy

E.h; h/ minimizers, analogous to linear functions on an interval.

The energy measure �h;H for harmonic functions h and H assigns to a set C

the “restriction” of Eh;H to C . An interesting and surprising result of Kusuoka [6]

shows that energy measures and self-similar measures are mutually singular, in

start contrast to what happens in classical analysis. Associated to each measure

� is a Laplacian 4�. The study of Laplacians for self-similar measures was

originally the focus of the theory of analysis on these fractals, but recently energy
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measure Laplacians have come to the fore ([4], [2], [11], [1]). For this reason, it is

worth investigating numerical integration for both types of measures.

We will consider two types of smoothness conditions. The first is a very

minimal smoothness that E.f; f / is finite. This implies that f is continuous in

our context (but not in Euclidean space of dimension above one). The second is

the finiteness of k 4� f k1. There will be a different discrepancy associated to

each of these variances of f , with the second one typically a lot smaller because

we are assuming more smoothness for the function. We will have two “generic

results” corresponding to these choices. We note that our results are not exactly

analogs of Koksma–Hlawka; they are only similar in spirit.

For each sample set E we will typically investigate a “natural” set of weights

¹p.x/º. These weights will allow the exact evaluation
Z

f .x/d�.x/ D
X

x2E

p.x/f .x/

for a finite dimensional space of functions called piecewise harmonic splines.

These are basically the continuous functions that are harmonic on the complement

of E, and are the exact analog of piecewise linear functions on an interval. So then

it is natural to estimate the error for a general set of weights ¹w.x/º in terms of the

differences between the two sets of weights, using the approximation properties

of the piecewise harmonic splines in terms of the smoothness norms of f .

We develop our generic results in Section 2. Then in Section 3 we study the

example of SG and the standard self-similar measure �, and work out in detail

the natural weights and discrepancies for a variety of sample sets. In Section 4

we briefly examine some other p.c.f. fractals. In Section 5 we return to SG but

consider energy measures. See [9] for related work concerning values of smooth

functions on discrete sets of points. The programs used to generate the data in

sections 4 and 5 may be found at the website [7]

2. Generic results

Let K be a p.c.f. self-similar fractal generated by a finite iterated system
®

Fj

¯

of

contractive similarity on some ambient Euclidean space. So

K D
[

i

Fi K

and there exists a finite set V0 of boundary points such that

Fi K \ Fj K � Fi V0 \ Fj V0:
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We assume there is a self-similar energy form E.u/ on K such that

E.u/ D
X

i

1

ri

E.u ı Fi /

for some energy renormalization constants 0 < ri < 1. See [3] for detailed

definitions.

Let � be a probability measure on K that is non-atomic and assigns positive

values to nonempty open sets. Let E be a finite subset of K, and suppose we are

given a set of positive weights w.x/ on E with

X

x2E

w.x/ D 1:

Our goal is to understand how well the discrete sum
P

x2E w.x/f .x/ approxi-

mates the integral
R

K fd� under various “smoothness” assumptions on f . We

want estimates of the form
ˇ

ˇ

ˇ

ˇ

Z

fd� �
X

x2E

w.x/f .x/

ˇ

ˇ

ˇ

ˇ

� disc.E; w/ Var.f /

where the discrepancy disc.E; w/ is some “geometric” measurement of the dis-

tance between the original measure � and the approximate measure
P

x2E w.x/ıx,

and Var.f / is some norm measuring the smoothness of f . The classical Koksma–

Hlawka theorem is a model example of such an estimate.

Our approach to obtaining such estimates is to consider two separate subprob-

lems. The first is to obtain estimates of
R

fd� under the assumption that f jE D 0.

The second is to consider a family of splines defined in terms of E and to find a

family of weights ¹p.x/º such that
R

gd� D
P

x2E p.x/g.x/ for every spline g.

Given a suitably smooth f , we write f D .f � g/ C g where g is a spline satis-

fying gjE D f jE . We use the first subproblem to handle f � g and the second

subproblem to handle g, and then add.

Associated to the energy E and the measure � we have a Laplacian 4� defined

by the weak formulation
Z

K

v 4� ud� D �E.u; v/ (2.1)

for all test functions v 2 domE (domE is the set of functions with E.v/ < 1, and

E.u; v/ is the associated bilinear form).

[Note that this definition actually gives the Neumann Laplacian with vanishing

normal derivatives at boundary points. In the case that V0 � E we could just as

well restrict (2.1) to hold for just test functions v vanishing on V0.]
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We define dom 4� to be the space of functions u where 4�u is continuous,

and domL1 4� to be the larger space where 4�u 2 L1.d�/ with seminorm

kukdom
L1 4�

D
Z

j 4� ujd�:

Associated with the set E we have the Green’s function GE .x; y/ that gives

the inverse of �4� subject to Dirichlet boundary conditions on E. That means

F.x/ D
Z

K

GE .x; y/f .y/d�.y/ (2.2)

gives the unique solution to

� 4� F D f; F jE D 0:

Note that, in particular, the function

gE .x/ D
Z

K

GE .x; y/d�.y/

is the solution of

� 4� gE D 1; gE jE D 0:

Also, GE is symmetric under interchange of x and y. Another useful expression

for GE is

GE .x; y/ D
X

j

1

�j

'j .x/'j .y/ (2.3)

where
®

'j

¯

is an orthonormal basis of Dirichlet eigenfunctions

� 4� 'j D �j 'j ; 'j jE D 0:

Note that while the individual terms in (2.3) depend on �, in fact GE depends

only on E and not �.

Definition 2.1. Let

ı0.E/ D
�Z

K

Z

K

GE .x; y/d�.y/d�.x/

�1=2

D
�Z

K

gE .x/d�.x/

�1=2

and

ı1.E/ D sup
x

gE .x/:

Theorem 2.2. Suppose u 2 domE and ujE D 0. Then
ˇ

ˇ

ˇ

ˇ

Z

ud�

ˇ

ˇ

ˇ

ˇ

� ı0.E/E.u/
1=2 (2.4)
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Proof. Write u D
P

cj 'j for cj D
R

u'j d�. Since

E.'j ; 'k/ D
Z

.� 4� 'j /'kd� D �j

Z

'j 'kd�;

we have E.'j ; 'k/ D 0 if j ¤ k and E.'j ; 'j / D �j . So

E.u/ D
X

j

�j jcj j2, (2.5)

and by Cauchy-Schwarz

ˇ

ˇ

ˇ

ˇ

Z

ud�

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

X

j

cj

Z

'j d�

ˇ

ˇ

ˇ

ˇ

�
�

X

j

�j jcj j2
�1=2

�

X

j

1

�j

ˇ

ˇ

ˇ

ˇ

Z

'j d�

ˇ

ˇ

ˇ

ˇ

2�1=2

:

But by (2.3),

X

j

1

�j

ˇ

ˇ

ˇ

ˇ

Z

'j d�

ˇ

ˇ

ˇ

ˇ

2

D
Z Z

GE .x; y/d�.y/d�.x/;

and combined with (2.5) this yields (2.4). �

Theorem 2.3. Suppose u 2 domL1 4� and ujE D 0. Then

ˇ

ˇ

ˇ

ˇ

Z

ud�

ˇ

ˇ

ˇ

ˇ

� ı1.E/

Z

j 4� ujd�: (2.6)

Proof. Let f D 4�u, so f 2 L1.d�/ and (2.2) holds (with F D u). Then

ˇ

ˇ

ˇ

ˇ

Z

ud�

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z Z

GE .x; y/f .y/d�.x/d�.y/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

gE .y/f .y/d�.y/

ˇ

ˇ

ˇ

ˇ

� ı1.E/

Z

jf jd�

which is (2.6) �
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Generally speaking, we expect ı1.E/ to be a lot smaller than ı0.E/, because

of the square root in the definition of ı0.E/. We gain this better estimate because

we are requiring more smoothness in u in Theorem 2.3.

Definition 2.4. Let HE denote the space of piecewise harmonic splines with

nodes in E. In other words, the continuous functions v such that 4�v D 0 in

the complement of E (the condition 4�v D 0 is independent of �). HE is a

space of dimension #E and each v 2 HE is uniquely determined by its values on

E. (Note that if E does not contain V0, then the harmonic condition at points in

V0 n E is just the vanishing of the normal derivative.)

Theorem 2.5. There exists a set of weights ¹p.x/º on E such that

Z

vd� D
X

x2E

p.x/v.x/ for all v 2 HE : (2.7)

Proof. Let vj 2 HE be determined by the condition vj .xk/ D ıjk for all xk 2 E.

Set

p.xj / D
Z

vj d�:

Then (2.7) follows from v D
P

j v.xj /vj . �

Theorem 2.6. (a) Suppose that u 2 domE. Then

ˇ

ˇ

ˇ

ˇ

ˇ

Z

ud� �
X

x2E

p.x/u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� ı0.E/E.u/
1=2: (2.8)

(b) Suppose u 2 domL1 4�. Then

ˇ

ˇ

ˇ

ˇ

ˇ

Z

ud� �
X

x2E

p.x/u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� ı1.E/

Z

ˇ

ˇ4�u
ˇ

ˇ d�: (2.9)

Proof. Write u D .u � v/ C v where v 2 HE and vjE D ujE . Then

Z

ud� �
X

x2E

p.x/u.x/ D
Z

.u � v/d� C
Z

vd� �
X

x2E

p.x/v.x/ D
Z

.u � v/d�

by Theorem (2.5). For part (a), we apply Theorem (2.2) to u � v to obtain

ˇ

ˇ

ˇ

ˇ

Z

.u � v/d�

ˇ

ˇ

ˇ

ˇ

� ı0.E/E.u � v/
1=2:
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Since u � v vanishes on E, we have

E.u � v; v/ D �
Z

.u � v/ 4� vd� D 0

since 4�v D 0 away from E. Thus, E.u; v/ D E.v; v/ and hence

E.u � v; u � v/ D E.u; u/ � E.v; v/ � E.u; u/;

so we obtain (2.8). For part (b), we apply Theorem (2.3) to u � v to obtain

ˇ

ˇ

ˇ

ˇ

Z

.u � v/d�

ˇ

ˇ

ˇ

ˇ

� ı1.E/

Z

j 4� u � 4�vjd�:

However, 4�v D 0 away from E and � is assumed to be non-atomic, so we

obtain (2.9). �

It may not always be feasible to compute the weights ¹p.x/º precisely, or we

may have a preference for a different set of weights, for example the uniform

weights w.x/ D 1
#E

for all x 2 E. So we want a more flexible theorem that

gives error estimates for general weights.

Definition 2.7. Let R denote the radius in the effective resistance metric, namely

the minimum value for which there exists x0 2 K (the “center”) such that the

estimate

ju.x/ � u.x0/j2 � RE.u/ (2.10)

holds for all x 2 K and all u 2 domE. For any set of finite weights ¹w.x/º, define

ı.E; w/ D R
1=2

X

x2E

jp.x/ � w.x/j : (2.11)

Theorem 2.8. (a) If u 2 domE then

ˇ

ˇ

ˇ

ˇ

ˇ

Z

ud� �
X

x2E

w.x/u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� .ı0.E/ C ı.E; w//E.u/
1=2:

(b) If u 2 domL1 4�, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z

ud� �
X

x2E

w.x/u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� ı1.E/

Z

j 4� ujd� C ı.E; w/E.u/
1=2:
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Proof. In view of Theorem 2.6 it suffices to show
ˇ

ˇ

ˇ

ˇ

ˇ

X

x2E

.p.x/ � w.x// u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� ı.E; w/E.u/
1=2:

for u 2 domE. Note that
P

x2E .p.x/ � w.x// D 0 since both ¹p.x/º and ¹w.x/º
sum to 1. Let

Nu.x/ D u.x/ � c; for c D u.x0/.

Then E. Nu/ D E.u/ and

X

x2E

.p.x/ � w.x//u.x/ D
X

x2E

.p.x/ � w.x// Nu.x/:

So
ˇ

ˇ

ˇ

ˇ

ˇ

X

x2E

.p.x/ � w.x//u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� k Nuk1

X

x2E

jp.x/ � w.x/j

� ı.E; w/E.u/
1=2

by (2.10) and (2.11). �

Note that we can not control
ˇ

ˇ

P

x2E .p.x/ � w.x//u.x/
ˇ

ˇ in terms of
R

j4ujd�

alone because u could be harmonic and we can not make it zero by subtracting a

constant.

In some examples the constant ı1 is larger than desirable because gE .x/ has

a large spike near the point where it assumes its maximum but is otherwise

considerably smaller. In that case we may obtain a smaller constant by applying

Hölder’s inequality in the proof of Theorem (2.3), at the cost of assuming that

4�u is in some Lp space for p > 1.

Theorem 2.9. Assume u 2 domLp 4� for some p � 1, and let q be the dual

index, 1
p

C 1
q

D 1. Then

ˇ

ˇ

ˇ

ˇ

ˇ

Z

ud� �
X

x2E

w.x/u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

� kgE kqk 4� ukp C ı.E; w/E.u/
1=2: (2.12)

Proof. The same as the proof of Theorem (2.8)(b), except for the use of Hölder’s

inequality in the proof of Theorem (2.3). �

Note that if we take p D 1, then

kgE k1 D ı2
0 :
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3. Basic examples on SG

In this section we consider some examples of the set E for the case of SG with

� the standard symmetric self-similar measure. We will use “4” to refer to the

Laplacian with respect to this measure. For each example we compute our estimate

of ı0.E/ and ı1.E/, the weights ¹p.x/º, and ı.E; w/ when w is the uniform weight

w.x/ D 1
#E

. The results of Section 2 give us a recipe to make these computations.

We find the function

gE .x/ D
Z

GE .x; y/d�.y/:

This function is non-negative and vanishes on E. Its integral over SG is .ı0.E//2

and its maximum value is ı1.E/. For all x 2 E, we compute the weight p.x/ D
R

vxd� (where vx is specified by 2.5) by computing the harmonic spline vx.

Example 3.1. E D V0.

[12] provides an algorithm to compute the values of multiharmonic functions

on V� for an expansive family of fractals. For SG, Section 5.1 of [12] gives the

specific values resulting from this algorithm. By Table 5.1 of [12], if f1k is the

biharmonic function such that f1k jV0
D 0 and 4f1k D hk , then

5 � f1k.Fiqk/ D p1 D �:12;

f1k.Fiqk/ D �9=375

µ

(for i ¤ k)

and

5 � f1k.Fiqj / D q1 D �:09333 : : : ;

f1k.Fiqj / D �7=375

µ

(for i; j; k all distinct).

Thus, if v.x/ D
R

GV0
h0.y/d�.y/ D f1�.x/ (or equivalently, 4v D h0 and

vjV0
D 0), then the values of v on V1 are shown in Figure 3.1. In general, if

v.x/ D
R

GV0
.x; y/hi .y/d�.y/, then the values of v on V1nV0 are �9=375, �9=375,

and �7=375, with the �7=375 occurring at the midpoint of the side opposite from qi .

Also

gV0
.x/ D

Z

GV0
.x; y/.�h0.y/ � h1.y/ � h2.y//d�.y/

D �f10.x/ � f11.x/ � f12.x/;

so gV0
takes the values shown in Figure 3.2.
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0

0 0� 7
375

� 9
375

� 9
375

Figure 3.1. The values of v.x/ D
R

GV0
.x; y/h0.y/d�.y/ on V1.

0

0 01
15

1
15

1
15

Figure 3.2. The values of gV0
on V1.

Moreover, 42gE D 4.�1/ D 0, so gE is the biharmonic function whose

Laplacian is equal to �1 everywhere. From the values gV0
takes on Vm, we deduce

what values it takes for x 2 VmC1. Once we have .gV0
ı Fw/jV0

for a word w of

length m, because we also know that .4gV0
/ ı Fw D �1, we can use the Green’s

function to calculate .gV0
ı Fw/jV1

.

Lemma 3.1. If jwj D m and .gV0
ı Fw/jV0

takes values as shown in Figure 3.3,

then .gV0
ı Fw/jV1

takes values as shown in Figure 3.4.
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a

b c

Figure 3.3. The values of .gV0
ı Fw/ on V0, in the context of Lemma 3.1.

a

b caC2bC2c
5

C 1
15�5m

2aCbC2c
5

C 1
15�5m

2aC2bCc
5

C 1
15�5m

Figure 3.4. The values of .gV0
ı Fw/ on V1, in the context of Lemma 3.1.

Proof. Let u D gV0
ıFw . Let Qu be the harmonic function that shares the values of

Qu on V0. A simple consequence of the pointwise formulation of the Laplacian is

4.f ı Fw/ D rw�w.4f / ı Fw

or

4.f ı Fw/ D
�1

5

�m

.4f / ı Fw :

Therefore,

4u D 4.gV0
ı Fw/ D

�1

5

�m

.4gV0
/ ı Fw D

�1

5

�m

:
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u � Qu has the same Laplacian as u, so

Z

G.x; y/
�1

5

�m

d�.y/ D u.x/ � Qu.x/;

and this yields

Qu.x/ C
�1

5

�m

gV0
.x/ D u.x/: (3.1)

By applying (3.1) to all x 2 V1 we get the values shown in Figure 3.4. �

We compute ı0.V0/ by considering gV0
as a series of piecewise harmonic

functions.

Theorem 3.2. We have

ı0.V0/ D 1

3
p

2
: (3.2)

Proof. For all m, let fm be the piecewise harmonic m-spline whose values on Vm

are the same as those of gV0
. For all m > 0, x 2 Vm, Lemma 3.1 gives

fm.x/ � fm�1.x/ D
´

0 for x 2 Vm�1;

1
15�5m for x … Vm�1:

0

0 01
15

1
15

1
15

Figure 3.5. The values of f1 � f0 on V1, in the context of Theorem 3.2.
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0

0 00

00
1

75

1
75

1
75

1
75

1
75

1
75

1
75

1
75

1
75

Figure 3.6. The values of f2 � f1 on V2, in the context of Theorem 3.2.

Because fm � fm�1 is a harmonic m-spline, we can compute its integral from

its values on Vm. The values of fm �fm�1 on the boundary of some m-cell are (in

some order) 0, 1
15�5m�1 , and 1

15�5m�1 , because the boundary of each m-cell contains

one point from Vm�1 and two from Vm n Vm�1. Thus,

Z

fm � fm�1d� D 2

3
� 1

15 � 5m�1
:

Since
R

gV0
d� is clearly the limit of

R

fmd�, we have

Z

gV0
d� D lim

m!1
fmd�

D
Z

f0d� C
1

X

mD1

Z

fm � fm�1d�

D 0 C
1

X

mD1

2

3

1

15 � 5m�1

D 1

18
:

ı0.V0/ is equal to
�R

gV0
d�

�1=2

, which gives us (3.2). �
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To compute ı1.V0/, we must determine the maximum value of gV0
.x/. To

facilitate this computation, let us take advantage of the symmetry of gV0
and

instead consider the function u D 15gVo
ı F0. It is clear that

sup
x2SG

gV0
.x/ D 1

15
sup

x2SG

u.x/:

Theorem 3.3. If FwSG is an m-cell along the bottom line of SG (that is, an m-cell

whose bottom line is the bottom line of the gasket), then

u.Fwq0/ D 1 �
�1

5

�m

; u.Fw q1/ D 1; u.Fwq2/ D 1: (3.3)

Proof. We will prove this claim by using induction on m.

Base case. If m D 0, this is easy to verify.

Inductive step. Assume that m � 0 and that (3.3) holds for all m-cells along the

bottom line. For any .mC1/-cell Fw K along the bottom line: w is a word without

any 0s. We can assume without loss of generality that the last character of w is a 1

(rather than a 2), so w D w01 for some word w0, and Fw 0SG is an m-cell along the

bottom line of SG. By the inductive hypothesis,

u.Fwq0/ D 1 �
�1

5

�m

; u.Fw q1/ D 1; u.Fwq2/ D 1:

Because u D 15gV0
ı F0, to describe the way ujVmC1nVm

depends on ujVm
, we

must use Lemma 3.1 but replace 1
15�5m with 1

5mC1 . We obtain

u.Fwq0/ D u.Fw 0F1q0/

D
�2

�

1 �
�1

5

�mC1�

C 2 C 1

5

�

C 1

5mC1

D 1 �
�1

5

�mC1

;

u.Fwq1/ D u.Fw 0F1q1/ D u.Fw 0q1/ D 1;

and

u.Fwq2/ D u.Fw 0F1q2/

D
�1 �

�1

5

�m

C 2 C 2

5

�

C
�1

5

�mC1

D 1:

Thus, the inductive hypothesis holds for .m C 1/-cells. �
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Theorem 3.4. If x is not on the bottom line of SG, then u.x/ < 1.

Proof. Because x is not on the bottom line, there exists some m such that an m-

cell containing x is along the bottom line, but an .m C 1/-cell within this m-cell

contains x and is not on the bottom line. Thus, for some word w consisting of m

characters, all of them are 1 or 2, and x 2 Fw0SG. By Theorem 3.3,

u.Fw0q0/ D 1 �
�1

5

�m

; u.Fw0q1/ D 1; and u.Fw0q2/ D 1:

For all non-negative integers k, define

'.k/ D sup
x2VmCkC1;

x2Fw0SG

u.x/:

We need only consider one .m C 1/-cell, so

'.0/ D 1 �
�1

5

�mC1

:

For all k, '.k C1/ � '.k/C
�

1
5

�mCkC2
(by applying our adjustment of Lemma 3.1

on an .mC1/-cell whose values on the boundary are all less than or equal to '.k/).

For all k,

'.k/ � 1 �
�1

5

�mC1

C
1

X

iD0

�1

5

�mCiC2

D 1 �
�3

4

��1

5

�mC1

:

Because V� is dense in SG, u.x/ � 1 �
�

3
4

�mC1
, so u.x/ < 1. �

Corollary 3.5. ı1.V0/, or the maximum value of gV0
, is 1

15
.

Proof. Let x be any point in the Sierpiński gasket. If x 2 F0SG, then either x

lies on the bottom line of F0SG (in which case gV0
.x/ D 1

15
), or x is above this

line (in which case gV0
< 1

15
). In either case, gV0

� 1
15

. If x … F0SG, then by

symmetry of gV0
, there is some point y 2 F0SG such that g.x/ D g.y/ � 1

15
. �
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Figure 3.7. The cells along the bottom line of SG.

1 �
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�m
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1 �
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1 �

�

1
5

�mC1

Figure 3.8. The values of u along an m-cell along the bottom line of SG.
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1
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Figure 3.9. The values of gV0
on V1. gV0

attains its maximum value, 1
15

all along the

thickened lines.
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The weights ¹p.x/º for all x 2 V0 are 1
3

(the integral of any of h0, h1, and h2).

Because ¹p.x/º for all x 2 V0 and the uniform weights ¹w.x/º are one and the

same, ı.E; w/ D 0.

The calculations for all of the examples E that follow may be greatly simplified

by observing that the difference between gV0
and gE is a piecewise harmonic

function, and combining calculations involving that piecewise harmonic function

with the calculations that we already made in Example 3.1.

Lemma 3.6. If E is a finite superset of V0, then gV0
� gE is harmonic away

from E.

Proof. For x … E,

4.gV0
� gE /.x/ D 4gV0

.x/ � 4gE .x/

D �1 � .�1/

D 0;

so gV0
� gE is harmonic away from E. �

Example 3.2. E D V0 [ ¹x0º, where x0 is a member of V1 n V0.

The next example we consider is when E contains the three points from V0

and one additional point from V1. Without loss of generality, we take x0 D F0q1.

The analysis would be exactly the same for either of the other choices of x0 (if

the characters 0, 1, and 2 were permuted accordingly). For this set E, Lemma 3.6

guarantees that gV0
� gE is harmonic away from E. Because E � V1, gV0

� gE

must be a harmonic 1-spline. Furthermore, .gV0
� gE /jV0

D 0 (because both GE

and GV0
vanish on V0) and gV0

� gE is harmonic at F0q2 and F1q2.

Because F0q1 2 E, gE .F0q1/ D 0, so .gV0
� gE /.F0q1/ D gV0

.F0q1/ D 1
15

.

Let x D .gV0
� gE /.F0q2/. By symmetry, .gV0

� gE /.F1q2/ D x. By the

harmonicity of gV0
� gE at F0q1, we have

x D
0 C 1

15
C x C 0

4
;

hence

x D 1

45
:

Thus, gV0
� gE is the harmonic 1-spline with values as shown in Figure 3.10.
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0

0 01
45

1
45

1
15

Figure 3.10. The values of gV0
� gE on V1, in the context of Example 3.2.

Theorem 3.7. If E D V0 [ ¹x0º for some x0 2 V1 n V0, then

ı0.E/ D
� 5

162

�1=2

:

Proof. Because gV0
�gE is the harmonic spline with values shown in Figure 3.10,

Z

gV0
� gE d� D 1

3

�1

3

� 1

15
C 1

45

�

C 1

3

� 1

15
C 1

45

�

C 1

3

� 1

45
C 1

45

��

D 2

81

and so

Z

gE d� D
Z

gV0
d� �

Z

gV0
� gE d� D 1

18
� 2

81
D 5

162

and

ı0.E/ D
� Z

gE d�

�1=2

D
� 5

162

�1=2

: �

We know how to compute gV0
for all points in V�, and gV0

� gE is a harmonic

spline. Therefore, we can equally well compute gE for all points in V�. After

computing the values of gE for the finite graph approximations up to V10, the

maximum value is 11
225

, a value that first occurs in V2. We conjecture that this is

the absolute maximum value the function takes, and that

ı1.E/ D 11

225
:
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1
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Figure 3.11. The values of vq0
on V1, in the context of Example 3.2.

0
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1
150

Figure 3.12. The values of vq1
on V1. in the context of Example 3.2.

0
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Figure 3.13. The values of vq2
on V1 in the context of Example 3.2.
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0

0 01
3

1
31

Figure 3.14. The values of vF0q1
on V1 in the context of Example 3.2.

Each of the functions vx for x 2 E will be a function that is harmonic away

from E and is determined the same way we determined gV0
� gE : by assigning

the appropriate values to the points in E (in this case, 1 for x, 0 for all other points

in E) and choosing the values for V1 n V0 such that vx is harmonic at these points.

Then, p.x/ will be
R

vxd�. The values of that the functions vx (x 2 E) take on

V1 are shown in Figures 3.11–3.14. The weights, calculated from these functions,

are

p.q0/ D 5=27;

p.q1/ D 5=27;

p.q2/ D 7=27;

p.F0q1/ D 10=27:

If ¹w.x/º are the uniform weights,

ı.E; w/ D R
1=2 � 7

27
:

Recall that we took x0 to be F0q1, but one could also take F0q2 or F1q2, and can

figure out the resulting weights from the above analysis by symmetry.

Example 3.3. E D V0[¹x0; x1º, where x0 and x1 are distinct elements of V1nV0.
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Figure 3.15. The values of gV0
� gE in the context of Example 3.3.
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0 00

00

Figure 3.16. The values of vq0
on V1 in the context of Example 3.3.

0
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4

00

Figure 3.17. The values of vq1
on V1 in the context of Example 3.3.
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0

0 11
4

00

Figure 3.18. The values of vq2
on V1 in the context of Example 3.3.

0

0 01
4

01

Figure 3.19. The values of vF0q1
on V1 in the context of Example 3.3.

0
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Figure 3.20. The values of vF0q2
on V1 in the context of Example 3.3.
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As in Example 3.2, we assume specific values of x0 and x1 (in this case:

x0 D F0q1 and x1 D F0q2), and know that one could determine the weights

for any other choice of x0; x1 from these calculations. The methods for our

calculations in this example are exactly the same as those in Example 3.2.

gV0
� gE is the harmonic 1-spline with values shown in Figure 3.15. Thus

Z

gV0
� gE d� D 1

27

and
Z

gE d� D 1

54
:

From computing the values gE takes on all points in the finite graph approx-

imations up to V10, it appears that the maximum is 1
30

, which first occurs in V1.

We conjecture that this is the true maximum value of h, that

ı1.E/ D 1

30
:

The values of the functions vx are shown in Figures 3.16–3.20. The weights

are

p.q0/ D 1=9;

p.q1/ D 1=6;

p.q2/ D 1=6;

p.F0q1/ D 5=18;

p.F0q2/ D 5=18:

For the uniform weights ¹w.x/º,

ı.E; w/ D R
1=2 � 14

45
:

The method used in Examples 3.2 and 3.3 of finding gE from the harmonic

spline difference between gV0
and gE will work for any finite E � V0. How-

ever, for larger E, there are, in some cases, improvements to the method. The

post-criticially finite nature of the Sierpiński gasket allows us to easily analyze

examples E that divide the gasket into m-cells, where the inverse image of E un-

der each Fw (jwj D m) is a more wieldy set (such as one of the Examples 3.1, 3.2,

or 3.3). The most important result that allows this analysis via decompositions

into m-cells is the scaling of Green’s functions.
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Theorem 3.8. If Vm � E, and for all jwj D m, we denote ¹F �1
w xW x 2 E \FwSGº

(the inverse image of E under Fw) by Ew , then

GE .x; y/ D

8

ˆ

<

ˆ

:

�3

5

�m

GEw
.F �1

w x; F �1
w y/ if x; y 2 FwSG and jwj D m,

0 if x and y belong to separate m-cells.

(3.4)

Proof. Let a.x; y/ be the right-hand side of (3.4), the function that we claim is

GE . It suffices to show that for a function u 2 dom 4 such that ujE D 0,

�
Z

a.x; y/.4u.y//d�.y/ D u.x/: (3.5)

If x 2 Vm, both sides of (3.5) are 0. If x … Vm, let w be the unique word of length

m such that x 2 FwK. Let x0 D F �1
w x. The left-hand side of (3.5) is

�
Z

a.Fwx0; y/.4u.y/d�.y//

D �
�3

5

�m
Z

GEw
.x0; Fwy/.4u.y/d�.y//

D �
�3

5

�m�1

3

�m
Z

FwK

GEw
.x0; y0/Œ4u ı Fw �.y0/d�.y0/

D �
�1

5

�m
Z

FwK

GEw
.x0; y0/Œ5m 4 .u ı Fw/�.y0/d�.y0/

D �
Z

GEw
.x0; y0/ 4 .u ı Fw/.y0/d�.y0/

D u.Fw x0/

D u.x/

which verifies (3.5). Thus, a.x; y/ is the Green’s function for E. �

Corollary 3.9. Suppose Vm � E.

(a)

ı0.E/ D
�

X

jwjDm
.ı0.Ew//2

15m

�1=2

: (3.6)

(b)

ı1.E/ D 1

5m
sup

jwjDm

ı1.Ew/: (3.7)
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(c) To simplify the notation, for all zE, we let p zE .x/ refer to the weight of x on
zE. Then for all x 2 E:

pE .x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1

3m
pEw

.F �1
w x/

if x belongs to a unique m-cell, FwSG,

1

3m
pEw

.F �1
w x/ C 1

3m
pEw0 .F

�1
w 0 x/

if x belongs to two distinct m-cells, FwSG and Fw 0SG.

Proof. If x belongs to the m-cell FwSG and x0 D F �1
w x, then

gE .x/ D
Z

GE .x; y/d�.y/

D
Z

FwK

�3

5

�m

GEw
.F �1

w x; F �1
w y/d�.y/

D
�3

5

�m�1

3

�m
Z

GEw
.x0; y0/d�.y/

D
�1

5

�m
Z

gEw
.F �1

w x/:

For (a),

.ı0.E//2 D
Z

gE d�

D
X

jwjDm

Z

FwK

�1

5

�m

gEw
ı F �1

w d�

D
�1

3

�m�1

5

�m X

jwjDm

Z

gEw
d�

D
� 1

15

�m X

jwjDm

.ı0.Ew//2

which implies (3.6).
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For (b),

ı1.E/ D sup
z

gE .x/

D sup
jwjDm;

x2FwK

�1

5

�m

gEw
.F �1

w x/

D
�1

5

�m

sup
jwjDm

sup
x02K

gEw
.x0/

D
�1

5

�m

sup
jwjDm

ı1.Ew/

which is (3.7).

(c) is a trivial consequence of adding the harmonic indicators. �

The most obvious examples to apply Theorem 3.8 and Corollary 3.9 to are sets

E such that that Vm � E � VmC1. In such examples, for all jwj D m, Ew is either

one of the sets described in Examples 3.1, 3.2, and 3.3, or V1, which is also simple.

We first consider the notable case E D Vm, and then consider Vm � E � VmC1

in general.

Example 3.4. E D Vm. We have

ı0.Vm/ D 1

3
p

2 � 5m
I

ı1.Vm/ D 1

15 � 5m
I

p.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

3mC1
if x 2 V0,

2

3mC1
if x 2 Vm n V0;

ı.E; w/ D 2.3m � 1/

3m.3m C 1/
R

1=2

for the uniform weights ¹w.x/º.

Example 3.5. Vm � E � VmC1. For all jwj D m, Ew contains either 3, 4, 5, or

6 points. (In other words, Ew is one of the sets described in Examples 3.1, 3.2,

and 3.3, or Ew D V1, which is a special case of Example 3.4.)
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Let

A D #¹jwj D mW Ew D V0º;

B D #¹jwj D mW #Ew D 4º;

C D #¹jwj D mW #Ew D 5º;

D D #¹jwj D mW Ew D V1º:

We can express ı0.E/ and ı1.E/ in terms of A, B , C , and D:

ı0 D
�A � 1

18
C B � 5

162
C C � 1

54
C D � 1

90

15m

�1=2

I

ı1.E/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1
15�5m if A ¤ 0,

11
225�5m if A D 0 and B ¤ 0,

1
30�5m if A D 0, B D 0, and C ¤ 0,

1
75�5m if A D B D C D 0.

The weights ¹p.x/º can be calculated using part (c) of Corollary 3.9. From

this, ı.E; w/ for the uniform weights ¹w.x/º can be calculated if R is known.

Example 3.6. E D V0 [ ¹F0F1q2; F1F2q0; F2F0q1º (E consists of the three

elements of V0 and the three most interior points of V2, as shown in Figure 3.21).

Figure 3.21. The set E in Example 3.6.
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The sample set E in Example 3.5 can be thought of as very “wide” (in that at a

given level k, many k-cells are represented) but not very “deep” (as the points of

E all come from Vk for particularly small values of k). Given a finite number

of points that we are allowed to pick for our sample set, some trade-off must

necessarily be made between width and depth. In Example 3.6, we choose a basic

set that can be described as “deeper” than the other sets of similar size we have

considered so far, since it includes elements of V2 n V1.

As usual, in order to calculate ı0.E/, we consider the harmonic spline gV0
�gE .

For all x 2 V0, gV0
.x/ � gE .x/ D 0 � 0 D 0. For the interior values of

x 2 E, gE .x/ D 0 since x 2 E, and applying Lemma 3.1 (or Theorem 3.3) gives

gV0
.x/ D 1

15
. Therefore, the values of gV0

�gE are as shown in Figure 3.22, where

a and b are some constants. The function gV0
� gE is harmonic away from E, so

a and b must satisfy the average rule:

a D
0 C a C 1

15
C b

4
; b D

a C 1
15

C 1
15

C a

4
:

Therefore, a D 1
25

and b D 4
75

. Now we can calculate the integral gV0
� gE :

Z

gV0
� gE d� D 2

45
:

So

.ı0.E//2 D
Z

gE d� D
Z

gV0
d� �

Z

gV0
� gE d� D 1

18
� 2

45
D 1

90
;

ı0.E/ D 1

3
p

10
:

b 00

bb

0

1
15

aa

a a

1
15

1
15

a a

Figure 3.22. The values of gV0
� gE on V2, in the context of Example 3.6. Constants a

and b are as of yet unknown.
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Figure 3.23. In example 3.6, the biharmonic function gE obtains its maximum value, 1
75

,

along these shaded lines.

By the same inductive arguments that were used to prove Theorems 3.3 and 3.4

and Corollary 3.5, gE obtains its maximum value, 1
75

along the shaded lines in

Figure 3.23, so

ı1.E/ D 1

75
:

Now we calculate the weights

p.x/ D
Z

vxd�

for x 2 E. By symmetry, there are only two weights to calculate: p.q0/ and

p.F0F1q2/. The indicators are shown in Figures 3.24 and 3.25.

1
265

00

26
265

26
265

1

0

97
265

97
265

2
265

2
265

0 07
265

7
265

Figure 3.24. vq0
in Example 3.6.



Numerical integration for fractal measures 195
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28
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265

Figure 3.25. vF0F1q2
in Example 3.6.

The weights are

p.q0/ D p.q1/ D p.q2/ D 1=9;

p.F0F1q2/ D p.F1F2q0/ D p.F2F0q1/ D 2=9:

If ¹w.x/ºx2E are the uniform weights,

ı.E; w/ D
�

3
ˇ

ˇ

ˇ

1

9
� 1

6

ˇ

ˇ

ˇ
C 3

ˇ

ˇ

ˇ

2

9
� 1

6

ˇ

ˇ

ˇ

�

R
1=2 D 1

3
R

1=2:

Interestingly, V1 is another highly symmetric 6-element sample set and ı0.E/D
ı0.V1/, ı1.E/ D ı1.V1/, and when ¹w.x/º are the uniform weights for each set E,

ı.E; w/ D ı.V1; w/. Therefore, by taking E rather V1 as our sample set (choosing

depth over width), it is not clear whether we would be making a better or a worse

choice.

We briefly mention one more family of sample sets zEm. For a fixed m, zEm

consists of Fwx for all jwj D m, x 2 E (where E is still the sample set in

Example 3.6). Because the values of ı0, ı1, and ı.E; w/ (for the uniform weights

¹w.x/º) are the same for E and V1, Corollary 3.9 tells us that they will continue

to be the same for VmC1 and zEm, for all m. We have

ı0. zEm/ D ı1.VmC1/ D 1

3
p

2 � 5mC1
;

ı1. zEm/ D ı1.VmC1/ D 1

15 � 5mC1
;

ı. zEm; w/ D ı.VmC1; w/ D 2.3m � 1/

3m C 1
R

1=2:
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To calculate the weights ¹p.x/º for zEm, notice that the harmonic spline indicators

for zEm are the indicators for E but with F �1
w for some jwj D m. (For those

elements x 2 zEm that are shared between two distinct m-cells FwSG and Fw 0SG,

the indicator for x in zEm is the sum of two indicators of E, one composed with

F �1
w and the other composed with F �1

w 0 .) Thus

p zEm
.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1
9�3m if x 2 V0;

2
9�3m if x 2 .Vm n V0/;

2
9�3m if x is one of the interior points of an m-cell.

4. Other self-similar measures

In this section, we apply the results of Section 2 to more fractals: the Sierpiński

tetrahedron (ST) and the 3-level gasket (SG3), both of which will be covered in

less depth than the Sierpiński gasket was in Section 3. Like in Section 3, our

starting point is using [12] to determine the values of gV0
on V1 for these fractals.

However, whereas [12] gives us these values directly for SG, it does not for ST or

SG3. Therefore, we will have to apply the general algorithm of Section 2 of [12] in

its entirety to ST and SG3. We begin this section with a summary of that algorithm.

We slightly modify the notation and indexing of [12] to be consistent with our own

and to be the most useful for our purposes.

Let K be a p.c.f. self-similar fractal with boundary V0 D ¹qkº0�k<N0
generated

by a set of contractions ¹Fiº0�i<N , for some N0 and N . For the fractals we

consider in this paper, it will help to add the simplifying assumption that N0 � N

and each qk is the fixed point of Fk . For m, let Vm D ¹FwxW jwj D m; x 2 V0º, and

let V� D
S

m Vm. Let K have a regular harmonic structure with Dirichlet form E

on V1 satisfying

E.u; v/ D
N �1
X

iD0

r�1
i E.u ı Fi ; v ı Fi /

and a self-similar probability measure � satisfying

� D
N �1
X

iD0

�i .� ı Fi /:
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Let 4 be the associated Laplacian. For all j , let Hj D ¹f W 4j C1f D 0º. An easy

basis for Hj is ¹flkº0�l�j;0�k<N0
, where flk is the solution to

4mflk.qn/ D ımlıkn for all m; n such that 0 � m � l and 0 � n < N0:

Define the harmonic functions hi as usual such that hi .qk/ D ıik. (This means

that hi D f0i for all i 2 ¹0; 1; 2; : : : ; N0 �1º.) For all k; k0; n; n0 2 ¹0; 1; 2; N0�1º,
let

A.kk0; nn0/ D
N �1
X

iD0

�ihk.Fiqn/hk0.Fiqn0/: (4.1)

It is a result [12] that if

I.kk0/ D
N �1
X

iD0

�i

Z

.hk ı Fi /.hk0 ı Fi /d�;

then the vector I.kk0/ is an eigenvector of the matrix A.kk0; nn0/ corresponding

to eigenvalue 1, and
N0�1
X

kD0

N0�1
X

k0D0

I.kk0/ D 1:

It is easy to compute A.kk0; nn0/ for any example K (such as ST and SG3), so

I.kk0/ can be determined.

Let X be the matrix whose rows and columns are indexed by the elements of

V1 n V0, such that

Xpq D E.vp; vq/ (4.2)

where vp and vq are harmonic 1-splines such that vp.r/ D ıpr and vq.r/ D ıqr .

Let G D X�1. For all i; i 0 2 ¹0; 1; 2; : : : ; N � 1º and n; n0 2 ¹0; 1; 2; : : : ; N0 � 1º,
let

.i; i 0; n; n0/ D

8

<

:

GFi qn;Fi0 qn0 if Fi qn; Fi 0qn0 2 .V1 n V0/;

0 otherwise.

Finally, it is another result in [12] that

f1k.Fiqn/ D
N �1
X

i 0D0

N0�1
X

n0D0

N0�1
X

k0D0

��i 0.i; i 0; n; n0/I.k0n0/hk.Fi 0qk0/: (4.3)

After using this recipe to calculate the values of f1k on V1 for our fractal K,

the values of gV0
on V1 can be determined. 4gV0

D �1, so

gV0
D �

N0�1
X

kD0

f1k:
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We will then require three more results, Lemma 4.1, Theorem 4.2, and Corol-

lary 4.3. These are the generalizations of Lemma 3.1, Theorem 3.8, and Corol-

lary 3.9 respectively.

Lemma 4.1. If u is a function on K with 4u D �1, jwj D m, u ı Fw D v, Qv is

the harmonic function with the same values on V0 as v, and x 2 .V1 n V0/, then

u.Fwx/ D v.x/ D Qv.x/ C �wrwgV0
.x/

(Recall that if w D w1w2 : : : wm, �w D �1�2 � � � �m and rw D r1r2 � � � rm.)

Proof. The proof is essentially the same as that of Lemma 3.1.

4v D 4.u ı Fw/ D �wrw.4u/ ı Fw D �wrw � .�1/

so

4.��1
w r�1

w v/ D �1:

��1
w r�1

w Qv is harmonic and has the same values on the boundary as ��1
w r�1

w v, while

gV0
has the same Laplacian as ��1

w r�1
w v but vanishes on the boundary. Thus,

��1
w r�1

w v D ��1
w r�1

w Qv C gV0
;

v D Qv C �wrwgV0
;

v.x/ D Qv.x/ C �wrwgV0
.x/;

u.Fw x/ D Qv.x/ C �wrwgV0
.x/: �

Theorem 4.2. If Vm � E, then

GE .x; y/ D

8

<

:

rmGEw
.F �1

w x; F �1
w y/ if x; y 2 FwK,

0 if x and y belong to separate m-cells.

(4.4)

Proof. Let

a.x; y/ D

8

<

:

GEw
.F �1

w x; F �1
w y/ if x; y 2 FwK; jwj D m,

0 if x and y belong to separate m-cells.
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Fix u 2 dom 4 such that ujVm
D 0. For all x 2 K, if FwK is the m-cell that x

belongs to

�
Z

a.x; y/ 4 u.y/d�.y/ D �
X

jw 0jDm

Z

FwK

a.x; y/ 4 u.y/d�.y/

D �
X

jw 0jDm;

w 0¤w

Z

FwK

0 4 u.y/d�.y/

�
Z

FwK

GEw
.F �1

w x; F �1
w y/ 4 u.y/d�.y/

D ��w

Z

GEw
.F �1

w x; y0/ 4 u.Fwy0/d�.y0/:

Note that 4.u ı Fw/ D rw�w 4 u ı Fw , so r�1
w ��1

w 4 .u ı Fw/ D 4u ı Fw .

Therefore, this becomes

�
Z

a.x; y/ 4 u.y/d�.y/

D ��w

Z

K

GEw
.F �1

w x; y0/Œ4u ı Fw �.y0/d�.y0/

D ��w

Z

GEw
.F �1

w x; y0/.r�1
w ��1

w /.4.u ı Fw//.y0/d�.y0/

D �r�1
w

Z

GEw
.F �1

w x; y0/.4.u ı Fw//.y0/d�.y0/:

uıFw is in dom 4 and vanishes on Ew (because u vanishes on the boundary of E)

so this becomes

�
Z

a.x; y/d�.y/ D r�1
w .u ı Fw/.F �1

w x/;

�
Z

rwa.x; y/d�.y/ D u.x/:

This holds for all u 2 dom 4, so

GE .x; y/ D rwa.x; y/: (4.5)

(4.5) is equivalent to (4.4). �
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For Corollary 4.3, we bring back the notations Ew and p zE
.x/ from Section 3.

Corollary 4.3. If Vm � E,

(a)

ı0.E/ D
�

X

jwjDm

�2
wrw.ı0.Ew//2

�1=2

I (4.6)

(b)

ı1.E/ D sup
jwjDm

�wrwı1.Ew/I

(c)

pE .x/ D
X

jwjDm;

x2FwK

�wpEw
.F �1

w x/: (4.7)

Proof. By Theorem 4.2,

GE .x; y/ D

8

<

:

rwGEw
.F �1

w x; F �1
w y/ if x; y 2 FwK,

0 if x and y belong to separate m-cells.

To find ı0, we take the square-root of
R

gE d�. For all x 2 K, if FwK is the m-cell

to which x belongs,

gE .x/ D
Z

GE .x; y/d�.y/

so by Theorem 4.2,

gE .x/ D
Z

FwK

rwGEw
.F �1

w x; F �1
w y/d�.y/

D �w

Z

K

rwGEw
.F �1

w x; F �1
w y/d�.y0/

or

gE .x/ D �wrwgEw
.F �1

w x/: (4.8)
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Therefore,
Z

gE .x/d�.x/ D
X

jwjDm

Z

FwK

gE .x/d�.x/

D
X

jwjDm

�wrw

Z

FwK

gEw
.F �1

w x/

D
X

jwjDm

�wrw � �w

Z

K

gEw
.x0/d�.x0/

D
X

jwjDm

�2
wrw

Z

gE d�:

Taking the square-root of both sides yields (4.6).

By (4.8),

ı1.E/ D sup
x2K

gE .x/ D sup
jwjDm

sup
x2FwK

�wrwgEw
.F �1

w x/

D sup
jwjDm

sup
x2K

�wrwgEw
.x/

D sup
jwjDm

�wrw sup
x2K

gEw
.x/

D sup
jwjDm

�wrwı1.Ew/:

The weights are as in (4.7) because for each cell FwK containing x, if vx is the

indicator for F �1
w x with respect to Ew , the contribution to this cell to the weight

of x with respect to E is �w

R

vxd� D �wpEw
.F �1

w x/. �

We now apply these results to the Sierpiński tetrahedron (ST). Recall that ST

is generated by the four similarities in R
3 with contraction ratio 1

2
and fixed points

the vertices of a regular tetrahedron. For ST, N D 4, N0 D 4, �i D 1
4
, and ri D 2

3
.

The values of the harmonic functions on V1 are

hj .Fiqk/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if i D j D k,

0 if j ¤ i D k,

1=3 if j ¤ k and (i D j or i D k),

1=6 i; j; k all distinct.

Let us index A.kk0; nn0/ and I.kk0/ by the ordering

kk0 < nn0 () .k < n or (k D n and k0 < n0)/:
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By (4.1), A.kk0; nn0/ is

1

144

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

48 16 16 16 16 6 5 5 16 5 6 5 16 5 5 6

8 32 12 12 2 8 3 3 3 12 5 4 3 12 4 5

8 12 32 12 3 5 12 4 2 3 8 3 3 4 12 5

8 12 12 32 3 5 4 12 3 4 5 12 2 3 3 8

8 2 3 3 32 8 12 12 12 3 5 4 12 3 4 5

6 16 5 5 16 48 16 16 5 16 6 5 5 16 5 6

5 3 12 4 12 8 32 12 3 2 8 3 4 3 12 5

5 3 4 12 12 8 12 32 4 3 5 12 3 2 3 8

8 3 2 3 12 5 3 4 32 12 8 12 12 4 3 5

5 12 3 4 3 8 2 3 12 32 8 12 4 12 3 5

6 5 16 5 5 6 16 5 16 16 48 16 5 5 16 6

5 4 3 12 4 5 3 12 12 12 8 32 3 3 2 8

8 3 3 2 12 5 4 3 12 4 5 3 32 12 12 8

5 12 4 3 3 8 3 2 4 12 5 3 12 32 12 8

5 4 12 3 4 5 12 3 3 3 8 2 12 12 32 8

6 5 5 16 5 6 5 16 5 5 6 16 16 16 16 48

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

By taking I.kk0/ the eigenvector of magnitude 1 corresponding to eigenvalue 1,

I.kk0/ D

8

<

:

7=80 if k D k0,

13=240 if k ¤ k0.

By computing the energies E1.vp; vq/, and indexing the rows and columns by the

ordering F0q1 < F0q2 < F0q3 < F1q2 < F1q3 < F2q3,

X D 1

2

0

B

B

B

B

B

B

B

@

18 �3 �3 �3 �3 0

�3 18 �3 �3 0 �3

�3 �3 18 0 �3 �3

�3 �3 0 18 �3 �3

�3 0 �3 �3 18 �3

0 �3 �3 �3 �3 18

1

C

C

C

C

C

C

C

A

so

G D X�1 D 1

72

0

B

B

B

B

B

B

B

@

10 3 3 3 3 2

3 10 3 3 2 3

3 3 10 2 3 3

3 3 2 10 3 3

3 2 3 3 10 3

2 3 3 3 3 10

1

C

C

C

C

C

C

C

A
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or

.i; i 0; n; n0/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if Fiqn 2 V0 or Fi 0qn0 2 V0,

10=72 if Fiqn D Fi 0qn0 2 .V1 n V0/,

2=72 if ¹i; i 0; n; n0º D ¹0; 1; 2; 3º,
3=72 otherwise.

All that remains is to plug into (4.3). This yields

f1j .Fiqk/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if i D k,

� 5=432 if i ¤ k, and (j D i or j D k),

� 4=432 if i; j; k all distinct.

We now proceed to calculate the weights and discrepancies for some sample sets E

(where K D ST).

Example 4.1. K D ST, E D V0. We have gV0
D �f10 � f11 � f12 � f13, so for

x 2 V1,

gV0
.x/ D

8

<

:

� 1=16 if x 2 .V1 n V0/,

0 if x 2 V0.

By applying Lemma 4.1 to ST, if u is a function on ST with 4u D �1, w is a word

of length m, ¹i; j; k; lº D ¹0; 1; 2; 3º, u.Fw qi/ D a, u.Fwqj / D b, u.Fwqk/ D c,

and u.Fwql/ D d , then

u.FwFi qj / D 2a C 2b C c C d

6
C 1

16 � 6m
: (4.9)

It follows from this that

gV0
D

1
X

mD0

hm; (4.10)

where hm is the .m C 1/-spline such that for all x 2 VmC1,

hm.x/ D

8

<

:

1
16�6m if x 2 .VmC1 n Vm/,

0 if x 2 Vm.

Theorem 4.4. If E D V0, then the weights ¹p.x/º are the uniform weights,

ı.E; w/ D 0,

ı0.E/ D 3

4
p

10

and

ı1.E/ D 1

16
:
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Proof. By symmetry, the weights are equal, so p.x/ D 1=3 and ı.E; w/ D 0. For

each m,
Z

hmd� D
X

jwjDm

�1

4

�m�3 � 1
16�6m C 0

4

�

D 3

64 � 6m
:

By (4.10),
Z

gV0
d� D

1
X

mD0

3

64 � 6m
D 9

160
:

By Definition 2.1,

ı0.V0/ D
� Z

gV0
d�

�1=2

D 3

4
p

10
:

For ı1, we will first show by induction that for all m � 1, for all jwj D m such

that the character 0 does not occur in w, F0w.q1/ D F0w.q2/ D F0w .q3/ D 1
16

,

F0w .q0/ D 1
16

� 1
16�6m , and gV0

attains its supremum in F0w ST.

Base case. Let m D 1. Let j be the one character of w. We have

F0j .qj / D F0.qj / D 1=16:

Let ¹k; lº D ¹0; 1; 2; 3º n ¹0; j º. We get

F0j .qj / D F0.qj / D 1

16
;

F0j .qk/ D
�2F0.qj / C 2F0.qk/ C F0.q0/ C F0.ql/

6
C 1

16 � 6

�

D
�5

6
� 1

16
C 1

6
� 0 C 1

16 � 6

�

D 1

16
;

F0j .ql/ D F0j .qk/

D 1

16
;

F0j .q0/ D
�2F0.q0/ C 2F0.qj / C F0.qk/ C F0.ql/

6
C 1

16 � 6

�

D
�4

6
� 1

16
C 2

6
� 0 C 1

16 � 6

�

D 5

96

D
� 1

16
� 1

16 � 6

�

:
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All 2-cells of the form Fi i ST are symmetric, as are all 2-cells of the form Fi i 0 such

that i ¤ i 0. Therefore, gV0
must attain its supremum either on all cells Fi i ST, on

all cells Fi i 0 ST (i ¤ i 0) or both. The values on the boundary of Fi i 0 ST (5=96, 1=16,
1=16, and 1=16) are greater than those on the boundary of Fi i ST (0, 5=96, 5=96, and
5=96) so the supremum must be attained in Fi i 0 ST. If we let i D 0; i 0 D j , gV0

attains its supremum on F0j ST. Thus, the result holds for the base case m D 1.

Inductive step. Suppose the result holds for m. Consider w, a word of length m

with no 0s, and j an element of ¹1; 2; 3º. Then if ¹k; lº D ¹1; 2; 3º n ¹j º,

F0wj .qj / D F0w.qj /

D 1

16
;

F0wj .qk/ D
�2F0w.qj / C 2F0w.qk/ C F0w .q0/ C F0w.ql/

6
C 1

16 � 6mC1

�

D
�

2
16

C 2
16

C
�

1
16

� 1
16�6m

�

C 1
16

6
C 1

16 � 6mC1

�

D
� .6=16/

6
� 1

16 � 6mC1
C 1

16 � 6mC1

�

D 1

16
;

F0wj .ql/ D F0wj .qk/

D 1

16
;

F0wj .q0/ D
�2F0w.q0/ C 2F0w .qj / C F0w.qk/ C F0w.ql/

6
C 1

16 � 6mC1

�

D
�2

�

1
16

� 1
16�6m

�

C 2
16

C 1
16

C 1
16

6
C 1

16 � 6mC1

�

D
� 1

16
� 1

16 � 6mC1

�

:

By the inductive hypothesis, gV0
attains its supremum on F0w ST. The cells

F0wj ST, F0wk ST, and F0wl ST are symmetrical, and have boundary values

greater than those of F0w0 ST, so gV0
attains its supremum on each of them, in-

cluding F0wj ST. This completes the inductive step.
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Thus, if we let ¹w.n/ºn2N be any sequence of words such that each w.n/ has

length n, and the leading k-character substring of w.n/ is w.k/ for all k � n, then

lim
n!1

gV0
.Fw.n/

/ D sup
x2ST

gV0
.x/;

lim
n!1

1

16
D ı1.V0/;

1

16
D ı1.V0/: �

Example 4.2. K D ST, E D Vm.

Theorem 4.4 and Corollary 4.3 allow us to compute the weights and discrep-

ancies for E D Vm.

Theorem 4.5. If E D Vm,

ı0.E/ D 3

4
p

10 � 6m
;

ı1.E/ D 1

16 � 6m
;

the weights ¹p.x/º are

p.x/ D

8

<

:

�

1
4

�mC1
if x 2 V0,

2
�

1
4

�mC1
if x 2 .Vm n V0/,

and for the uniform weights ¹w.x/º,

ı.E; w/ D 3 .4m � 1/

4m .4m C 1/
R

1=2:

Proof. The values of ı0, ı1, and the weights follow from Theorem 4.3

(for K D ST). ı.E; w/ is computed from the weights. �

Now, we provide some examples for another p.c.f. self-similar fractal, SG3.

N D 6 and N0 D 3. The points qk and the cells Fi SG3 are shown in Figure 4.1.

To make dealing with these contractions more intuitive, from this point on we will

refer to F3 as F.01/, F4 as F.02/, and F5 as F.12/. The renamed cells are displayed

in Figure 4.2. For all i , �i D 1
6

and ri D 7
15

. The values of the harmonic function

h0 on V1 are shown in Figure 4.3. (The values for the other harmonic functions can
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be determined from this by symmetry.) If A.kk0; nn0/ is indexed by the ordering

.kk0 < nn0 () k < k0 or (k D k0 and n < n0)/, then

A.kk0; nn0/ D 1

1350

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

410 219 219 219 123 113 219 113 123

125 280 161 55 125 71 71 161 97

125 161 280 71 97 161 55 71 125

125 55 71 280 125 161 161 71 97

123 219 113 219 410 219 113 219 123

97 71 161 161 125 280 71 55 125

125 71 55 161 97 71 280 161 125

97 161 71 71 125 55 161 280 125

123 113 219 113 123 219 219 219 410

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

so the eigenvector I.kk0/ is

I.kk0/ D

8

<

:

551=3735 if k D k0,

347=3735 if k ¤ k0.

We move on to the matrix X . Let p refer to the point in the middle of SG3:

p D F.01/q2 D F.02/q1 D F.12/q0. The 7 elements of V1 n V0 (seen in Figure 4.4)

are F0q1, F0q2, F1q0, F1q2, F2q0, F2q1, and p. We will consider them in this

order for the indexing of X . We have

X D 1

7

0

B

B

B

B

B

B

B

B

B

@

60 �15 �15 0 0 0 �15

�15 60 0 0 �15 0 �15

�15 0 60 �15 0 0 �15

0 0 �15 60 0 �15 �15

0 �15 0 0 60 �15 �15

0 0 0 �15 �15 60 �15

�15 �15 �15 �15 �15 �15 90

1

C

C

C

C

C

C

C

C

C

A

;

G D X�1 D 1

2700

0

B

B

B

B

B

B

B

B

B

@

469 203 203 133 133 119 210

203 469 133 119 203 133 210

203 133 469 203 119 133 210

133 119 203 469 133 203 210

133 203 119 133 469 203 210

119 133 133 203 203 469 210

210 210 210 210 210 210 420

1

C

C

C

C

C

C

C

C

C

A

:

This allows us to evaluate f1k.Fi qn/. The values for f10 are shown in Fig-

ure 4.5. The values for other harmonic functions can be determined by symmetry.
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The values for gV0
D �

P2
kD0 f1k are shown in Figure 4.6. For x 2 V1,

gV0
D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x 2 V0,

1=15 if x D p,

1=18 if x 2 V1 n .V0 [ ¹pº/.
q0

q1 q2

F0K

F1K F2K

F3K F4K

F5K

Figure 4.1. The boundary points and 1-cells of SG3.

q0

q1 q2

F0K

F1K F2K

F.01/K F.02/K

F.12/K

Figure 4.2. The boundary points and 1-cells of SG3.
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1

8
15

8
15

4
15

5
15 4

15

0 3
15

3
15

0

Figure 4.3. The values of h0 on V1.

F0q1 F0q2

F1q0

p
F2q0

F1q2 F2q1

Figure 4.4. The elements of V1 n V0.
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0

A A

B
� 1

45
B

0 C C 0

Figure 4.5. The values of f10 on V1. A D �431=20250, B D �121=6750, and C D �331=20250.

0

1
18

1
18

1
18

1
15 1

18

0 1
18

1
18

0

Figure 4.6. The values of gV0
on V1.
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Example 4.3. K D SG3, E D V0.

Our first sample set for SG3 is V0. The discrepancies can be calculated using

the results we have shown for a general K and the values of gV0
on V1.

Theorem 4.6. For SG3,

ı0.V0/ D
� 13

249

�1=2

; ı1.V0/ D 540

8051
;

p.x/ D 1
3

for x 2 V0, and ı.V0; w/ D 0.

Proof. Because �i D 1
6

and ri D 7
15

for SG3, Lemma 4.1 applied to SG3 says that

if w is a word of length m, gV0
.Fwq0/ D a, gV0

.Fwq1/ D b, and gV0
.Fwq2/ D c,

u.FwF0q1/ D 8a C 4b C 3c

15
C

� 7

90

�m 1

18
;

u.FwF0q2/ D 8a C 3b C 4c

15
C

� 7

90

�m 1

18
;

u.FwF1q0/ D 4a C 8b C 3c

15
C

� 7

90

�m 1

18
;

u.FwF1q2/ D 3a C 8b C 4c

15
C

� 7

90

�m 1

18
;

u.FwF2q0/ D 4a C 3b C 8c

15
C

� 7

90

�m 1

18
;

u.FwF2q1/ D 3a C 4b C 8c

15
C

� 7

90

�m 1

18
;

and u.Fwp/ D a C b C c

3
C

� 7

90

�m 1

15
:

(4.11)

Thus,

gV0
D

1
X

mD0

hm;

where hm is the .m C 1/-spline such that for all x 2 VmC1,

hm.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if x 2 Vm,
�

7
90

�m 1
18

if x D Fwy for some jwj D m, y 2 V1 n .V0 [ ¹pº/,
�

7
90

�m 1
15

if x D Fwp for some jwj D m.
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For each m,

Z

hmd� D
3 � 0 C 6 � 2 �

�

7
90

�m�

1
18

�

C 1 � 3 �
�

7
90

�m�

1
15

�

3 C 6 � 2 C 1 � 3
D 13

270

� 7

90

�m

:

Thus,
Z

gV0
d� D

1
X

mD0

13

270

� 7

90

�m

D 13

249

so

ı0.V0/ D
� 13

249

�1=2

:

Let w D .01/2. Note that w is a word of length 2, because .01/ is a character

that is really equal to 3. Let w2 D .01/2.01/2, w3 D .01/2.01/2.01/2, and so

on. Let Fw1 be the fixed point of Fw . (This definition is natural because for all

x 2 SG3, limk!1 Fwk x D Fw1 .) If (4.11) is used to compute the values of gV0

on V2, then

F.01/2.q0/ D F.01/2.q1/ D F.01/2.q2/ D 1

15
(4.12)

and for all jw0j D 2, i 2 ¹0; 1; 2º,

F.01/2.qi / � Fw 0.qi/: (4.13)

By (4.13), gV0
attains its supremum on F.01/2SG3 D FwSG. Let

u D
� 7

90

��2�

gV0
ı Fw � 1

15

�

:

By (4.12), u.x/ D 0 for all x 2 V0. The Laplacian of u is

� 7

90

��2�

4 .gV0
ı Fw/ � 4

� 1

15

��

D
� 7

90

��2�� 7

90

�2

4 gV0
� 0

�

D �1:

Thus,

u D gV0
:

By repeating this argument indefinitely and using induction, gV0
attains its supre-

mum in Fwk SG3 for all k. Thus,

ı1.V0/ D gV0
.Fw1/:

This means that ı1.V0/ satisfies

ı1.V0/ D 1

15
C

� 7

90

�2

ı1.V0/

so

ı1.V0/ D 540

8051
:

The weights are uniform by symmetry. �
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Example 4.4. K D SG3, E D Vm.

As with ST, Corollary 4.3 allows us to extend the results for V0 to Vm. For

the weights ¹p.x/º of Vm, we introduce a function � W Vm ! N. For all x 2 Vm,

�.x/ is the number of m-cells to which x belongs. If we consider the graph �m

with vertex set Vm and an edge between every Fw x and Fwy such that jwj D m,

x; y 2 V0, and x ¤ y, then �.x/ is equal to 1
N0�1

times the number of neighbors

of x in �m. In the case of SG3, �.x/ is 1 if x 2 V0, 3 if x D Fw p for some w of

any length (not only m), and 2 otherwise.

Theorem 4.7. For the 3-level gasket,

ı0.Vm/ D
� 7

90

�m=2 13

249
; (4.14)

ı1.Vm/ D
� 7

90

�m 540

8051
; (4.15)

pVm
.x/ D �.x/

3 � 6m
; (4.16)

and

ı.Vm; w/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if m D 0,

4
15

R
1=2 if m D 1,

4
5

� .6m�1/.6mC4/
.6m/.7�6mC8/

R
1=2 if m � 2.

Proof. Apply Corollary 4.3 to K D SG3, E D Vm. (a) gives (4.7),

(b) gives (4.15), and (c) gives (4.16). For m D 0 and m D 1, ı.Vm; w/ can be

directly computed. To calculate ı.Vm; w/ for m � 2, first let Kk D ¹x 2 Vm j
�.x/ D kº for all k. K1 D V0, so #K1 D 3. For each j -cell, there are 6 elements

x 2 .Vj C1 n Vj / with �.x/ D 2 and one with �.x/ D 3. Thus,

#K2 D
m�1
X

j D0

6 � 6j D 6

5
.6m � 1/

and

#K3 D
m�1
X

j D0

6j D 1

5
.6m � 1/:
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The number of points of Vm is

#K1 C #K2 C #K3 D 3 C 7

5
.6m � 1/;

so the uniform weights are

w.x/ D 1

3 C 7
5
.6m � 1/

D 5

7 � 6m C 8
:

For x 2 K1,

w.x/ � p.x/ D 5

7 � 6m C 8
� 1

3 � 6m
D 8.6m � 1/

3.6m/.7 � 6m C 8/
:

For x 2 K2,

w.x/ � p.x/ D 5

7 � 6m C 8
� 2

3 � 6m
D 6m � 16

3.6m/.7 � 6m C 8/
:

For x 2 K3,

p.x/ � w.x/ D 3

3 � 6m
� 5

7 � 6m C 8
D 6 � 6m C 24

3.6m/.7 � 6m C 8/
:

So

ı.Vm; w/ D
X

x2Vm

jp.x/ � w.x/j

D 6m � 1

3.6m/.7 � 6m C 8/

�

3 � 8 C 6

5
.6m � 16/ C 1

5
.6 � 6m C 24/

�

D 4

5
� .6m � 1/.6m C 4/

.6m/.7 � 6m C 8/
: �

Interestingly, SG3 is the first fractal we have encountered in which ı.Vm; w/

does not decay exponentially to 0 as m increases. Rather,

ı.Vm; w/
m!1����! 4

35
:

This is because there is a set Sm of points (the elements x with �.x/ D 3) whose

weights differ substantially from the uniform weights and

lim
m!1

#Sm

#Vm

> 0:

In our previous examples SG and ST, the only points in Vm whose weights differed

substantially from the uniform weights (for large m) were those in V0, a set which

does not grow at all with m. This means that the uniform weights ¹w.x/º are a

poor choice to use to numerically integrate functions on SG3.
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5. Energy measures

We now turn our attention to harmonic energy measures on the Sierpiński gasket:

measures �h;H where h and H are harmonic functions and for any cell C , �h;H D
EC .h; H/. We develop a technique to calculate integrals of the form

R

ud�h;H ,

where u is a harmonic spline. Later in the section, we will generalize the results

beyong SG to a more extensive class of fractals. Given a finite set E � V�, we will

derive a method to produce a set of weights ¹p.x/º that can be used to numerically

integrate any function that satisfies the conditions of Theorem 2.6.

First, we show that ¹�0; �1; �2º is a basis of the set of harmonic energy measures

on SG, and provide a formula to express any harmonic energy measure as a linear

combination of �0, �1, and �2.

Theorem 5.1. If h D a0h0 C a1h1 C a2h2 and H D b0h0 C b1h1 C b2h2, then

�h;H D
�

a0b0 C a1b2 C a2b1 � a0b1 � a1b0 � a0b2 � a2b0

2

�

�0

C
�

a1b1 C a0b2 C a2b0 � a1b0 � a0b1 � a1b2 � a2b1

2

�

�1

C
�

a2b2 C a0b1 C a1b0 � a2b0 � a0b2 � a2b1 � a1b2

2

�

�2:

(5.1)

Proof. We use the fact that energies are additive in the sense that EC .u C v; w/ D
EC .u; w/CEC .v; w/. This additivity clearly follows from the definition of energy,

and holds for both the first and second variable.

By expanding for each variable,

�h;H D
X

i

X

j

�ai hi ;bj hj
:

Clearly, for any cell C , EC .au; bv/ D abEC .u; v/, so

�h;H D
X

i

X

j

aibj �hi ;hj
: (5.2)

It is a result in [1] that

�h0;h1
D 1

2
.��0 � �1 C �2/;

�h0;h2
D 1

2
.��0 C �1 � �2/;

�h1;h2
D 1

2
.�0 � �1 � �2/:

Thus, all 9 terms in (5.2) can be expressed as linear combinations of ¹�0; �1; �2º,
and when they are and their sum is taken, the result is (5.1). �
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To calculate the weights ¹p.x/º, we must calculate integrals of the form
R

ud�,

where � is a harmonic energy measure and u is a harmonic spline (more specif-

ically, u is an indicator of some x 2 E). This problem can be split into two

problems: determining
R

ud� from the values of
R

u ı Fwd� for jwj D m, and

taking the integral with respect to � of a harmonic function.

To solve the first problem, we will construct matrices Mw for each word w

such that for every continuous function f , we can use Mw to evaluate integrals
R

FwSG fd�i .

Theorem 5.2. If

M0 D 1

15

0

@

9 0 0

2 2 �1

2 �1 2

1

A ; (5.3a)

M1 D 1

15

0

@

2 2 �1

0 9 0

�1 2 2

1

A ; (5.3b)

M2 D 1

15

0

@

2 �1 2

�1 2 2

0 0 9

1

A ; (5.3c)

then for all continuous functions f , and for all i 2 ¹0; 1; 2º,
0

B

@

R

Fi SG fd�0
R

Fi SG fd�1
R

Fi SG fd�2

1

C

A
D Mi

0

B

@

R

f ı Fid�0
R

f ı Fid�1
R

f ı Fid�2

1

C

A
: (5.4)

Proof. By the definition of an energy measure,
Z

F0SG

fd�0 D 5

3

Z

f ı F0d�h0C 2
5

h1C 2
5

h2
(5.5)

and
Z

F0SG

fd�1 D 5

3

Z

f ı F0d�h0C 2
5

h1C 2
5

h2
: (5.6)

By Theorem 5.1,

�h0C 2
5

h1C 2
5

h2
D 9

25
�0 (5.7)

and

� 2
5

h1C 1
5

h2
D 2

25
�0 C 2

25
�1 � 1

25
�2: (5.8)
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By (5.5) and (5.7),
Z

F0SG

fd�0 D 3

5

Z

f ı F0d�0

and by (5.6) and (5.8)

Z

F0SG

fd�1 D 2

15

Z

f ı F0d�0 C 2

15

Z

f ı F0d�1 � 1

15

Z

f ı F0d�2:

By symmetry,

Z

F0SG

fd�2 D 2

15

Z

f ı F0d�0 � 1

15

Z

f ı F0d�1 C 2

15

Z

f ı F0d�2:

Thus

M0 D 1

15

0

@

9 0 0

2 2 �1

2 �1 2

1

A

and by symmetry

M1 D 1

15

0

B

@

2 2 �1

0 9 0

�1 2 2

1

C

A
; M2 D 1

15

0

B

@

2 �1 2

�1 2 2

0 0 9

1

C

A
: �

.

Interestingly, [1] showed that for what turn out to be the same matrices M0,

M1, and M2:
0

B

@

R

F0SG fd�i
R

F1SG fd�i
R

F2SG fd�i

1

C

A
D Mi

0

B

@

R

f ı F0d�i
R

f ı F1d�i
R

f ı F2d�i

1

C

A
: (5.9)

That these matrices satisfy both (5.4) and (5.9) may be a simple coincidence,

arising from the fact that .Mi /i;j D .Mi /j;i : whenever i ¤ j .

Theorem 5.3. We have

0

B

@

R

FwSG fd�0
R

FwSG fd�1
R

FwSG fd�2

1

C

A
D Mw

0

B

@

R

f ı Fwd�0
R

f ı Fwd�1
R

f ı Fwd�2

1

C

A
:
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Proof. This theorem is proven by induction.

If m D 1, the result follows from Theorem 5.2.

If the result holds for all words of length m and w is a word of length m C 1,

let w D w1w0 for some word w0 of length m and some w1 2 ¹0; 1; 2º, w D w1w0.

By the same argument as the one used in the proof of Theorem 5.2 (that of

appealing to the definition of an energy measure and then using Theorem 5.1),

0

B

@

R

FwSG fd�0
R

FwSG fd�1
R

FwSG fd�2

1

C

A
D Mw1

0

B

@

R

Fw0SG f ı Fw1
d�0

R

Fw0SG f ı Fw1
d�1

R

Fw0SG f ı Fw1
d�2

1

C

A
: (5.10)

By the inductive hypothesis,

0

B

@

R

Fw0SG f ı Fw1
d�0

R

Fw0SG f ı Fw1
d�1

R

Fw0SG f ı Fw1
d�2

1

C

A
D Mw 0

0

B

@

R

f ı Fw1
ı Fw 0d�0

R

f ı Fw1
ı Fw 0d�1

R

f ı Fw1
ı Fw 0d�2

1

C

A
: (5.11)

Mw1
Mw 0 D Mw and f ı Fw1

ı Fw 0 D f ı Fw , so by (5.10) and (5.11):

0

B

@

R

FwSG fd�0
R

FwSG fd�1
R

FwSG fd�2

1

C

A
D Mw

0

B

@

R

f ı Fwd�0
R

f ı Fwd�1
R

f ı Fwd�2

1

C

A
: �

Because every harmonic function is a linear combination of ¹h0; h1; h2º, and

Theorem 5.1 constitutes a formula to express every harmonic energy measure as a

linear combination of ¹�0; �1; �2º, the problem of taking the integral with respect

to a harmonic energy measure � is solved by calculating the integrals
R

hid�j and

taking linear combinations with the appropriate coefficients.

Theorem 5.4. For i; j 2 ¹0; 1; 2º:
Z

hid�j D

8

<

:

1 if i D j ,

1
2

if i ¤ j .
(5.12)

Proof. Let ˛ D
R

h0d�0 and ˇ D
R

h1d�0. By symmetry,
R

hid�i D ˛ for all

i and
R

hid�j D ˇ whenever i ¤ j . From the integral of a constant function,

˛ C 2ˇ D 2. By (5.9),

0

B

@

R

F0SG h0d�0
R

F1SG h0d�0
R

F2SG h0d�0

1

C

A
D 1

15

0

B

@

9 0 0

2 2 �1

2 �1 2

1

C

A

0

B

@

R

f ı F0d�0
R

f ı F1d�0
R

f ı F2d�0

1

C

A
:
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Thus
Z

h0d�0 D
X

i

Z

Fi SG

h0d�0 D 3

5

Z

h0 C 2

5
h1 C 2

5
h2d�0

C 2

15

Z

2

5
h0 C 1

5
h2d�0

C 2

15

Z

2

5
h0 C 1

5
h2d�1

� 1

15

Z

2

5
h0 C 1

5
h2d�2

C 2

15

Z

2

5
h0 C 1

5
h1d�0

� 1

15

Z

2

5
h0 C 1

5
h1d�1

C 2

15

Z

2

5
h0 C 1

5
h1d�2;

so

75˛ D 9.5˛C4ˇ/C2.2˛Cˇ/C2.3ˇ/�.˛C2ˇ/C2.2˛Cˇ/�.˛C2ˇ/C2.3ˇ/;

75˛ D 51˛ C 48ˇ;

and

˛ D 2ˇ

Because ˛ C 2ˇ D 2 and ˛ D 2ˇ, ˛ D 1 and ˇ D 1
2
. In other words,

Z

hid�jk D

8

<

:

1 if i D j;

1=2 if i ¤ j:
(5.13)

�

We can now, in principle, compute
R

ud� for any harmonic spline u and

harmonic energy measure �. In particular, if E is a finite subset of V�, and for all

x 2 E we let p.x/ D
R

vxd� (where vx is the function that is harmonic away from

E with Vx jE D ıx), then any function that satisfies the conditions of Theorem 2.6

can be numerically integrated using the weights ¹p.x/º.
The results proven in this section so far relating to the Sierpiński gasket

generalize to any self-similar p.c.f. fractal generated by a finite iterated system
®

Fj

¯

satisfying the conditions of Section 4, if the results are expressed using

¹�hi ;hj
º0�i<j <N0

(instead of ¹�iº0�i<N0
) as the spanning set for the set of har-

monic energy measures. This choice of spanning set may seem odd or unnatural,
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because the measures � that we are interested in are non-negative (for example,

the Kusuoka measure � D
P

i �i ), as are the measures �i , while the measures

�hi ;hj
(i ¤ j ) are signed; the Theorems of Section 2 require that � be non-

negative. However, it is possible to express measures �i as linear combinations

of ¹�hi ;hj
º0�i<j <N0

, and the reverse is not true. Therefore, though our choice of

spanning set may be less natural, it is necessary to generalize the results of this

section.

Let K be defined as in Section 4, with V0 D ¹qiº0�i<N0
and the harmonic

functions ¹hiº such that
�

PN0�1
iD0 aihi

�

.qj / D aj .

If 0 � i; j < N0, denote �hi ;hj
by �ij .

Theorem 5.5. If � is a harmonic energy measure on K (that is, � D �h;H for

some h D
P

i aihi and H D
P

j bj hj ), then � is a linear combination of ¹�ij ºi¤j

given by

� D
X

0�i<j <N0

.aibj C aj bi � aibi � aj bj /�ij :

Proof. By the additivity and scalar multiplication of energy measures,

� D
N0�1
X

iD0

N0�1
X

j D0

ai bj �ij :

For each i ,
PN0�1

j D0 �ij D �hi ;.h0Ch1C:::Chn�1/ D �hi ;1 D 0, so �i i D �
P

j ¤i �ij .

Therefore,

� D
X

0�i<j <N0

.aibj C aj bi � aibi � aj bj /�ij : �

For the next theorems, we will speak of matrices whose rows and columns are

indexed by pairs .j; k/ such that 0 � j < k < N0, ordered lexicographically, so

.j; k/ comes “before” .l; m/ if i < l or i D l and k < m.

We will refer to the “.j; k/-th row” or “.l; m/-th column or “..j; k/; .l; m//-th

entry” of such a matrix.

We will also define constants ai;j;k;l;m and matrices Mi and Mw as follows:

Definition 5.6. If i 2 ¹0; 1; 2; : : : ; N �1º, 0 � j < k < N0, and 0 � l < m < N0,

let

ai;j;k;l;m D .hj ı Fi /.ql/ � .hk ı Fi /.qm/

C .hj ı Fi /.qm/ � .hk ı Fi /.ql/

� .hj ı Fi /.ql/ � .hk ı Fi /.ql/

� .hj ı Fi /.qm/ � .hk ı Fi /.qm/:
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For all i , let us Mi be the square matrix with rows and columns indexed by

¹.j; k/º0�j <k<N0
whose ..j; k/; .l; m//-th entry is r�1

i ai;j;k;l;m.

For all words w D w1w2 : : : wm, let Mw D Mw1
Mw2

: : : Mwm
.

Theorem 5.7. For all words w and continuous functions f ,

0

B

B

@

R

FwK fd�01

:::
R

FwK
fd�.N0�2/.N0�1/

1

C

C

A

D Mw

0

B

@

R

f ı Fwd�01

:::
R

f ı Fwd�.N0�2/.N0�1/

1

C

A
: (5.14)

Proof. First, suppose w is a word of length 1, whose one character is i . For all

0 � j < k < N0, by the definition of an energy measure,

Z

Fi K

fd�jk D r�1
i

Z

f ı Fi d�hj ıFi ;hkıFi
: (5.15)

By applying Theorem 5.5 to �hj ıFi ;hkıFi
,

�hj ıFi ;hkıFi
D

X

0�l<m<N0

ai;j;k;l;m�lm: (5.16)

By (5.15) and (5.16),

Z

Fi K

fd�jk D r�1
i

X

0�l<m<N0

ai;j;k;l;m

Z

f ı Fid�lm:

This statement for all .j; k/ is equivalent to (5.14) for w D i . This theorem extends

to longer words by the same argument as used in the proof of Theorem 5.3. �

To compute weights for Theorem 2.6, all that is left to do is evaluate the

integrals of the form
R

hid�jk for 0 � j < k < N0. For all i; j; k:

Z

hid�jk D
N �1
X

lD0

Z

FlK

hid�jk :

By applying Theorem 5.7, each integral
R

Fl K
hid�jk can be expressed as a linear

combination of ¹
R

hid�jkº0�j <k<N0
. Doing this for all i; j; k yields a system of

1
2
.N 3

0 � N 2
0 / equations and 1

2
.N 3

0 � N 2
0 / unknowns for the integrals

R

hid�jk .
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This system is linearly dependent because setting every integral equal to 0 would

be one solution. However, combining this system with the equations

N0�1
X

iD0

Z

hid�jk D �jk.K/ D E.hj ; hk/

for all .j; k/ will in most cases make it independent (it does in all of our examples).

It is possible that this system will have an un unwieldy amount of terms. Likely,

symmetry can be used to reduce it to a more manageable system.

We now choose some specific self-similar p.c.f. fractals and list the results

obtained when the above calculations are performed. For each fractal, these

calculations determine the matrices Mi . The fractals chosen are the Unit Interval,

the Sierpiński gasket, the Sierpiński tetrahedron, the Sierpiński n-hedron for a

general n, and the 3-level gasket. (The Sierpiński n-hedron is generated by the

similarities with contraction ratio 1
2

whose fixed points are n pairwise equidistant

vertices in R
n�1.)

Note that the matrices M0; M1; M2 for the Sierpiński gasket are not the same

as the ones given by Theorem 5.2, because of our change in choice of spanning

set: the matrices in Theorem 5.2 satisfy

0

B

@

R

Fi SG fd�0
R

Fi SG fd�1
R

Fi SG d�2

1

C

A
D Mi

0

B

@

R

f ı Fid�0
R

f ı Fid�1
R

f ı Fid�2

1

C

A
;

while the matrices in this table satisfy

0

B

@

R

Fi SG fd�01
R

Fi SG fd�02
R

Fi SG d�12

1

C

A
D Mi

0

@

R

f ı Fi d�01
R

f ı Fi d�02
R

f ı Fi d�12

1

A :

Fractal Unit Interval (I )

Picture
q0 q1

F0I F1I

Matrices

M0 D M1 D 1
2

For all w, for all continuous f ,
R

FwI
fd�01 D Mw

R

f ı Fwd�01
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Fractal Sierpiński gasket (SG)

Picture

q0

q1 q2

Matrices

M0 D 1
15

�

6 3 0
3 6 0

�2 �2 1

�

M1 D 1
15

�

6 0 3
�2 1 �2
3 0 6

�

M2 D 1
15

�

�2 �2 1
0 6 3
0 3 6

�

For all w, for all continuous f ,
0

B

@

R

FwSG fd�01
R

FwSG fd�02
R

FwSG fd�12

1

C

A
D Mw

0

B

@

R

f ı Fwd�01
R

f ı Fwd�02
R

f ı Fwd�12

1

C

A

Fractal Sierpiński tetrahedron (ST)

Picture

q0

q1

q2

q3

Matrices

M0 D 1
24

0

@

8 4 4 0 0 0
4 8 4 0 0 0
4 4 8 0 0 0

�2 �2 �1 1 0 0
�2 �1 �2 0 1 0
�1 �2 �2 0 0 1

1

A M1 D 1
24

0

@

8 0 0 4 4 0
�2 1 0 �2 �1 0
�2 0 1 �1 �2 0
4 0 0 8 4 0
4 0 0 4 8 0

�1 0 0 �2 �2 1

1

A

M2 D 1
24

0

@

1 �2 0 �2 0 1
0 8 0 4 0 4
0 �2 1 �1 0 �2
0 �2 1 �1 0 �2
0 4 0 8 0 4
0 4 0 4 0 8

1

A M3 D 1
24

0

@

1 0 �2 0 �2 �1
0 1 �2 0 �1 �2
0 0 8 0 4 4
0 0 �1 1 �2 �2
0 0 4 0 8 4
0 0 4 0 4 8

1

A

For all w, for all continuous f ,
0

B

B

B

B

B

B

B

B

B

@

R

Fw ST fd�01
R

Fw ST fd�02
R

Fw ST fd�03
R

Fw ST fd�12
R

Fw ST fd�13
R

Fw ST fd�23

1

C

C

C

C

C

C

C

C

C

A

D Mw

0

B

B

B

B

B

B

B

B

B

@

R

f ı Fwd�01
R

f ı Fwd�02
R

f ı Fwd�03
R

f ı Fwd�12
R

f ı Fwd�13
R

f ı Fwd�23

1

C

C

C

C

C

C

C

C

C

A

.
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Fractal Sierpiński n-hedron

Matrices

.Mi /.j;k/;.l;m/

D 1
n.nC2/

�
�

�.j; i; l/�.k; i; m/ C �.j; i; m/�.k; i; l/

� �.j; i; l/�.k; i; l/ � �.j; i; m/�.k; i; m/
�

,

where

�.a; b; c/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

n C 2 a D b D c,

2 a D b ¤ c,

2 a D c ¤ b,

0 a ¤ b D c,

1 a ¤ b, b ¤ c, a ¤ c

Fractal 3-level gasket (SG3)

Picture

q0

q1 q2

F0K

F1K F2K

F.01/K F.02/K

F.12/K

Matrices

M0 D 1
105

�

28 7 0
7 28 0

�12 �12 1

�

M1 D 1
105

�

28 0 7
�12 1 �12

7 0 28

�

M2 D 1
105

�

1 �12 �12
0 28 7
0 7 28

�

M.01/ D 1
105

�

16 3 3
0 6 �2
0 �2 6

�

M.02/ D 1
105

�

6 0 �2
3 16 3

�2 0 6

�

M.12/ D 1
105

�

6 �2 0
�2 6 0
3 3 16

�

For all w, for all continuous f ,
0

B

@

R

FwSG3
fd�01

R

FwSG3
fd�02

R

FwSG3
fd�12

1

C

A
D Mw

0

B

@

R

f ı Fwd�01
R

f ı Fwd�02
R

f ı Fwd�12

1

C

A
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By the method that we used to reach (5.13), we can compute the integrals of

the form
R

hid�jk . In the table below, we list these integrals for the same fractals

as in the above table. From these, since each measure of the form �i is equal to

�
P

j ¤i �ij , we can calculate integrals of the form
R

hid�j :

Z

hid�j D �
X

k¤j

Z

hid�jk :

These basic integrals for our example fractals (I , SG, ST, the n-hedron for 3 �
n � 100, and SG3) are listed in the table below. For I , SG, and ST, the integrals

were calculated by hand, while for the n-hedrons and the 3-level gasket, they were

calculated with the assistance of a computer program. We hypothesize that the

formulae for the n-hedron continue to hold for all positive integers n � 3.

Fractal
R

hid�jk

R

hid�j

Unit Interval �1
2

1
2

Sierpiński gasket

´

�1=2 if i D j or i D k,

0 if i , j , k distinct

´

1 if i D j ,

1=2 if i ¤ j

Sierpiński tetrahedron

´

�1=2 if i D j or i D k,

0 if i , j , k distinct

´

3=2 if i D j ,

1=2 if i ¤ j

n-hedron (3 � n � 100)

´

�1=2 if i D j or i D k,

0 if i , j , k distinct

´

1
2
.n � 1/ if i D j ,

1=2 if i ¤ j

3-level gasket

´

�1=2 if i D j or i D k,

0 if i; j; k distinct

´

1 if i D j ,

1=2 if i ¤ j

As with SG, we can numerically integrate any function that satisfies the con-

ditions of Theorem 2.6 with respect to a non-negative harmonic energy measure

�: For some finite E � V�, let ¹vxºx2E be the usual indicator splines, and let the

weights be p.x/ D
R

vxd�.
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